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Abstract

A Q-learning model is devised in order to see whether individuals can "learn" how
to cooperate, when a virtuous system of punishment and reinforcement is adopted.
The paper shows that if it is possible to free-ride and not being adequately punished,
there will always be an incentive to deviate from the cooperation.Conversely, even if
the others did not cooperate, it is still possible to have someone who cooperates when
individuals are pushed by strong intrinsic motivation. Cooperation can be a learning
process. It is possible to trigger a learning process that leads individuals to be equally
cooperative. This happens much more easily, the more responsible individuals are. It
also depends on proper punishment.
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1 Introduction

It is generally believed that public goods can be produced only in the presence of repeated
interactions (which allow reciprocation, reputation e�ects and punishment) or relatedness.
In a game context with the minimum threshold for public goods, a minimum amount of
contributions from the participants has to be collected for the providing the public good
to occur. Nevertheless, the production of public goods by the contribution of individual
volunteers is a social dilemma: an individual can bene�t from the public good produced by
the contributions of others even if not volunteering.
To this aim, the occurrence and maintenance of cooperative behaviors in public goods sys-
tems have attracted great research attention across multiple disciplines. Mechanisms that
allow the rise and maintenance of cooperation have been analysed by a conspicuous litera-
ture, also when in the presence of defectors (Dawes, 1980; Hardin, 1968, Kagel and Roth,
1997). Boyd and Richerson (1998) describe how recurrent interactions among individuals in
potentially cooperative situations are likely to evolve into a stable reciprocal cooperation.
But the increase in group size and number of potential defectors make conditions extremely
restrictive. Also, numerical simulations of the in�nitely iterated stochastic games (Hauert
and Schuster; 1998) give evidence to the fact that stable cooperative solutions are strong
strategies. They are barely in�uenced by memory size and di�erent values of the temptation
to defect. Corresponding results are into the analysis - performed by Schuster and Sigmund
(1983) - of several evolutionary models in distinct biological �elds.
Other studies (Boyd and Richerson,1992; Fehr and Gachter, 2000) show how the promo-
tion of cooperation, as well as defector punishment, can prevent the end of cooperation
with defection going as prevalent strategy. Additionally, when voluntary participation and
altruistic punishment of each defector work together, they support the emergence and the
stabilization of cooperation.
Theoretical (Fowler, 2005; Hauert et al., 2007; Nakamaru and Dieckmann,2009; Sigmund
et al.,2010; Sasaki et al.,2012; Brandt et al., 2006, Hauert et al., 2007, 2008) and experi-
mental papers (Egas and Riedl, 2008; Fehr and Gachter, 2002) have showed these working,
under the hypothesis of perfect information about players' strategies. Among them, Boyd
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and Richerson (1992) state that the combination of punishment (both to a defector and
irresponsible institutions or o�cers) and ethical strategies is progressively stable.
An experimental work from Fehr and Gachter (2000) explains how cooperation prospers
when it is possible to have altruistic punishment and interrupts if its continuity is broken.
Another work by Brandt et al. (2006) grounds a bi-stable result onto a microeconomic
model. They show how you can have evolutionary dynamics going to a Nash equilibrium
with punishment, non-punishment strategy, as well as to an oscillating state without punish-
ers. Punishment of defector is the base for the beginning and the constitution of cooperative
behaviour as for the work of Hauert et al.(2007). Also, they highlight as the free and choral
choice by all players of punishing non-cooperators is necessary to have such mechanism to
work. Another contribution from Nakamaru and Dieckmann (2009) points out like runaway
selection can emerge from punishment and cooperation, leading to increased collaboration.
They also show how such increase is stronger the lower the cost of punishment.
Sigmund et al.(2010) �nd that pool-punishment is more e�cient than peer-punishment in
preventing from second-order free-riders. It is so, as this type of free-riders are active even if
every single individual is contributing to the common good. Sasaki et al.(2012) show another
