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ABSTRACT 

This paper examines whether vegetarian marketing campaigns promote a vegan diet.  

Our trivariate model of omnivorous, vegetarian, and vegan consumption is estimated 

using twenty years of UK data.  For short-lived campaigns, we find no persistent 

effect, but observe a rise and fall in vegan numbers during adjustment.  For long-

running campaigns, we find that for every person who adopts a vegetarian diet in such 

a campaign, around 0.34 people adopt a vegan diet.  In a campaign to market 

veganism, for every new vegan there are between 0.5 and 0.77 new vegetarians. 
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1. Introduction 

There have been many marketing campaigns in recent years promoting vegetarianism 

(Animal Aid, 2015; Peta, 2015; Vegetarian Society, 2015).   Some of these are run by 

organisations such as People for the Ethical Treatment of Animals for whom 

vegetarianism is not their ultimate goal, which is the promotion of a vegan lifestyle 

with no use of animal products.  Nevertheless, they see vegetarianism as a good 

intermediate step, and perhaps the best achievable (Fischer and McWilliams, 2015; 

Fastenberg, 2010). 

 

Other people with similar vegan aims reject the use of intermediate steps.  They argue 

that promoting vegetarianism reinforces use of animal products, and hinders the 

promotion of veganism (Dunayer, 2004, page 155; Francione, 2015).  Taking as 

examples past successful campaigns for social reform, they argue on moral and 

practical grounds that campaigners should instead market veganism exclusively. 

 

This paper examines the following questions.  Do marketing campaigns that promote 

a vegetarian diet also promote a vegan diet?  How does the effect differ if a vegetarian 

campaign only attracts people from an omnivorous diet, rather than from a vegan diet 

too?  Would an alternative campaign that promotes a vegan diet also encourage 

people to adopt a vegetarian diet? 

 

We formulate a modified Lanchester model of advertising in a competitive market.  

There are states measuring the numbers of omnivores, vegetarians, and vegans, with 

entry and exit between the states dependent on external advertising and internal word-



of-mouth effects.  A trivariate system of differential equations is derived, and solved 

in its full and linearised form using UK data.  The effect of transient vegetarian and 

vegan marketing campaigns are analysed using the differential field of the solved 

system, and persistent campaigns are analysed by examining the derivatives of 

equilibrium points with respect to system parameters. 

 

We make three main contributions to the literature and to assist animal rights 

advocates.  Firstly, we describe the interactive dynamics in the numbers of 

omnivorous, vegetarian, and vegan consumers in the UK.  Although there have been 

previous studies of trends in vegetarian and veganism (for example, Beardsworth and 

Bryman (2004)), we are unaware of any previous marketing model studying their 

joint dynamics.  We determine the extent of consumer interactions and transitions, 

finding equilibrium points and their dynamic stability. 

 

Secondly, we show the effect on dietary preferences of transient marketing campaigns 

that promote vegetarianism.  We show that vegetarian and vegan numbers tend 

towards a single stable equilibrium, no matter what the original distribution of dietary 

preference is.  We give a complete graphical description of how the numbers react 

dynamically to transient vegetarian campaigns and show a tendency of vegan 

numbers to rise then fall after a transient vegetarian campaign, given current dietary 

preferences. 

 

Our third contribution is to examine the effect of permanent campaigns.  We estimate 

that a vegetarian marketing campaign that increases the equilibrium number of 

vegetarians by one also increases the equilibrium number of vegans by around 0.34.  



There is little difference in the effect of campaigns that attract omnivores and vegans 

to the vegetarian diet, and those that attract omnivores alone.  We also estimate that a 

vegan marketing campaign that increases the equilibrium number of vegans by one 

increases the equilibrium number of vegetarians by between 0.50 and 0.77. 

 

The model in this paper has precursors in the marketing literature, many of which 

depart from Sorger’s (1989) variant of the Lanchester model applied to competitive 

dynamic advertising.  Chintagunta and Jain (1995) extend the model to include word 

of mouth effects, in common with us.  Naik et al (2008) add multiple competitors to 

the model and apply an extended Kalman filtration estimation, as we do.  We differ 

from these papers in that the Sorger (1989) model constrains the size of word-of-

mouth effects to be determined by the extent of external advertising, whereas in our 

model they are derived to have an independent impact on adoption.  Libai et al (2009) 

present a model in which churn between different consumption groups is modelled 

explicitly in a differential equations framework, as in our model.  However, they 

assume that there is unexploited market potential whereas our market is saturated, and 

their word-of-mouth effects operate on the remaining market potential whereas in our 

model they operate as an additional churn influence. 

 

There are some precursor papers in the economics literature that look at how animal 

rights campaigns and considerations affect the demand for animal goods.  Both 

Bennett (1995) and Frank (2006) look at how disclosure of welfare information 

affects demand, while Waters (2015) examines how the number of animals killed 

varies in response to a number of different campaign types.  The studies use static 

analysis unlike the dynamic approach given here, and do not distinguish between 



vegetarian and vegan preferences.  In the wider legal, philosophic, and sociological 

literature, there is debate and sharp disagreement on the subject of efficient marketing 

of veganism, and the consequences of it (DeCoux, 2009; Francione, 1997; Garner, 

2006; Wrenn, 2012). 

 

Section 2 presents our theoretical model, section 3 gives our estimation method, and 

section 4 describes the data.  Section 5 presents the results and section 6 concludes. 

 

2. Theoretical model 

In this section we describe our model of adoption of vegetarian and vegan diets.  It is 

similar to the dynamic part of the Chintagunta and Jain’s (1995) model, but without 

an implicit constraint on the relation between the word-of-mouth effect (see Sorger 

(1989) and Chintagunta and Jain (1995) for a derivation and discussion of the 

constraint).  Alternatively, it overlaps with the Libai et al (2009) model, but with a 

fully saturated market and word-of-mouth effects operating between different dietary 

states. 

 

The model expresses adoption rates in terms of proportions of consumers rather than 

absolute numbers.  We work with proportions because of the available empirical data 

and because they make it mathematically tidier to express our assumption on new 

entrants leaving proportions unchanged.  The model’s argument would be the same if 

we used absolute numbers instead. 

 

There are three types of consumers, distinguished by their consumption of animal 

products.  The first type is omnivorous consumers who eat all forms of animal 



products.  At time t, a proportion tl  of consumers are omnivorous.  The second type is 

vegetarian consumers who do not eat meat but eat eggs and dairy products.  They 

account for a proportion tm  of consumers at time t.  The final type is vegan 

consumers who do not eat any products from animal sources, and they are a 

proportion th  of consumers at time t.  The proportions satisfy the identity 

1=++ ttt hml  at time t. 

 

Omnivorous consumers are subject to external advertising for the vegetarian diet, and 

are persuaded to adopt it at an instantaneous rate of tla0 .  Word-of-mouth additionally 

influences their adoption, at a instantaneous rate proportional to the share of current 

vegetarians, or ttlma1 .  Omnivorous consumers are also subject to external advertising 

for a vegan diet, which they adopt at a rate of tlb0 , and word-of-mouth influence 

proportional to the share of vegans, giving an instantaneous adoption rate of ttlhb1 .  

New consumers who enter the market at time t are omnivorous in the same share as 

existing consumers, so that their entrance leaves the proportion of omnivorous 

consumers unchanged.  We may consider young consumers as having similar dietary 

preferences to their carers, or immigrants as having the same distribution of 

preferences as the host population.  One way of modifying this assumption would be 

to create exogenous drifts in the rates of each dietary type, with the algebra adjusting 

accordingly, while another way would be to assume that the proportions of new 

entrants in each dietary type is fixed and then use data on the numbers of new entrants 

to estimate these proportions.  With our dataset we cannot pursue the latter approach. 

