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Abstract

We extend to the longitudinal setting a latent class approach that has beed recently introduced by Lanza
et al. (2013) to estimate the causal effect of a treatment. The proposed approach permits the evaluation
of the effect of multiple treatments on subpopulations of individuals from a dynamic perspective, as
it relies on a Latent Markov (LM) model that is estimated taking into account propensity score weights
based on individual pre-treatment covariates. These weights are involved in the expression of the likelihood
function of the LMmodel and allow us to balance the groups receiving different treatments. This likelihood
function is maximized through a modified version of the traditional expectation-maximization algorithm,
while standard errors for the parameter estimates are obtained by a non-parametric bootstrap method.
We study in detail the asymptotic properties of the causal effect estimator based on the maximization
of this likelihood function and we illustrate its finite sample properties through a series of simulations
showing that the estimator has the expected behavior. As an illustration, we consider an application aimed
at assessing the relative effectiveness of certain degree programs on the basis of three ordinal response
variables when the work path of a graduate is considered as the manifestation of his/her human capital
level across time.

Keywords: Causal inference, Expectation-Maximization algorithm, Hidden Markov models, Multiple
treatments, Policy evaluation, Propensity score.
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1 Introduction

We propose a causal inference approach, based on a Latent Markov (LM) model, to dynamically evaluate the

average effect of multiple treatments in a longitudinal context in which multivariate responses are observed

at different time occasions. For this aim, we formulate the LM model (Bartolucci et al., 2013) within a

Potential Outcome (PO) conceptual approach (Rubin, 1974, 2005), and we propose to estimate this model

using a Propensity Score (PS) method (Imbens, 2000). An estimator of causal effects results, which is based

on a weighted likelihood function, with weights computed according to the PS approach; this estimator may

be used in order to evaluate the efficacy of a treatment versus another one on different subpopulations across

time.

In experimental settings, techniques for estimating causal effects with more than two treatments have

been used for many years. This issue is also of great interest in non-experimental settings, where the need

arises of estimating causal effects on the basis of observational data. In this regard, the PO framework is of

particular interest as it allows us to define causal effects in a straightforward way and to formulate techniques

for their estimation. In its original formulation, a set of POs corresponding to the possible treatments is

assumed to exist for every sample unit, but it is possible to observe only the outcome corresponding to the

taken treatment. This “missingness” problem is the primary challenge of causal inference and, therefore,

suitable methods have been proposed in order to overcome it and then obtain reliable estimators of the

causal effects defined in terms of summary statistics of the individual differences between POs. Among

these measures, the Average Treatment Effect (ATE) is of particular relevance. It is defined as the average,

over the population under study, of the difference between the POs corresponding to two treatments of

interest or between the treatment of interest and a control. As other causal effects, ATE may be estimated

by a PS method (see, among others, Rosenbaum and Rubin, 1983; Imbens, 2000; Guo and Fraser, 2010),

so as to balance the groups corresponding to the different treatments, taking into account pre-treatment

covariates. In practice, the estimate of the effect of interest, such as ATE, is computed by using matching

methods, as in (Angrist, 1991), or by weighting estimators similar to those proposed by Robins et al. (2000).

As noted by many authors, PS weighted estimators follow the well-known sampling theory approach of

Horvitz and Thompson (1952) for estimating a population total. Some generalizations have been proposed

by Hirano et al. (2003); see also Hernán et al. (2001). It also worth noting that McCaffrey et al. (2013)

recently introduced an innovative use of PS weights to control for pre-treatment unbalances on the basis of

observed variables in non-randomized/observational studies. The authors suggested an operative pathway

to implement PS weighting for multiple treatments using generalized boosted models.

Some authors highlighted the connection between model based causal statistical methods in the tradi-
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tional sense and methods of causal inference based on the PO approach. Along these lines, Lanza et al.

(2013) proposed a PS based method for making causal inference in connection with the Latent Class (LC)

model (Lazarsfeld and Henry, 1968; Goodman, 1974). This approach considers both matching and weighting

on the basis of individual PSs depending on pre-treatment covariates. In this paper, we extend the proposal

of Lanza et al. (2013) to a longitudinal context in which different measurement occasions are considered

after the treatment. In this regard it is worth considering that, in economic and social contexts, we can

easily dispose of longitudinal observational datasets and often the focus is on the study of the effect of

a policy or treatment on certain outcomes of interest, accounting also for the evolution of such an effect

across time on different subpopulations of interest. In the estimation of causal effects, longitudinal data are

generally preferable to cross-sectional data; see, among others, Aalen et al. (2012) and Arjas (2013) and the

winter 2014 issue of Econometric Theory, which gives a comprehensive discussion about methods of causal

inference.

As already mentioned, the approach we propose is based on the LM model, which is an important

statistical model that may be conceived as an extended version of the LC model having a longitudinal

dimension. The LM model dates back to Wiggins (1955), who introduced it to analyze latent changes on

the basis of panel data. This initial version is based on a homogeneous Markov chain and may be used

with a single outcome at each time occasion. Wiggins (1955) formulated the model so that the manifest

transition is a mixture of the true change and a spurious change due to measurement errors in the observed

states. Among the main extensions of the basic version of the LM model we mention: those based on the

inclusion of constraints on the measurement component or on the latent structure of the model (Bartolucci,

2006); those based on the inclusion of individual covariates (Vermunt et al., 1999; Bartolucci and Farcomeni,

2009); those to deal with multilevel longitudinal data (Bartolucci et al., 2011). For a thorough review see

Bartolucci et al. (2013, 2014) and Pennoni (2014).

One of the novelties of the proposal we formulate in this article relies on the adopted parameterization of

the latent process, so as to express causal effects in terms of transition between latent states corresponding to

subpopulations characterized by different conditions of interest for the study. Moreover, it is also innovative

the use of a PS method for the estimation of the causal LM model, which is formulated following a PO

approach. In practice, we implement a weighted maximum likelihood estimator based on two steps. At

the first step, the probability of choosing a certain treatment on the basis of the pre-treatment covariates is

estimated by means of a multinomial logit model. At the second step, a weighted version of the log-likelihood

of the LM model, with weights depending on the estimates computed at the first step, is maximized. In

order to obtain reliable standard errors for the estimates of the LM parameters, and of the causal effects,

3



we use a non-parametric bootstrap method (Davison and Hinkley, 1997).

Overall, with multiple treatments and multivariate longitudinal data, the proposed approach allows us

to reliably estimate ATEs in terms of initial and transition probabilities between different latent states.

In practice, these latent states summarize the different configurations of the outcomes observed at each

time occasion. In the proposed formulation the response variables are categorical, but it may be simply

generalized to deal with any kind of response variable.

The remainder of this article is organized as follows. The next section outlines the traditional LM

model framework. Section 3 provides a technical illustration of our proposal, focusing in particular on the

assumptions of the causal LM model and the parametrizations adopted to express causal effects. Section

4 illustrates the two-step estimator of the proposed model based on a PS weighting scheme. Section 5

deals with the consistency of the proposed estimator of the treatment effects and illustrates, under different

scenarios, its finite sample properties by means of a simulation study. Section 6 describes an application

focused on the evaluation of the effect of different academic degrees based on data collected in the Lombardy

region (Italy). In the last section we provide some concluding remarks.

2 Standard latent Markov model

Let n denote the number of individuals that are longitudinally observed and let T denote the number of

time occasions. With reference to individual i and occasion t, i = 1, . . . , n, t = 1, . . . , T , we observe a vector

of r categorical response variables Y it = (Yi1t, . . . , Yirt). Each response variable Yijt, j = 1, . . . , r, has cj

categories, labeled from 0 to cj − 1. For every individual i and time occasion t we also consider a vector of

covariates Xit. Throughout this article we denote a realization of random variables or vectors with the

lower case.

The variable of main interest in the present approach is a latent variable that is individual- and time-

specific; moreover, it has a discrete distribution with support {1, . . . , k} for which more details are provided

below. For individual i and time occasion t, this variable is denoted by Hit, given its nature of hidden

variable, and for the same individual i we introduce the latent vector H i = (Hi1, . . . , HiT ). We assume

that the variables in Y it are conditionally independent given Hit (local independence); we also assume

conditional independence between the response variables at different time occasions given the latent process.

Note that the assumption that the latent variables are discrete corresponds to defining a certain number k

of latent classes (or latent states) of individuals, with individuals in the same class having the same latent

characteristics. In practice, these classes correspond to subpopulations having different expected behaviors
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with reference to the response variables.

