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AGENCY SCREENING GAMES1

August 20, 2015

David Martimort, Aggey Semenov and Lars Stole

Abstract. We characterize the complete set of equilibrium allocations to a two-type intrinsic
common agency screening game as the set of solutions to a self-generating optimization pro-
gram. The program, in turn, can be thought of as a maximization problem facing a fictional
“surrogate” principal with a simple set of incentive constraints that embed the non-cooperative
behavior of principals in the underlying game. After providing a complete characterization of
equilibrium outcomes, we refine the set by imposing a requirement of biconjugacy on equi-
librium tariffs: In biconjugate equilibria, the surrogate principal’s incentive constraints are
described by marginal conditions. Biconjugate equilibria always exist, they are simple to com-
pute, and they are robust in the sense that they remain equilibria when “out-of-equilibrium”

output-price pairs are pruned. After characterizing the set of biconjugate equilibrium allo-
cations, we ask what is the best equilibrium for the principals from an ex ante perspective.
We show that the allocation that maximizes the principals’ ex ante collective payoff among
all possible equilibria is distinct from the best allocation in the refined set of biconjugate
equilibria, although their qualitative properties are similar.

Keywords. Intrinsic common agency, aggregate games.

JEL codes. D82, D86.

1. INTRODUCTION

Motivation and Objectives. We consider a canonical class of common agency games
in which the agent has private information, his action is publicly contractable by all prin-
cipals, and he must either accept all contract offers from the principals or choose not to
participate. Common agency is thus public and intrinsic. As a motivating example, sup-
pose there are multiple government agencies (principals) who regulate a polluting, public
utility (the common agent) who has private information about the cost of production.
If the firm decides to produce, it is under the joint control of all regulators. Regulators,
however, may have conflicting objectives. For example, an environmental agency wishes
on the margin to reduce output; a public-utility commission instead prefers to increase
output (and thereby increase consumer surplus). Each regulator simultaneously offers a
menu of transfer-output pairs in order to influence the choice of the public utility.

One of the main theoretical difficulties when modeling such non-cooperative scenar-
ios is the characterization of all of the equilibrium outcomes that might arise. Previous
studies have typically focused on a particularly tractable equilibrium (e.g., differentiable
equilibria in games with a continuum of types) rather than exploring the entire set of
possibilities. Because of the arbitrariness of such selection, a priori, comparative statics
and economic implications might be fragile. Moreover, such a narrow focus might fail

1 The usual disclaimer applies.
aParis School of Economics-CREST, david.martimort@parisschoolofeconomics.eu.
bUniversity of Ottawa, aggey.semenov@uottawa.ca.
cUniversity of Chicago, lars.stole@chicagobooth.edu.
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to give a full account of the welfare cost of the principals’ non-cooperative behavior.
We view these two concerns as significant weaknesses of the common agency paradigm
that presently hinder the development of common agency applications. A sounder, more
complete approach – the tack of the present paper – would characterize the entire set
of equilibria in order to understand the full import of a particular equilibrium refinement.

The goal of this paper is to make progress on three fronts: equilibrium characterization,
equilibrium selection, and welfare comparisons. First, we characterize the complete set of
equilibria of a canonical intrinsic common agency game where the agent’s private informa-
tion may only take two values. Although specific, this two-type screening model is widely
adopted in applications. Second, we refine this set by means of a robustness criterion
coined biconjugacy. Roughly speaking, this criterion selects equilibrium schedules which
are robust in the sense that pruning “out-of-equilibrium” price-quantity pairs does not
destroy the equilibrium. We provide a complete characterization of the set of biconjugate
equilibria. Finally, for both the full set of equilibria and its biconjugacy refinement, we
determine the best equilibrium from the principals’ point of view. These characterizations
and the corresponding welfare analysis provide a set of tools for researchers interested in
strategic agency settings with competing principals.

Self-Generating problems. Our first step towards a full characterization of equilib-
ria relies on the fundamental structure of intrinsic common agency games. As noted by
Martimort and Stole (2012), intrinsic common agency games are a special case of aggre-
gate games: Principal i’s expected payoff depends only upon principal i’s contract and
the aggregate contract offered by the non-cooperating principals. Because each principal
can always “undo” the aggregate contracts offered by others with his own contract and
thereby induce his most preferred allocation within the set of incentive-feasible alloca-
tions, in equilibrium the principals must prefer to induce the same mapping from an
agent’s type to his choice. This property is the key ingredient in characterizing the set
of all equilibrium outcomes as solutions to simple self-generating optimization problems
(Proposition 1 below).1 Such problems are self-generating in the sense that each solution
maximizes an objective function that is a linear function of an aggregate contract which,
in turn, implements the solution. Thus, a solution appears both in the maximand and as
as a maximizer, generating a fixed-point.

A key difference between such self-generating problem and the cooperative problem
that n principals would face if they were able to collude in the design of the agent’s
incentive contract, is that in the former the agent’s rent is weighted n times more than
in the latter. This n-fold excess weighting captures the fact that, in the non-cooperative
scenario, each of the n principals attempts to extract the agent’s information rent for
himself. Beyond this difference with the cooperative design, the two problems are other-
wise similar. Everything happens as if a surrogate principal maximizes the self-generating
problem with its bias toward over extracting the agent’s information rent.

1The intuition for this result was first explained in a moral hazard setting by Bernheim and Whinston
(1986a) who observed that, under intrinsic common agency, each principal can always undo the aggregate
offers made by his rivals without changing the set of implementable allocations. The same trick, referred
to as an Aggregate Concurrence Principle, applies here also even though our model is one of adverse
selection and it applies as well in a broader class of aggregate games as shown in Martimort and Stole
(2012).
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Characterization of Equilibrium Sets. Martimort and Stole (2012) have used the
force of these self-generating problems to prove equilibrium existence in intrinsic common
agency games under quite general conditions (general type spaces and action sets, general
preferences). In the present paper, we restrict preferences so that the agent’s payoff is
bilinear in action and type and assume that the agent’s type takes on one of two values in
order to pursue our more ambitious goal of characterizing the set of equilibria and their
corresponding welfare properties. Our first result (Theorem 1) characterizes the whole
set of equilibrium allocations by means of a new set of incentive constraints that apply
to a fictional “surrogate” principal’s program.

The set of equilibrium allocations described by these constraints may be quite large,
sometimes even including the cooperative outcome. More collusive outcomes can be fa-
cilitated by the principals’ use of forcing contracts that sufficiently raise the costs to a
deviating principal for inducing the agent to choose some “out-of-equilibrium” output.
Our complete characterization stands in sharp contrast with earlier contributions (Laf-
font and Tirole (1993), Martimort (1992), Stole (1992), Martimort and Semenov (2008),
Martimort and Stole (2009a, 2009b) among others) that studied intrinsic common agency
screening games with a continuum of types, but with a narrow focus on smooth equilibria.

Biconjugate Equilibria. While we are interested in a complete characterization of all
equilibria in our two-type setting, we are also interested in the subset of equilibria which
are analogues to the continuously differentiable equilibria of games with a continuum of
agent types. As we will argue below, the appropriate analogue to smooth equilibria are
those in which principals offer proper concave schedules taking only finite values.2 To this
end, we define biconjugate tariffs as the least-concave schedules that implement a given
allocation. This property is satisfied in models with a continuum of types by tariffs which
are “smooth” at all equilibrium points: The aggregate contract and the information rent
profile that such a schedule implements are always conjugates to each other in the sense
of convex analysis. Even though this property is more demanding when the type space
and the quantity space no longer have the same dimensionality, using biconjugate tariffs
allows one to import the tractability of convex calculus to non-smooth environments.
Unsurprisingly, the qualitative predictions obtained with biconjugate equilibria in our
discrete-type setting replicate the smooth equilibria of continuous-type games (Theorem
2). Biconjugate equilibria feature two properties already found in continuous-type mod-
els: an output which is first-best for the low-cost agent, and distortions for the high-cost
type that are more pronounced than in the cooperative solution. These distortions are
reminiscent of the familiar n-fold marginalization found in common agency models with
a continuum of types.