result: the interaction between institutional incentives and voluntary participation can take
o� social traps, at the same time with hiking up cooperation. The most important result
of this work is the highlight of a long-run e�ect: social learning will lead to a cooperative
society, irrespective of the number of free-riders and cooperators playing at the beginning.
The recent paper by Dercole et al. (2013) describes the e�ect of moderate punishment.
They show that it shrinks the initial conditions as well as driving towards the �xation of
cooperation. The authors' conclusion is that over-punishment is not needed, and equilibria
characterized by cooperation can be obtained with a gentle punishing scheme.
In their recent work Solferino and Taurino (2015) investigate the possible evolution of coop-
eration when you have individuals not eager to cooperate initially, but willing to "get back
in the game" later on. They want to participate and cooperate for the common good in
a second time. Authors show that if the other players are in turn willing to give them a
second chance, then the "early stage defectors" will establish cooperation forever. On the
other hand, if they meet the defectors, they will support only a cost at the second stage
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and then the cooperation fails in the long run. An example of this case is the conviction
as punishment for those who are redeemed to have the opportunity, after their penalty, to
reenter society and cooperate for the common good.
In this work, we aim to add a contribution to this new strand of the recent literature on co-
operation and punishment. We aim to investigate the probabilities of a stable cooperation in
an environment where the agents take into consideration the others' behavior to achieve its
goal. In particular we extensively apply the analytical results of the traditional Q-learning
Model developed by Kyanercy et al.(2012) in a context of punishment and cooperation. In
a Q-learning Model, people learn strategies based on the value of the related action itself
and the possibly expected reward.
Xie M.C. and Tachibana, A. (2007) focus their work onto �trash pickup�. They show the
behavior of agents interacting with the environment and learning how to perform a task
(trash collection) as well as acquiring a cooperative behavior. With this purpose, the au-
thors develop a Q-learning model as a representative technique of reinforcement learning.
Waltman L. and Kaymak U. (2008) present a Q-learning Model to understand �rms behav-
ior in a repeated Cournot oligopoly game. Their results show how in a situation with no
punishment and no explicit communication, �rms tend to collude with each other.
In this work, we try to point out that when subjects have strong intrinsic motivation from
achieving a certain action, then cooperation can remains rather stable or being the preferred
action in the long run even if the others subjects do not cooperate. This mechanism is the
case of gift and strong unconditional reciprocity.
Nevertheless when these intrinsic motivations are low, there are still rooms for cooperation
by applying the reinforcement learning strategies, depending on the use of strategic mea-
sures based on punishment related to the free-riding realized.
We demonstrate how the long-term learning process, combined with appropriate sanctions in
the context of strategic adoption, can open the range of network topologies. This openness
will guarantee the development of cooperation in a wider range of costs and temptations.
Our results suggest that a balanced duo of learning and punishment may help to preserve
cooperation when there are not enough intrinsic motivation or utilities from cooperating.
Cooperation is hence a "habbit" that can be taught (and learned) whether or not there are
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intrinsic motivations.
Our results show that: i) if it is possible to free-ride and not being adequately punished,
there will always be an incentive to deviate from the cooperation (e.g. the reduction of
sentences are counterproductive); ii) conversely, even if the others did not cooperate, it is
still possible to have someone who cooperates in any case. This possibility happens when
individuals are pushed by strong intrinsic motivation, even if the rewards and fees are inad-
equate; iii) cooperation can be a learning process. It is possible to trigger a learning process
that leads individuals to be equally cooperative, with probability greater than 1

2 . This pro-
cess happens much more easily; the most responsible individuals are. It also depends on
proper punishment.

