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An existence theorem is proved for the case of a discrete random variable
with finite support. If the random variable X takes on values in a finite
interval [a, b] and there is a lower non-zero bound on its n™ central moment
|E(X-E(X))"|20,.mix"| > 0, then non-zero bounds (restrictions) on its expectation
a < (a+ regee) < E(X) < (b - regee) < b exist near the borders of the interval.
In other words, under the above conditions, the non-zero “forbidden zones”
exist near the borders « and b and of the interval [a, b]. Here

b _ b . 2 | | n-2
Vipect = a_ | o Minn 1Ominn | . For the case of n=2 and
i 2 2 —a

for the minimal dispersion oyin =2 O, the bounds are
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a<[a+b ]SE(X)S(b_b j<b. The theorem can be used in
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utility and prospect theories.
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1. Introduction

Bounds on functions of random variables are considered in a number of
works. At that, information of moments of random variables is used quite often.
Bounds for probabilities and expectations of convex functions of discrete random
variables with finite support are considered in Prékopa (1990). Inequalities on
expectations of functions are considered in Prékopa (1992). The inequalities are
based on the knowledge of moments of discrete random variables. A class of lower
bounds on the expectation of a convex function using the first two moments of the
random variable with a bounded support is considered in Dokov and Morton
(2005).

Bounds on the exponential moments of min(y, X) and XI/{X < y} using the
first two moments of a random variable X are considered in Pinelis (2011).

Information of moments of a random variable can be used also for bounds on
the expectation of this variable. These bounds can be of importance as well. In
particular, they can be used in decision, utility and prospect theories (see, Section
5), including the analysis of Prelec’s probability weighting function.

In the present article, the bounds on the expectation of a random variable are
expressed in terms of its second or higher moments.

Due to the convenience of abbreviations and to the history of creation and
development of the topic of this article, the term “bound” is often referred to here as

the term “restriction,” especially in mathematical expressions.



2. Preliminary notes

In the present article, the first and simplest case of a discrete random variable
with finite support is considered. Other cases may be considered later.
Let us consider a discrete random variable X such that there is a probability
space (Q, £, P) and X : Q-2R. Let us suppose that
X={x}:k=12,..,K:2<K <o

and
as<x, <b:0<(b-a)<w
and the probability mass function is

fx(X)=PX=x)=P({loeQ: X(w)=x}) .

Let us consider further the expectation of X
K
E(X)= ZxkfX (x)=p,
k=1
its central moments

E(X-w)' = Z(xk — )" fx(x)

and possible interrelationship between the expectation and the moments.

3. Maximality

Let us search for the probability mass function fx(x) such that a central
moment of X attains the maximal possible modulus.

It is intuitively evident that the maximal possible absolute value of a central
moment is obtained for the probability mass function, which is concentrated at the
borders of the interval. Nevertheless, for the sake of mathematical rigor, this
statement must be proved.

For the sake of simplicity, in this section, the probability mass function fx(x)
will be used in simplified forms as f'= f{x) = fx(x).



3.1. Pairs

In the scope of this section, let us analyze all the realizations (or observed
values) x; of the random variable X relative to wu.

Let us consider two possible realizations (points) x, and x, of the random
variable X and the corresponding probabilities

Jx)=fy(x,) and  f(x)=fy(x,).

For the purposes of this article, let us introduce a term “pair.”

Sometimes, one may need to mark objects those are associated with pairs. Let
us mark them by an additional subscript. To not confuse with the abbreviation of

the term ““probability,” let us choose a subscript “C” (“couple™).

Definition 3.1. Pair. Two realizations (points) x, and x, of the discrete
random variable X, satisfying
a<x, <u<x,<b,
will be called a “pair” (or a “couple”)
Xpir = Xope =X =(x,,%,) = (XcasXcp)
relative to u if the balance
(u=x,)f(x,)=(x,—mf(x) (1)
is true, in other words, if u = E(X) is the expectation of x, and x, as well. At
that, if X may be considered as a set, then a pair may be considered as a subset X¢
of the set X, having the same expectation u as X.
Note, if x, = x, then the balance (1) can be also considered as true, though
formally.
The sum of the probabilities f{x,) and f{(x;) is assumed to be non-zero and
(for the convenience of abbreviations, to not numerously use the long punctilious
definition of the probability) can be named as the weight of the pair (couple) wpyi,

= Weouple = We OF simply w
wPair = wCouple = WC =w> 0 :

fa)+f(x)=P(X=x)+P(X=x)=w.=w>0.
The central moment Ecoupie(Xcoupie-tt)” = Ec(Xc-)" of this pair (couple) is
E(Xe—w)' =(x,— )" f(x,)+(x, — )" f(x,).
Its absolute value is limited by the sum of the absolute values of its components
|Ec(Xe =" < (x, =" f(x) [+ (x5, — )" f () |=
=(u=x,)"f(x,)+ (%, = 1" f(x;,) '



3.2. Limiting function

Let us define a bounding function for a central moment of the pair. To not
confuse the abbreviation of this function with the point b, this function will be
named the limiting function L.

From the expressions of the balance and weight of the pair (couple)

f(xb)=L);‘;f(xA)=wc—f(xa)

X, —
and
P+ ) =Ee el g ) =
b
=5 Sx,)=we
Xy —H

one may replace f{x,) and f{x;) by functions of only x,, u, x, and wc¢

fx)="2"H and f(x,)=H"Fay,

X, — X X, =X

a b a

and obtain
| Ec(X — )" |<(u=x,)" f(x,)+(x, — )" f(x,) =

X, —

n _'xa
_,U We + (X, — 1) %WC

xb a xb xa

=(u-x,)"

n Xy —H n H—X,
= (= x,)" 2t (o, — )" By
xb M xb M
Definition 3.2. Limiting function. One may define a limiting function
Le(xg 1, xp, n, we) or, abbreviated, L(x, u, x5, n, w) or simply Lc or L fora
central moment of a pair (couple). This function depends only on x,, u, xp, n, wc
LCouple (‘xa ° /’l’ ‘xb 1, WCouple) = LC (‘xa ’ /J, ‘xb’ n, WC) = L(‘xa b4 /’l’ ‘xb 1, W) =
X, — W H—X,
b we +(x, — 1) A

b a b a

E(/u_xa)n WC

Note, here x, and x; are the variables, but x, n, but wc are the parameters.
The absolute value of a central moment, say |Ec(Xc-w)"|, of the pair (couple)
is, by definition, limited (bounded) by this limiting function Lc(x,, g, xp, n, wc)
| Ec(X o — 10" |€ Lo (X, 1, %,,1,W0)