In addition to their desirable mathematical properties, biconjugate tariffs are also ro-
bust in a strategic sense. Pruning ‘out-of-equilibrium” price-output pairs from biconjugate
menus has no effect on the equilibrium allocation. Insisting on such schedules thus offers
an attractive refinement. Among other things, we show that collusive equilibrium out-
comes which rely on extreme forcing contracts may fail to be outcomes of biconjugate
equilibria because the players cannot impose sufficient costs on a deviating principal who
attempts to induce an “out-of-equilibrium” output. Thus, biconjugate equilibria form a

2In another context, competition between buyers with exclusive contracts, Attar et al. (2014a and
2014b) have also analyzed the properties of schedules in discrete-type models.
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strict subset of the equilibrium set (Proposition 4).

Welfare. The best biconjugate equilibrium from the principals’ point of view is as
close as possible to the cooperative outcome. Yet, this solution is always dominated by
an equilibrium implemented with forcing contracts (Propositions 5 and 6). In other words,
insisting on robust equilibrium allocations entails a welfare loss for the principals. Better
equilibrium outcomes are possible if principals insist on forcing contracts.

Organization. Section 2 presents the model. Section 3 defines the self-generating prob-
lems. Section 4 characterizes all equilibrium allocations. Section 5 motivates and analyzes
biconjugate tariffs and biconjugate equilibria. Section 6 presents our welfare analysis.
Proofs are relegated to Appendix A. For completeness and as a benchmark that can be
skipped in first reading, Appendix B analyzes the case of complete information.

2. AN INTRINSIC COMMON AGENCY GAME

The focus of this paper is on common agency games with n principals (indexed by
i ∈ {1, .., n}), each of who contracts with a single common agent. We assume that common
agency is intrinsic and the choice variable of the agent is public (i.e., commonly observable
and contractible by all principals). The timing is typical of principal-agent screening
games, but now with n principals contracting instead of one.

In period one, the agent privately learns his type (a cost parameter), θ ∈ Θ = {θ, θ},
where θ = θ with probability ν and θ = θ with probability 1−ν. We denote ∆θ = θ−θ > 0
as the difference between types, and we use the notation Eθ[·] as expectation operator for
the type distribution.

In period two, each principal simultaneously offers the agent a tariff, Ti : Q → R,
which is a promise to pay Ti(q) to the agent following the choice of q ∈ Q = [0, Q]. Our
assumption that common agency is public is captured by the fact that each principal
contracts on the same observed choice by the agent.

In period three, the agent either accepts or rejects all of the principals’ offers. Our
assumption that common agency is intrinsic means that the agent must either accept all
contracts or reject all contracts; partial participation is not an option.3 We denote the
agent’s acceptance decision by the strategy δ = 1 and rejection by δ = 0. If all contracts
are accepted, the agent then chooses q ∈ Q to maximize his utility and receives payments
from each principal according to their contractual offers. We assume that if the agent
rejects the contracts, then by default all transfers are nil. Thus, the agent’s period-three
strategy is a pair, {δ, q}, depending upon the agent’s type and the contracts offered by
the principals.

Preferences. Each principal i and the agent have preferences over output, q ∈ Q ≡
[0, qmax], and payments that are, respectively, defined as

Si(q)− ti ∀i ∈ {1, .., n} and
n∑

i=1

ti − θq.

3Martimort and Stole (2015) analyze the case of delegated common agency where a proper subset of
the principals’ offers can be rejected (i.e., common agency is delegated) which amounts to impose that
transfers are non-negative.
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We assume that the payoff functions Si (for i ∈ {1, .., n}) are concave and twice contin-
uously differentiable. Without loss of generality, we normalize Si(0) = 0, so Si(q) should
be understood as the net utility of principal i relative to the non-contractual default,
q = 0.4 Observe that if the agent rejects the principals’ contracts (δ = 0), he will choose
q = 0 obtain zero payoff.

Assumption 1

S ′(0) > θ +

(
nν

1− ν
+ n− 1

)
∆θ and S ′(qmax) < θ.

Strategy spaces. From the Delegation Principle,5 there is no loss of generality in
studying pure-strategy common agency equilibria to require that principals’ strategy
spaces are restricted to tariffs from output to transfers. As such, we denote each principal’s
strategy space, T , as the set of all upper semicontinuous mappings, Ti, from Q into R

(for i ∈ {1, .., n}).6 We denote T = (T1, ..., Tn) ∈ T n as an arbitrary array of contracts.
An aggregate contract (or, in short, an aggregate) is defined as T (q) =

∑n

i=1 Ti(q). We
also use the familiar notation T−i and T−i(q) =

∑
j 6=i Tj(q) to denote, respectively, an

array of contracts and the aggregate contract from all principals but i.

Equilibrium: Our focus in this paper is on equilibrium allocations that arise in a pure-
strategy Perfect Bayesian equilibrium.

Definition 1 An equilibrium is a n + 2-tuple {T 1, . . . , T n, q0, δ0} (with aggregate
T (q) =

∑n

i=1 T i(q)) such that
1. q0(θ,T) and δ0(θ,T) jointly maximize the agent’s payoff:

{q0(θ,T), δ0(θ,T)} ∈ argmax
q∈Q,δ∈{0,1}

δT (q)− θq.

2. T i maximizes principal i’s expected payoff given the other principals’ contracts T−i:

T i ∈ argmax
Ti∈T

Eθ

[
Si(q0(θ, Ti,T−i))− δ0(θ,T)Ti(q0(θ, Ti,T−i))

]
.

Remark. There always exist uninteresting, trivial equilibria induced by a coordination
failures in which two or more principals require sufficiently negative payments for each
q ∈ Q so that it is not profitable for any principal to induce agent participation. We will
demonstrate that outcomes in which both types participate and produce positive outputs
are also equilibria, given Assumption 1.

In what follows, it will be useful to refer to the set of type-allocation mappings that
are implementable for some aggregate tariff, I, and the set of type-allocation mappings
that are implementable and arise in some equilibrium, Ieq.

4More generally, suppose that the agent’s payoff is
∑n

i=1 ti+S0(q)−θq, where S0 is a concave function
normalized at S0(0) = 0. Redefine payments from each principal and their respective payoff functions so

that t̃i = ti +
S0(q)

n
and S̃i(q) = Si(q) +

S0(q)
n

(for i ∈ {1, .., n}). One can verify that S̃i(0) = 0 and the

expressions for the principals’ and the agent’s utility functions can be written, respectively, as S̃i(q)− t̃i
and

∑n

i=1 t̃i − θq, just as we assume in the main text.
5See Peters (2001) and Martimort and Stole (2002).
6Upper semi-continuity ensures existence of continuation equilibria following acceptance. There always

exists an optimal output for any array of contracts that are accepted.
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Definition 2 We say that the type-allocation mapping, {U, q, δ}, U : Θ → R, q : Θ →
Q, δ : Θ → {0, 1}, is implementable if there is an aggregate tariff, T : Q → R such
that

(q(θ), δ(θ)) ∈ argmax
q∈Q,δ∈{0,1}

δT (q)− θq,

U(θ) = max
q∈Q,δ∈{0,1}

δT (q)− θq.

The set of all implementable allocations is denoted I.