2 The Model

2.1 The basic set-up

The Reinforcement Learning models demonstrate as repeated interactions with the environ-
ment will allow the learning of almost optimal behavior by agents.
Every interaction with the environment implies the agent makes a contingent choice, namely
a choice based on the state of the environment at that particular time. Also, each choice
corresponds to a reinforcement signal or a prize; that rewards the agent for the action taken.
It follows that each agent has the objective of long-term learning of behaviors that allow
the increase of cumulative rewards.
There are di�erent types of implementation of the adaptation above mechanisms. Among
these types, in this paper we consider the so-called Q-learning Model, where the agents'
strategies are parameterized through Q-functions that characterize the relative utility of a
particular action. As the Q-functions are renewed at every interaction, the agent has with
the environment. In this way, there is the reinforcement of those actions producing higher
recompenses. Speci�cally, assume only two existing actions to the agent, i = 1, 2. Here 1 is
the cooperative choice ( e.g. recycling, taking action on the environment, participate in a
human rights campaign), and 2 is the non-cooperative choice (e.g. recycling but the plastic;
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ignore a call to action on the environment; sign but not active participate in a human rights
campaign). Let Qi(t) denote the Q-value of the corresponding action at time t. Then, after
the selection of action 1 at time t, the corresponding Q-value is updated according to:

Q1(t + 1) = Q1(t) + α[r1(t) − Q1(t)].

where r1(t) is the observed reward for action 1 at time t, and α is the learning rate. On
the contrary, if at time t the agent will select action 2 the corresponding Q-value will be
updated according to

Q2(t + 1) = Q2(t) + α[r2(t) − Q2(t)] + α(β − φ)r2(t)

where r1(t) is the observed reward for action 2 at time t, φ represents the penalty for not
cooperating, β the percentage of the return onto the "common good" (e.g. wider rights for
all; better environment etc.) one individual will bene�t thanks to the investment made by
those ones making "good choices" allowing for the "common good" to be realized.
β and φ are measured as a percentage α on the r2(t) return.
Moreover, we assume that Q1(t) ≥ Q2(t), r1(t) ≥ r2(t) and also that if both individuals
decide not to cooperate, the "common good" cannot be achieved and therefore its return
is null. It is to be pointed out that αβ can be seen as an extra bene�t, coming from the
reinvestment at rate α of the share deriving from free-riding. For example, if I decide to
take action in a campaign on the environment but not to fund it and the result of such a
campaign will be a better and cleaner seaside near my house, I will take all the bene�ts
arising form a better environment without the costs. Here we focus on Boltzmann action
selection mechanism (Kianercy et all.,2012), where the probability xi of selecting the action
i is given by

xi =
e

Qi(t)

T

2
∑

k=1

e
Qk(t)

T

, i = 1, 2 (1)

where the temperature T > 0 controls the individual's exploration/exploitation tradeo�.
Into the next sections, the model will be used to analyze one agent's decisions on to cooperate
or not, both when other agents' behavior is considered as exogenous and if the two interact
with each other.
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2.2 The model with one agent.

We are interested in the continuous time limit of the above learning scheme. Toward this
end, we divide the time into intervals τt, replace t + 1 with t + τt and α with ατt. Next, we
assume that within each interval τt, the agent samples his actions, calculates the average
reward ri for action i, and applies (1) at the end of each interval to update the Q-values. In
the continuous time limit τt → 0, one obtains the following di�erential equations describing
the evolution of Q values:

Q̇1(t) = α[r1(t) − Q1(t)], (2)

Q̇2(t) = α[r2(t) − Q2(t)] + α(β − φ)r2(t). (3)

Next, we would like to express the dynamics in terms of strategies rather than the Q-values.
Toward this end, we di�erentiate x1 in (1) with respect to time and divided by x1, and using
(2) and (3) we get:

ẋ1

x1
=

Q̇1(t)

T
−

2
∑

k=1

e
Qk(t)

T ·
Q̇k(t)

T

2
∑

k=1

e
Qk(t)

T

=

α[r1(t) − Q1(t)]

T
−

e
Q1(t)

T ·
α[r1(t)−Q1(t)]

T
+ e

Q2(t)
T · (α[r2(t)−Q2(t)]

T
+ α(β−φ)r2(t)

T
)

2
∑

k=1

e
Qk(t)

T

.