Among the available parametrizations for LM models, in terms of distribution of the response variables

and the latent variables, that proposed by Bartolucci et al. (2011) is of particular interest. The resulting

model is suitable to deal with educational data having a multilevel structure, due to students collected in

classes. Under this model, which is formulated for binary outcomes, the conditional distribution of the

response variables given the latent variables is parameterized as

p(Yijt = 1|Hit = h) =
exp(ξh − νjt)

1 + exp(ξh − νjt)
, h = 1, . . . , k, j = 1, . . . , r, t = 1, . . . , T, (1)

under the constraint of monotonicity ξ1 < · · · < ξk, where ξh is the h-the level of the latent trait character-

izing the student, and νjt is the difficulty level of item j administered at occasion t. The above constraint

of monotonicity on the parameters in ξ = (ξ1, . . . , ξk)
′ is typically adopted in the item response theory (see,

among others, Hambleton and Swaminathan, 1985). This constraint may be also formulated for the case of

ordinal response variables, so that the latent classes (or latent states) corresponding to the different values

of Hit are suitably ordered (see also Bartolucci et al., 2013).

Under the model of Bartolucci et al. (2011), the initial and transition probabilities of the latent process

are parameterized using global logits (McCullagh, 1980). Ignoring for simplicity the multilevel structure,

with reference to the initial probabilities we have

log
p(Hi1 > h)

p(Hi1 < h)
= αh + x′

i1β, h = 2, . . . , k.

Concerning the transition probabilities we have

log
p(Hit > h|Hi,t−1 = h̄)

p(Hit < h|Hi,t−1 = h̄)
= γh̄ht + x′

itδt,

for h̄ = 1, . . . , k, h = 2, . . . , k, and t = 2, . . . , T . The intercepts in the above expressions depend on the

level of the latent variable and β and δt are vectors of regression coefficients for the individual covariates.

In this article, we adopt a related parametrization that does not require the constraint of monotonicity so

that the conditional distribution of each response variable, given the corresponding latent variable, is free.

3 Causal latent Markov model

For the case of a multiple treatment denoted by the discrete variable Zi that may depend on a vector of

pre-treatment covariates Xi, we reformulate the LM from a causal perspective. For this aim, we introduce
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“potential versions” of the latent variables Hit, which are denoted by H
(z)
it , i = 1, . . . , n, t = 1, . . . , T ,

z = 1, . . . , l, where l is the number of the possible treatments. In particular, H
(z)
it corresponds to the latent

state of individual i at occasion t if he/she had taken treatment z. The sequence of these variables for the

same individual i is collected in the vector H
(z)
i = (H

(z)
i1 , . . . , H

(z)
iT ) and their distribution may arbitrarily

depend on the pre-treatment covariates. As in typical PO approaches, this dependence is not explicitly

modeled; more details about this point are provided at the beginning of Section 5.

Variables H
(z)
it are not directly observable for any z. This is because, as in a typical problem of causal

inference, only one of the possible outcomes H
(z)
it is indeed selected and this selection may depend on

the value of the variables themselves. Moreover, in the present context there is a further reason that

complicates the inference: the variable of interest is not directly observable even for the selected treatment.

This is because it is a latent variable that affects the response vector Y it, and then it is only indirectly

observable through this vector.

Regarding the latent processes H
(z)
i , we assume that they follow a first-order Markov chain. The initial

probabilities are modeled through a multinomial parametrization depending on the treatment and that is

alternative to the parametrization illustrated at the end of the previous section. In particular, regarding

the initial and transition probabilities we assume a baseline-category logit model which does not require any

ordering of the latent states. Regarding the initial probabilities, we assume that

log
p(H

(z)
i1 = h)

p(H
(z)
i1 = 1)

= αh + d(z)′βh, h = 2, . . . , k, (2)

where αh is the intercept, βh = (βh2, . . . , βhl)
′ is a column vector of l− 1 parameters, and d(z) is a column

vector of l − 1 zeros with the (z − 1)-th element equal to 1 if z > 1. In this way, for z > 1, the element βhz

of βh corresponds to the effect of the z-th treatment with respect to the first treatment. More precisely,

this is an ATE as it is referred to the whole population of interest. For instance, β22 being positive

means that the second type of treatment increases the probability that the individual is in latent class 2

with respect to first treatment. On the other hand, it is worth noting that, due to the discrete nature of

the treatment indicator z, equation (2) does not impose any restriction on the marginal distribution of

H
(z)
i1 . Moreover, in order to measure ATE for comparing two treatments, we can directly use comparisons

of the type p(H
(z)
i1 = h) − p(H

(1)
i1 = h) for z = 2, . . . , l, which are expressed on the probability rather than

on the logit scale. Finally, in terms of causal effects, a comparison different from that using the first type

of treatment as reference category may be simply based on the difference between suitable elements of βh.

For instance, provided that l > 3, the third treatment may be compared with the second one through the
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difference βh3 − βh2 or p(H
(3)
i1 = h) − p(H

(2)
i1 = h), which are again ATEs. Obviously, in an application all

these effects will be based on parameter estimates which are computed as described in Section 4.

The transition probabilities of the hidden chain are modeled as follows:

log
p(H

(z)
it = h|H(z)

i,t−1 = h̄)

p(H
(z)
it = 1|H(z)

i,t−1 = h̄)
= γh̄h + d(z)′δh, h̄ = 1, . . . , k, h = 2, . . . , k, t = 2, . . . , T. (3)

The parameters to be estimated in this case are the intercepts γh̄h and the vectors of regression coefficients

in δh = (δh2, . . . , δhl)
′, h = 1, . . . , k. In particular, each coefficient δhz is again an ATE which, however, is

referred to the transition from level 1 to level h of the latent variable. This effect has an interpretation

similar to the one given above in terms of difference on the logit scale between a certain treatment and the

first treatment. On the other hand, even in this case we can conceive an ATE directly measured on the

probability scale, having expression p(H
(z)
it = h|H(z)

i,t−1 = h̄) − p(H
(1)
it = h|H(1)

i,t−1 = h̄), with h̄ = 1, . . . , k,

h = 2, . . . , k, or p(H
(z)
it = h) − p(H

(1)
it = h), after having properly elaborated the initial and transition

probabilities of the Markov chain. Comparisons between two arbitrary treatments in terms of causal effect

are also possible and may be based on differences between the corresponding elements of the vector δh, such

as δh3 − δh2, or between transition probabilities, such as p(H
(3)
it = h|H(3)

i,t−1 = h̄) − p(H
(2)
it = h|H(2)

i,t−1 = h̄)

with h̄ = 1, . . . , k, h = 2, . . . , k.

About the parametrization adopted in the proposed model, we clarify that no constraints are assumed

on the distribution of every response variable Yijt given the corresponding latent variable H
(z)
it . Therefore,

this distribution depends on the following parameters:

φjy|h = p(Yijt = y|H(z)
it = h), h = 1, . . . , k, j = 1, . . . , r, y = 0, . . . , cj − 1.

The above conditional distribution of the response variables at a specific time occasion, given the corre-

sponding latent state, helps to identify the latent states. Such probabilities may be parametrized as in

equation (1), but in the present context we avoid this or similar parametrizations in order to obtain a more

flexible model.

The above assumptions incorporate in the model the belief that the only variables that have a direct

effect on the outcomes are the latent variables. In particular, local independence means that if the latent

variable for an individual at a given occasion was known, the knowledge of an outcome would not help in

predicting the other outcomes for the same occasion. Obviously, this does not rule out an effect of the pre-

treatment covariates on the response variables, but this effect passes through the latent variables that have,
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therefore, a fundamental role. It is also worth noting that the latent variables, as in the model presented

in Section 2, are conceived as discrete with k possible values. This allows us to consider a semi-parametric

distribution that is parsimonious and based on parameters which are easy to interpret. It is also well known

that this assumption allows the model to properly fit the data, as shown in many applications (see also

Bartolucci et al., 2013), giving more flexibility to the latent structure with respect to using continuous latent

variables. Finally, using discrete latent variables simplifies the computation of the manifest distribution of

the response variables given the covariates as it avoids the use of integrals, which are instead necessary with

continuously distributed latent variables.

Note that assumptions similar to the previous ones may be formulated with continuous outcomes and

also outcomes of a mixed nature can be dealt with. For instance, if some of the outcomes are continuous,

these may be modeled by assuming a suitable conditional parametric distribution, such as the Normal

distribution, with parameters depending on the latent classes, as in a finite mixture model (McLachlan and

Peel, 2000). This makes the proposed approach flexible enough to deal with very different contexts in which

longitudinal data are observed and causal effects have to be estimated with reference to the dynamics of the

response variables induced by the treatment.