 



Vegetarian consumers experience external advertising for the omnivorous diet, which 

is adopted at a rate of tmc0 , and word-of-mouth influence leading to an adoption rate 

of ttmlc1 .  They experience external advertising for the vegan diet giving an adoption 

rate of tmd0 , and word-of-mouth influence for the vegan diet leading to an adoption 

rate of ttmhd1 .  New entrants to the market leave the proportions of people with the 

vegetarian diet unchanged. 

 

Vegan consumers are acted on by external advertising for the omnivorous diet, so that 

it is adopted at a rate of the0 , and by word-of-mouth influence leading to an adoption 

rate of tthle1 .  They are subject to external advertising for the vegetarian diet leading 

to an adoption rate of thf0 , and word-of-mouth influence for it resulting in an 

adoption rate of tthmf1 .  Entry of new consumers leaves the proportion of vegan 

consumers unchanged. 

 

Considering all entries and exits from each state of food consumption, it follows that 

the number of omnivorous consumers then satisfies the differential equation 

 

tttttttt
t hleemlcclhbblmaa

dt

dl
)()()()( 10101010 +++++−+−=  

 

The number of vegetarian consumers satisfies 

 

tttttttt
t hmfflmaamhddmlcc

dt

dm
)()()()( 10101010 +++++−+−=   (1) 

 



while the number of vegan consumers satisfies 

 

tttttttt
t mhddlhbbhmffhlee

dt

dh
)()()()( 10101010 +++++−+−= .  (2) 

 

Differentiating the population identity 1=++ ttt hml  gives 

 

0=++
dt

dh

dt

dm

dt

dl ttt  

 

It follows that there is linear dependence between the equation for 
dt

dlt  and the 

equations for 
dt

dmt  and 
dt

dht , so we can examine the last two equations alone without 

losing any information about the dynamics of the system. 

 

In equation (1) 
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we substitute for tl  using the population equation 1=++ ttt hml : 
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Equation (2) describing the evolution in the number of people following a vegan diet 

is 

 

tttttttt
t mhddlhbbhmffhlee

dt

dh
)()()()( 10101010 +++++−+−=  

 

or on using 1=++ ttt hml  we have 
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We can write the equations as 

 

2

54321 ttttt
t mhmhm

dt

dm ααααα ++++=      (3) 

 

and 

 

2

54321 ttttt
t hhmhm

dt

dh βββββ ++++= .     (4) 

 

There are no cross-equation restrictions as the small letter parameters in the original 

equations can be defined to solve for any set of Greek parameters (for example, set 



10 α=a , 300 α=+− fa , and so on), with slight redundancy in the original set of 12 

parameters in mapping to the new set of 10 parameters. 

 

3. Estimation method 

We adapt our model in equations (3) and (4)  in stochastic form as  

 

tttttt
t vmhmhm

dt

dm
,1

2

54321 +++++= ααααα      (5) 

 

and 

 

tttttt
t vhhmhm

dt

dh
,2

2

54321 +++++= βββββ      (6) 

 

where ),0(~),( ,2,1 Qv Nvv ttt =  is a normal error term with covariance matrix Q . 

 

We have discrete data but a continuous model.  Estimation methods such as OLS that 

neglect the difference can give rise to biased estimates (Schmittlein and Mahajan, 

1982).  In the case of Bass (1969) type models of diffusion, the problem is handled by 

Schmittlein and Mahajan (1982) and Srinivasan and Mason (1986) who find exact 

expressions for the extent of diffusion at discrete intervals allowing for MLE or NLS 

solutions, under certain assumptions on the form and occurrence of errors. 

 

Our model is more complicated than the Bass model in that there is two way 

movement between states, and three states rather than two.  As a result, we do not 

have solutions for the exact expressions at discrete time periods.  Instead of estimation 



methods based on such expressions, we use two alternative techniques.  The first 

technique is seemingly unrelated regression, estimated on a discrete version of 

equations (5) and (6) with monthly intervals: 

 

ttttttt vmhmhmm ,1

2

54321 +++++=∆ ααααα  

 

and 

 

ttttttt vhhmhmh ,2

2

54321 +++++=∆ βββββ  

 

Although SUR neglects the continuous nature of the model, it offers the advantages of 

producing stable estimates, being well established, and reducing to vector 

autoregressive estimates when the model is linearised (which we describe shortly).  

The second estimation method is a new way (for the marketing literature) of applying 

the extended Kalman filter with continuous time and discrete observations, which 

uses multi-step forecasting between discrete time periods to approximate the 

continuous adjustment of the system.  Xie et al (1997) have previously used the 

extended Kalman filter in diffusion estimation for direct parameter estimation and 

Naik (2008) have used it to track an endogeneously determined variable in a study of 

brand awareness in dynamic oligopolies.  Our approach is to use the filter as a means 

of state tracking in conjunction with classical parameter estimation.  The method is 

described in detail in Appendix A. 

 

Our model has a quite high ratio of parameters to data points (in the case of the 

extended Kalman Filter, 15 parameters and 168 data points), making estimates subject 



to uncertainty.  We also estimate more parsimonious models allowing us to find 

narrower standard errors, by linearising our main model: 

 

ttt
t vhm

dt

dm
,1321 +++= ααα  

 

and 

 

ttt
t vhm

dt

dh
,2321 +++= βββ  

 

These equations represent a basic Lanchester model of bivariate competition, similar 

to the bivariate model of Case (1979).  The equations remain informative about the 

larger system because at the small rates of non-omnivorous consumption in which we 

are interested, their behaviour is similar.  In particular, the two systems have 

equilibria located near each other, and display comparable responses to animal 

advocacy campaigns, as described in the section 5. 

 

Our estimation assumes that the parameters in the model are stable over the 1992-

2015 period.  In section 5, we assume that campaigns can induce changes in the 

parameters, and it is reasonable to think that earlier campaigns may also have changed 

them.  To investigate whether the parameters were stable, we ran seemingly unrelated 

regressions on the linearised system over five year periods starting in 1992, with the 

last period from 2008-2012, using the data described in section 4.  Appendix B shows 

the resulting parameter estimates.  There are some fluctuations in the estimates, 

although these are smaller on the most consistently significant parameters: the lagged 



vegetarian percentage in the equation describing the change in the number of 

vegetarians and the lagged vegan percentage in the equation describing the evolution 

in the number of vegans.  The final parameter estimates over 2008-2012 are quite 

close to the estimates over the whole period reported in section 5, and it is the current 

parameters that we require in answering our research question.  Thus, we treat the 

coefficients as constant over the 1992-2012 period. 

 

R language code for the main estimates is given at the end of this paper. 

 

4. Data 

Our data is constructed from three sets of surveys of consumption by British 

households: the Family Expenditure Survey from January 1992 to March 2000, its 

successor the Expenditure and Food Survey from April 2001 to December 2007, and 

then its successor the Living Costs and Food module of the Integrated Household 

Survey from January 2008 to December 2012.  The surveys were constructed to give 

representative samples on British households.  They ran quarterly giving us 84 

periods of data, and the number of households in our calculations varied across 

quarters from 1278 to 1915. 

 

The surveys report consumption of different food and other goods by households and 

individuals within the households.  We take households to be the consumers in our 

model, and consider a household to follow a vegetarian diet in a quarter if no 

individual within it consumed meat or fish in the survey period, and to follow a vegan 

diet if no individual in it consumed dairy or eggs either.  In our model, influence may 

equally apply to households and individuals as consumers, and there are practical or 



interpretational advantages of using households.  Individual purchases are reported in 

our datasets, but they may be made for others in the household so we can’t say that an 

individual is a vegetarian or vegan based on their purchases or absence of them.  With 

household data, purchases are less likely to be made for a different unit and so are 

more likely to be an accurate reflection of behaviour.  Additionally, consumption 

figures may be more accurate than self-reports of being a vegetarian or vegan, as the 

latter may be influenced by people’s wish to identify with a particular lifestyle.  