Rescaling the time, t → αt/T, and after some steps we arrive at:

ẋ1

x1
= r1(t) −

2
∑

k=1

xkrk(t) − x2(β − φ)r2(t) − Tx2

(

Q1(t)

T
−

Q2(t)

T

)

.

Since
Q1(t)

T
−

Q2(t)

T
= log e

Q1(t)
T − log e

Q2(t)
T = log

(

e
Q1(t)

T

e
Q2(t)

T

)

= log
x1

x2

by substitution, we �nally get

ẋ1

x1
=

[

r1(t) −

2
∑

k=1

xkrk(t) − x2(β − φ)r2(t)

]

− Tx2 log
x1

x2
(4)

The term in bracket square in (4) shows that the probability of taking action 1 increases
with a rate proportional to the overall e�ciency of that strategy. This increase is as bigger

7



as higher is the penalty and lower is the free-riding. Instead the second term characterizes
the agent's tendency to randomize over possible actions.

Proposition 2.1. The possibility of paying no adequate penalty, in the case of free-riding,
associated with any bene�t, makes the temptation to deviate from the cooperative strategy
impossible to remove. This is regardless of the size of the obtainable bene�t and of the utility
derived from the non-cooperative behavior.

Proof. To compute the steady state we assume Q̇1(t) = 0 and Q̇2(t) = 0.

Hence it follows that Q1 = r1 and Q2 = (β − φ + 1)r2.

Therefore
xs

1 =
e

r1
T

e
r1
T + e

(β−φ+1)r2
T

As we have assumed, the probability of cooperating increases together with r1 and with the
penalty φ. On the other hand it decreases as r2 and β are higher. Moreover xs

1 = 1 if all
the bene�t plus the free-riding is absorbed by the penalty (a very unrealistic case: there is
never the certainty to have cooperation).

3 To forgive seventy times seven:intrinsec motivation and
long-run cooperation

Consider a case similar to the above, but where the agent retains the memory of the action
the other agent has taken in the period immediately before. Note the last is always consid-
ered exogenous. The agent imagines that the other will behave the same way in t + 1, thus
he gives probability 0 to the attainment of the reward if in the past the other agent has not
chosen the corresponding strategy and probability 1 otherwise.
In this case, our model becomes:

Q1(t + 1) = Q1(t) − αQ1(t) + αI(t)r1(t) + (α (−β + φ + 1) r2) (1 − I(t))

and
Q2(t + 1) = Q2(t) − αQ2(t) + (α (β − φ + 1) r2(t)) I(t)
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where

I(t) =







1 if the other agent has cooperated in the period before
0 otherwise.

In keeping with the section before, eventually we can obtain two possible cases:
if I(t) = 1 we are in the same situation as section before, while if I(t) = 0, then we obtain

Q̇1(t) = −αQ1(t) + α (−β + φ + 1) r2

Q̇2(t) = −αQ2(t)

ẋ1

x1
=

Q̇1(t)

T
−

2
∑

k=1

e
Qk(t)

T ·
Q̇k(t)

T

2
∑

k=1

e
Qk(t)

T

=

−αQ1(t) + α (−β + φ + 1) r2

T
−

e
Q1(t)

T ·
−αQ1(t)+α(−β+φ+1)r2

T
− e

Q2(t)
T ·

αQ2(t)
T

2
∑

k=1

e
Qk(t)

T

.

Rescaling the time, t → αt/T, and after some steps we arrive at

ẋ1

x1
= −Q1(t) + (−β + φ + 1)r2(t) + x1Q1(t) − x1(−β + φ + 1)r2 + x2Q2(t) =

and we �nd
ẋ1

x1
= x2(−β + φ + 1)r2(t) − Tx2 log

x1

x2
(5)