Regarding the treatment selection mechanism, we formulate the following assumptions which are typical

of the causal inference literature:

• we assume the consistency rule according to which Hit = H
(zi)
it , where zi is the observed treatment of

individual i;

• we assume that 0 < p(Zi = z|xi) < 1 for z = 1, . . . , l and any possible configuration xi of the

pre-treatment covariates. In this way, every unit has a positive probability of taking each possible

treatment;

• absence of unmeasured confounding according to which Zi |= H(z)
i |Xi, z = 1, . . . , l.

The combination of the last two assumptions is referred to as strong ignorability by Rosenbaum and Rubin

(1983). This means that, given the pre-treatment covariates, the choice of the treatment is independent of

the potential outcomes.

4 Two-step maximum likelihood estimation

In order to estimate the causal model formulated in the previous section and following Lanza et al. (2013),

we propose a two-step strategy based on a PS method suitable for multiple treatments (Imbens, 2000;
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McCaffrey et al., 2013). At the first step, we estimate a model for the probability of taking a certain type

of treatment given the individual pre-treatment covariates. At the second step, we estimate the assumed

LM model by maximizing a weighted version of the log-likelihood for this model, with weights based on the

parameter estimates from the previous step. It must be clear that the observed data consist, for i = 1, . . . , n,

of the vector of pre-treatment covariates xi and the received treatment zi, further to the time-specific vectors

of responses yi1, . . . ,yiT .

In more detail, the first step of the proposed method consists in estimating a multinomial logit model

based on the assumption

log
p(Zi = z|xi)

p(Zi = 1|xi)
= ηz + x′

iλz, z = 2, . . . , l, (4)

where ηz and λz are regression parameters. On the basis of the parameter estimates, we compute the

individual weights

ŵi = n
1/p̂(zi|xi)

∑n
m=1 1/p̂(zm|xi)

, i = 1, . . . , n. (5)

Note that these weights are rescaled so that their sum is equal to the sample size, that is,
∑n

i=1 ŵi = n;

this is necessary for the model selection as we explain below. Moreover, as we illustrate in the application

in Section 6.2, the actual set of pre-treatment covariates must be chosen appropriately; see also McCaffrey

et al. (2013).

At the second step, we maximize the weighted log-likelihood

ℓ(θ) =

n
∑

i=1

ŵiℓi(θ), ℓi(θ) = log p(yi1, . . . ,yiT |zi), (6)

where θ is the vector of all LM model parameters arranged in a suitable way. The manifest probability

p(yi1, . . . ,yiT |zi) is computed by suitable recursions developed in the hidden Markov literature (Baum

et al., 1970; Welch, 2003; Zucchini and MacDonald, 2009) on the basis of the probabilities p(yit|H
(t)
i = h)

and the initial and transition probabilities of the corresponding hidden Markov chain parametrized as in

equations (2) and (3). Given the assumption of local independence described above, we have that

p(Y it = y|Hit = h) =
r
∏

j=1

φjyj |h,

where y = (y1, . . . , yr) is a generic configuration of Y it.

The above model log-likelihood may be maximized with respect to θ by using the Expectation-Maximization

(EM) algorithm (Baum et al., 1970; Dempster et al., 1977), which represents the main tool to estimate dis-

9



crete latent variable models; see Bartolucci et al. (2013), Chapter 5, for details about its implementation

for LM models. The EM algorithm is based on the concept of complete data, which correspond to the value

of every latent variable, further to the observed covariates and response variables. Therefore, after some

algebra, the complete data log-likelihood is given by

ℓ∗(θ) =

k
∑

h=1

r
∑

j=1

T
∑

t=1

cj−1
∑

y=0

ahjty log φjy|h +

k
∑

h=1

n
∑

i=1

ŵibhi1 log p(Hi1 = h|zi)

+

k
∑

h̄=1

k
∑

h=1

n
∑

i=1

T
∑

t=2

ŵibh̄hit log p(Hit = h|Hit = h̄, zi), (7)

where ahjty corresponds to the (weighted) frequency of subjects responding by y to the j-th response variable

and belonging to latent state h at occasion t, bhit is an indicator variable equal to 1 if subject i belongs

to latent class h at occasion t, with p(Hi1 = h|zi) being the initial probabilities computed according to

equation (2), and bh̄hit = bh̄i,t−1bhit is an indicator variable equal to 1 if the same subject moves from state h̄

to state h at occasion t, with p(Hit = h|Hit = h̄, zi) being the transition probabilities computed according

to equation (3).

Since the latent configuration is not known for each individual, the EM algorithm maximizes the log-

likelihood above by alternating the following two steps until converge:

• E-step: compute the expected value of the frequencies and indicator variables in (7), given the

observed data and the current value of the parameters, so as to obtain the expected value of ℓ∗(θ);

• M-step: update θ by maximizing the expected value of ℓ∗(θ) obtained above.

To select the number of latent states k, when this number is not a priori known, we rely on the

Bayesian Information Criterion (BIC; Schwarz, 1978), which relies on an asymptotic approximation of a

suitable transformation of the Bayesian posterior probability of a candidate model. In practice, k is selected

on the basis of the observed data through the index

BIC = −2ℓ(θ̂) + log(n)#par, (8)

where ℓ(θ̂) denotes the maximum of the weighted log-likelihood and #par denotes the number of free

parameters. Note that, due to the definition of the weights given in (5), the sample size is n also after the

application of these weights, as
∑n

i=1 ŵi = n, and then the penalization term in (8) is correctly specified.

Once parameter estimates have been computed on the basis of the above two-step procedure, we obtain

standard errors by a non-parametric bootstrap method (Davison and Hinkley, 1997). This method is
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based on re-sampling subjects (with all their observed pre-treatment covariates, treatment, and outcomes)

a suitable number of times with replacement from the observed sample and computing the estimate of the

parameters for every bootstrap sample. In this way, we suitably take into account the two-step nature of

the proposed estimation method.

5 Properties of the proposed approach

In this section we describe the main asymptotic and finite-sample properties about the proposed approach.

Asymptotic properties, which are dealt with in the following section, are based on standard results about

maximum likelihood estimators, whereas finite-sample properties are studied by simulation.

Before introducing the technical details, it is important recalling that the causal LM model described in

Section 3 may be seen as a marginal model in the sense of Robins et al. (2000). In fact, we do not explicitly

formulate assumptions on the conditional distribution of the latent variables H
(z)
it given the pre-treatment

covariates Xi, but we model the marginal distribution of these variables. On the other hand, in order to

study the properties of the proposed approach, and in particular implementing the simulation study, we

have to consider a data generating model in which the relation between covariates and latent variables is

explicit.

5.1 Asymptotic properties

The data generating model is based on the following scheme for i = 1, . . . , n:

1. the vector of covariates xi is drawn from an unknown distribution f(x);

2. given xi, the potential latent outcomes H
(z)
it are drawn, for t = 1, . . . , T and z = 1, . . . , l, from a

Markov chain based on initial and transition probabilities which arbitrarily depend on the covariates;

3. given xi, the treatment indicator zi is generated from a multinomial logit model based on the proba-

bilities pz(xi), z = 1, . . . , l, and formulated as in equation (4);

4. the latent variables Hit are generated as Hit = H
(zi)
it for t = 1, . . . , T ;

5. given the generated value of Hit, the outcomes Yijt are generated, for j = 1, . . . , r and t = 1, . . . , T ,

according to the LM model as specified in Section 3.

As already mentioned, the causal LM model that we estimate is a “marginalized” version of the data

generating model based on the previous assumptions. Therefore, in order to assess the properties of the
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proposed estimator, which is illustrated in Section 4, a crucial issue is determining what is the true value

of the parameters of this causal model under the data generating model; the corresponding true parameter

vector is denoted by θ0. A natural way to define θ0 is as the point of convergence of the standard maximum

likelihood estimator of θ̃ of θ under a “randomized” version of the assumed data generating model; this

estimator is obtained from the maximization of the target function

n
∑

i=1

ℓi(θ). (9)

The randomized sampling scheme is based on the same steps 1-5 indicated above, but at the third step

the treatment indicator variable is drawn from a uniform distribution, which is independent of Xi, with

probabilities pz0 = 1/l, z = 1, . . . , l. Note that the proposed estimator θ̂ and the estimator θ̃ are indeed

based on two different sampling schemes, with the first possibly affected by selection bias.

In the following, we establish the consistency of the proposed estimator which is based on the fact that

this estimator and the randomized one are based on the maximization of two functions that, divided by n,

converge in probability to the same function as the sample size increases.

Proposition 1. As n → ∞, the estimator θ̂ under the data generating model described above and the

estimator θ̃ under the randomized sampling scheme converge in probability to the same point θ0 of the

parameter space.

Proof. See Appendix.