We say that the type-allocation mapping {U, q, δ} is an equilibrium allocation or
equilibrium implementable if it is implementable by an aggregate tariff, T , that arises
as part of an equilibrium. The set of all equilibrium allocations is denoted Ieq.

For any equilibrium, {T, q0, δ0}, we define the associated type-allocation functions

δ(θ) = δ0(θ,T),

q(θ) = q0(θ,T),

U(θ) = δ(θ)T (q(θ))− θq(θ),

and we refer to the triplet {U, q, δ} as the equilibrium allocation. As we will see below in
Proposition 1, for any equilibrium allocation {U, q, δ}, there exists another equilibrium
allocation in which the agent always participates, δ(θ) = 1 for all θ, and so we will
subsequently focus our attention on the pair {U, q} and suppress the type-allocation
mapping for δ.

First-Best Outcome. The first-best allocation {U fb, qfb} is obtained when principals
cooperate and know the agent’s cost parameter. In this scenario, principals jointly request
production at the first-best level, qfb(θ), and set transfers which fully extract the agent’s
surplus:

S ′(qfb(θ)) = θ and U fb(θ) = 0 ∀θ ∈ θ.

This outcome is also one possible equilibrium of the intrinsic common agency game when
it takes place under complete information. Under complete information, and in sharp
contrast with the analysis under asymmetric information, the principals’ non-cooperative
behavior need not entail any welfare loss. However, many other inefficient equilibria ex-
ist.7 For completeness, the analysis of this complete information setting is relegated to
Appendix B.

Cooperative outcome. Another useful benchmark is that which arises when all prin-
cipals cooperatively design an aggregate contract, but under asymmetric information.
The solution to this monopolistic screening problem is well known in two-type models.

7Bernheim and Whinston (1986b) have analyzed delegated common agency games under complete
information and proposed a specific refinement (“truthfulness”) to select among those equilibria.
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The low-cost agent produces the first-best output, qcoop(θ) = qfb(θ), and gets an infor-
mation rent worth U coop(θ) = ∆θqcoop(θ). In contrast, the high-cost agent gets no rent,
U coop(θ) = 0 and produces a positive output (thanks to Assumption 1), qcoop(θ), which is
less than the first-best level qfb(θ):

(2.1) S ′(qcoop(θ)) = θ +
ν

1− ν
∆θ.

This cooperative outcome can be implemented with a variety of aggregate transfers. First,
consider the following forcing contract :

T (q) =





θqcoop(θ) if q = qcoop(θ)

θqcoop(θ) + ∆θqcoop(θ) if q = qcoop(θ)

−∞ if q 6∈ {qcoop(θ), qcoop(θ)}.

With such forcing contract, the agent chooses his preferred output from the set {qcoop(θ), qcoop(θ)}
and gets paid accordingly. Any other choice under contract acceptance would imply neg-
ative utility and the agent would be better off rejecting the offers.

There are other aggregate transfers which implement {U coop, qcoop} that are less extreme
than the forcing contract above. Consider the aggregate contract T bc (the superscript “bc”
refers to the biconjugate property) which takes finite values over the whole domain Q:

T
bc
(q) = min

θ∈θ
U coop(θ) + θq = min

{
U coop(θ) + θq; θq

}
.

Observe that T
bc

is piecewise linear, increasing, concave and satisfies T
bc
(0) = 0. In

particular, this schedule satisfies the following biconjugacy condition:

T
bc
(q) = min

θ∈θ

{
max
q′∈Q

{
T

bc
(q′)− θq′

}
+ θq

}
.

It is straightforward to see that T
bc

establishes a maximal implementing tariff in the
sense that the cooperative allocation (U coop, qcoop) can also be implemented by any other

nonlinear tariff T that lies below T
bc

and such that T (qcoop(θ)) = T
bc
(qcoop(θ)) for all

θ ∈ Θ. In other words, T
bc
is the least concave schedule that implements the cooperative

outcome.

Although insisting on one implementing contract or the other has no impact in a
monopoly screening environment, the addition of (meaningful) extra price-quantity op-
tions in a tariff may play a role in a non-cooperative setting because they may affect the
cost to a principal of offering a deviating contract.

These preliminary remarks serve as a first motivation our analysis in Section 5 which
demonstrates how the requirement of biconjugacy refines the equilibrium set.

3. EQUILIBRIA AS SOLUTIONS TO SELF-GENERATING PROBLEMS

Martimort and Stole (2012) demonstrate that intrinsic common agency games are ag-
gregate games whose equilibria can be identified with the solution set to an optimization
problem. Specializing the necessary and sufficient conditions in their Theorem 2’ to our
present setting, we obtain the following characterization of the entire equilibrium alloca-
tion set as solutions of self-generating optimization problems.
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Proposition 1 (U, q) is an equilibrium allocation (i.e., (U, q) ∈ Ieq) if and only if it
solves the following self-generating maximization problem:

(P) : max
(U,q)∈I

Eθ

[
S(q(θ))− θq(θ)− nU(θ) + (n− 1)(T (q(θ))− θq(θ))

]
,

where T is an aggregate tariff that implements (U, q) and satisfies T (0) = 0.

The maximization problem (P) is self-generating in the sense that its solution is imple-
mented by an aggregate T that also appears in the maximand, embedding the fixed-point
nature of the equilibrium. This objective function also features n-times the extraction of
the agent’s surplus since each principal, independently of what others are doing, wants
to harvest the agent’s information rent. In the aggregate, everything thus happens as if a
surrogate principal was now in charge of maximizing the principals’ collective payoff with
the only proviso that the agent’s information rent is now counted negatively n times.
The extra term in the maximand, which represents n− 1 times the agent’s payoff at the
induced allocation, captures the fact that a given principal does not take into account
the impact of this contract on other principals’ payoffs.

The necessity part of Proposition 1 can be obtained by summing the individual opti-
mization problems of all principals. An equilibrium allocation, since it maximizes each
principal’s problem, also maximizes their sum. This summation introduces the n-rent
distortion. In any equilibrium with non-zero output, the agent’s information rent will
thus be overweighted by a factor of n (instead of a coefficient of 1 that would arise had
principals cooperated). There is a “tragedy of the commons” as the n principals effectively
over harvest the agent’s information rent, leading to an n-fold marginalization. It is this
noncooperative information-rent externality that the principals would like to mitigate in
their equilibrium selection.

Establishing the sufficiency argument in Proposition 1 is more subtle. It is obtained by
reconstructing each principal’s individual maximization problem from (P) itself, so as to
align all individual principal’s objectives with those of the surrogate principal. Consider
the following construction:

(3.1) T j(q) = Sj(q)−
1

n
(S(q)− T (q)) ∀j ∈ {1, ..., n}.

Summing over j yields an aggregate worth T . Summing instead over all principals but i
gives:

T−i(q) = S−i(q)−
n− 1

n
(S(q)− T (q)).

By “undoing” the aggregate offer T−i of his competitors so constructed, principal i can
always offer any aggregate T he likes, thereby inducing any implementable allocation
(U, q). This construction gives principal an expected payoff of

Eθ

[
Si(q(θ))− T (q(θ)) + T−i(q(θ))

]

≡ Eθ

[
S(q(θ))− T (q(θ))−

n− 1

n
(S(q(θ))− T (q(θ)))

]
,
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where the right-hand side equality follows from our previous equation for T−i. Expressing
payments in terms of the agent’s rent, we may simplify this payoff as

(3.2)
1

n
Eθ

[
S(q(θ))− θq(θ)− nU(θ) + (n− 1)(T (q(θ))− θq(θ))

]
.