Proposition 3.1. Unfair behavior and lack of cooperation from the other, in the past,
does not exclude the possibility of cooperation. It is so if utility from cooperation is high
enough (i.e. strong intrinsic motivation), even if losses associated with free-riding are not
su�ciently compensated through penalty to the free-rider. On the other hand, such possibility
tends to zero as fast as the higher the share from free-riding.
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Proof. Assuming Q1(t) > 0 e Q2(t) > 0, to have a stationary state, it is necessary to have
Q̇2(t) = 0 namely α = 0. If so then Q1(t) = k1 and Q2(t) = k2 with k1 and k2 positive
constants and therefore

xs
1 =

e
k1
T

e
k1
T + e

k2
T

As consequence if k1 = k2, then xs
1 = 1

2 , instead if k1 > k2 the possibility to have cooperation
is higher. Conversely, if α 6= 0 we do not have a stationary state. In such a case

Q2(t) = c1e
−αt, c1 > 0 (6)

and
Q1(t) = e−αt

[

c2 + (−β + φ + 1)

∫

αeαtr2(t) dt

]

. (7)

with c1, c2 constant. From the (6), it is possible to note that the utility associated with
action 2 decreases over time. In addition (7) asserts that if Q1(t) also decreases, and this
is true for the high values of the free-riding, then the probability of having cooperative
strategies will rise in t as long as Q1(t) > Q2(t), otherwise cooperation fails.

4 Do like me! Learning cooperative strategies trough
free-riding's proportional punishment

In this section, we do not consider the other agent as exogenous, but we consider a game
where the players interact with each other in a forward-looking context. Here every player
chooses the best strategy according to the other's choices. In this type of choice strategy,
penalties and share from free-riding assume a pivotal role. In keeping with the model from
previous sections, with both agents playing, thus the expected payo�s of the two players
can be represented by the table below. These payo�s are equivalent to those obtainable
depending on the case players 1 and 2 play cooperating (i.e. C = Cooperation in the table
below ) or non-cooperating (i.e. D = Defection in the table below ) strategy with probability
x and y respectively.
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C D
C (αr1, αr1) (α(−β + φ + 1)r2, α(β − φ + 1)r2)

D (α(β − φ + 1)r2, α(−β + φ + 1)r2) (0, 0)

Therefore, in this model with two agents the rewards received depend on their joint action.
In general, let A and B be the two payo� matrices: aij (bij), i, j = 1, 2 is the reward of
the �rst (second) agent when he selects i and the second (�rst) agent chooses j. Let xi

and yi denote the probability of selecting the �rst action by the �rst and second agents,
respectively then the expected rewards of the agents for selecting action i are as follows

rx
i =

2
∑

i,j=1

aijyj , ry
i =

2
∑

i,j=1

bijxj .

The learning dynamics in a two-agents scenario are then

ẋi = xi[(Ay)i − xAy + TX

∑

j

xj log(xj/xi)] (8)

ẏi = yi[(βx)i − yβx + TY

∑

j

yj log(yj/yi)] (9)

where (Ay)i is the i element of the vector Ay.

In that follows for the sake of concreteness we skip the index and denote with x and y the
probability of selecting the �rst action by the �rst and second agents, respectively.

Proposition 4.1. Irrespective of the values of rewards, if the propensity for the exploration
T is very broad, it is then possible to reach a symmetric cooperative equilibrium with x =

y ∈ ((1/2), 1) for enough high values of φ or small values of β.

Proof. In our two actions game the learning dynamics (8) and (9) become

ẋ

x(1 − x)
= (ay + b) − log

x

1 − x
(10)

ẏ

y(1 − y)
= (cx + d) − log

y

1 − y
(11)
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where
a = α

r1 − 2r2

TX

, b =
α(−β + φ + 1)r2

TX

,

c = α
r1 − 2r2

TY

, d =
α(β − φ + 1)r2

TY

We are interested in the case of symmetric equilibria, x = y and TX = TY = T , in which
case the interior rest point equation is

ax + b = log
x

1 − x
. (12)

For su�ciently large T and b > 0 (or you have large penalty φ or you have a small free-riding
β), hence (12) has a unique solution x0 ∈

(

1
2 , 1

)

. Graphical representation is illustrated in
Fig. 1 where the blue line is the left side and the red curve is the right side of the (12)

Fig.1
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When decreasing T and a > 0 namely r1 > 2r2, however a second solution appears exactly
at the point where the line f(x) = ax + b becomes tangent to the curve g(x) = log x

1−x
.