A final point we here discuss regards the properties of BIC to select the appropriate number of latent

states k. In dealing with standard finite mixture models, the consistency of this criterion has been established

in Keribin (2000), where consistency means that the true number of mixture components is selected with

probability approaching to 1 as n → ∞. Moreover, McLachlan and Peel (2000) suggests this criterion as

suitable in typical applications of mixture models and, similarly, Bacci et al. (2013) showed, on the basis

of a deep simulation study, that it tends to outperform alternative selection criteria for the traditional LM

model. Moreover, advanced versions of BIC have been recently introduced and studied from the point of

view of consistency when the assumed statistical model is estimated by composite, instead of full, composite

likelihood; see Gao and Song (2010).

In the present causal framework, the above results are not directly applicable essentially for two reasons.

First, the estimated model is not directly the data generating model, but a “marginalized” version of this

one. Second, the adopted estimator is not a standard likelihood estimator neither a composite likelihood

estimator. However, we expect BIC to perform properly in applications for the causal LM model here
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illustrated. This conclusion is supported by the simulation results that are illustrated in the following

section.

Regarding the choice of the number of latent states, our point of view is that it is not essential to

spot the “correct” number of latent states only on the basis of the observed data in a causal model as the

present one. In fact, reasons of interpretability and stability of the results may lead to choosing a different

number of latent states with respect to that indicated by a selection criterion. Moreover, adopting solely a

selection criterion based on the observed data may lead to choosing an increasing number of states as the

number of time occasions T increases. In fact, as T increases, the differences between individuals in terms

of observable path tend to increase and it is easier to spot these differences as the amount of information

increases. However, the fact that in the same applicative context and for the same group of individuals

two different values of k may be suggested, depending on the length of the period of observation, may be

undesirable from the interpretative point of view.

5.2 Simulation study

In order to study the finite-sample properties of the estimator illustrated in the previous section, we per-

formed a simulation study in which the estimates obtained from this method are compared with those ob-

tained from the naive estimation method of the LM model without using PS weighting and those obtained

in the case of randomized treatment. Details about the simulation design and its results are illustrated in

the following.

5.2.1 Simulation design

We assume the existence of two covariates affecting both the treatment and the value of the potential

outcomes H
(z)
it for all possible treatments z; the first of these covariates (xi1) is continuous and is generated

from a standard normal distribution, whereas the second (xi2) is binary with two possible values, -0.5 and

0.5, having the same probability. The observed values of these two covariates are collected in the vector

xi. The simulation is based on the following generating model for the POs at the initial time occasion

log
p(H

(z)
i1 = h|xi)

p(H
(z)
i1 = 1|xi)

= α∗
h + β∗hz + (xi1 + xi2)τh, h = 2, . . . , k, z = 1, . . . , l,

whereas for the next occasions we have

log
p(H

(z)
it = h|H(z)

i,t−1 = h̄,xi)

p(H
(z)
it = 1|H(z)

i,t−1 = h̄,xi)
= γ∗

h̄h
+ δ∗hz + (xi1 + xi2)ψh,
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with h̄ = 1, . . . , k, h = 2, . . . , k, and z = 1, . . . , l. Note that in the above expressions we add an asterisk to

the parameters αh, βhz, γh̄h, and δhz, as these parameters are different from those of the causal LM model.

In fact, as already explained in Section 5.1, this model does not coincide with the data generating model.

In the base-line simulation design, we assume k = 2 latent states and l = 2 treatments, and we fix

α∗
2 = −1, β∗22 = 2, τ2 = 1, γ∗12 = −1, and γ∗22 = 1, with δ∗22 = β∗22/2 and ψ2 = τ2/2, so that the effect of

treatment and covariates is smaller on the initial occasion with respect to the following ones. The assignment

mechanism of the treatment is based on the assumption

log
p(Zi = 2|xi)

p(Zi = 1|xi)
= xi1 + xi2.

Given the same assignment mechanism, with k = 3 latent states, and again l = 2 possible treatments, we

fix α∗
2 = −0.5, α∗

3 = −1.5, β∗22 = 1.5, β∗32 = 3, γ∗12 = −1, γ∗13 = −2, γ∗22 = 1, γ∗23 = 0, γ∗32 = 1, γ∗33 = 2,

τ2 = 0.5, and τ3 = 1, with δ∗h2 = β∗h2/2 and ψh = τh/2 for h = 2, 3.

Under the scenario with l = 3 treatments, we assume that the treatment is assigned according to the

multinomial logit model based on the following assumption:

log
p(Zi = z|xi)

p(Zi = 1|xi)
= (z − 1)(xi1 + xi2), z = 2, 3.

Moreover, with k = 2 we use the same values as above for all the parameters of the model for the potential

outcomes, with β∗22 = 1 and β∗23 = 2. Similarly, with k = 3 we assume β∗22 = 0.75, β∗23 = 1.5, β∗32 = 1.5,

and β∗33 = 3. In both cases we have δ∗hz = β∗hz for all h and z.

Under each model defined as above, we drew 1,000 samples of size n = 1000, 2000 for a number of time

occasions T = 4, 8, so that there are 16 scenarios overall. For every sample, the causal effects were estimated

by the proposed method and its unweighted version. Moreover, for comparison, the corresponding estimates

based on a randomized design were obtained. The latter amounts to draw the assignment variables Zi from

a generalized Bernoulli distribution with l categories having the same probability, and then independently

from the pre-treatment covariates, and applying the unweighted estimator on the resulting data.

5.2.2 Simulation results

The results in terms of parameter estimates are reported in Table 1 for the case of l = 2 treatments. We

also considered selection of k on the basis of BIC. Regarding this aspect of model selection, the results

are reported in Table 2 for l = 2. For l = 3, the results are in Tables 3 and 4. In Tables 1 and 3, the

estimator based on randomized samples is denoted as “randomized”, that based on the proposed estimation
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approach when samples are affected by confounding is denoted as “proposed”, and the estimator which

does not correct for confounding is denoted as “naive”, being based on the maximization of the standard

(unweighted) likelihood function.

[Table 1 about here.]

[Table 2 about here.]

[Table 3 about here.]

[Table 4 about here.]

From the results in Tables 1 and 3, which are obtained under different scenarios, we conclude that

the bias of the proposed estimator is typically negligible. We stress that this bias is computed as the

difference between the mean of the estimates based on the proposed method and that of the estimates

based on the randomized experiment, as we do not directly estimate the parameters of the data generating

model. Therefore, it would not be correct to directly compare, for instance, the average of the estimates

of the parameters βhz with the proposed method with the true value of the parameters β∗hz assumed in the

data generating model. We also find that, as expected, the standard deviation of the proposed estimator

decreases as n and T increase; in particular, it decreases with a rate close to
√
n.

On the other hand, the bias is typically large for the naive estimator. This bias does not reduce as the

sample size and/or the number of time occasions increases and confirms that, differently from the proposed

estimator, the naive estimator is inadequate and may lead to completely wrong results. These results would

also be very different from those obtainable if the treatment was perfectly randomized.

Finally, it is worth noting that, according to the results in Tables 2 and 4, BIC performs very well

in choosing the optimal number of latent states. Therefore, we conclude that it is an adequate selection

criterion also when the weighted log-likelihood estimator is applied and this justifies the rule in equation (5)

to compute the PS weights.

6 Application

In this section, the proposed methodology is illustrated through an application focused on the estimation

of ATE of the degree type on the Human Capital (HC) development. In particular, we compare individuals

who graduated in different subjects taking into account the university labour market transition in the first

period after graduation, so as to consider their work path; see also Bartolucci and Pennoni (2011).
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In the following, we first describe the context of the study and the available data. Then, we show

the main results of the application and we provide some remarks about the estimated effectiveness of the

different types of degree.

6.1 Data description

We represent HC by a sequence of individual latent variables having a longitudinal dimension, so as to

study its evolution across time. This follows Heckman (2000), who conceived HC as a latent variable which

is affected by investment in education, individual ability, type of higher education. In turns, HC affects

income, other outcomes (manifest variables) describing the stability of the job position, and skills actually

employed in comparison with the acquired ones.

In order to properly assess the effect of university studies on the transition to the labor market, we

consider the following aspects: (i) different outcomes may describe how much knowledge improves the

personal opportunities on the job market, taking into account not only earnings but also indicators of job

stability and improvement in skills; in this regard, Harpan and Draghici (2014) suggested that HC must be

measured also including non-monetary aspects as well as considering its development; (ii) the phenomenon

has a longitudinal perspective and the evolution of the outcomes observed at repeated occasions is of main

importance; (iii) the treatment of subjects is not controlled and there are multiple potential treatments

corresponding to different types of degree program. Also note that, as in other model frameworks for causal

inference, the pre-treatment covariates are of main importance as the treatment groups differ, already prior

to treatment, in a way that can affect the outcomes. This clearly happens in our application so that the

groups of individuals with different degrees need to be balanced on the basis of these covariates.