Up to a positive scale, the objective function (3.2) exactly replicates that of the surro-
gate principal. Therefore, principal i’s incentives to induce a particular implementable
allocation (U, q) are identical to those of the surrogate principal. Moreover, his incentives
to induce the agent not to participate are also similar since, following refusal, principal i
also gets a reservation payoff of 0.

Remark. The individual offers (3.1) have an attractive property: All principals get the
same incremental gains from agent participation and from the production of quantity q:

Si(q)− T i(q) =
1

n
(S(q)− T (q)) ∀i ∈ {1, ..., n}.

Proposition 2 below will show that a variety of other unequal payoff distributions can
also be sustained for a given type-output allocation.

4. CHARACTERIZATION OF THE ENTIRE SET OF EQUILIBRIA

Our next Theorem describes the set of equilibrium implementable allocations.

Theorem 1 An allocation (U, q) is equilibrium implementable if and only if it satisfies
the following conditions:

• Surrogate-principal incentive compatibility:

(4.1) S(q(θ))− θq(θ) ≥ S(q(θ))− θq(θ);

(4.2) S(q(θ))−

(
θ +

nν

1− ν
∆θ

)
q(θ)

≥ max

{
S(q(θ))−

(
θ +

nν

1− ν
∆θ

)
q(θ)− (n− 1)∆θ(q(θ)− q(θ)); 0

}
.

• Rent minimization:

(4.3) U(θ) = ∆θq(θ) ≥ U(θ) = 0.

Surrogate principal’s incentive compatibility. Condition (4.3) is familiar from
screening problems. At the optimum of (P), the low-cost agent’s incentive constraint and
the high-cost agent’s participation constraints are necessarily binding. When turning to
the optimal conditions with respect to outputs, we recognize that (4.1) and (4.2) are
actually incentive constraints that apply to the surrogate principal. These conditions
are obtained by imposing the minimal proviso that the surrogate principal should prefer
to induce the equilibrium output profile (q(θ), q(θ)) rather than any alternative choice
(q(θ), q(θ)) that would still satisfy the monotonicity condition q(θ) ≥ q(θ), and hence be
implementable. Among all possible alternatives, the surrogate principal could choose to
induce pooling either at q(θ) or q(θ) or he could also choose to induce no participation
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from the high-cost type while keeping a low-cost agent active. The first of those incentive
constraints gives condition (4.1) while the second and third give (4.2).

Monotonicity. Simple revealed preferences arguments show that any output profile
that satisfy conditions (4.1) and (4.2) is necessarily non-increasing:

(4.4) q(θ) ≥ q(θ).8

This monotonicity condition is strict for separating allocations. As an example, the
surrogate principal could choose to “shut down” production for the high-cost agent, i.e.,
q(θ) = 0. Conditions (4.1) and (4.2) reduce to the following pair of inequalities for the
positive production of the low-cost agent:

n

1− ν
∆θq(θ) ≥ S(q(θ))− θq(θ) ≥ 0.

Clearly these conditions are always satisfied for q(θ) = qfb(θ) provided that n is suffi-
ciently large. The best contract with “shut-down” that could be offered had principals
cooperated can still be implemented as an equilibrium outcome when n increases (keeping
aggregate surplus constant).

Pooling allocations such that q(θ) = q for all θ might also arise in equilibrium. Under
pooling, (4.1) and (4.2) reduce to the non-negativity of the surrogate surplus obtained
from inducing production by a high-cost agent, namely:

S(q)−

(
θ +

nν

1− ν
∆θ

)
q ≥ 0.

Fixing q to the optimal value of a pooling contract had principals cooperated, namely
qfb(θ), it can be readily seen that the latter condition is instead harder to satisfy as the
number of principals increase (still keeping aggregate surplus constant).

Implementation with forcing contracts. A forcing contract that would punish
the agent fiercely for choosing outputs outside the equilibrium set suffices to implement
any equilibrium allocation satisfying conditions in Theorem 1:

(4.5) T (q) =





θq(θ) if q = q(θ)

θq(θ) + ∆θq(θ) if q = q(θ)

0 if q = 0

−∞ if q 6∈ {q(θ), q(θ), 0}.

Given the aggregate contract in (4.5), individual equilibrium offers, T i, can be recon-
structed using (3.1). In particular, all those individual offers are forcing contracts with
infinite negative values for “out-of-equilibrium” outputs.

8Monotonicity arises for two reasons. First, monotonicity is a direct consequence of implementability,
as is well known. Hence, it appears as an implicit requirement of the constrained set I. Yet, even if the
surrogate principal were to maximize a relaxed problem (P

r
) which would not be constrained by this

monotonicity condition, the requirement of self-generation imposes the surrogate principal’s incentive
constraints (4.1) and (4.2). These conditions, in turn, imply monotonicity and thus the solution of the
relaxed problem also solves the more constrained problem.
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Forcing contracts act as a severe coordination device. Indeed, because they specify
infinitely negative payments for “out-of-equilibrium” outputs, “undoing” such aggregate
payments to implement an alternative allocation can never be attractive to any deviating
principal. In the sequel, we will see how the set of equilibrium allocations are refined
when contracts entail less severe “out-of-equilibrium” punishments.

Non-Unique Implementation. Even when restricting the aggregate to be a forcing
contract, the array of equilibrium offers defined by (3.1) and (4.5) is not necessarily
unique: Unequal distributions of payoffs might be achieved by slightly modifying these
offers.

To see how, consider a balanced vector of payoffs µ = (µ1, ..., µn) ∈ R
n such that∑n

i=1 µi = 0. We may add this vector to the individual tariffs defined in (3.1) and thereby
reconstruct another family of contracts keeping constant the aggregate T :

(4.6) T
µ

i (q) = T i(q)− µi ∀i ∈ {1, ..., n}.

With such contracts, principal i’s payoff now differs from that of the surrogate principal
by the addition of the slack µi:

(4.7) Eθ

[
1

n
(S(q(θ))− θq(θ))− U(θ) +

n− 1

n
(T (q(θ))− θq(θ)) + µi

]
.

On one hand, this formula shows that principal i’s incentives to induce a given output
profile following the agent’s acceptance are still aligned with those of the surrogate prin-
cipal. On the other hand, incentives to “shut down” production may differ, in particular
when µi is sufficiently negative. Intuitively, principal i would be asked to pay too much
for the agent’s output in that case and would favor vetoing production by offering an
infinitely negative payment for the agent’s service. That all principals should agree on
inducing production at a non-trivial equilibrium thus puts a limit on how much payoff
inequality can be supported in an equilibrium.9

Proposition 2 For any equilibrium allocation (U, q) with associated aggregate and
individual transfers given by (4.5) and (3.1), respectively, there exists a non-empty set of
balanced vectors, µ = (µ1, ..., µn) ∈ R

n, such that (T 1−µ1, . . . , T n−µn) is an equilibrium
profile that also implements (U, q).
The set of balanced vectors has non-empty interior if

(4.8) S(q(θ))−

(
θ +

nν

1− ν
∆θ

)
q(θ) > 0.

This property shows that, at least when (4.8) holds, it is possible to redistribute surplus
among principals without changing the equilibrium allocation. This result stands in sharp
contrast with what arises under delegated common agency, where the non-negativity of
transfers may break this neutrality as demonstrated in Martimort and Stole (2015).

9This upper bound can be quite tight, in particular if the equilibrium allocation just leaves the surrogate
principal indifferent between “shutting down” production for the high-cost agent or not. Then, there is
no slack available to modify individual payments and the individual contracts defined in (3.1) are the
only feasible ones.
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5. BICONJUGATE EQUILIBRIA

Motivation. The implementation of all equilibrium allocations described in Theorem
1 by means of forcing contracts shows the force of contracts that use infinitely-negative
payments for “out-of-equilibrium” outputs. These severe payments, though never chosen
by the agent on the equilibrium path, prevent deviations. A contrario, we may ask whether
requiring less severe transfers may serve as a palatable refinement device. Imposing such
a restriction on equilibria, and studying its properties, is the purpose of this section.