3.3. Search for the maximum. Derivatives
Let us find the maximum of the limiting function Lc(x, u, x5, n, we) for x,
and x.
3.3.1. Differentiation with respect to x,

Let us differentiate L(x,, u, xp, n, w) with respect to x,
OL(x,,u,x,,n,w)
ox,

n _-xa
((,u x) ‘uw+(xb 1) ’uwj
xb_xu xb_xa

ox,
={[=n(x, - x,) +(—x)(—x,)"" +
Fl=(x, = x,) + (= x )], — )" )=
(xb—xa)
= {[(u—x,)—n(x, —x)(u—x,)"" = (x, — @) }—2—E_w

( x, —x,)°
At n>1, if (u-x,)<(xp-x,), thatis, if x,>u and xp-x,>0, then
(u=x,)-n(x,—x,)<0
and

OL(x,,u,x,,n,w) <0
ox,

So, at n>1, for u<x,<b (and, as can easily be seen, for a<x,<w) the first
derivative with respect to x, is strictly less than zero. That is, for a<x,<u<x<b
or for [a, b] except for the specific point u, we have

L(a, pu,x,,n,w) > L(x,, 4, x,,n,W) .
If (u-x,)=(xp-x,), thatis, if x,=u, then from
(u=x)f(x,)=(x,— ) f(x),
we obtain
f(x,)

(u )(uu)f()

or X,= (.



To include the specific point u into the ranges of variation of the arguments
x, and x, of the inequality
L(a, pu,x,,n,w) > L(x, 1, x,,n,w) ,
let us estimate the derivative OL(x,, i, xp, n, w)/ox, for both x,2u and x,2u.
One may impose some natural conditions of non-zero values of probabilities:
f(x2)>0 and f(x;)>0.
Let, say, u-x, be the basic term. Then
(x, — 1) = f(x,)

) W

and
x, =X, =(x, —p)+(u—x,)=

f&x) 3
(f( b)+J(ﬂ xX,) =

If x,=2u then the derivative

T b)(”_ %)

(= x,) = n(x, —x )= x,)"™ = (x, — )" )2 H =
(xb _xa)

] f(x(,)j" B nf<xa>(f<xb>j2 L
{_ ") (f(xb) e W A

L fx) | f(x) w n>l; x4

So (at n>1, if p-x, tends to 0O, then the derivative)
OL(x,, i, x,,n,w) .

ax n>l; x,—>u 4
a

Therefore, for a<x,<u<x,<b, the derivative OL(x,, u, xp, n, w)/Ox, <0.



Let us include the point ux into the ranges of variation of the arguments x,
and x, of the inequality L(a, i, x5, n, w)>L(x,, 1, xp, n, w). Let us consider an
intermediate point, say x,=(a+u)/2.

If, for a<x,<u<xp<b, the derivative OL(x, u, xp, n, w)/0x,<0, then, for
a<x,<u=<xp<b, the function L(x, u, xp, n, w)>L(u, u, xp, n, w)=L(u, u, 1, n, w) (and
L((a+u)/2, u, xp, n, w=>L(u, u, u, n, w)).

If, for a<x,<u<xy<b, the derivative OL(x, u, xp, n, w)/ox,<0 then, for
a<x,<u<xp<b, the function L(a, u, xp, n, w)>L(x4 p, xp, n, w) and L(a, u, xp, n,
w)>L((a+u)/2, u, xp, n, w).

Therefore,

+
L(a, p,x,,n,w) > L(%,,u,xh,n, WJ > L(u, pu, pt,n,w)

or
L.(a,p,x,,n,w) > L.(u, pt, tt,n,w) .

We have included the specific point u into the ranges of variation of
arguments of the inequality L(a, u, xp, n, w)>L(x,, 1, xp, n, w) and the inequality is
true for a<x,<u<x;<b.

So, at n>1, the limiting function Lc(x,, i, X5, n, we) has a maximum

Max(LC (xa’/'la xb’n’ WC )) = LC (Cl, lLl’ xban9 WC) .

for x, for the total interval [a, b].



3.3.2. Differentiation with respect to x;

Let us differentiate L(x,, u, xp, n, w) with respect to x;
OL(x,, p,x,,n,w) _

ox,
_ X, — X, x,-x, )
) ox, -
={[(x, —x,) = (%, — )l —x,)"" +
Dt — )=ty — )13, — gy
(x, —x,)
= (1 =x,)" +[n(x, = x,) = 0, = 10)(x, = )" }E 0w
(x, —x,)

At n>1, if (xp-x,)>(xp-u), thatis, if x,<u, then
n(x,—x,)—(x, —u)>0

and (if x,-x,>0)

strictly greater than zero. That is, for a<x,<u<x,<b or for [a, b] except for the

OL(x,, u,x,,n,w) >0

ox,

If (xp-x,)=(xp-pt), thatis, if x,=u, then x,=u (see above).

So, at n>I, for a<x,<u<x,<b the first derivative with respect to x;, is

specific point u, we have

X, and Xxp, let us estimate the derivative OL(x,, u, xp, n, w)/0x;, for both x, 21 and

x,2u under the same natural conditions of non-zero values of probabilities:

L(x,, i, x,,n,w) < L(x,, tt,b,n,w) .

To include the specific point u into the ranges of variation of the arguments

f(x.)>0 and f{xp)>0.

and

Let, say, x;,-u be the basic term. Then

— :M —
(u-x,) f(xa)(xb M)

o f(x,) P B
g x”_[”ﬂxa)j(x” A= “).