Household consumption figures are less likely to be misreported to give the 

appearance of individual adherence to a diet, as consumption may plausibly be 

attributed to other people in the household so that there is less personal investment in 

an identity. 

 

The data is shown in Appendix C, with figure 1 showing the rate of consumption of 

vegetarian and vegan diets over the surveyed period.  Consumption of a vegetarian 

diet rose from 2.0 percent of households in early 1992 to 3.6 percent in late 2012, 

while consumption of the vegan diet rose 0.5 percent to 1.2 percent over the same 

period.  Most of the growth had occurred by late 2004, with no clear trend in 

consumption rates subsequently. 

 



Figure 1. Percentages of households following vegetarian and vegan diets 
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5. Results 

5.1 Estimation results 

 

Table 1. Estimation results 

Dependent 
variable Equation (a) 

First differences in the 
percentage of vegetarians 

Rate of change in the 
percentage of vegetarians 

 Equation (b) 
First differences in the 
percentage of vegans 

Rate of change in the 
percentage of vegans 

 Estimation method SUR EKF-CT/DO  

  (1)  (2)  (3)  (4)  

Equation (a): Vegetarianst-1 0.785  -0.886 *** -1.098  -0.693 ** 

  0.855  0.103  1.849  0.328  

 Veganst-1 1.012  0.694 *** 0.695  0.396  

  1.076  0.176  4.820  0.655  

 
Vegetarianst-1 

*Veganst-1 -11.708    -1.868    

  38.237    166.086    

 Vegetarianst-1
2 -27.284 *   -1.945    

  16.516    20.994    

 Constant -0.005  0.020 *** 0.028  0.017 ** 

  0.012  0.003  0.044  0.008  

Equation (b): Vegetarianst-1 -0.004  0.214 *** 0.401  0.340  

  0.157  0.052  1.199  0.382  

 Veganst-1 -1.234 ** -0.563 *** -1.519  -1.138  

  0.610  0.088  3.182  0.723  

 
Vegetarianst-1 
*Veganst-1 25.523    5.650    

  17.245    125.960    

 Veganst-1
2 -2.112    -0.964    

  25.264    52.381    

 Constant 0.004  -0.001  0.000  0.000  

  0.004  0.001  0.030  0.008  

          

 R2 (eq 1) 0.498  0.474      

 R2 (eq 2) 0.369  0.352      

 N 168  168  168  168  

 

Table 1 presents our estimation results.  Column one reports the parameters for our 

full model estimated by seemingly unrelated regression.  For the equation describing 

the dynamic in vegetarianism, the lagged squared vegetarian percentage has a ten 

percent significant negative effect on adoption of the diet, indicating its past adoption 

increasingly lowers the current rate of adoption.  The equation for the change in 

veganism has a negative coefficient on the lagged vegan percentage with five percent 



significance, so that past adoption slows current adoption.  Column two shows the 

results for the linearised model estimated by SUR.  In the equation for the dynamic in 

the vegetarian proportion, the lagged vegetarian proportion reduces current adoption.  

However, a higher rate of past veganism increases the current adoption of the 

vegetarian diet, and the constant term is significantly positive indicating advertising 

attracts omnivores to a vegetarian diet.  In the equation for the evolution of the vegan 

share, a larger past vegetarian share increases adoption of veganism, while a bigger 

lagged proportion of vegans decreases adoption.  All these coefficients are one 

percent significant.  However, the constant term in the vegan dynamic equation is not 

significant, indicating the external advertising to omnivores does not attract them to 

adopt a vegan diet. 

 

The third column shows the results for our model estimated using the extended 

Kalman filter with continuous time and discrete observations.  None of the 

coefficients reach significance.  Column four reports the estimated parameters from 

the linearised model, estimated using the same filter.  In the equation describing the 

evolution of vegetarianism, the lagged proportion is negative and significant at five 

percent.  As the proportion of vegetarians increases, the growth in the proportion falls.  

There is no significant effect of the vegan proportion on the vegetarian proportion, but 

there is a significant positive constant, indicating that external advertising to 

omnivores is successfully influencing them to adopt vegetarianism.  In the equation 

describing the adoption of veganism, none of the coefficients are significant. 

 

In summary, there is evidence that adoption of the vegetarian and vegan diets slows 

down as more people adopt them.  Further, there is movement between vegetarian and 



vegan dietary preferences.  Omnivores are influenced to adopt the vegetarian diet, but 

there is no evidence for significant direct movement from an omnivorous diet to a 

vegan diet.  The vegetarian diet seems to act as a stepping stone to the vegan diet. 

 

5.2 Campaign effects 

In this subsection we answer our research question by looking at the change in the 

number of vegans in response to campaigns that increase the number of vegetarians.  

We identify two types of campaigns.  The first type of campaign alters the percentage 

of vegetarian diets without changing the underlying parameters.  This type of 

campaign may be a temporary large push to increase the numbers of vegetarians.  We 

can see the effect of such a campaign by calculating the differential field for our 

model, taking the estimated coefficients from specification one in table 1 and 

inserting them in our model from equations (3) and (4) 

 

2

54321 ttttt
t mhmhm

dt

dm ααααα ++++=  

 

and 

 

2

54321 ttttt
t hhmhm

dt

dh βββββ ++++=  

 

to give the rates of change in the shares at each pair of vegetarian and vegan shares. 

 

Figure 2 shows the differential field.  The arrows represent the direction of change at 

any pair of ),( tt hm .  For example, when 5)0.035,0.02(),( =tt hm  the down-right 



arrow indicates that vegetarianism is increasing and veganism is falling.  There are 

two equilibrium points where 0=
dt

dmt  and 0=
dt

dht , represented by circles on the 

figure.  The lower of the two is at 3)0.002,0.00(),( =tt hm , which is an unstable 

equilibrium so that as a temporary campaign increases the rate of vegetarianism, the 

rates of vegetarianism and veganism move towards the higher equilibrium 

permanently.  The higher equilibrium point is at 8)0.029,0.00(),( =tt hm , which is a 

stable equilibrium so that as a temporary campaign increases the rate of vegetarianism 

away from this equilibrium, the rates of consumption of the two diets subsequently 

restore to the equilibrium rates.  An example path by which restoration occurs after a 

campaign raises tm  to 0.034 is shown by the thick black line in the lower right of the 

figure, with most of the adjustment occurring by a direct decline in the rate of 

vegetarian consumption and a slight rise and fall in vegan consumption.  The upper 

equilibrium point is an attractor for all higher rates of vegetarianism and veganism as 

well, so that there is no large single campaign that will result in a permanent trend 

towards increased vegetarian and vegan consumption.  The upper equilibrium point is 

also is close to the current UK rates which have been fluctuating around the same 

point since around 2008. 