As a first step, we observe that any aggregate contract T ∈ T that implements an
allocation (U, q) satisfies the following inequality

T (q) ≤ U(θ) + θq ∀q ∈ Q

with equality at q = q(θ). From this, we immediately obtain an upper bound on all
implementing contracts:

(5.1) T (q) ≤ T bc(q) ≡ min
θ∈θ

U(θ) + θq ∀q ∈ Q.

The function T bc, defined above, has several important properties.

• T bc is increasing and concave because it is a minimum of linear functions. It is
thus almost everywhere differentiable. When the low-cost agent’s incentive con-
straint and the high-cost agent’s participation constraints are both binding, T bc has
derivatives T bc′(q) = θ for q > q(θ) and T bc′(q) = θ for q ∈ (0, q(θ)). Thus T bc is
not differentiable at at q(θ) but it admits a super-differential which is a non-empty
interval, namely ∂T bc(q(θ)) = [θ, θ].10

• When the high-cost agent’s participation constraint is binding at equilibrium (i.e.,
U(θ) = 0), we must also have T bc(0) = 0 so that the agent is always weakly
indifferent between accepting the offer T bc and producing zero output, and refusing
to participate.

• Importantly, T bc also implements the allocation (U, q), i.e.,

(5.2) U(θ) = max
q∈Q

T bc(q)− θq ∀θ ∈ θ.

Using the language of convex analysis, the dual conditions (5.1) and (5.2) show that
U and T bc are thus conjugates to each other. T bc is the upper envelope, or the least-
concave function among all possible upper semi-continuous functions implementing
(U, q). Concavity is a particularly attractive requirement since it allows one to
characterize the agent’s optimization behavior and the optimality conditions for
self-generating problems by means of convex calculus and super-differentials, even
when tariffs might not be everywhere differentiable.

10The super-differential ∂T (q) of a concave function T at q is defined as the following correspondence:

∂T (q) = {s ∈ R| T (x) ≤ T (q) + s(x− q) ∀x ∈ Q}.

From Theorem 4.3 in Aubin (1998), such super-differential exists on a dense subset of Q and is almost
everywhere single-valued if T is concave and upper semi-continuous. The super-differential of a concave
function is analogous to the subdifferential of a convex function.



TWO-TYPE COMMON AGENCY 13

Taken together, (5.1) and (5.2) suggest the following definition of biconjugacy which is
independent of U .

Definition 3 An aggregate contract T is biconjugate if and only if

T (q) = min
θ∈θ

{
max
q′∈Q

{T (q′)− θq′}+ θq

}
∀q ∈ Q.

Denote by T bc ⊂ T the set of such biconjugate contracts. We define the set of biconju-
gate equilibrium allocations, accordingly.

Definition 4 An equilibrium allocation (U, q) ∈ Ieq implemented by aggregate T is a
biconjugate equilibrium allocation if and only if T ∈ T bc.

Biconjugate tariffs are attractive because, by construction, they can always implement
any allocation (U, q) satisfying the rent minimization condition (4.3), but they do so in
a very special way. By construction, T bc has the property that all price-quantity pairs
that are strictly dominated for both types have been eliminated. To illustrate, when the
aggregate tariff is biconjugate, a low-cost agent is indifferent among all outputs q ≥ q(θ),
while he strictly prefers these high outputs to any q < q(θ). In contrast, a high-cost agent
is indifferent among all outputs q ∈ [0, q(θ)], while he strictly prefers these low outputs
to higher outputs, q > q(θ). Any other schedule T that would implement the allocation
(U, q) would entail price-quantity pairs that are strictly dominated for at least one type.
In other words, equilibria which are sustained with an aggregate that is not biconjugate
rely on “out-of-equilibrium” price-quantity pairs that are used as threats to prevent the
principals’ deviations but which are strictly dominated on the equilibrium path from the
agent’s point of view.

To make this point more precisely, we return to our definition self-generating problem
and offer the following definition.

Definition 5 An equilibrium allocation (U, q) which is implemented by an aggregate T
(together with the individual offers associated given by (3.1)) is undefeated if and only
if any alternative implementation of this allocation, T̃ , is also an equilibrium aggregate.

Suppose that the equilibrium allocation (U, q), which is implemented by an aggregate
T , is defeated. Although (U, q) is a solution to the self-generating problem, P , when T
is expected to be played, it is no longer a solution when T is replaced by the alternative
implementation T̃ . In other words, this new aggregate T̃ contains attractive output-
price pairs that make the surrogate principal (and thus at least one of the individual
principals) willing to deviate. A defeated equilibrium allocation might thus not be robust
to the addition of some output-price options. A contrario, an undefeated equilibrium is
robust in the sense that “out-of-equilibrium” output-pairs may be pruned from the tariff
and the equilibrium allocation is still a solution to the self-generating problem with the
new tariff so constructed.

Next proposition shows the robustness of biconjugate equilibria in light of this robust-
ness criterion.
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Proposition 3 An equilibrium allocation (U, q) is undefeated if and only if it is im-

plemented by a biconjugate aggregate T
bc

with the individual offers given by (3.1).

Characterization. The refinement of biconjugacy leads to a sharp characterization of
equilibrium allocations.

Theorem 2 Suppose that Assumption 1 holds. An allocation (U, q) arises in a bicon-
jugate equilibrium, (U, q) ∈ Ibc, if and only if it satisfies the following properties:

• Surrogate Principal’s marginal incentive constraints:

(5.3) S ′(q(θ))− θ = 0;

(5.4) S ′(q(θ))−

(
θ +

nν

1− ν
∆θ

)
≥ 0 ≥ S ′(q(θ))−

(
θ +

nν

1− ν
∆θ

)
− (n− 1)∆θ.

• Rent minimization: (4.3) holds.

Though biconjugate tariffs are not everywhere differentiable, they are still concave and
this concavity allows us to use convex calculus to characterize equilibrium allocations.
As a consequence, the non-local optimality conditions (4.1) and (4.2) that more broadly
characterized the surrogate principal’s incentive compatibility in Theorem 1 are now
replaced by the analogous marginal optimality conditions (5.3) and (5.4). These marginal
conditions are, of course, more restrictive.

Proposition 4

Ibc ⊂ Ieq.

The marginal conditions (5.3) and (5.4) have a few immediate consequences. First,
inefficiencies for the low-cost agent’s output are now ruled out whereas such inefficient
outputs are a priori possible in other equilibria as demonstrated by Theorem 1. This
difference comes from the fact that biconjugate tariffs necessarily have slope θ for q large
enough. Roughly, applying the Envelope Theorem when solving (P) preserves the “no-
distortion-at-the-top” result found with monopolistic screening.

Second, biconjugate equilibria also feature distortions below the cooperative outcome
for the high-cost agent’s output. All biconjugate equilibrium outputs q(θ) must lie within
the interval [q̃n(θ), q

bc
n (θ)], where the upper bound qbcn (θ) and the lower bound q̃n(θ) of

the equilibrium set are, respectively, defined by

S ′(qbcn (θ)) = θ +
nν

1− ν
∆θ and S ′(q̃n(θ)) = θ +

(
nν

1− ν
+ n− 1

)
∆θ.11

Note that the cooperative outcome never belongs to this interval. This illustrates the
import of using biconjugacy as a refinement while still allowing for the contractual exter-
nalities among non-cooperating principals.