The available data derive from certain administrative archives and concern graduates from the Lombardy

region. The Supplementary Material file of the present article provides more details on the administrative

archives from which the data are obtained. The dataset refers to 1,144 individuals who graduated in

2007 from four universities and are resident in the area surrounding Milan. Note that, in this area, these

universities are comparable in terms of prestigious and quality and then we rule out a differential effect

between them in terms of work path. On the other hand, we study the effect of different types of academic

graduation; in other words, the type of graduation is the treatment of interest. For this aim, we deal with a

cohort of graduates who have been observed along four quarters after graduation, covering in this way one

year.

The percentage of the graduates for each type of degree, as well as the descriptive statistics for the avail-

able pre-treatment covariates conditional on each treatment, are provided in the Supplementary Material
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file. In this regard, note that Zi is discrete variable with l = 5 treatments equal to: 1 for technical degrees,

2 for architecture, 3 for economic degrees, 4 for humanities degrees, and 5 for scientific degrees. The groups

are not balanced in terms of pre-treatment covariates; in particular, there are relevant differences between

graduates with a technical degree and those with other degrees.

The following r = 3 response variables concerning graduates’ employment status are available for each

of the four quarters of observation:

i) contract type with categories: none, temporary, and permanent;

ii) skill with categories: none, low/medium, and high;

iii) gross income in Euros (e) with categories: none, 63750 e, and >3750 e.

Then, we have r = 3 and cj = 3 for j = 1, . . . , r, as all variables have three response categories. Note that

the category none means that the contract type is not temporary neither permanent but some less qualified

type of contract. The category none for skill corresponds to those jobs not requiring any qualified skill, and

for income this category refers to incomes gained from other sources.

Regarding the response variables, note that we essentially distinguish between temporary and permanent

contracts. Moreover, the gross income is reported quarterly and we choose to consider the threshold of

e15,000 yearly, which corresponds to e3,750 quarterly. The third response variable is based both on

skill level and skill specialization. According to the definition of HC given above, the observed response

variables we dispose represent a manifestation of this latent construct. The local independence assumption

is reasonable and, from our point of view, no other dependences in the data need to be specified.

6.2 Results

We first consider the selection of the pre-treatment covariates to be used to compute the weights (first step).

Then, we show the estimated parameters related to ATE of the degree on the work path (second step).

6.2.1 Selection of the pre-treatment covariates

As illustrated in Section 4, the individual weights are computed on the basis of the estimated multinomial

logit model for the treatment, which is based on equation (4).

In general, it is important to select the appropriate pre-treatment covariates that enter in this model;

see also McCaffrey et al. (2013). In this respect, we start from an analysis of the dependence of each of

these covariates with the type of university degree. For quantitative covariates, such as family’s income,
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the analysis is based on an ANOVA model and only covariates for which a clear dependence with the type

of degree is ascertained are included in the multinomial logit model. covariate is considered to have a

strong dependence with the choice of the degree type when the hypothesis is rejected that the means of this

covariate for the different degrees are equal. In the case of qualitative covariates, such as gender, we instead

use a chi-square test of independence for contingency tables. Therefore, we choose the following among the

pre-treatment covariates: gender, district of birth, final grade at high school diploma, type of high school.

The parameter estimates of this multinomial model are reported in Table 5.

[Table 5 about here.]

In Table 6 we report some descriptive statistics for the distribution of each of these covariates given the

degree type and accounting for the PS weights based on the fitted multinomial model.

[Table 6 about here.]

From Table 6 we observe that the balance between the groups corresponding to the different university

degrees is considerably higher with respect to the initial distributions (compare with Table 2 in the Sup-

plementary Material file). For instance, the percentage of females among graduates in a technical subject

is around 20% and it is around 80% among graduates in a humanities subject. After re-weighting, these

percentages become equal to 45% and 49%, respectively, and they are close to those computed for the other

university degrees. A similar convergence between the distributions corresponding to the other degree types

is observed for the remaining three covariates.

6.2.2 Results of the model fitting

After the individual PS weights have been obtained, we estimated the proposed LM model for an increasing

number of latent states not larger than 4, so as to avoid models of difficult interpretation, and under this

constraint we selected this number on the basis of BIC, as illustrated in Section 4. It turns out that the

number of latent classes is k = 4 corresponding to the minimum of the BIC index among the values of

k we considered. The corresponding maximum weighted log-likelihood is ℓ(θ̂) = −5180.00, with 63 free

parameters, so that BIC = 10803.66.

The estimates of the conditional response probabilities (φjy|h) obtained under the selected model with

four latent states are reported in Table 7 and are also illustrated in Figure 1.

[Table 7 about here.]
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[Figure 1 about here.]

According to the estimates of the parameters φjy|h we can rather easily interpret the latent states

according the corresponding distribution of the response variables. In particular, the first class corresponds

to the cluster of unemployed individuals, and then the probability of the first category is equal to 1 for each

response variable. On the other hand, the fourth latent class corresponds the subpopulation of individuals

in very good work conditions, as they have a permanent contract and tend to have a job with high skill

level and high income. The interpretation of the other two classes is less straightforward, even if it is clear

that they are intermediate between the first class and the fourth. In particular, the second class is that of

individuals that typically have a temporary contract for a low/medium skill job. Individuals in the third

class differ from those in the second for having a higher probability of making use of their high skills. Overall,

the interpretation of these classes in terms of HC may be summarized as follows:

• 1st class: lowest HC level;

• 2nd class: intermediate HC level with high probability of a temporary job, requiring a low/medium

skill level, and intermediate income level;

• 3rd class: similar to the 2nd class with the exception of a higher skill level and a slightly higher income;

• 4th class: high HC level with permanent contract, intermediate-high skills, and high income.

It is also worth noting that, although these latent classes can be easily interpreted, they are non-monotonically

ordered, implying that the constraint of monotonicity only holds for certain pairs of classes, such as the pair

(1,4); however, this constraint does not hold for the pair (3,4). Then, avoiding to incorporate in the model

the constraint of monotonicity by parametrizing the conditional response probabilities is a proper choice as

this constraint would reduce the model fit considerably.

The estimates of the regression coefficients αh and βhz affecting the initial probabilities of the hidden

Markov chain, see equation (2), are reported in Table 8, with the indication of the significance level for the

test that each of these parameters is equal to 0. For the corresponding estimated initial probabilities see

Table 9. We recall that every parameter βhz may be interpreted as an ATE of degree (treatment) z, with

respect to a technical degree (z = 1), in terms of initial probabilities expressed on the logit scale. In Table

8 we also report the estimates of the pairwise differences βhz1 − βhz2 , z2 6= z1, which can be interpreted

in terms of ATE of treatment z2 with respect to treatment z1. The estimates of the parameters γh̄h and

δhz referred to the causal effect on the transition probabilities, see equation (3), are reported in Table 10,

together with estimates of the differences γhz1 − γhz2 , z1 = 2, . . . , l − 1, z2 6= z1, and the indication of the
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significance level for each of these parameters, which may be again interpreted in terms of ATE on the

transition probabilities.

[Table 8 about here.]

[Table 9 about here.]

[Table 10 about here.]

On the basis of the estimates of the logit regression parameters for the initial probabilities, reported in

in Table 8, we conclude that, at the beginning of the period of observation, there is a statistical significant

difference in terms of effect on HC of technical degrees with respect to architecture and humanities degrees

and in favor of the first ones. There is also a significant differential effect of economic degrees with respect

to architecture and humanities degrees. This conclusion is confirmed by the estimated initial probabilities

for each type of treatment given in Table 9, which show that technical and economic degrees have the lowest

probability that a graduate is in the first latent class (0.45 for both degrees) and the highest probability

that he/she in the last latent class ( 0.17 for technical and 0.15 for economic degree). Then, scientific

degrees correspond to intermediate estimates of both probabilities (0.65 for the first class and 0.10 for the

last) whereas, with reference to architecture and humanities degrees, we have the highest probabilities for

the first class (0.75 and 0.67, respectively) and the lowest probabilities for the last class (0.07 and 0.05,

respectively). It is interesting to note that, looking at the initial probabilities of the first or the last class,

we obtain substantially the same ranking of the degree types in terms of effect of initial HC level, an aspect

that gives consistency to our findings. In summary, we can rank the degrees as follows in terms of their

effectiveness at the beginning of the period after graduation: technical, economic, scientific, humanities,

architecture. We rank architecture as the last degree type on the basis of the initial probability of the first

latent class although humanities has a lower probability for the last latent class, but the difference is small.