If x,2u, then the derivative
n n— - xa
{(—x,)" +[n(x, = x,) = (x, - 1)](x, — )" }—E "0y =

_ {f(xb)J R P f(xb)(f(xa)jwz
fo)) L) Fol w

) (M] #ny ] f(x}?)f(xa)(xh—ﬂ)"flﬂ.—%m
f(xa) L f(.xa) ) w n>l; x,—>u

So (for n>1,1if x; (and x,) tend to u, then)
OL(x,,x,,X,,n,w)

n>l; x,—x,
ox,

N

Therefore, for a<x,<u<x,<b, the derivative OL(x,, u, xp, n, w)/0xp > 0.

Let us include the specific point u into the ranges of variation of the
arguments x, and x, of the inequality L(x, u, b, n, w) > L(x4 u, xp, n, w). Let us
consider an intermediate point, say x, = (u+b)/2.

If, for a<x,<u<x;,<b, the derivative OL(x,, u, xp, n, w)/0x, > 0 then, for
a<x,<u<xp<b, the function L(x, i, i, n, w) = L(i, i, i1, n, w) < L(x4 1, xXp, n, w)
(and L(u, i, u, n, w) < L((xg, t, (u+b)/2, n, w)).

If, for a<x,<u<xp<b, the derivative OL(x, u, xp, n, w)/ox,>0 then, for
a<x,<u<xp<b, the function L(x, u, xp, n, w) < L(x, u, b, n, w) and L((a+w)/2, u,
Xp, N, W) < L(xg, , b, n, w).

Therefore,

+
L, p, pu,n,w) < L(xa,,u,%,n, wj <L(x,,u,b,n,w)

or
Lo (s gt a1, w) < L (X5 p1,0,0,w)

We have included the specific point u into the ranges of variation of
arguments of the inequality L(x,, i, xp, n, w) < L(x, u, b, n, w) and the inequality
is true for a<x,<u<xp<b.

So, at n>1, the limiting function Lc(x,, i, X5, n, we) has a maximum

Max(L.(x,, pt,x,,n,w.)) = L.(x,, ,b,n,w,) .

for x; for the total interval [a, b].

10



3.3.3. The maximum

So, at n>1, for a<x,<u<x,<b, the limiting function

- - X
b ‘Llw_{_(xh_ﬂ)nuw
Xp =X, Xp = Xq

Lo(x,,t,x,,n,w)=(u—-x,)"

attains its maximum at the borders x, = a and x;, = b of the interval [a, b]
Max (L, (x[,,,u,x,,,n,wc))zL (a,p,b,n,w.) =

_(,u a) —Wc+(b ,Ll) —aWc

So, at n>I, the absolute value |Ecoupe(X-1t)"|=|Ec(X-1)"| of a central
moment of the pair (x, x;) is limited by the maximal limiting function L, that is
concentrated at the borders x,=a and x,=b of the interval [a, b]

| Ec(X — )" |€ Lo (a, p,.b,n,w) =

=(u-a)’ —”wc +(b-p)" —wc
—da —dad

11



3.4. Representation by pairs. Succession of situations

3.4.1. Preliminary considerations

Let us analyze whether the total probability (weight)

K

D f(x)=PQ)=W,,

k=1

and central moments

K

E(X-w)" = Z(xk 1) f(x).
k=1

of the variable X of Section 2 can be exactly represented by those of a set of pairs.

The final goal of this section is to exactly represent the modulus of any central
moment of any variable X of Section 2 by a sum of moduli of central moments of a
set of pairs of the same variable and to estimate this sum by the limiting functions.

The discrete random variable X can be treated as a set of points {xi/. The
probability mass function f of Section 2 can be also treated as a set of values
{f(xr)} associated with {x;}. A pair (x, x;) defined in this section is a subset of
the set {x;/. If there are K.C : K.C>] pairs then, if there is a need, one can denote
the k.C" pair (couple), such that k.C=1, ..., K.C, as {xica Xxc»/- The weight of
this pair can be denoted as wy . (The multiple notation, e.g. x.cq, is used to avoid
numerous three-storey and even four-storey indices in the text).

In this subsection we should often distinguish between points, values, objects,
etc. associated with pairs (couples) and values, objects, etc. those are (still) not
associated with pairs. To do this, let us denote points, values, objects, etc.
associated with pairs (couples) as points, values of pairs (couples), pair’s value,
pairs’ values, etc. and the objects, values, etc. those are (still) not associated with

pairs as the original points, values, original objects, etc.

12



Linearity of sums

Let us mention the linearity of sums of weights and moments.
The total weight

K
Wy = Z f(x),
k=1
and moments
K
E(X —x,)" =) (x,—x)" f(x,).
k=1

of X depend linearly on the values f{x;). The sum is their linear function also.
Therefore:

1) the total weight of a sum equals the sum of the weights and

2) the moment of a sum equals the sum of the moments.

The sum of the central moments of the pairs is limited by the sum of the
maximal limiting functions (those are linear functions of f{x;) as well) of these
pairs. One can see, indeed, that if for . ch pair

|E, (X e — )" | L c(a, p.b,n,wyi o)

then for K.C pairs

K.C K.C
Zl Eo(Xe—)"|< sz.c(auU’b’n’Wk.c) .

k.C=1 k.C=1

3.4.2. Situations

Let us divide the points x; into three groups:

D) Xea<u,
2) X =p (zero central moment(s)),

3) xk.b>,u°
Let us introduce the numbers K.a, K.u and K.b, such that k.a <K.a, ku <
Ku, kb <Kb and
Ka+Ku+Kb=K.
Owing to xi, - 4 = 0, an arbitrary non-zero central moment depends only on

K.a and K.b. Let us consider in turn situations with various numbers
Kab=K.a+Kb.
from K.ab = 0 to the general situation.

13



Situation K.ab=0

Due to the condition K>2 of Section 2 and K.u<I, the case K.ab<I cannot
exist.