11For future reference, we may define the allocation (U bc
n , qbcn ) with U bc

n (θ) = ∆θqbcn (θ) > U bc
n (θ) = 0

by requesting the low-cost agent to produce the first-best output level qbcn (θ) = qfb(θ).
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More generally, the interval [q̃n(θ), q
bc
n (θ)] is a strict subset of the outputs described

in Theorem 1. To see why, observe that, thanks to the strict concavity of S, Jensen’s
inequality implies the following:

S ′(qbcn (θ)) = θ +
nν

1− ν
∆θ <

S(qbcn (θ))

qbcn (θ)
.

Hence, qbcn (θ) satisfies condition (4.2) as a strict inequality.

Remark. The above properties of biconjugate equilibria are reminiscent of outcomes
which that arise in a variety of common agency games in the literature (Laffont and Ti-
role (1993), Martimort (1992), Stole (1992), Martimort and Stole (2009a, 2009b), among
others): “No-distortion-at-the-top” and the n-fold distortion of the output for less efficient
types. The existing literature has focused on continuous types models but has also arbi-
trarily restricted the analysis to “smooth” tariffs. The fact that the type space and the
set of possible outputs have the same dimensionality tightens the conjugacy relationship
between rent profiles and tariffs. All smooth equilibria satisfy the biconjugacy require-
ment. Although the outputs space and the types space have different dimensionality here,
it is thus not surprising that the biconjugate equilibria developed in this discrete setting
share the same qualitative properties. This is reassuring from a theoretical point of view.
Modelers may rely on the more tractable discrete models and impose biconjugacy in order
to capture the features of smooth equilibria.

6. EX ANTE OPTIMAL EQUILIBRIA FOR THE PRINCIPALS

If principals could meet ex ante and negotiate over the equilibrium to be played, a rea-
sonable prediction would be that they would agree to play the equilibrium that maximizes
their ex ante collective payoff. In this section, we consider solutions to this collective prob-
lem, both over the full equilibrium domain and over the restricted domain of biconjugate
equilibria.

It is possible that the cooperative allocation can be supported as an equilibrium using
forcing contracts. To illustrate, consider the case of a quadratic surplus function S(q) =

αq − q2

2
(for α sufficiently large to ensure positive outputs under all circumstances). The

cooperative allocation (U coop, qcoop) belongs to Ieq if

qcoop(θ) = α− θ −
ν

1− ν
∆θ > 2

(n− 1)ν

1− ν
∆θ,

i.e., if n is small enough. Clearly, one can find parameter values such that this condition
holds when n = 2; a case where one would already expect distortions to arise from the
principals’ non-cooperative behavior. In view of Theorem 2 and the discussion thereafter,
this remark already suggests that the set Ieq may be too large to convey the basic intuition
that the principals’ non-cooperative behavior may entail some welfare cost for them. To
focus our attention on the interesting case with welfare costs, we make an assumption
that the cooperative outcome cannot be supported in any equilibrium.

Assumption 2

S(qcoop(θ)) <

(
θ +

nν

1− ν
∆θ

)
qcoop(θ).
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Assumption 2 holds when n is sufficiently large. The contractual externality among
principals then becomes so significant that the cooperative solution can not arise in any
equilibrium. The next Proposition shows that the best equilibrium is nevertheless chosen
to be as close as possible to this cooperative solution.

Proposition 5 Suppose that Assumption 2 holds. The best allocation (Ûn, q̂n) in Ieq

from the principals’ ex ante point of view has the low-cost agent producing at the first-best
qfb(θ) and the high-cost agent’s output being less than the cooperative outcome; q̂n(θ) <
qcoop(θ), where

(6.1) S(q̂n(θ)) =

(
θ +

nν

1− ν
∆θ

)
q̂n(θ).

The corresponding information rents satisfy the rent minimization condition (4.3).

When n increases, q̂n(θ) decreases. In other words, the principals face greater difficulties
to coordinate and contractual externalities are exacerbated as their number increases.

An immediate consequence of Proposition 2 is that the allocation (Ûn, q̂n) is uniquely
implemented. When choosing the best equilibrium, principals have no way of redistribut-
ing payoffs among themselves using the balanced payments suggested by Proposition 2.
Doing so would mean that at least one of them would be ready to “shut down” production
by the high-cost type.

Best biconjugate equilibrium. We now look for the ex ante optimal equilibrium
within the refined set of biconjugate equilibria, Ibc. Again, the upper bound on this
equilibrium set that now corresponds to the output distortion qbc(θ) has attractive welfare
properties.

Proposition 6 The best allocation (U bc
n , qbcn ) in Ibc from the principals’ ex ante point

of view has the low-cost agent producing at the first-best qfb(θ) and the high-cost agent’s
output being less than the cooperative outcome; q̂bcn (θ) < qcoop(θ), where

(6.2) S ′(qbcn (θ)) = θ +
nν

1− ν
∆θ,

and qbcn (θ) < q̂n(θ).

The definitions of the best equilibrium outputs in the full set Ieq, namely (6.1), and
in the biconjugate domain Ibc, (6.2), bear some strong similarities. Moving from Ieq to
Ibc, the non-local definition (6.1) of the best equilibrium is again replaced by a marginal
condition (6.2) for the best equilibrium. Qualitative properties of the two solutions are
also closely related to the extent that the marginal aggregate surplus S ′(q) and the average
aggregate surplus S(q)/q vary in similar direction. Regardless of whether modelers choose
to select the best equilibrium within Ieq or Ibc, the comparative statics share a likeness.

Nevertheless, the restriction to biconjugate equilibria prevents the principals from reach-
ing the highest possible equilibrium collective payoff that could be reached with a forcing
aggregate of the kind (4.5). This fact is probably best seen when Assumption 2 holds.
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Then, the ex ante optimal equilibrium allocation in Ieq is obtained at (Ûn(θ), q̂n(θ)). Yet,
the strict concavity of S(q), together with the fact that q̂n(θ) is positive, implies:

S ′(q̂n(θ)) ≤
S(q̂n(θ))

q̂n(θ)
= θ +

nν

1− ν
∆θ = S ′bc

n (θ)) ⇔ q̂n(θ) > qbcn (θ).

In other words, the optimal intrinsic equilibrium is never a biconjugate equilibrium. For
the principals, there exists a trade-off between robustness and welfare.

APPENDIX A

Proof of Proposition 1: The proof follows similar steps to those in Martimort and

Stole (2012, Theorem 2’), though we explicitly treat the agent’s participation decision, δ, here

for completeness.

Necessity. Given T−i, the bilateral surplus between principal i and the agent of type θ when
(q, δ) ∈ Q× {0, 1} is chosen is given by

δ(Si(q)− θq + T−i(q)) + (1− δ)(Si(0)) = δ(Si(q)− θq + T−i(q)).

Thus, principal i desires to implement the allocation (U, q, δ) : Θ → R+ × Q × {0, 1} which
maximizes

Eθ[δ(θ)(Si(q(θ))− θq(θ) + T−i(q(θ))− U(θ))],

subject to (U, q, δ) ∈ I. For (U, q, δ) to be an equilibrium allocation, it must be that

(U, q, δ) ∈ argmax
(U,q,δ)∈I

Eθ[δ(θ)(Si(q(θ))− θq(θ) + T−i(q(θ))− U(θ))].

Note that every principal i faces the same domain of maximization, I; the difference between the
programs of any two principals, i and j, is entirely embedded in the differences in the aggregates
T−i and T−j . Following Martimort and Stole (2012), an equilibrium allocation must necessarily
maximize the some of the principals’ programs. Thus, (U, q, δ) must solve

(A1) (U, q, δ) ∈ argmax
(U,q,δ)∈I

Eθ

[
δ(θ)

(
S(q(θ))− θq(θ)− nU(θ) + (n− 1)(T (q(θ))− θq)

)]
.