The picture is somehow different in terms of causal effects of the degree type on the evolution of the HC

level, which is represented through transition probabilities. In fact, on the basis of the estimates of the logit

regression parameters affecting the transition probabilities (Tables 10) we conclude that there are significant

differences between technical degrees and all the other types of degree during the period of observation and

between economic and architecture degrees in favor of the first.

The above conclusions in terms of ranking of the degree types are confirmed by the estimated transition

probability matrices reported in Table 11 for each type of degree and which are computed on the basis of

the estimates reported in Table 10.
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[Table 11 about here.]

All matrices are characterized by a rather high persistence, with elements in the main diagonal always

greater than 0.65, many of which are also greater than 0.8. However, some differences emerge between these

transition matrices. In order to ease the comparison, it is again convenient to focus on the first and the last

latent classes, corresponding to the subpopulations of individuals with the lowest and the highest HC level,

respectively. In particular, we observe that for technical degrees there is the lowest probability of remaining

in the first latent class (0.72) and then the highest probability of moving away from this class, meaning

that this type of degree induces the best improvement in terms of HC. For this type of degree we also have

the highest probability of remaining in the last class (1.00). The second lowest probability of remaining in

the first class is for economic degrees (0.84), corresponding to the second highest probability of remaining

the last class (0.99). The third lowest probability of remaining in the first class is for humanities degrees

(0.85), corresponding to the second lowest probability of remaining in the last class (0.97). Finally, for

scientific degrees we have the second lowest probability of persistence in the first latent class (0.86) and the

third lowest probability of remaining in the last class (0.97), whereas for architecture we have the highest

probability for the first class (0.89) and the lowest for the last class (0.95).

Overall, we conclude that there is a rather clear ranking between university degrees in terms of impact

on the HC level which is as follows:

• Technical degrees: highest effect at the beginning and in terms of evolution of HC level;

• Economic degrees: impact close to technical degrees and in terms of evolution of HC level;

• Scientific degrees: significantly worse impact with respect to technical and economic degrees;

• Humanities and Architecture degrees: worse effect at the beginning and in terms of evolution of HC

level.

In order to assess how these conclusions are sensitive to the initially selected set of covariates, we

performed the same analysis using all the available pre-treatment covariates to compute the individual

weights. This amounts to fit the multinomial logit model, based on equation (4), with all these covariates

and obtain in this way the PS weights. The results of this second fitting are very close to those obtained

above, leading to the same conclusions about the effect of the treatment of interest. For details about this

comparison we refer the reader to the second part of the Supplementary Material file.

21



7 Conclusions

We propose a novel approach for estimating Average Causal Effects (ATEs) when dealing with longitudinal

data in observational studies and in the presence of multiple treatments. It is based on integrating the

Latent Markov (LM) model with modeling techniques based on the potential outcome framework (Rubin,

1974, 2005). We introduce a causal inference perspective into the LM model and, at the same time, we

extend the causal inference approach developed by Lanza et al. (2013) to the longitudinal context. This

innovative statistical method has a potential use in a wide range of observational studies which rely on the

same assumptions. It allows us to summarize the multivariate responses observed at each occasion by latent

classes (or states) having the interpretation of clusters (or subpopulations) of individuals. The flexibility

of the adopted parameterization allows us to deal with any kind of response variable, not only categorical.

Of main importance is the estimation of the ATEs which are expressed in terms of initial probabilities of

the latent classes and transition probabilities between these classes, so as to separate the impact at the

beginning of the period of observation from that on the evolution of the characteristic of interest.

The model is fitted by a two-step maximum likelihood estimation procedure based on first estimating

a multinomial logit model for the probability of taking each type of treatment given suitably chosen pre-

treatment covariates. Then, a weighted log-likelihood of the LM model, with weights computed on the basis

of the estimates computed at the first step, is maximized so as to obtain the parameter estimates. This second

step is based on the expectation-maximization algorithm (Dempster et al., 1977). Reliable standard errors

for the model parameters are obtained by using a non-parametric bootstrap method (Davison and Hinkley,

1997). The number of latent classes is selected by the Bayesian Information Criterion (BIC; Schwarz, 1978).

The selection of the appropriate pre-treatment covariates is made by considering an ANOVA model for

the quantitative covariates and a chi-square test of independence for qualitative covariates. These covariates

are selected if they show a significant dependence with a specific type of treatment. Moreover, the use of the

multinomial logit parameterization for the initial and for the transition probabilities of the latent variables

implies that the number of parameters to be estimated may be potentially high. However, we introduce

a constrained form that makes the model more parsimonious and, in the causal context, this is a suitable

parameterization because it allows us to estimate the effects of interest in case of multiple treatments. A

partially ordered hidden Markov model, as that proposed by Ip et al. (2013), may be also considered.

We assess the asymptotic properties of the proposed estimator by taking into account the data generating

model. We provide a proposition of its consistency by showing that it converges to the same point of the

parameter space at which the standard estimator converges under a perfectly randomized sampling scheme.

Then, we assess the finite-sample properties of the proposed causal effect estimator by means of a simulation
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study. In this study, we compare the results especially in terms of bias of the proposed weighted estimator

with the naive unweighted estimator of the LM model and with the estimator based on a randomized

assignment of the treatment. As expected, the proposed estimator has a negligible bias, whereas the naive

estimator may have a huge bias. We also evaluate the performance of the BIC and we conclude that this

criterion is able to select the correct number of latent states also when used within the weighted likelihood

approach. According to the simulation study we conclude that the proposed approach leads us to an

adequate estimator of the causal effects of interest.

In the application, we aim at studying the development of the Human Capital (HC), and the related

university-to-work transition phenomenon, due to the different types of degree. We refer to a definition

of HC as a latent construct related to the skills, competencies, and attributes embodied in individuals

that are relevant to the economic activities, with particular reference of the labor market. The response

variables are categorical and they have been chosen in order to capture different aspects of the individuals.

In fact, we conceive HC as a “potential version” of a latent variable which underlies the three employment

quality measures, in accordance with the most recent definitions of HC. Therefore, the local independence

assumption is reasonable. The analyzed data are referred to the first year after graduation of the entire

population of graduates in 2007 in four universities in Milan and certain important pre-treatment covariates

are available. We observe the relevant factors contributing to the treatment assignment and then the

assumption of absence of unmeasured confounders is no doubtful. However, the latter may be also assessed

by a sensitivity analysis which may be considered in subsequent studies. By applying the proposed approach

to the data at hand, we selected a model with four latent states. We show that the results have an easy

interpretation and a rather insensitive to the specification of the multinomial logit model used to obtain

the initial Propensity Score (PS) weights. We conclude that the different types of academic degree have

significantly different effects on the work path. The choice of different treatments (type of degree) has an

impact on the return of investment in HC, the increase of which is higher for those having a technical and

economic degrees respect to other degrees. The model also allows us to rank university degrees in terms of

impact on HC levels. It also worth mentioning that, by applying the same proposal and relaying on more

time occasions, we might study the long term effects of the degrees.

Finally, we stress that the proposed model is very flexible as it may be easily extended to the case of

mixed response variables. Another possible extension of interest is for multilevel data; this extension could

be formulated according to the approach adopted in Bartolucci et al. (2011) where additional discrete latent

variables are introduced to account for the dependence between the individuals in the same clusters. In

this case a two-step estimator may be still used, with the first step consisting in the computation of the
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PS weights and the second consisting in the maximization of the weighted model likelihood. The main

complication is in this second step and, in particular, in the estimation algorithm. This difficulty is given by

the presence of a complex latent structure based on several latent variables that are dependent each other.

Moreover, special care must be paid to the method for obtaining the standard errors for the parameter

estimates, so as to account for the within-cluster dependence in addition to the two-step nature of the

estimator. As suggested by a Referee, one possibility would be to implement a bootstrap algorithm based

on resampling units within each cluster.

Acknowledgments

We thank the Editor and the Reviewers for many stimulating comments. We are also grateful to Prof. M.

Mezzanzanica and to Dr. M. Fontana, of the Interuniversity Research Centre on Public Services (CRISP),

University of Milano-Bicocca, for providing the analyzed dataset. Finally, we acknowledge the financial

support from the grant RBFR12SHVV of the Italian Government (FIRB project “Mixture and latent variable

models for causal inference and analysis of socio-economic data”). F. Pennoni also thanks the financial

support of the STAR project “Statistical models for human perception and evaluation” funded by the

University of Naples Federico II.

Appendix

Proof of Proposition 1. First of all, consider the average log-likelihood defined according to (6), that is,

ℓ̄(θ) =
ℓ(θ)

n
=

∑n
i=1 1/p̂(zi|xi) log p(yi1, . . . ,yiT |zi)

∑n
i=1 1/p̂(zi|xi)

.