Nevertheless, let us consider optionally more general (or fictitious) cases of
K=1 and of mutually coincident points {x,=u} : ku=1, ..., Ku: Ku>2.

If K.ab=0, then only one point x (or mutually coincident points {xx,=u})
and the corresponding value f{u) (or the values f{xt,)) can exist. Evidently, the
value f(u) (or the values f{x,)) do not contribute to the non-zero central moments.

All the mutually coincident points {x;,=u/ (or the single point) may be
represented as only one aggregated point Xag,.,=u and the corresponding value

K.u
Fager (1) = Zf(xk.;z) .
k.pu=1
We may formally divide the value fage/(Xager)=f(1t) into two parts f;c(x) and
focolu) satisfying f; c(w)=f>.c(1)=f(u)/2. The balance formally remains
(=) fre(w) = (=) .0 (1)
or
A R AL
2 2
Evidently, the total weight of this formal pair equals the total weight f{u) (or

(1= 1)

the sum the weights f(xi,)). The central moments equal zero for both the pair and
the point u (or the points {x,/). So, the total weight and central moments of the
point u (or the points {xx,/) can be exactly represented by a pair of the previous
subsections.

Further, as a rule, we shall not consider the point(s) x;=u.

14



Situation K.ab=1

Here, only two possible cases can take place: the case K.a=1 and K.b=0 or
the case K.a=0 and K.b=].
Generally, the first central moment

Z(xk — 1) f(x)=0

may be transformed to

D —mf(x)= D, — ) f(x,)+

k.a<K.a

+ Y G, =)+ Y, =) f(x,,) =0

k.u<K.u k.b<K.b
where the limits of the sums k.a<K.a, ku<Ku and k.b<K.b denote, that K.u or
K.a or K.b can equal zero. That is, generally, there can be cases with no members
of the sum(s) of ku or k.a or k.b.
Now, since
‘xk.y - lu = 0 s

this central moment may be transformed to the balance

Z(lu_xk.a)f(xk.a) = Z(xk.b — i) f(x,)

k.a<K.a k.b<K.b

Suppose K.a=I1 and K.b=0. Then
Z(lu_xk.a)f(xk.a) = 0 .

k.a<K.a

There are only two possible cases: f{xx,)>0 and f{xi,)=0. Evidently, for
K.ab=1, the case f{x;,)>0 cannot exist. If f{xx,)=0 then the balance can
formally hold, but this case does not contribute to the non-zero central moments
E(X-1)">0.

The consideration of the case K.a=0 and K.b>[/ is fully analogous to the
preceding one.

So, the case K.a=0 and K.b>I and the case K.a>I and K.b=0 -either
cannot occur or do not contribute to the non-zero central moments E(X-u)">0.

So, Situation K.ab=1 cannot occur or does not contribute to the non-zero
central moments.

Further, as a rule, we shall not consider those cases that do not contribute to
the non-zero central moments, namely x; : f{xx)=0 and x; = u.

15



Situation K.ab=2

Here, the only possible case which contributes to the non-zero central
moments, is the case K.a=/ and K.b=]1.
If Ka=1 and K.b=1, then we have the balance

(U=x,)f(x,) =0, =) f(x,) .

Therefore, the original points x;, and x;;, are the required pair (couple) of the
previous subsections.

Evidently, the total weight and moments of the pair are equal to those of the
original points.

So, the original total weight and central moments of Situation K.ab=2 can be
exactly represented by the total weight and central moments of a pair of the
previous subsections.

Remark 3.3

Let us further, for definiteness, enumerate the points x;, and xgp, for
example, from those furthest from g, to those closest to pu.

16



Divided sets

Let us define “divided” or “exactly divided” sets.

Definition 3.4. Let us suppose given an initial set of points {x;/ and the
initial set of values {f{x;)} associated with {x;} asin Section 2.

A divided or exactly divided set of points {x;/ (with respect to the initial set
of points) is defined as the same initial set of points {x;/ such that at least one
value f(x;) (associated with a point x;) is divided into, at least, two parts f7(x)
and f>(x;) satisfying the equality

Fx)=fG)+ fr(x) .

A divided or exactly divided set of values (with respect to the initial set of
values) is the set of values associated with the divided set of points.

The notation of a divided value may be more complex, e.g.

f(x)= fl(k)(xk)+ fz(k)(xk)

or, more generally,
D(k)

flx)= Zfd(k)(xk) 1 2<D(k)< o .

d(k)=1
More generally, every value f{x;) (that will be either divided or not divided)
of the initial set of values {f(x;)} may be written via the values fyx)(xr) of the

exactly divided set {fyx)(xx)}, by definition, as
D(k)

Fx)= D fawx) 1<Dk)<oo

d(k)=1
Note, the divided set of points and the initial set of points are the same sets.
The divided set of values and the set of initial values differ from each other.
Because of these properties, there is a reason to distinguish between divided and
initial sets of points by the associated sets of values.
Note, that a divided set of points can serve as the new initial set of points for a

subsequent division, i.e., modification.

17



Evidently, the total weight and moments of the divided set of points are equal
to those of the initial set of points.

Let us consider the total weight and moments of a divided set of points.

By the general definition (see above), the total weight of the divided values

Jaw(xx) 1s equal to the initial value f{xy)
D(k)

fx) = Zfd(k)(xk)

d(k)=1
for every initial value f{x;). Therefore, the total weight of the divided set is equal to
that of the initial set.
Both the divided values fy)(xr) and the initial value f{x;) are associated with
the same point x;. Therefore and by the general definition, the sum of moments of

every divided point is equal to the moment of the initial point

D(k) D(k)
z(xk _xo)nfd(k)(xk) =(x, —x)" Zfd(k)(xk) = (x, —xp)" f (%)
d(k)=1 d(k)=1

Therefore, the total moment of the whole divided set is equal to that of the whole
initial set.