Fig.2
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Thus, in addition to (12) we should have

a =
1

x(1 − x)
(13)

and then it follows

x =
1

2

[

1 ±

√

α(r1 − 2r2) − 4T

α(r1 − 2r2)

]

(14)

This solution exists only when α(r1 − 2r2) ≥ 4T.

Plugging (14) in (12) we �nd only two stable equilibrium points with

b∗ = log
a −

√
a2 − 4a

a +
√

a2 − 4a
− a −

√
a2 − 4a

2
, b∗∗ = log

a +
√

a2 − 4a

a −
√

a2 − 4a
− a +

√
a2 − 4a

2
(15)

We hence have two bifurcation curves (see Strogatz,2001), which meet at the cusp point (a, b) =

(4,−2).

Proposition 4.2. For the rewards value r1 − 2r2 > 4T

α
it is possible to get a long run cooperative

stable symmetric equilibrium with x = y > 1

2
, setting a penalty φ. Such a penalty will be higher

than the share from free-riding of a quantity increasing together with T, as well as of the percentage
unfairly gained from the rewards.

Proof. From the analysis above it is possible to see how we can incentive a long-run cooperative
equilibrium with probability x = y > 1

2
, thus staying on the stable path of the bifurcation, path

de�ned by b∗∗.
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In such a case it has to hold that

α(−β + φ + 1)r2

T
= b∗∗

from that it follows
φ = b∗∗

T

αr2

+ β − 1.

Therefore, it seems necessary to threaten a penalty higher than the convenience arising from free-
riding for an add-on as great as high is the propensity to exploration.

5 Conclusions
Intrinsic motivation is a powerful driver of human behavior towards cooperation and reciprocity.
Intrinsic motivation can not only foster cooperation, but also provides it to stay stable over the
long run, even in presence of defectors. Andreoni (1989 and 1990) has described a peculiar form
of intrinsic motivation as a �warm glow e�ect�. A sort of impure altruism motivating people with
a utility perceived from the sole act of giving - a positive emotional feeling they receive from the
good action undertaken.
Some empirical works in a game context (Becchetti et al., 2015) show that reciprocity is positively
correlated with this kind of intrinsic motivation by analyzing the level of satisfaction of participants
in the context of Vote With the Wallet game. However, even if people do not have a high level of
intrinsic motivation, there is possibility to boost cooperation and positive reciprocity by adopting
learning strategies. With this aim, the combination, in a strategic way, of free-riding punishment
and learning processes demonstrates to be e�ective in the long-run. Our work gives evidence to this
intuitive framework, thanks to the provision of a Q-learning model in a two-players game scenario.
The main point of our work is to show how the aforesaid duo of punishment and learning strategies -
strategically balanced - opens the network topologies, fostering cooperation in a wider range of costs
and temptations. This process will inevitably happen even in the absence, or in a poor provision of
intrinsic motivation and/or immediate utility from cooperating. We may say that you can always
learn (and teach) how to cooperate, providing that there is adequate punishment proportional to
the free-riding. It is only when combining adequate and e�ective penalty with strategic learning
strategies, that you can have a high probability of positive reciprocity in the long run.
Our key results demonstrate how free-riding without the �risk� of punishment represent a social
possibility pushing towards uncooperative habits. This possibility may explain why the reduction
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of penalties can be of no social utility.
On the other hand, the above mentioned intrinsic motivation can be the basis for unconditional
cooperation. Such type of cooperative individuals will show positive reciprocity, even if rewards and
fees imposed by social institutions are not adequate. Institutions can put in place social tools to
develop a learning process driving individuals towards cooperation, with probability higher than 1

2
.

Again, holding true that virtuous processes are much more easy when in presence of strong intrinsic
motivation, our work shows that proper punishment is meaningful too.
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