Note that if (U, q, δ) is implemented by the aggregate tariff T , then (U, q, δ̃ = 1) is imple-
mented by the aggregate tariff

T̃ (q) =

{
T (q) if q 6= 0

0 if q = 0.

Under T̃ , every agent type chooses to participate δ̃(θ) = 1. Because the objective function in
(A1) has the same expected value at (U, q, δ) using T as it does at (U, q, δ̃) using T̃ , we conclude
that

(U, q) ∈ argmax
(U,q)∈I

Eθ

[
S(q(θ))− θq(θ)− nU(θ) + (n− 1)(T̃ (q(θ))− θq)

]
,

which is (P).
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Sufficiency. Consider a solution (U, q) to (P) which is implemented by the aggregate tariff T .

Note that because (U, q) is implemented by T with T (0) = 0, we are considering the case where

the agent always participates, δ = 1.
Construct individual tariffs T i satisfying

T i(q) = Si(q)−
1

n
(S(q)− T (q)) ∀i ∈ {1, ..., n}.

By construction,

n∑

i=1

T i(q) = T (q).

We show that this contract profile (T 1, ..., Tn) is an equilibrium. Suppose indeed that all
principals j for j 6= i offer T j . At a best response, principal i induces an allocation (U, q, δ) that
solves:

(Pi) : max
(U,q,δ)∈I

Eθ

[
δ(θ)

(
Si(q(θ))− θq(θ)− U(θ) + T−i(q(θ))

)]
.

Inserting the expressions of T j (for j 6= i) using our construction above), the allocation that
principal i would like to induce should solve

max
(U,q,δ)∈I

Eθ

[
δ(θ)

(
S(q(θ))− θq(θ)− nU(θ) + (n− 1)(T (q(θ))− θq)

)]
.

But this is the same maximization program in (A1), and hence principal i’s choice T i is a best

response against T−i. Q.E.D.

Proof of Theorem 1: Necessity. Standard arguments from discrete screening models
first show that any equilibrium allocation must satisfy the monotonicity condition

(A2) q(θ) ≥ q(θ).

Consider the relaxed program (P
r
) obtained from (P) by ignoring (A2) and focusing only on

the incentive constraint of a low-cost type and the participation constraint of a high-cost type,
namely:

(A3) U(θ) ≥ U(θ) + ∆θq(θ);

(A4) U(θ) ≥ 0.

At the optimum of (P
r
), (A3) and (A4) are both binding. Hence, the equilibrium profile of rents

U must satisfy (4.3). Inserting the expressions of U(θ) obtained from (A3) and (A4) binding
into the maximand of (P

r
), this maximand can be rewritten in terms of outputs only:

ν
(
S(q(θ))− θq(θ)− n∆θq(θ) + (n− 1)

(
T (q(θ))− θq(θ)

))

+(1− ν)
(
S(q(θ))− θq(θ) + (n− 1)

(
T (q(θ))− θq(θ)

))
.

By definition of an equilibrium, the non-increasing output schedule (q(θ), q(θ)) maximizes this

expression. Thus, (q(θ), q(θ)) is weakly preferred to any other non-increasing pair (q(θ, q(θ)).
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• Because (q(θ), q(θ)) is weakly preferred to (q(θ), q(θ)), we have

(A5) S(q(θ))− θq(θ) + (n− 1)(T (q(θ))− θq(θ))

≥ S(q(θ))− θq(θ) + (n− 1)(T (q(θ))− θq(θ)).

Since T implements (U, q) and (4.3) holds for this allocation, we obtain

T (q(θ))− θq(θ) = T (q(θ))− θq(θ).

Inserting into (A5) and simplifying immediately gives (4.1).
• Because (q(θ), q(θ)) is weakly preferred to (q(θ), q(θ)), we have

(A6) S(q(θ))−

(
θ +

nν

1− ν
∆θ

)
q(θ) + (n− 1)(T (q(θ))− θq(θ)))

≥ S(q(θ))−

(
θ +

nν

1− ν
∆θ

)
q(θ) + (n− 1)(T (q(θ))− θq(θ)).

Since T implements the equilibrium allocation (U, q) and (4.3) holds for this allocation, we
obtain

(A7) T (q(θ))− θq(θ) = 0 and T (q(θ))− θq(θ) = −∆θ(q(θ)− q(θ)).

Inserting into (A6) and simplifying immediately gives the first condition in (4.2).
• Because (q(θ), q(θ)) is weakly preferred to (q(θ), 0), we have

(A8) S(q(θ))−

(
θ +

nν

1− ν
∆θ

)
q(θ) + (n− 1)(T (q(θ))− θq(θ))) ≥ 0,

where the right-hand side above uses the normalization S(0) = 0. Using now the first condition

in (A7) and simplifying gives us the second condition in (4.2).

• Finally, summing together (4.1) and the first condition in (4.2) immediately gives us that any

allocation that solves the relaxed problem (P
r
) also satisfies (A2) and thus solves (P).

Sufficiency. Take any allocation (U, q) satisfying constraints (4.1), (4.2) (4.3) and (A2). We

check that such allocation solves (P) for an aggregate T that implements the allocation.
First, observe that for such allocation, (4.1) and (4.2) taken together implies:

S(q(θ))− θq(θ) ≥ S(q(θ))− θq(θ) + ∆θq(θ) ≥

(
nν

1− ν
+ 1

)
∆θq(θ) ≥ 0.

From this, together with (4.2) and (4.3), we deduce that the objective function in (P) is neces-

sarily positive for an allocation (U, q) that is implemented by a contract T .

Consider thus the aggregate T defined in (4.5). Two facts follow from this definition. First,

T implements (U, q) and, in particular, (4.3) holds. Second,choosing any implementable output

profile q(θ) ≥ q(θ) other than (q(θ), q(θ)), (q(θ), q(θ)), (q(θ), q(θ)), (q(θ), 0) or (0, 0) leads to

an infinitively negative payoff for the surrogate principal. Thus a principal who maximizes (P)

will choose to implement one of these allocations, all of which lead to a non-negative payoff.

Conditions (4.1) and (4.2) ensure that the best such profile is indeed (q(θ), q(θ)).

From those two facts, it also follows that (U, q) solves (P). Using the construction (3.1) allows

us to retrieve all individual equilibrium offers T i. Q.E.D.
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Proof of Proposition 2: From (4.7), principal i always induces output q from the agent
when he chooses to induce participation. Principal i should also prefer to induce the equilibrium
allocation (U, q) rather than deviating and implementing the allocation corresponding to the
non-decreasing output profile {q(θ), 0} which leaves zero rent to the low-cost agent. Because
Si(0) = 0, this condition can be written as:

Eθ

[
1

n
(S(q(θ))− θq(θ))− U(θ) +

n− 1

n
(T (q(θ))− θq(θ)) + µi

]

≥ ν

(
1

n
(S(q(θ))− θq(θ)) +

n− 1

n
∆θq(θ) + µi

)
.

Using the fact that the high-cost agent’s participation constraint is binding yields the following
lower bound on µi

(A9) µi ≥ −
1

n

(
S(q(θ))−

(
θ +

nν

1− ν
∆θ

)
q(θ)

)
.

Because (4.2) holds, we have:

S(q(θ))−

(
θ +

nν

1− ν
∆θ

)
q(θ) ≥ 0.

Therefore, there exists a non-empty set of vectors, µ = (µ1, ..., µn), which are balanced and

satisfy (A9) for all i. This set has non-empty interior when (4.8) holds. Q.E.D.