One can see, indeed, that, by definition, the total weight Wp of the exactly

divided set of points is

K D(k)
Wy=>" D fiw)= Zf<xk> Wy
k=1 d (k)=1
and the total moment Ep(X-xp)" of the exactly divided set of points is
E (X -x,)" =
K D(k)
_Z Z('xk x,)" fd(k)(xk) Z('xk -x)" f(x,)= |
k=1 d(k)=1
=E(X -x,)"

So, we have specified the properties of the divided sets: the total weight and
moments of a divided set of points are equal to the total weight and moments of the

initial set of points.
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Situation K.ab =3

Here, there are only two possible cases those can contribute to the non-zero
central moments: the case of K.a=2 and K.b=1, or the case of K.a=/ and
K.b=2.

Let us consider the case of K.a=2 and K.b=1.

Let us make the first step of the representation of the total weight and central
moments of the original set of points by the total weight and central moments of the
set of the pairs.

The value f{x;,) can be exactly divided into two parts f;(x;,) and fo(x;p)
satisfying the balance

(1 =x)f(x ) =Cx, =10 fi(x,)
and the equality of divided sets

L) = f(x,) - filx,) .

Here, the points x;, and x;, are the initial set of points. The divided points
are the same points. The values f{x;,) and f{x;;) are the initial set of values. The
divided values are f(x;.), fi(x15) and fo(x;p).

Due to the properties of the divided sets, the total weight and moments of the
divided set of points are equal to those of the initial set of points.

The first portion of the original set of points is the set x;, and x;, of the

divided set with the associated values f{x;,) and fi(x;). Since the balance

(u=x ), )=x,—mfx,)
is true, the two points x;, and x;, of the divided set with the associated values
fix1.4) and fi(x;;) are the required pair of the previous subsections. Evidently, the
total weight and moments of the pair are equal to those of the first portion of the
original set of points.

So, the first step of the representation has been done. The total weight and
moments of the pair as of the first portion of the set of the pairs are equal to those of
the first portion of the divided original set of points.

This can be seen in more detail for the central moments

E(X = )" = (0, =" f (5, ) + (0 = 1) f () + (6, = 10" f (3,,) =
= (%, =" f )+ (x, — )" fi(x ) +

+ (0, )" [ )+, — )" fr(x,) =

=E (X—-p)"+

+ (X, = )" f(x,)+(x, — 10" ,(x,)
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Let us make the second step of the representation.
The balance remains

(u=x, ) f(x )+ (u=x,,)f(x,,)=

= (%, — 1) f1(x ) + (e — 1) £(x,) ’
and we come to Situation K.ab=2 for f(x,,) and f>(x;)

(=2, ) () =(x, —10) f,(x,)

So, as a result of the first step, the number of unpaired values is diminished by
one and we come to resulting Situation K.abpiminisnea=K.ab-1=2.

As has been proved above, the total weight and central moments of Situation
K.ab=2 can be exactly represented by the total weight and central moments of a
pair of the previous subsections. So, this is the second and final step.

So, the final step of the representation has been done. The total weight and
moments of the final portion of the set of the pairs of points are equal to those of the
final portion of the divided original set of points.

This can be seen in more detail for the central moments

EX-p)"=E (X =)' +(xp, = )" f(x,,)+(x — 1) f(x;,) = .
=E . (X-w)'+E,.(X-pn)".

So, Situation K.ab=3, at K.a=2 and K.b=1, can be represented by the sum
of the first step and the final step.

So, the total weight and moments of the divided original set of points are
equal to those of the initial original set of points. For every step, the total weight
and moments of the portion of the set of the pairs are equal to those of the portion of
the divided original set of points. Both the total weight and moments depend
linearly on the values of the members of the sets. Therefore, the total weight and
moments of the sum of the portions are equal to the sum of the constituent weights
and moments correspondingly. Therefore, for whole Situation K.ab=3, the total
weight and moments of the set of the pairs are equal to those of the original set of
points.

If Ka=1 and K.b=2, then the consideration is analogous to the preceding
one.

So, the total weight and central moments of Situation K.ab=3 can be exactly
represented by the total weight and central moments of a set of pairs (couples) of
the previous subsections.
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General Situation K.ab

General Situation K.ab. Suppose general Situation K.ab>4, K.a>I and
K.b>I (the case of K.a=0 and K.b>/ and the case of K.b=0 and K.a>/ cannot
exist or do not contribute to the non-zero central moments.

Let us consider f(x;,) and f{x;;). There are only two possible variants:
less possible but more easy Variant 1 (equality)

(u=x ) )=0x,—mf(x,) .

and more possible but less easy Variant 2 (inequality)

(=201 ) #(x, =) f(x,)

Let us make the first step of the representation of the total weight and
moments of the original set of points by the total weight and central moments of the
set of the pairs. Evidently, this first step may be implemented in one of the two
forms depending on whether Variant 1 (equality) or Variant 2 (inequality) takes
place.

Variant 1 (equality). If
(/J _x].a)f(xl.a) = (‘xl.b _lu)f(x].b)

then the two points x;, and x;, are the required pair (couple) of the previous
subsections. Therefore, the total weight and an arbitrary total moment of the pair
are the same as those of the portion of the original set.

As a result of this first step within the scope of Variant 1 (equality), the
number of unpaired (uncoupled) values is diminished by two and from Situation
K.ab we come to Situation K.abpiminishea=K.ab-2. Here, the number
K.abpiminishea=K.ab-2 is composed of 2, ..., K.a and 2, ..., K.b.

Let us make the first step of the representation within the scope of Variant 2
(inequality).
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Variant 2 (inequality). If
(U=x ) )#x, =) f(x,),

then there are only two possible cases as well:

(=x ) () <(x, =) f (%)

and

(u=x ) (x> x, - f(x,) .

Suppose, for example, that

(=2 ) () <5 =) f (X 5)

Then one should divide the value f{x;;) into two parts fi(x;,) and f>(x;5)
satisfying the balance

(=20 F O ) =0 — 1) f1(X, )
and the equality of divided sets

L p) = f(x5) = fi(x5)

Here, the points x;, and x;, are the initial set of points. The divided points
are the same points. The values f{x;,) and f{x;;) are the initial set of values. The
divided values are f(x;,), fi(x15) and fo(x;p).