Since the parameters of the logit model are consistently estimated at the first step, then also each p̂(zi|xi)

is uniformly consistently estimated and this implies that

ℓ̄(θ)
p→ E[1/p(Zi|Xi) log p(Y i1, . . . ,Y iT |Zi)]

E[1/p(Zi|Xi)]
, (10)

where the expected value E(·) is computed with respect to the joint distribution of Xi, Zi, and Y i1, . . . ,Y iT ,

under the data generating model; this distribution does not depend on a specific individual i.
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The denominator of (10) may be rewritten as

E[1/p(Zi|Xi)] =
l

∑

z=1

{
∫

x

[1/p(Zi = z|Xi = x)]p(Zi = z|Xi = x)f0(x)dx

}

= l,

where f0(x) refers to the true distribution of the covariates. Using similar arguments, we also have that

E[1/p(Zi|Xi) log p(Y i1, . . . ,Y iT |Zi)]

=
l

∑

z=1

∫

y1

· · ·
∫

yT

f0(y1, . . . ,yT |z) log p(Y i1 = y1, . . . ,Y iT = yT |Zi = z)dyT · · · dy1,

where

f0(y1, . . . ,yT |z) =
∫

x

p(Y i1 = y1, . . . ,Y iT = yT |Xi = x, Zi = z)f0(x)dx

is the conditional distribution of Y i1, . . . ,Y iT given Zi, provided that Zi is independent ofXi. Consequently,

we have

ℓ̄(θ)
p→ E0[log p(Y i1, . . . ,Y iT |Zi)], ∀θ,

where the expected value E0(·) is computed under the randomized sampling scheme in which each treatment

has the same probability 1/l, so that

E0[log p(Y i1, . . . ,Y iT |Zi)]

=
1

l

l
∑

z=1

∫

y1

· · ·
∫

yT

f0(y1, . . . ,yT |z) log p(Y i1 = y1, . . . ,Y iT = yT |Zi = z)dyT · · · dy1. (11)

Now consider the average version of the target function defined in equation (9), that is,

ℓ̃(θ) =
1

n

n
∑

i=1

log p(yi1, . . . ,yiT |zi).

By standard arguments we have that

ℓ̃(θ)
p→ E0[log p(Y i1, . . . ,Y iT |Zi)], ∀θ.

Therefore, the two target functions on which the two estimators are based convergence to the same function

defined in equation (11). Since usual regularity conditions about the two involved likelihoods are satisfied,

it follows that both θ̂ and θ̃ converges in probability to the same point θ0 of the parameter space. �
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Figure 1: Estimated conditional probabilities of labor condition (φjy|h), under the proposed causal LM model
with k = 4 latent states.
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k = 2 k = 3
β22 δ22 β22 β23 δ22 δ23

n = 1000 T = 4 randomized mean 1.622 0.798 1.308 2.591 0.634 1.278
sd 0.254 0.170 0.261 0.252 0.172 0.168

proposed mean 1.641 0.790 1.297 2.623 0.644 1.290
bias 0.019 -0.008 -0.011 0.032 0.011 0.013
sd 0.324 0.228 0.349 0.345 0.261 0.232

naive mean 2.538 1.250 1.786 3.586 0.882 1.771
bias 0.916 0.453 0.478 0.995 0.248 0.494
sd 0.306 0.194 0.295 0.298 0.209 0.187

T = 8 randomized mean 1.613 0.819 1.280 2.590 0.652 1.307
sd 0.239 0.095 0.261 0.252 0.110 0.102

proposed mean 1.616 0.824 1.310 2.626 0.652 1.315
bias 0.003 0.005 0.030 0.037 0.001 0.008
sd 0.306 0.129 0.346 0.330 0.158 0.141

naive mean 2.510 1.283 1.795 3.581 0.888 1.794
bias 0.897 0.464 0.515 0.991 0.237 0.487
sd 0.287 0.113 0.301 0.302 0.127 0.114

n = 2000 T = 4 randomized mean 1.606 0.796 1.288 2.586 0.631 1.274
sd 0.167 0.116 0.196 0.175 0.123 0.114

proposed mean 1.606 0.800 1.281 2.579 0.645 1.290
bias 0.000 0.004 -0.006 -0.007 0.014 0.016
sd 0.219 0.151 0.240 0.230 0.178 0.160

naive mean 2.522 1.253 1.769 3.546 0.879 1.768
bias 0.917 0.457 0.481 0.959 0.248 0.493
sd 0.211 0.135 0.196 0.205 0.146 0.134

T = 8 randomized mean 1.596 0.817 1.284 2.573 0.646 1.302
sd 0.168 0.065 0.177 0.163 0.078 0.071

proposed mean 1.598 0.817 1.291 2.578 0.649 1.305
bias 0.002 0.000 0.007 0.006 0.003 0.003
sd 0.209 0.087 0.239 0.232 0.113 0.098

naive mean 2.507 1.275 1.775 3.544 0.889 1.788
bias 0.910 0.457 0.491 0.971 0.243 0.485
sd 0.199 0.077 0.194 0.199 0.092 0.082

Table 1: Results in terms of parameter estimates for the case of l = 2 treatments.
.

selected k
1 2 3 4 > 5

k = 2 n = 1000 T = 4 0 972 21 7 0
T = 8 0 966 23 7 4

n = 2000 T = 4 0 990 9 1 0
T = 8 0 982 15 1 2

k = 3 n = 1000 T = 4 0 0 983 15 2
T = 8 0 0 977 17 6

n = 2000 T = 4 0 0 990 9 1
T = 8 0 0 983 13 4

Table 2: Results in terms of selection of k for the case of l = 2 treatments.
.
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k = 2 k = 3
n T β22 β23 δ22 δ23 β22 β23 β32 β33 δ22 δ23 δ32 δ33

1000 4 rand. mean 0.821 1.631 0.390 0.799 0.644 1.291 1.315 2.603 0.314 0.641 0.642 1.291
sd 0.288 0.301 0.190 0.208 0.260 0.328 0.265 0.298 0.170 0.218 0.172 0.207

prop. mean 0.822 1.630 0.399 0.812 0.643 1.301 1.336 2.650 0.320 0.649 0.643 1.293
bias 0.001 -0.001 0.009 0.013 0.000 0.010 0.021 0.047 0.006 0.008 0.000 0.002
sd 0.332 0.392 0.201 0.260 0.304 0.413 0.333 0.399 0.193 0.300 0.194 0.272

naive mean 1.293 2.574 0.628 1.275 0.897 1.802 1.825 3.627 0.441 0.882 0.891 1.785
bias 0.472 0.943 0.237 0.476 0.253 0.510 0.510 1.024 0.127 0.241 0.249 0.494
sd 0.317 0.374 0.182 0.225 0.278 0.360 0.304 0.349 0.182 0.253 0.183 0.235

8 rand. mean 0.820 1.629 0.405 0.821 0.641 1.301 1.300 2.591 0.327 0.653 0.655 1.306
sd 0.268 0.293 0.102 0.116 0.270 0.337 0.257 0.291 0.110 0.134 0.108 0.128

prop. mean 0.838 1.645 0.404 0.825 0.643 1.296 1.307 2.623 0.319 0.657 0.655 1.321
bias 0.018 0.016 -0.001 0.004 0.002 -0.005 0.007 0.032 -0.008 0.004 0.000 0.015
sd 0.331 0.370 0.110 0.148 0.284 0.419 0.324 0.397 0.115 0.195 0.119 0.175

naive mean 1.303 2.575 0.637 1.299 0.894 1.792 1.801 3.611 0.444 0.903 0.902 1.818
bias 0.482 0.947 0.232 0.477 0.253 0.492 0.500 1.020 0.117 0.250 0.247 0.512
sd 0.317 0.360 0.108 0.129 0.267 0.355 0.304 0.363 0.110 0.158 0.115 0.145

2000 4 rand. mean 0.789 1.598 0.402 0.793 0.640 1.285 1.302 2.600 0.321 0.641 0.640 1.282
sd 0.191 0.205 0.123 0.140 0.190 0.226 0.184 0.206 0.117 0.151 0.119 0.145

prop. mean 0.807 1.608 0.398 0.799 0.654 1.300 1.303 2.596 0.323 0.640 0.641 1.290
bias 0.017 0.010 -0.004 0.006 0.015 0.015 0.001 -0.004 0.002 0.000 0.001 0.007
sd 0.221 0.252 0.137 0.173 0.209 0.277 0.223 0.271 0.135 0.205 0.136 0.188

naive mean 1.274 2.548 0.632 1.269 0.907 1.801 1.798 3.590 0.446 0.883 0.888 1.781
bias 0.485 0.950 0.231 0.476 0.267 0.516 0.496 0.990 0.125 0.243 0.248 0.499
sd 0.217 0.242 0.129 0.150 0.196 0.240 0.204 0.248 0.127 0.171 0.127 0.157