 



Figure 2.  Differential field showing directions of movement in the vegetarian and vegan shares at 

different values of the shares 

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0  0.005  0.01  0.015  0.02  0.025  0.03  0.035

V
e
g
a
n
 s

h
a
re

Vegetarian share  

 

The second type of vegetarian campaign is one that permanently alters the model 

parameters, and so changes the equilibrium consumption of vegetarian and vegan 

diets.  These campaigns achieve persistent gains for animal rights, in contrast to the 

transient effect of temporary campaigns.  We calculate the effect of two permanent 

campaigns.  The first campaign performs more advertising for vegetarian diets to 

attract people from both omnivorous and vegan diets.  As given in equation (1), the 

vegetarian percentage follows the dynamic equation 

 

tttttttt
t hmfflmaamhddmlcc

dt

dm
)()()()( 10101010 +++++−+−=  

 



and the campaign raises 0a  (increasing adoption of vegetarian diets from omnivorous 

diets) and 0f  (increasing adoption of vegetarian diets from vegan diets).  We 

represent the changes by adding a small scalar quantity q to 0a  and 0f .  The 

campaign may also be considered to reduce 0c  (lowering exits from vegetarian to 

omnivorous diets) and 0d  (lowering exits from vegetarian to vegan diets), but we 

focus on the campaign as only attracting people to the vegetarian diet rather than 

additionally discouraging them from leaving it.  In the next campaign we consider, the 

effects acting through 0a  and 0f  are isolated further. 

 

After including q and transforming the dynamic equation as in section 2 we have 
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or in reduced coefficients 
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The vegan percentage follows equation (2), or 
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which, after including q, transforms into 
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or in reduced coefficients 
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We solve the original equations (3) and (4) at their equilibrium points 
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and 
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which yields solutions in ),( hm .  We are interested in the solution ),( SS hm  close to 

their current rates, as the resulting analysis has most current policy relevance and it is 

more likely to be relevant at rates close to those used in estimation.  We solve again 

for the perturbed equations under a value of q of 0.00001 to give corresponding 

solutions  ),( ++ SS hm .  The differential of the change in Sm  and Sh  with respect to q 

are approximated by qmmdqdm SSS /)(/ −= +  and  qhhdqdh SSS /)(/ −= + , which 

describe the relative responses of the percentage of vegetarians and vegans to the 

campaign.  These allow us to say how many people adopt a vegan diet following a 

campaign which persuades one extra person to adopt a vegetarian diet at equilibrium, 

using the quantity )//()/( dqdmdqdh SS . 

 

The second campaign also performs more advertising for vegetarian diets but attracts 

people from omnivorous diets alone, leaving the direct movement from vegan diets 

unchanged.  In the dynamic equation (1) for vegetarian numbers 
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the campaign is represented by an increase in 0a  alone.  Including q and transforming 

the dynamic equation as in section 2 gives 
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or in reduced coefficients 
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The vegan share follows equation (2) 
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which is unchanged under the campaign.  In reduced coefficients, the equation 

remains 
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54321 ttttt
t hhmhm

dt

dh βββββ ++++= . 

 

We then proceed in the same way as for the first campaign to calculate differentials of 

numbers of vegetarians and vegans, and the change in the number of vegans when the 

campaign increases the number of vegetarians by one.  All campaign effects are 

calculated at the equilibrium close to the current rates of vegetarian and vegan 

consumption. 

 

Only the central estimates of campaign response are reported.  We could sample from 

the distribution of the parameter estimates to get alternative parameters for differential 

equations (3) and (4) and their linearised forms, which would be solved to find any 

equilibrium points.  The equilibrium points at the campaign perturbed parameters 

could then be used to calculate responses at this sample point.  The procedure could 



be repeated to obtain a distribution for the policy responses.  However, the size of the 

uncertainty in the parameter estimates produces some serious problems with the 

practical implementation of the procedure.  The simultaneous quadratic equations 

which are solved to give the equilibrium points may have multiple solutions and there 

may be ambiguity about which one should be considered for calculating the campaign 

response, particularly if the solutions lie far from the current level of vegetarian and 

vegan consumption.  Some parameterisations may not have any equilibrium points, 

with no campaign response available for calculation.  We therefore only observe that 

there is wide uncertainty in the campaign response. 

 

Table 2.  Equilibrium shares and responses to vegetarian campaigns 

Model Full Linear Full Linear 

Estimation method SUR SUR EKF-CT/DO EKF-CT/DO 

Equilibrium share     

    Vegetarians 0.029 0.030 0.029 0.029 

    Vegans 0.008 0.010 0.009 0.009 

Campaign one to boost the vegetarian diet at the expense of the omnivorous and vegan diet 
    Change in number of vegans 
    per extra vegetarian 0.35 0.37 0.32 0.29 

Campaign two to boost the vegetarian diet at the expense of the omnivorous diet 
    Change in number of vegans 
    per extra vegetarian 0.36 0.38 0.33 0.30 

Campaign three to boost the vegan diet at the expense of the omnivorous and vegetarian diet 
    Change in number of 
    vegetarians per extra vegan 0.76 0.77 0.50 0.53 

 

Table 2 shows the results.  The full and linear specifications, estimated under the SUR 

and EKF-CT/DO, have close agreement on the equilibrium level of consumption with 

current parameters.  They put the equilibrium vegetarian consumption at around 2.9 

percent of the total population, and equilibrium vegan consumption at around 0.9 

percent of the population.  There is slightly wider divergence in the effect of the 

campaigns, but they are still similar.  In the case of the campaign one to increase 

vegetarianism at the expense of both an omnivorous diet and vegan diet, each extra 



vegetarian is associated with between 0.29 and 0.37 extra vegans, depending on the 

model and estimation method.  The campaign is associated with growth in 

consumption of the vegan diet despite it directly attracting people to vegetarianism 

from veganism.  The reason is that the campaign also attracts people from the 

omnivorous diet to a vegetarian diet, and some of them then move to a vegan diet.  As 

the equilibrium number of omnivores is much larger than the number of non-

omnivores, many more people move from the omnivorous diet to a vegetarian one and 

then a vegan one than leave a vegan diet to adopt a vegetarian one.  Thus, the net 

effect of the campaign is to increase the number of vegans. 

 

In the case of the campaign two to increase vegetarian consumption by attracting from 

an omnivorous diet alone (and not a vegan one), each extra vegetarian is associated 

with an additional 0.30 to 0.38 vegans depending on the model and estimation method.  

This campaign has very little additional effect on vegan numbers compared with the 

campaign that also attracts from veganism.  The reason is that the effect of the 

campaign is largely determined by the movement from the omnivorous diet to a 

vegetarian and then vegan diet.  The numbers of people that the campaign encourages 

to abandon veganism for vegetarianism is small, so their exclusion does not alter net 

campaign effects. 

 

Some campaigners have called for the resources spent on animal welfare campaigns 

to be redirected towards vegan campaigns, such as Gary-TV (2015).  Our model 

allows us to see how the numbers of vegetarians would change in response to a 

campaign promoting the vegan diet.  The campaign we examine attracts both 



omnivores and vegetarians to veganism, and is represented algebraically in the 

dynamic equations (1) and (2) 
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by increases of q in 0b , the rate of externally induced adoption of the vegan diet from 

the omnivorous diet, and in 0d , the rate of externally induced adoption of the vegan 

diet from the vegetarian diet.  After transformation and including the campaign 

parameter q, equation (3) describing the number of vegetarians becomes 
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and equation (4) describing the number of vegans becomes 
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The reduced equations are then 
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and 
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The effect of the campaign is then calculated as for the other two campaigns, with 

)//()/( dqdhdqdm SS  estimating the change in the number of vegetarians when the 

number of vegans increases by one. 

 

The results are shown in table 2.  Estimates of the change in vegetarian numbers vary 

from 0.50 to 0.77, with the SUR estimates higher than the extended Kalman filter 

estimates.  The vegan campaign is nearly as effective at generating new vegetarians as 

new vegans.  Although the campaign results in people abandoning their vegetarian 

diet in favour of a vegan one, the movement from the omnivorous diet to the vegan 

diet is much larger in scale.  Some of these new vegans subsequently adopt a 

vegetarian diet, and this movement is larger than the one in the other direction. 