Due to the properties of the divided sets, the total weight and moments of the
divided set of points are equal to those of the initial set of points.

The first portion of the original set of points is the subset (x;,, x;5) of the

divided set with the associated values f{x;,) and fi(x;). Since the balance

(u=x )1, )=0x,—mfix,)

is true, two points x;, and x;, of the divided set with the values f{x;,) and
fi(x;) are the required pair of the previous subsections. Evidently, the total weight
and moments of the pair are equal to those of the first portion of the original set of
points.

So, within the scope of Variant 2 (inequality), the first step of the
representation has been done. The total weight and moments of the pair as of the
first portion of the set of the pairs are equal to those of the first portion of the
divided original set of points.

As a result of this first step within the scope of Variant 2 (inequality), the
number of unpaired (uncoupled) values is diminished by one (taking into account
the part f>(x;,) of the value f{x;,)) and we come to Situation K.abpiminishea=K.ab-
1. Note, that the number K.ab is composed of /, ..., K.a and I, ..., K.b. And
here, the number K.abpiminisnea=K.ab-1 is composed of 2, ..., K.a and 2, ..., K.b
plus one.

So, we have considered the first step of diminishing the number K.ab for
general Situation K.ab>4 within the scopes of both parallel variants. It diminishes
K.ab by one or two.
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Evidently, such a step may be a general intermediate one.

Let us suppose a general intermediate situation such that there are already
g.Cab : 1< gC.ab < K.C.ab, pairs (couples) which represent the total weight and
moments of some original points and there are still K.a - g.a + I of x;, points and
Kb -gb + 1 of xx, points, the total weight and moments of which are still not
represented by those of pairs. Let us represent the total weight and moments for
this general intermediate situation. For illustrativeness, examples of this general
intermediate step may be written via formulae.

The total weight for the general intermediate situation before the general
intermediate step can be represented as

g.C.ab
Wi = ZWkCah+ Zf(xka)+ Zf(xkb
k.C.ab=1 k.a=g.a k.b=g.b

The central moments for the general intermediate situation before the general
intermediate step can be represented as

E(X -w)" =

g.C.ab

ZEkCab(X )"+ Z(xka )" f(x)+ Z('xkb " (%)
k.Cab=1 ka=g.a kb=g.b

Variant 1 (equality). The general intermediate step can be seen in more

detail for the total weights
g.C.ab

W w = ZWkCab+f(xga)+f(xgb)+ Zf(xka)+ Zf(xkb)_
k.C.ab=1 k.a=g.a+1 k.b=g.b+1

g.C.ab+l

ZWkCab+ Zf(xka)+ Zf(xkb)

k.C.ab=1 k.a=g.a+1 k.b=g.b+1

The general intermediate step can be seen in more detail for the central
moments

E(X —u)" =
g.C.ab
ZEk.C.tlb(X _/u)” +(xgk.a _ﬂ)nf(xg.a)-l_(xg.b _lu)nf('xg‘b)-l_
k.C.ab=1
£ O, =) Fr )+ Y (=) f () =
k.a=g.a+1 k.b=g.b+1
g.C.ab
ZEkCab(X W'+ z(xka W' fx )+ Z(xkb " f(xe,)
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Variant 2 (inequality). The general intermediate step can be seen in more
detail for the total weights

g.C.ab
Wew = Zwk.c.ab +f(xg‘a)+fl('xg.b)-l_fZ(xg‘b)-l_
k.C.ab=1
K.a K.b
+ Zf(xk.a)+ Zf(xk.b):
k.a=g.a+l k.b=g.b+1
g.C.ab+1 K.a K.b
= Zwk.c.ab + Zf(xk.a)+f2(xg.b)+ Zf(xk.b)
k.C.ab=1 k.a=g.a+l k.b=g.b+1

The general intermediate step can be seen in more detail for the central

moments
g.C.ab

EX-p)'= Y E oX-u'+

k.C.ab=1

+ (xgk,a - /u)nf(-xg.a) + (Xg.b - /u)n f] (Xg.h) + (.Xg.b - ,u)n fz(xg,b) +

K.a K.b
Y ) f ) Y, =) f(x,) =

k.a=g.a+1 k.b=g.b+1
g.C.ab K.a
= zEk.C.ab(X -+ Z(’xk.a —)" f(x )+
k.C.ab=1 k.a=g.a+1

+ (xg.b -w" f, (xg.b) + Z(xk.b - )" f(x,)

k.b=g.b+l
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So, we have considered the general step of diminishing the number K.ab for
general Situation K.ab>4 within the scopes of both parallel variants. It diminishes
K.ab by one or two.

Evidently, this general step may be repeated as many times as needed to reach
final Situations K.abpiminishea=3 Or K.abpiminishea=2.

If the original set of points is divided, then the total weight and moments of
the original set of points are equal to those of the initial original set of points. For
every step, the total weight and moments of the portion of the set of the pairs are
equal to those of the portion of the divided original set of points. Both the total
weight and moments depend linearly on the values of the members of the sets.
Therefore, the total weight and moments of the sum of the portions are equal to the
sum of the constituent weights and moments correspondingly. Therefore, for whole
general Situation K.ab, the total weight and moments of the set of the pairs are
equal to those of the original set of points.

So, in general Situation K.ab : K.ab>4, at K.a>I and K.b>I, the total
weight and central moments of a discrete random variable X of Section 2 may be
exactly represented by the total weight and central moments of the pairs of this
section.
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3.5. General limitations
3.5.1. Weights

Let us consider the weights (probabilities) of groups of realizations (points) x
of X, of groups of pairs (couples) and general limitations on them.
Remembering

Ka+Ku+Kb=K

of the preceding subsection, the total weights of these groups may be denoted as
W, W, and W, such that

W= Y fr) . Wo= D flx,), W= ) flx,)

k.a<K.a k.usK.u k.b<K.b
and the sum of the weights (probabilities) is

W, +W, +W, =W, =P(Q)=1 .