Proof of Proposition 3: Necessity. Consider an equilibrium allocation that is unde-

feated. By definition, it is also implemented by the equilibrium aggregate T
bc
:

(A10) T
bc
(q) = min

θ∈Θ
U(θ) + θq ∀q ∈ Q.

It is thus a biconjugate equilibrium.

Sufficiency. Suppose that (U, q) is implemented in equilibrium by the biconjugate aggregate
contract

T
bc
(q) = min

θ∈Θ
U(θ) + θq ∀q ∈ Q.

By definition, (U, q) must solve the following self-generating problem:

(P) : max
(U,q)∈I

Eθ

[
S(q(θ))− θq(θ)− nU(θ) + (n− 1)(T

bc
(q(θ))− θq(θ))

]
.

Because any contract T that implements (U, q) is such that T (q) ≤ T
bc
(q) with equality at

q = q(θ) for all θ, the following series of conditions holds:

Eθ

[
S(q(θ))− θq(θ)− nU(θ) + (n− 1)(T (q(θ))− θq(θ))

]

= Eθ

[
S(q(θ))− θq(θ)− nU(θ) + (n− 1)(T

bc
(q(θ))− θq(θ))

]

≥ Eθ

[
S(q(θ))− θq(θ)− nU(θ) + (n− 1)(T

bc
(q(θ))− θq(θ))

)
] ∀(U, q) ∈ I

≥ Eθ

[
S(q(θ))− θq(θ)− nU(θ) + (n− 1)(T (q(θ))− θq(θ))

]
∀(U, q) ∈ I,

which proves that T also implements (U, q) in equilibrium. Hence, the equilibrium allocation

(U, q) is undefeated. Q.E.D.
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Proof of Theorem 2: A biconjugate equilibrium allocations (U, q) is supported by a con-

cave and proper aggregate schedule T
bc
. Therefore, (P) is a concave program whose solution is

characterized by generalized first-order conditions using super-differentials instead of derivatives

for T
bc
. Because T

bc
is the least-concave function implementing (U, q), we have:

(A11) ∂T
bc
(q) =





θ if q < q(θ),

[θ, θ] if q = q(θ),

θ if q > q(θ).

We can now return to program (P) and write the corresponding (necessary and sufficient)
optimality conditions in both states of nature using super-differentials:

(A12) 0 ∈ S′(q(θ))− θ + (n− 1)(∂T
bc
(q(θ))− θ),

and

(A13) 0 ∈ S′(q(θ))−

(
θ +

nν

1− ν
∆θ

)
+ (n− 1)(∂T (q(θ))− θ).

Separating allocations. These allocations are such that (4.4) holds strictly. From (A11), ∂T
bc
(q(θ)) =

θ. Inserting into (A12) yields (5.3) and (5.4).

Pooling allocations. From (A11), ∂T
bc
(q(θ)) = [θ, θ]. Inserting into (A12) yields that such a

pooling allocation, q(θ) = q(θ) = q, should satisfy

(A14) S′(q)− θ + (n− 1)∆θ ≥ 0 ≥ S′(q)− θ,

and

(A15) S′(q)−

(
θ +

nν

1− ν
∆θ

)
≥ 0 ≥ S′(q)−

(
θ +

nν

1− ν
∆θ

)
− (n− 1)∆θ.

Clearly, the right-hand side inequality in (A14) and the left-hand side in (A15) are not compat-

ible. This rules out pooling allocations as implemented by biconjugate equilibria. Q.E.D.

Proof of Proposition 4: Immediate from the text. Q.E.D.

Proof of Proposition 5: Since (4.3) holds for allocations in Ieq, we may rewrite the
maximand of (Peq) only in terms of outputs to get:

(Peq) : max
q(θ)

ν
(
S(q(θ))− θq(θ)−∆θq(θ)

)
+ (1− ν)

(
S(q(θ))− θq(θ)

)

subject to (4.1) and (4.2).

The optimal output for the low-cost agent is thus first-best. When Assumption 2 holds, the

cooperative outcome qcoop(θ) is not implementable and the best output for a high-cost agent is

obtained when (4.2) is binding. Q.E.D.
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Proof of Proposition 6: From Theorem 2, we can now write the optimization problem
as:

(Peq) : max
q(θ)

ν
(
S(q(θ))− θq(θ)−∆θq(θ)

)
+ (1− ν)

(
S(q(θ))− θq(θ)

)

subject to q(θ) = qfb(θ) and q(θ) ∈ [q̃n(θ, ), q
bc
n (θ)].

The maximum of the principal’s payoff is achieved at qbc(θ)n since qbcn (θ) < q
coop
n (θ). Q.E.D.

APPENDIX B: EQUILIBRIUM SET UNDER COMPLETE INFORMATION

To better understand the restrictions imposed by asymmetric information and for the sake

of completeness, we now restate our characterization theorem when the agent’s cost parameter

is common knowledge ex post while contracting takes place under symmetric but incomplete

information. The following definition follows.

Definition B.1 An allocation (U, q) is complete information-implementable if there exists a

family of aggregate contributions T (q|θ) =
∑n

i=1 Ti(q|θ)) contingent on the realization of θ such

that:

(B1) U(θ) = max
q∈Q

T (q|θ))− θq ≥ 0; and q(θ) ∈ argmax
q∈Q

T (q|θ))− θq ∀θ ∈ Θ.

Let denote accordingly by Ifb the set of individually rational allocations (U(θ), q(θ)) that can

be achieved with such state-contingent schedules T (q|θ). A simplified version of Proposition 1

still applies when θ is common knowledge ex post while contracting takes place under symmetric

but incomplete information so that self-generating problems maximizes the surrogate principal’s

objective function in expectation over the possible realizations of θ.

Proposition B.1 An allocation (U, q) belongs to Ifb if and only if it solves the following

self-generating maximization problem:

(Pfb) : max
(U,q)∈Ifb

Eθ

(
S(q(θ))− θq(θ)− nU(θ) + (n− 1)(T (q(θ)|θ))− θq(θ))

)
,

where T (q|θ) is a family of state-contingent aggregate tariffs that implements (U, q).

It is straightforward to modify Theorem 1 to account for complete information.12

Theorem B.1 An allocation (U, q) belongs to Ifb if and only if it satisfies the following

conditions.

• Maximization of the collective surplus:

(B2) S(q(θ))− θq(θ) ≥ S(q(θ))− θq(θ);

(B3) S(q(θ))− θq(θ) ≥ max
{
S(q(θ))− θq(θ)− (n− 1)∆θ(q(θ)− q(θ)); 0

}
.

12The proof is quite similar to the proof of Theorem 1 with the omission of the agent’s incentive
constraint and is thus omitted.
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• Rent minimization:

(B4) U(θ) = U(θ) = 0.

Under complete information, the solutions to the self-generating problem boils down to the
maximization of the sum of the principals’ profits. The only source of contractual externality
in our model is thus asymmetric information and, when this source disappears, the objective of
the surrogate principal does not differ from what principals can achieve by acting cooperatively.
There are no transaction costs involved by having principals not cooperating under complete in-
formation. It is indeed straightforward to check that the efficient allocation (Ufb(θ) = 0, qbf (θ))
is now equilibrium implementable. For instance, the following family of aggregate offers, which
are forcing contracts conditioned on the realization of θ, implements this efficient outcome:

(B5) T (q|θ) =

{
θqfb(θ) if q = qfb(θ)

−∞ if q 6∈ {qfb(θ), qfb(θ)}.

Individual state-contingent offers can again be reconstructed by means of formula (3.1).

Proofs of Proposition B.1 and Theorem B.1: Those proofs follow the same steps

as the proofs of Proposition 1 and Theorem 1 with the only proviso that tariffs are now type-

contingent. Details are omitted. Q.E.D.
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