 

6. Conclusion 

Our work indicates that vegetarian campaigns increase vegan numbers, and a policy-

relevant question that follows this conclusion is whether an animal use abolitionist 

who only cared about vegan numbers could support a vegetarian campaign.  To 

express the problem only in terms of cost, if it costs 1C  to persuade someone to adopt 



a vegetarian diet through a vegetarian campaign, then the cost of one person adopting 

a vegan diet through the same campaign is about 11 94.234.0/ CC ≈ .  If it costs 2C  to 

persuade someone to adopt a vegan diet through a vegan campaign, then the 

abolitionist should prefer the vegetarian campaign route if and only if 2194.2 CC < .  

Similar calculations can be made under other valuations, such as one that attributed a 

non-zero value to a vegetarian adoption. 

 

This inequality ignores certain concerns of abolitionists.  Among them is the 

entrenchment of use of animal products by non-vegan campaigns, which in our model 

would be represented by a decline in the transition rates into veganism in response to 

such campaigns.  We didn’t look fully at this dynamic link, so we can’t exclude the 

possibility.  Future work could examine whether it occurs and how critical it is, 

perhaps using the parameter tracking of the extended Kalman filter as in Naik et al 

(2008). 

 

Our work points to a problem for the animal rights movement in the UK.  Vegetarian 

and vegan numbers are now close to their equilibrium rates, and those equilibria have 

not changed much over the last twenty years.  The recent flattening in the growth rates 

of the numbers of vegetarians and vegans is not the result of a failure or change of 

strategy, but an attainment of the potential of the advocacy approach followed over 

the same period.  To move to a much higher rate requires a substantial adjustment to 

the approach. 

 

This is not to say that it is a good idea to abandon the advertising, lobbying, and 

exposés of the meat industry that have been prominent features of UK animal rights 



advocacy since the 1990s.  Their loss would result in declines in the level of veganism, 

and constraints on them such as “ag-gag” laws (prohibiting disclosure of information 

about malpractices inside agricultural establishments by whistleblowers) should be 

challenged.  The problem is in large part the overwhelming advertising and consumer 

access advantages of animal product industries.  Even the largest animal rights 

organisations have tiny budgets by comparison (Counting Animals, 2015), and the net 

transition from omnivorous to non-omnivorous diets is commensurately small 

(Chintagunta and Vilcassim (1992) argue the transition coefficient in a duopoly is 

proportional to the square root of advertising expenditure).  It may be helpful to 

analyse funding models in which a dominant good is supported by self-sustaining 

sales revenue and a substitute good is supported by charitable donations, to see if 

asymmetric positions can be used to the advantage of vegan promotion, rather than 

primarily hindering it. 

 

Recent innovative campaigns have tried to adjust the word-of-mouth influence of 

people following vegetarian and vegan diets, rather than just the external advertising 

examined here.  For example, a recent campaign Gary-TV (2015) relied on word-of-

mouth diffusion over internet social media with periodic central intervention by the 

campaign coordinators.  Another campaign, Direct Action Everywhere (2015), 

encourages its supporters to undertake high visibility actions and tell other people 

about cruelties in animal production without primarily focussing on the direct 

promotion of veganism.  We could represent this in our model by increased word-of-

mouth influence by vegetarians and vegans, but also by sympathetic omnivores who 

may persuade others (if not themselves) to adopt non-animal diets.  An alternative 



model may have stochastic connections between people and greater weak link 

formation due to the campaign (see Goldenberg et al, 2001). 

 

There are some refinements in the empirical approach used in this paper that would be 

very welcome.  The SUR method neglects the continuous nature of the underlying 

model, while the extended Kalman filter method has high levels of parameter 

uncertainty.  A method that simultaneously solved these two problems would allow 

sharper results and interpretations.  It is possible that the problem is primarily of 

colinearity in the specification, and that the full model given here should be reduced 

to the smaller Case (1979) model which does have high parameter significance, or 

another smaller alternative model used. 

 

The theoretical model could be revised in various ways to make fuller use of the data 

or reflect contemporary developments in animal rights advocacy.  Classifying people 

as omnivores, vegetarians, or vegans neglects the extent of use of animal products.  

Some animal advocates call for meat reduction to be a campaign target (Fischer and 

McWilliams, 2015; Ball, 2015).  Meat and dairy use, and the effect of campaigns on 

them, could be examined in a bivariate or trivariate model.  The wider arguments in 

the animal rights community on campaigns for animal welfare reforms and the 

consequences for animal rights outcomes could also be examined. 

 



Appendix A 

The Extended Kalman Filter in continuous time with discrete observations (EKF-

CT/DO) 

The continuous time and discrete observation extended Kalman filter has been 

previously used by Xie et al (1997), who use filter projection for simultaneous 

Bayesian updating of parameter estimates and sales, and Naik et al (2008) who use it 

to determine the behaviour of endogenous consumer awareness in a dynamic 

oligopoly.  In contrast, our approach takes the parameters outside of the state variable, 

making them amenable to classical estimation and limiting the impact of prior beliefs 

on their assessment. 

 

The extended Kalman filter with continuous time and discrete observations applies to 

state space models of the form 

 

ttt
t

dt

d
vuξf
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where tξ  is a state vector of variables at time t some of which may be unobserved,  

tu  is a vector of exogenous variables, 

tz  is a vector of observed variables,  

f and h are differentiable functions, 

and tv  and tw  are mutually uncorrelated white noise with contemporaneous error 

variances of t
T

ttE Qvv =)(  and t
T

ttE Rww =)(  respectively. 

 



After initialisation the filter has two repeated stages, consisting of successive 

forecasting and updating.  In the first stage at time t using the information available at 

that time, the state variable is forecasted to give a value of tt |1+ξ  and the mean squared 

error is forecasted to )))((( |11|11|1
T

tttttttt E +++++ −−= ξξξξP .  At the second stage, the 

forecasts are updated using information available at time t+1 to give 1|1 ++ ttξ  and 

1|1 ++ ttP .  We describe each stage more fully next. 

 

Estimates are made of the starting state vector 0|0ξ  and its mean squared error 0|0P  

with information available at time 0.  For forecasting at time t and starting from 

ttt |ξξ =  and ttt |PP = , we iteratively calculate at small intervals from time t to t+1 the 

equations 
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where 
T

tt dd ξfF /=  is the Jacobian of f evaluated at ),( tt uξ .  In our data, we 

calculate at ten steps between each data point.  The final values give the forecasted 

state vector of tt |1+ξ  and mean squared error of tt |1+P .  They are then used to derive the 

forecasted observed vector tt |1+z  and its mean squared error )( |1 ttMSE +z  from the 

equations 
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where T
t dd ξhH /1 =+  is the Jacobian of h evaluated at tt |1+ξ . 

 

For updating the state forecasts at time t+1 we use the Kalman formulae 
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where I is the identity matrix with column and row dimension equal to the number of 

variables in the state vector tξ , and 
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Our model can be represented in a state space form suitable for use in the filter: 
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The Jacobian of f is calculated numerically. 

 

In our empirical model, errors occur only in the state equation rather than the 

observation equation.  Errors accumulate over time, as in empirical specifications of 

diffusion due to Bass (1969), Schmittlein and Mahajan (1982), Srinivasan and Mason 

(1986), Jain and Rao (1990), and Basu et al (1995).  Our model is heavily 

parameterised, and the restriction on the observation errors reduces the number of 

parameters and improves convergence. 

 

The updating phase of the Kalman filter allows us to track the likelihood function 

generated by our model and data, which we use in maximum likelihood estimation of 

the parameters.   