8 rand. mean 0.799 1.605 0.404 0.815 0.642 1.281 1.279 2.567 0.317 0.649 0.648 1.308
sd 0.191 0.201 0.074 0.081 0.193 0.212 0.175 0.201 0.075 0.097 0.078 0.092

prop. mean 0.794 1.592 0.407 0.816 0.644 1.278 1.295 2.583 0.321 0.650 0.648 1.308
bias -0.005 -0.013 0.003 0.001 0.002 -0.003 0.016 0.016 0.004 0.001 0.000 -0.001
sd 0.210 0.243 0.075 0.106 0.208 0.292 0.221 0.264 0.080 0.134 0.076 0.118

naive mean 1.262 2.531 0.639 1.290 0.891 1.772 1.786 3.571 0.444 0.896 0.895 1.806
bias 0.463 0.926 0.235 0.475 0.250 0.492 0.508 1.005 0.127 0.247 0.247 0.498
sd 0.217 0.232 0.072 0.091 0.192 0.251 0.204 0.237 0.077 0.110 0.076 0.099

Table 3: Results in terms of parameter estimates for the case of l = 3 treatments.
.

selected k
1 2 3 4 > 5

k = 2 n = 1000 T = 4 0 995 4 1 0
T = 8 0 988 9 2 1

n = 2000 T = 4 0 997 2 1 0
T = 8 0 993 4 1 2

k = 3 n = 1000 T = 4 0 0 994 5 1
T = 8 0 0 988 12 0

n = 2000 T = 4 0 0 998 1 1
T = 8 0 0 994 4 2

Table 4: Results in terms of selection of k for the case of l = 3 treatments.
.
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Covariate Degree (vs. technical)
arch. econ. human. scien

intercept 5.677∗∗ 6.061∗∗ 4.932∗∗ 2.074∗

gender: female 1.878∗∗ 1.628∗∗ 3.156∗∗ 1.323∗∗

district of birth: Lombardy 0.139 -0.338 -0.762† -1.182
Italy -0.507† -0.311 -0.297 -0.867†

others 0.853 -1.299† -0.130 0.007
final score high school diploma: -0.083∗∗ -0.086∗∗ -0.076∗∗ -0.044∗∗

type of high school: others 0.799∗∗ 1.497∗∗ 0.694∗∗ -0.091

Table 5: Parameter estimates of the multinomial logit model to compute the individual weights ( the ref-
erence category for each categorical covariate is the one not listed; †significant at 10%, ∗significant at 5%,
∗∗significant at 1%).

University degree
Covariate techn. arch. econ. human. scien.
gender: male 0.552 0.525 0.504 0.514 0.536

female 0.448 0.475 0.496 0.486 0.464
district of birth: Milan 0.784 0.726 0.762 0.750 0.791

Lombardy 0.055 0.060 0.060 0.079 0.059
Italy 0.146 0.185 0.145 0.147 0.127
others 0.015 0.029 0.032 0.024 0.023

final score high school diploma: 81.77 81.87 80.70 82.05 80.46
type of high school: lyceum 0.838 0.832 0.789 0.832 0.795

others 0.162 0.168 0.211 0.168 0.205

Table 6: Weighted means (or proportions) for each pre-treatment covariate included in the multinomial logit
model used to compute individual weights.

Latent state (h)
Contract type (j = 1) 1 2 3 4
none 1.000 0.000 0.000 0.000
temporary 0.000 0.964 0.994 0.000
permanent 0.000 0.036 0.006 1.000

Latent state (h)
Skill (j = 2) 1 2 3 4
none 1.000 0.000 0.000 0.000
low/medium 0.000 0.991 0.000 0.302
high 0.000 0.009 1.000 0.698

Latent state (h)
Gross income (j = 3) 1 2 3 4
none 1.000 0.014 0.033 0.020
6 3750 0.000 0.707 0.650 0.256
>3750 0.000 0.279 0.317 0.724

Table 7: Estimated conditional probabilities of labor condition (φjy|h), under the proposed model for the
graduates in Milan with k = 4 latent states.
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Latent state (h)

Treatment 2 3 4

technical (α̂h) -1.239∗∗ -0.584∗∗ -1.005∗∗

architecture vs. technical (β̂h2) -1.177∗∗ -1.267∗∗ -1.369∗∗

economic vs. technical (β̂h3) 0.405 -0.232 -0.118

humanities vs. technical (β̂h4) -0.522 -0.776∗∗ -1.623∗∗

scientific vs. technical (β̂h5) -0.434 -0.981† -0.903

economic vs. architecture (β̂h3 − β̂h2) 1.582∗∗ 1.036∗∗ 1.251∗

humanities vs. architecture (β̂h4 − β̂h2) 0.655† 0.492 -0.254

scientific vs. architecture (β̂h5 − β̂h2) 0.743 0.287 0.466

humanities vs. economic (β̂h4 − β̂h3) -0.927∗∗ -0.544∗ -1.504∗∗

scientific vs. economic (β̂h5 − β̂h3) -0.839 -0.749 0.784

scientific vs. humanities (β̂h5 − β̂h4) 0.088 -0.205 0.720

Table 8: Estimates of the logit regression parameters affecting the initial probabilities of the latent pro-
cess under the selected LM causal model with k = 4 latent states (†significant at 10%, ∗significant at 5%,
∗∗significant at 1%).

Latent state (h)

Treatment 1 2 3 4
technical 0.452 0.131 0.252 0.165
architecture 0.747 0.067 0.116 0.070
economic 0.454 0.197 0.201 0.148
humanities 0.666 0.115 0.171 0.048
scientific 0.647 0.121 0.136 0.096

Table 9: Estimated initial probabilities for each type of treatment under the selected causal LM model with
k = 4 latent states.

Latent state (h)

Treatment 2 3 4

technical h̄ = 1 (γ̂1h) -3.020∗∗ -1.620∗∗ -1.894∗∗

technical h̄ = 2 (γ̂2h) 1.880∗∗ -0.226 0.405
technical h̄ = 3 (γ̂3h) -2.497† 2.185∗∗ 0.171
technical h̄ = 4 (γ̂4h) -14.382∗∗ -0.039 5.934∗∗

architecture vs. technical (δ̂h2) -0.368 -0.862∗∗ -2.639∗∗

economic vs. technical (δ̂h3) 0.080 -0.653∗ -1.275∗∗

humanities vs. technical (δ̂h4) -0.172 -0.524∗ -1.851∗∗

scientific vs. technical (δ̂h5) -0.179 -0.769∗ -1.507∗∗

economic vs. architecture (δ̂h3 − δ̂h2) 0.448 0.208 1.364∗∗

humanities vs. architecture (δ̂h4 − δ̂h2) 0.196 0.338 0.788†

scientific vs. architecture (δ̂h5 − δ̂h2) 0.189 0.092 1.132†

humanities vs. economic (δ̂h4 − δ̂h3) -0.252 0.130 -0.576

scientific vs. economic (δ̂h5 − δ̂h3) -0.259 -0.116 -0.232

scientific vs. humanities (δ̂h5 − δ̂h4) -0.007 -0.246 0.344

Table 10: Estimates of the logit regression parameters affecting the transition probabilities of the latent
process under the selected causal LM model (†significant at 10%, ∗significant at 5%, ∗∗significant at 1%).
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Latent state (h)

Degree h̄ 1 2 3 4
technical 1 0.716 0.035 0.142 0.107

2 0.102 0.665 0.081 0.152
3 0.009 0.007 0.797 0.106
4 0.003 0.000 0.002 0.995

architecture 1 0.886 0.030 0.074 0.010
2 0.167 0.758 0.057 0.018
3 0.204 0.012 0.767 0.017
4 0.036 0.000 0.014 0.950

economic 1 0.835 0.044 0.086 0.035
2 0.112 0.795 0.046 0.047
3 0.165 0.015 0.765 0.055
4 0.009 0.000 0.005 0.986

humanities 1 0.846 0.035 0.099 0.020
2 0.138 0.764 0.065 0.033
3 0.152 0.011 0.808 0.029
4 0.016 0.000 0.009 0.974

scientific 1 0.858 0.034 0.079 0.029
2 0.139 0.764 0.051 0.046
3 0.183 0.013 0.756 0.048
4 0.012 0.000 0.005 0.983

Table 11: Estimates of the transition probabilities under the selected causal LM model referred to each
treatment.
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