Let us denote the total weight of the total set of all the pairs (couples) as
Weouple = We, the weight of the set of the formal pairs (urcu tikr1.cu) as We, and
the total weight of the set of the pairs (xXr.cs Xk.cs) as Weap. By this definition, the
weight of, e.g., a k.C.ab™ pair (couple) (Xr.c.a Xkcp), 1s denoted as wy cqp and

K.C K.C.ab
Zwk.c =W, , Zwk,c,,, =W, . Zwk.c‘ab =Wea .
k.C=1 k.C.u<K.C.u k.C.ab=1
and we have
We=We,+We,, .
Evidently,
We, =W,
and, due to the preceding subsection,
WC.ab = Wa + Wb
and

W, =W, =PQ)=1.
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3.5.2. The general limiting function

Let us consider the central moments

K .Couple
E(X ,U) = ZEkCouple(X lu)n = ZE C(X Iu)
k.Couple=1 k.C=1
K.C.ab
= ZEk‘C‘,u(X -+ ZEk‘C‘ab(X —u)" =
k.C.usK.C.u k.C.ab=1
K.C.ab
= ZEk.C.ab(X_:u)n
k.C.ab=l1

The maximal limiting functions Ly cap(a, 1, b, n, wi.cap) satisfying

|EkAC.ab(X -w)" < L coa, m,b,n,w )

allow estimating the central moments E(X-u)" of the random variable X
K.C.ab

| E(X - )" [<] E ,Ek.C.ab(X —w)" <
k.C.ab=1
K.C.ab

Z Ly ¢ (@ p,b,n,w, ¢ )

k.C.ab=l1
This estimate can be easily simplified. From

Ly copa pt,b,n,w ) =
—da
—(/,l a) —/uwkcab'i_(b lu) —awk.C.ab:
n B n —a
:|:(/U_a) —Iu"'(b_,u) Iu—:|wk.C.ab
b—a b—a

there follows
K.C.ab

ZLk.C.AB ((l, M, b, n, Wk.C.ab) =
k.C.ab=1
K.C.ab ) iy
Z {(# a)" —+(b 1) ﬂ_}wk.cab:
k.C.ab=1 B—a
nb—,u K.C.ab
[(ﬂ ) b—a +o- b a:|kczablkcab

27



Since
K.C.ab

Z Wi c.ar =We

k.C.ab=1
and because here the weight is a convenient denotation of the probability, then

W, =W +W < P(Q)=1
and then we have

K .Couple.ab

Lk.Couple.ab (a’ H, b’ n, Wk.CUuple.ab ) <
k.Couple.ab=1

b—u u—a
<(u—a)'——+b-p
(1—a) > a (b~ p) P

and
K.C.ab

|E(X — )" < ZLk.C.ab(a’ fb,n,wy e ) <

k.C.ab=1

b—u u—a
S(u-a)'—=+bB-p)"——
(p=ay —+b-p'

So, we have considered a discrete random variable X with finite support. X
takes on values in a finite interval [a, b]. We have proved that the maximal
possible modulus of a central moment of this variable is attained for the probability
mass function which is concentrated at the borders of the interval. We have also

obtain the estimate of this maximal possible modulus of a central moment of X

b— -
|E(X — )" |< (u—a)' ~—E + (- puy 22 (1)
b—a b—a
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4. Theorem

4.1. Preliminary considerations

Remark 4.1. Simplification. Let us simplify the inequality (1) for a central

moment of X

|E(X — )" |< (u—a)"

b—u H—a
+(b—-p)'——=
b_a T,

(u=—a)b—p)

=[(u—a)"'+b—w""]
b—a

and
(u=—a)b—p) _
b—a

:Hu—aj"‘ +[b—ﬂ)"_ }(b_a)n_l (1=a)b-p)
b-a b-a b-a

Keeping in mind a<u<b we have 0<(u-a)/(b-a)<I and 0<(b-u)/(b-a)<I. For

n>2 we have

n—1 n—1
5=e) ()
b—a b—a

L Hoa b-—u b-a |
b—-a b-a b-a

[(—a)" +(b—w)""]

IN

So,
{(u—aj”‘ +(b—ﬂ}"_ }(b_a)n_l (u-ayb-p) _
b—a b—a b—a
<(b-ay" (u—a)b—p) _
b—a
=(b-a)"(u-a)b-p)
So,

|E(X - )" [< (b-a)"(u-a)b-p)
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Let us define two terms for the purposes of this article:

Definition 4.2. Bound (restriction) on the expectation.

A “non-zero bound (restriction) on the expectation restrictiong.pectation =
rExpect =17 signifies the impossibility for the expectation to be located closer to a
border of the interval than some non-zero distance.

In other words, a non-zero bound designates the existence of a non-zero
distance from a border of the interval. Within this distance, it is impossible for the
expectation to be located.

This bound may be denoted also as a “forbidden zone” for the expectation
near a border of the interval.

The “bound” for one border and the “bound” for another border constitute the
“bounds” for the borders.

The value of a non-zero bound (or the width of a non-zero “forbidden zone”)
signifies the minimal possible distance between the expectation and a border of the
interval. For brevity, the term “the value of a bound” may be shortened to “the
bound.”

Definition 4.3. A non-zero bound on a central moment.

At the beginning, let us define a “non-zero bound on the dispersion azM,-n,z =

2

o’ uin” to be the minimal value of the dispersion E(X-u)* satisfying E(X-w)’

IV

o Min2 > 0.

Let us define analogously a general “non-zero bound on the n™ order
central moment |6" ;4" to be the minimal absolute value of the n™  order
central moment E(X-u)" satisfying |E(X-1)"| > |0" vinn| > 0.
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4.2. Theorem and notes
4.2.1. Theorem

Theorem. Suppose, a discrete random variable X with finite support takes
on values in an interval [a, b] : 0<(b-a)<o. If there is a non-zero lower bound
|6"minn| > O on the modulus of a central moment |E(X-w)"| > |6" piny| = 2<n<oo,
then the non-zero bounds (restrictions) restrictiongpeciation = Vexpeer > 0 on the
expectation exist near the borders of the interval and

a<(a+rg,,)Su=EX)< (b- Fepect) < b .
Proof. From the conditions of the theorem and from Remark (4.1) we have
0<| 6" sinn |<| E(X — )" |< (b—a)"*(u—a)b—p) .
This can be rewritten by 7 = rggpee = -a as
0<| 0" sinn € (b—a)" r(b—a—(u—a))=
=(b-a)"r((b—a)—r)
and
O<|O-H—Mm':_|23 r(b—a)—r’ .
(b-a)
So, we have the inequality
| o pin.n |

rr—b-ar+ b—ay

(2).