 



Appendix B 

SUR parameter estimates for the linearised model, over five year rolling periods of estimation 

 Dependent variable Change in vegetarian percentage  Change in vegan percentage  

 Variable Vegetariant-1 Vegant-1 Constant Vegetariant-1 Vegant-1 Constant 

Data 1992-1996 -0.877 0.577 0.020 0.175 -0.610 0.000 

period 1993-1997 -1.146 0.152 0.029 0.088 -0.839 0.002 

 1994-1998 -0.927 0.393 0.022 -0.050 -0.956 0.007 

 1995-1999 -0.826 0.129 0.021 -0.105 -0.896 0.009 

 1996-2000 -0.930 0.504 0.022 -0.097 -0.793 0.008 

 1997-2001 -1.012 0.428 0.025 0.036 -0.945 0.006 

 1998-2002 -1.008 0.278 0.026 0.063 -1.293 0.009 

 1999-2003 -1.153 0.005 0.033 0.031 -1.321 0.010 

 2000-2004 -1.190 0.182 0.035 0.137 -1.092 0.005 

 2001-2005 -1.109 -0.426 0.038 0.124 -1.037 0.006 

 2002-2006 -1.019 0.171 0.029 0.116 -1.032 0.007 

 2003-2007 -1.068 -0.077 0.034 0.156 -1.038 0.007 

 2004-2008 -1.070 0.032 0.034 0.195 -1.056 0.006 

 2005-2009 -1.142 0.582 0.028 0.279 -1.087 0.004 

 2006-2010 -1.352 0.673 0.035 0.224 -0.914 0.003 

 2007-2011 -1.267 0.380 0.037 0.291 -0.600 -0.003 

 2008-2012 -1.158 0.458 0.032 0.280 -0.699 -0.002 

 



Appendix C 

Data, prior to conversion to percentages 

year qtr omnivores vegetarians vegans 

1992 1 1843 38 9 

1992 2 1820 39 12 

1992 3 1778 39 13 

1992 4 1783 36 7 

1993 1 1768 41 8 

1993 2 1675 51 3 

1993 3 1616 38 6 

1993 4 1719 41 10 

1994 1 1696 43 4 

1994 2 1756 41 7 

1994 3 1608 52 8 

1994 4 1658 39 15 

1995 1 1616 44 9 

1995 2 1673 46 6 

1995 3 1649 43 14 

1995 4 1623 44 11 

1996 1 1650 29 9 

1996 2 1571 35 9 

1996 3 1568 50 9 

1996 4 1490 42 8 

1997 1 1579 49 5 

1997 2 1611 44 7 

1997 3 1527 46 12 

1997 4 1504 49 9 

1998 1 1565 28 7 

1998 2 1608 36 12 

1998 3 1598 39 17 

1998 4 1583 52 8 

1999 1 1618 48 11 

1999 2 1679 50 19 

1999 3 1784 47 17 

1999 4 1750 40 9 

2000 1 1641 43 18 

2000 2 1576 59 14 

2000 3 1681 43 12 

2000 4 1537 44 12 

2001 1 1600 51 8 

2001 2 1719 72 16 

2001 3 1816 46 22 

2001 4 1836 66 13 

2002 1 1799 53 15 



 
Data, prior to conversion to percentages (continued) 

year qtr omnivores vegetarians vegans 

2002 2 1643 33 10 

2002 3 1697 57 17 

2002 4 1652 54 11 

2003 1 1688 47 18 

2003 2 1732 44 15 

2003 3 1644 63 20 

2003 4 1678 56 13 

2004 1 1713 54 16 

2004 2 1518 65 14 

2004 3 1685 65 19 

2004 4 1622 65 17 

2005 1 1672 32 24 

2005 2 1580 51 14 

2005 3 1564 48 22 

2005 4 1726 44 22 

2006 1 1655 49 10 

2006 2 1618 50 24 

2006 3 1580 61 19 

2006 4 1515 42 22 

2007 1 1407 50 17 

2007 2 1409 42 16 

2007 3 1535 53 20 

2007 4 1504 62 21 

2008 1 1384 41 21 

2008 2 1361 50 16 

2008 3 1443 54 18 

2008 4 1397 42 16 

2009 1 1409 44 13 

2009 2 1394 38 16 

2009 3 1415 53 15 

2009 4 1376 35 14 

2010 1 1233 38 9 

2010 2 1288 43 11 

2010 3 1299 48 16 

2010 4 1217 47 14 

2011 1 1309 39 17 

2011 2 1343 50 11 

2011 3 1402 45 16 

2011 4 1401 48 10 

2012 1 1361 48 10 

2012 2 1371 41 20 

2012 3 1301 44 19 

2012 4 1312 49 17 
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R language code implementing the estimation method 

The code can be pasted directly into an R program, and requires the packages MASS, 

numDeriv, and systemfit.  It runs using the data in appendix C which should be saved 

as UK_diet_rates.csv (for example as a csv file from a spreadsheet), for opening by 

the R code.  Line 11 in the code is 

 data<-read.csv("C:\\Documents\\UK_diet_rates.csv", header=T) 

and the directory will have to be changed to where UK_diet_rates.csv has been saved.  

Line four in the code is 

.libPaths("C:/Documents/R/win-library/3.1")  

and the directory will have to be changed to the local library directory for R.  Type 

.libPaths() 

to see the current library directory. 

 

The code structure is shown in the table.  The preparation section should been run first, 

then any of the other sections can be run separately. 

 

Line numbers Purpose Time taken on a medium pace laptop 

1-23 Preparation Seconds 

28-52 Table 1, spec 1 Seconds 

62-383 Table 1, spec 3 Tens of minutes 

390-702 Table 1, spec 4 Tens of minutes 

 

The code for the extended Kalman filter has *not* been extensively tested as at 17th 

September 2015.  I’m uneasy about the convergence of the full model (table 1, 

specification 3), and more tests will be done on the code before formal use.  The 



consequences of the results are quite robust, however – the findings in table 2 are 

similar across the specifications, including from the SUR code.  Given the 

insignificance of the parameters in table 1, specifications 1 and 3, there might be an 

issue with colinearity rather than non-convergence. 

 

R CODE 

####################################### 

#Lines 1-23 prepare for the later code sections 

####################################### 

.libPaths("C:/Documents/R/win-library/3.1") #Replace this directory with the library directory.  Omitting this line might work if 

the default is used. 

rm(list=ls()) 

 

library(MASS) 

library(numDeriv) 

library(systemfit) 

 

data<-read.csv("C:\\Documents\\UK_diet_rates.csv", header=T)                          

attach(data) 

 

vegetarian_perc<-vegetarians/(omnivores+vegetarians+vegans) 

vegan_perc<-vegans/(omnivores+vegetarians+vegans) 

 

summary(lm(vegan_perc~year)) 

 

X<-vegetarian_perc 

Y<-vegan_perc 

 

FD_vegetarian_perc<<-X[2:length(X)]-X[1:(length(X)-1)] 

FD_vegan_perc<<-Y[2:length(Y)]-Y[1:(length(Y)-1)] 

 

 

 

 

####################################### 



#Lines 28-52 generate the SUR results 

#Spec 1 was originally written in a different language and has been ported to R.  There are some small differences from the 

research paper due to different implementation combined with parameter uncertainty. Spec 2 is almost the same as the paper. 

####################################### 

 

 

X_Y<-X*Y 

X_X<-X*X 

Y_Y<-Y*Y                               

 

m1<-FD_vegetarian_perc~X[1:(length(X)-1)]+Y[1:(length(X)-1)]+X_X[1:(length(X)-1)]+X_Y[1:(length(X)-1)] 

m2<-FD_vegan_perc~X[1:(length(X)-1)]+Y[1:(length(X)-1)]+Y_Y[1:(length(X)-1)]+X_Y[1:(length(X)-1)] 

 

table1_spec1 <- systemfit(list(m1,m2)) 

summary(table1_spec1) 

#Table 1, spec 1                 

 

 

 

m1<-FD_vegetarian_perc~X[1:(length(X)-1)]+Y[1:(length(X)-1)] 

m2<-FD_vegan_perc~X[1:(length(X)-1)]+Y[1:(length(X)-1)] 

 

table1_spec2 <- systemfit(list(m1,m2)) 

summary(table1_spec2) 

#Table 1, spec 2                 

 

 

 

 

 

 

 

 

 

####################################### 

#Lines 62-383 generate the EKF-CT-DO results 

#for table 1, spec 3 

####################################### 



call_num<<-1 

 

projectkalman<-function(xx) { 

print(paste("Call number = ",call_num)) 

call_num<<-call_num+1 

#Parameters 

#Provided parameters 

alpha1<-xx[1] 

alpha2<-xx[2] 

alpha3<-xx[3]^2 

alpha4<-xx[4] 

alpha5<-xx[5] 

beta1<-xx[6] 

beta2<-xx[7] 

beta3<-xx[8]^2 

beta4<-xx[9] 

beta5<-xx[10] 

q11<-(10^(-5))*xx[11]^2 

q22<-(10^(-5))*xx[13]^2 

q12<-(10^(-5))*sqrt(q11*q22)*xx[12]/(1+abs(xx[12])) 

r11<-0 

r22<-0 

r12<-0 

 

Q<-matrix(c(q11,q12,q12,q22),nrow=2) 

R<-matrix(c(r11,r12,r12,r22),nrow=2) 

 

LL<-0 #The value of the log likelihood 

 

timeperiods<-length(Y)-1 

steps<-10 

dt<-1/steps 

 

#Initial values 

#The state vector 

Xtt<-array(,c(timeperiods+1,2)) 

Xtt[1,1]<-X[1] 

Xtt[1,2]<-Y[1] 



 

#The error's covariance matrix 

Ptt<-array(,c(timeperiods+1,2,2)) 

Ptt[1,1,1]<-0 

Ptt[1,1,2]<-0 

Ptt[1,2,1]<-0 

Ptt[1,2,2]<-0 

 

#The log likelihood component vector for the output product 

ll<-vector() 

#The mean squared error components 

mse_comp<-vector() 

 

predict_observe<-matrix(nrow=timeperiods+1,ncol=2) 

for (j in 1:timeperiods) { 

#Prediction 

X_pred<-Xtt[j,] 

P_pred<-Ptt[j,,] 

 

for (i in 1:steps) { 

 

X1<-X_pred[1] 

X2<-X_pred[2] 

 

 

X_pred[1]<-X1+(alpha1*X1+alpha2*X2+alpha3+alpha4*X1*X2+alpha5*X1^2)*dt 

X_pred[2]<-X2+(beta1*X1+beta2*X2+beta3+beta4*X1*X2+beta5*X2^2)*dt 

 

f1<-function(x,y) alpha1*x+alpha2*y+alpha3+alpha4*x*y+alpha5*x^2 

f2<-function(x,y) beta1*x+beta2*y+beta3+beta4*x*y+beta5*y^2 

 

delta<-0.0001 

F11<-(f1(X1+delta,X2)-f1(X1,X2))/delta 

F12<-(f1(X1,X2+delta)-f1(X1,X2))/delta 

F21<-(f2(X1+delta,X2)-f2(X1,X2))/delta 

F22<-(f2(X1,X2+delta)-f2(X1,X2))/delta 

F<-matrix(c(F11,F12,F21,F22),nrow=2,byrow=TRUE) 

 



P_pred<-P_pred+(F%*%t(P_pred)+P_pred%*%t(F)+Q)*dt 

 

} 

Xttminus<-X_pred 

Pttminus<-P_pred 

 

Ht<-diag(2) 

 

predict_observe[j+1,]<-t(t(Ht)%*%Xttminus) 

 

Kt<-Pttminus%*%t(Ht)%*%ginv(Ht%*%Pttminus%*%t(Ht)+R) 

Xtt[j+1,]<-Xttminus+Kt%*%(c(X[j+1],Y[j+1])-t(Ht)%*%Xttminus) 

Ptt[j+1,,]<-(diag(2)-Kt%*%Ht)%*%Pttminus 

 

#Log likelihood updating 

LL<-LL+log((2*pi)^(-1/2)) + log((det(t(Ht)%*%Pttminus%*%Ht+R))^(-1/2)) + (-1/2)*t(c(X[j+1],Y[j+1])-

t(Ht)%*%Xttminus)%*%ginv(t(Ht)%*%Pttminus%*%Ht+R)%*%(c(X[j+1],Y[j+1])-t(Ht)%*%Xttminus) 

 

ll[j]<-log((2*pi)^(-1/2)) + log((det(t(Ht)%*%Pttminus%*%Ht+R))^(-1/2)) + (-1/2)*t(c(X[j+1],Y[j+1])-

t(Ht)%*%Xttminus)%*%ginv(t(Ht)%*%Pttminus%*%Ht+R)%*%(c(X[j+1],Y[j+1])-t(Ht)%*%Xttminus) 

 

mse_comp[j]<-t((c(X[j+1],Y[j+1])-t(Ht))%*%Xttminus)%*%(c(X[j+1],Y[j+1])-t(Ht)%*%Xttminus) 

 

} 

 

predict_observe<<-predict_observe 

 

actual_vegans_change<<-Y[2:(timeperiods)]-Y[1:(timeperiods-1)] 

predicted_vegans_change<<-predict_observe[2:(timeperiods),2]-Y[1:(timeperiods-1)] 

plot(c(0,1:(timeperiods-1)),c(-

0.01,predicted_vegans_change),col="Black",type="l",xlab="Time",ylab="Sales",main=paste("Vegans; Black=actual, 

red=predicted",";",alpha1,";")) 

lines(1:(timeperiods-1),actual_vegans_change,col="Red",type="l") 

 

actual_vegetarians_change<<-X[2:(timeperiods)]-X[1:(timeperiods-1)] 

predicted_vegetarians_change<<-predict_observe[2:(timeperiods),1]-X[1:(timeperiods-1)] 



plot(c(0,1:(timeperiods-1)),c(-

0.01,predicted_vegetarians_change),col="Black",type="l",xlab="Time",ylab="Sales",main=paste("Vegetarians; Black=actual, 

red=predicted","; a1=",alpha1,"; a2=",alpha2,"; a3=",alpha3,"; a4=",alpha4,"; a5=",alpha5)) 

lines(1:(timeperiods-1),actual_vegetarians_change,col="Red",type="l") 

 

ll<<-ll 

 

mse<<-sum(mse_comp)/timeperiods 

 

LL<<-LL 

print(paste("LL=",LL,sep="")) 

 

as.numeric(LL) 

} 

 

 

 

projectkalman_original_params<-function(xx) { 

print(paste("Call number = ",call_num)) 

call_num<<-call_num+1 

#Parameters 

#Provided parameters 

alpha1<-xx[1] 

alpha2<-xx[2] 

alpha3<-xx[3] 

alpha4<-xx[4] 

alpha5<-xx[5] 

beta1<-xx[6] 

beta2<-xx[7] 

beta3<-xx[8] 

beta4<-xx[9] 

beta5<-xx[10] 

q11<-(10^(-5))*xx[11] 

q12<-(10^(-5))*xx[12] 

q22<-(10^(-5))*xx[13] 

r11<-0 

r12<-0 

r22<-0 



 

Q<-matrix(c(q11,q12,q12,q22),nrow=2) 

R<-matrix(c(r11,r12,r12,r22),nrow=2) 

 

LL<-0 #The value of the log likelihood 

 

timeperiods<-length(Y)-1 

steps<-10 

dt<-1/steps 

 