For the equation

O-n in.n
r2_(b—a)r+w:0 3).

its roots are

b—a b-—a : |O-nMin.n|
’/i,Z = i - n-2
2 2 (b—a)

b-a b—a) .
= i - in.n Minn 4
2= \/(2) o [b—a @

or

or
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Let us consider a function

n
Min.n

O=r’—(b-a)yr+-——r’ .
( ) (b _ a)n—Z
Its derivatives are
2

a;q)=2r—(b—a) and 0 qz) =2>0.

or r
The first derivative is equal to zero and the function has its minimum at

b—a
= 5

The point ry is located between the points of the roots of the equation (3). The
function is equal to zero at the roots. Therefore, the values of the function are less
than zero when r is located between the points of the roots.

Therefore, the expectation can be located only between (a + rgye) and (b -
FExpect) @S

a<(a+r,

xpect

)<SE(X)<(b-r,

xpect

)<b

9

which proves the theorem.

4.2.2. Symmetry

The expression for the roots of the equation (3) is symmetric with respect to

the mean point (b-a)/2 of the interval. So, evidently, it may be used both as
2 n=2
}'i ) = b a i [b a) - UzMin.n —l g Mm;"2|
’ 2 2 (b—a)"
or as the minor root
b—a (b—a)z ) |O-n72Min.n|
r,= - —O0 Minn >
2 2 (b—a)

e.g., in the expression
a<(a+n)<EX)<(b-r)<b.
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4.2.3. Dispersion

For the most important case of n = 2 and the dispersion |0"yinn| = & Mins
denoting the half of the length of the interval [a, b] as

b—a
h= Ry =75

one can laconically rewrite the inequality (2)
7 =2hr + 0 yin <0 )

and the roots of the equation ¥ —2hr + azMi,, =0 as
his =h*th = uin ,

or, denoting » = r, as the minor root,
r=h- hz—O'ZMm (7)
The maximal possible dispersion is o° < ((b-a)/2)’. So, denoting the maximal
possible standard deviation as
b—a

Jszc - ) ’

we have
_ [ ~2 2 8
r =0, —NO Max — O Min ( )

or in the form of, e.g.,
2

r:am{k-l—aj“} ©).

O Max

4.2.4. Infinitesimal case

For the important case of oy,, = 0 one can easily obtain

a< a+|0- M1'11.r17|l SE(X)S b—|6 Min.r1|l <b
(b-a)" (b—a)"

and for n =2 and owyinn = OMin2 = Omin

2 2
a<[a+zMm]SE(X)S[b—ZMm]<b )

—da —da
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5. Opportunities of the theorem

for utility and prospect theories

The dispersion is a common measure of a scattering. The scattering can be
caused by noise and/or uncertainty, measurement errors, etc.

So, the theorem can be used in researches of the influence of the scatter of
experimental data on their expectations near the borders of intervals.

There is a way of researches in utility and prospect theories.

Noise and uncertainty are widespread phenomena in economics, in particular
in decision, utility and prospect theories. Their analysis is one of ways of
researches (see, e.g., Schoemaker and Hershey, 1992, Butler and Loomes, 2007).

There is another way of researches.

It consists in the analysis of Prelec’s probability weighting function at the
probabilities p ~ I (see Steingrimsson and Luce, 2007, Aczél and Luce, 2007and
Harin 2014).

The theorem synthesizes these two ways.

Sketches of versions of the above existence theorem have at least partially
explained the problems, including underweighting of high and the overweighting of
low probabilities, risk aversion, the "four-fold pattern" paradox, etc. (see, e.g.,
Harin 2012). So, the theorem can be used also in decision, utility and prospect

theories, especially in researches of Prelec’s weighting function.

34



6. Conclusions

Suppose a discrete random variable X={x;} : k=1, 2, ... K : 2<K <o, takes on
values in a finite interval [a, b] and there is a non-zero lower bound on the
modulus of its central moment |E(X-E(X))"| (this bound is denoted as |6"yin.x|, SO,
|E(X-E(X))"| = |0"minn| > 0). Under these conditions, the existence theorem is
proved for non-zero bounds (restrictions) restrictiongypeciation = Yexpeer = 7 > 0 0On its
expectation E(X) near the borders of the interval.

The main bounding inequality of the present article is

a<(a+ rExpect) SEX)S(b- rExpect) <b,
In other words, under the above conditions, the non-zero “forbidden zones” (those
widths are equal to rgge) are proved to exist near the borders a and b of the
interval [a, b].

In this inequality the bounds on the expectation are
r b—a b—a ’ 62 | O Minn | "
= - - Minn| —/——— .
Expect 2 2 b —a

For the most important case of n=2 (for the minimum azMin > 0 of the

dispersion 02), the bounds 7 = rgger on the expectation can be written

laconically, denoting the half of the interval as hpqy = h = (b-a)/2,
r=h—h>-c"un ,

or, denoting the maximal possible standard deviation as oy, = (b-a)/2,

2 2
=0y, — VO Max —O Min ,

or, e.g., in the form of

2
. 1 1 O Min
T Expect — O-Max - - 2 *
O Max

The main bounding inequality can be rewritten for oy, = 0 as

2 . 2 .
a<[a+z M"’jSE(X)S[b—Z M’"]<b ,

—da —a

The theorem for the dispersion can be used in researches of the influence of
the scatter of experimental data on their expectations near the borders of finite
intervals; utility and prospect theories, especially in researches of Prelec’s

weighting function.
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