#Initial values 

#The state vector 

Xtt<-array(,c(timeperiods+1,2)) 

Xtt[1,1]<-X[1] 

Xtt[1,2]<-Y[1] 

 

#The error's covariance matrix 

Ptt<-array(,c(timeperiods+1,2,2)) 

Ptt[1,1,1]<-0 

Ptt[1,1,2]<-0 

Ptt[1,2,1]<-0 

Ptt[1,2,2]<-0 

 

#The log likelihood component vector for the output product 

ll<-vector() 

#The mean squared error components 

mse_comp<-vector() 

 

predict_observe<-matrix(nrow=timeperiods+1,ncol=2) 

for (j in 1:timeperiods) { 

#Prediction 

X_pred<-Xtt[j,] 

P_pred<-Ptt[j,,] 

 

for (i in 1:steps) { 

 

X1<-X_pred[1] 

X2<-X_pred[2] 



 

 

X_pred[1]<-X1+(alpha1*X1+alpha2*X2+alpha3+alpha4*X1*X2+alpha5*X1^2)*dt 

X_pred[2]<-X2+(beta1*X1+beta2*X2+beta3+beta4*X1*X2+beta5*X2^2)*dt 

 

f1<-function(x,y) alpha1*x+alpha2*y+alpha3+alpha4*x*y+alpha5*x^2 

f2<-function(x,y) beta1*x+beta2*y+beta3+beta4*x*y+beta5*y^2 

 

delta<-0.0001 

F11<-(f1(X1+delta,X2)-f1(X1,X2))/delta 

F12<-(f1(X1,X2+delta)-f1(X1,X2))/delta 

F21<-(f2(X1+delta,X2)-f2(X1,X2))/delta 

F22<-(f2(X1,X2+delta)-f2(X1,X2))/delta 

F<-matrix(c(F11,F12,F21,F22),nrow=2,byrow=TRUE) 

 

P_pred<-P_pred+(F%*%t(P_pred)+P_pred%*%t(F)+Q)*dt 

 

} 

Xttminus<-X_pred 

Pttminus<-P_pred 

 

Ht<-diag(2) 

 

predict_observe[j+1,]<-t(t(Ht)%*%Xttminus) 

 

Kt<-Pttminus%*%t(Ht)%*%ginv(Ht%*%Pttminus%*%t(Ht)+R) 

Xtt[j+1,]<-Xttminus+Kt%*%(c(X[j+1],Y[j+1])-t(Ht)%*%Xttminus) 

Ptt[j+1,,]<-(diag(2)-Kt%*%Ht)%*%Pttminus 

 

#Log likelihood updating 

LL<-LL+log((2*pi)^(-1/2)) + log((det(t(Ht)%*%Pttminus%*%Ht+R))^(-1/2)) + (-1/2)*t(c(X[j+1],Y[j+1])-

t(Ht)%*%Xttminus)%*%ginv(t(Ht)%*%Pttminus%*%Ht+R)%*%(c(X[j+1],Y[j+1])-t(Ht)%*%Xttminus) 

 

ll[j]<-log((2*pi)^(-1/2)) + log((det(t(Ht)%*%Pttminus%*%Ht+R))^(-1/2)) + (-1/2)*t(c(X[j+1],Y[j+1])-

t(Ht)%*%Xttminus)%*%ginv(t(Ht)%*%Pttminus%*%Ht+R)%*%(c(X[j+1],Y[j+1])-t(Ht)%*%Xttminus) 

 

mse_comp[j]<-t((c(X[j+1],Y[j+1])-t(Ht))%*%Xttminus)%*%(c(X[j+1],Y[j+1])-t(Ht)%*%Xttminus) 

 



} 

 

predict_observe<<-predict_observe 

 

actual_vegans_change<<-Y[2:(timeperiods)]-Y[1:(timeperiods-1)] 

predicted_vegans_change<<-predict_observe[2:(timeperiods),2]-Y[1:(timeperiods-1)] 

plot(c(0,1:(timeperiods-1)),c(-

0.01,predicted_vegans_change),col="Black",type="l",xlab="Time",ylab="Sales",main=paste("Vegans; Black=actual, 

red=predicted",";",alpha1,";")) 

lines(1:(timeperiods-1),actual_vegans_change,col="Red",type="l") 

 

actual_vegetarians_change<<-X[2:(timeperiods)]-X[1:(timeperiods-1)] 

predicted_vegetarians_change<<-predict_observe[2:(timeperiods),1]-X[1:(timeperiods-1)] 

plot(c(0,1:(timeperiods-1)),c(-

0.01,predicted_vegetarians_change),col="Black",type="l",xlab="Time",ylab="Sales",main=paste("Vegetarians; Black=actual, 

red=predicted","; a1=",alpha1,"; a2=",alpha2,"; a3=",alpha3,"; a4=",alpha4,"; a5=",alpha5)) 

lines(1:(timeperiods-1),actual_vegetarians_change,col="Red",type="l") 

 

ll<<-ll 

 

mse<<-sum(mse_comp)/timeperiods 

 

LL<<-LL 

print(paste("LL=",LL,sep="")) 

 

as.numeric(LL) 

} 

 

 

 

 

#Alternative varcov estimates 

############################################## 

#A wrapper for returning the vector of ll 

############################################## 

ll_projectkalman_original_params<-function(xx) { 

projectkalman_original_params(xx) 

ll 



} 

 

############################################## 

#The I_{OP} matrix 

############################################## 

Iop_projectkalman_original_params<-function(xx) { 

jac<-jacobian(ll_projectkalman_original_params,xx) 

Iop<-matrix(0,nrow=ncol(jac),ncol=ncol(jac)) 

for (iopi in 1:nrow(jac)) { 

Iop<-Iop+jac[iopi,]%*%t(jac[iopi,]) 

} 

Iop<-Iop/nrow(jac) 

Iop 

} 

 

############################################## 

#Optimisation 

############################################## 

 

optimise_eqn<-function() { 

alpha1<-0.1 

alpha2<-0.1 

alpha3<-0.1 

alpha4<-0.1 

alpha5<-0.1 

beta1<-0.1 

beta2<-0.1 

beta3<-0.1 

beta4<-0.1 

beta5<-0.1 

q11<-0.5 

q12<-0.1 

q22<-0.5 

 

 

paramvalues<-c(alpha1,alpha2,alpha3,alpha4,alpha5,beta1,beta2,beta3,beta4,beta5,q11,q12,q22) 

 

estvals<<-optim(paramvalues,projectkalman,hessian=FALSE,control=list(trace=3,maxit=4000,fnscale=-1)) 



#Stops after 3314 calls 

 

pr<<-estvals$par 

 

estpars<<-

c(pr[1],pr[2],pr[3]^2,pr[4],pr[5],pr[6],pr[7],pr[8]^2,pr[9],pr[10],pr[11]^2,sqrt((pr[11]^2)*(pr[13]^2))*pr[12]/(1+abs(pr[12])),pr[1

3]^2) 

 

call_num<<-1 

 

Iop<-Iop_projectkalman_original_params(estpars) 

varop<-(1/length(X))*solve(Iop) 

 

#Stdevs from the second derivative method 

stdevs<-sqrt(diag(varop)) 

pvalues<<-sapply(1:length(estpars),function(x) 2*(1-pnorm(abs(estpars[x]),0,stdevs[x]))) 

#The parameters and their standard deviations 

print(rbind(estpars,stdevs,pvalues,mse,LL[1,1])) 

 

output_vals<<-rbind(estpars,stdevs,pvalues,mse,LL[1,1]) 

 

} 

 

                           

############################################## 

#Find the generating parameters 

############################################## 

optimise_eqn() 

output_vals 

#This is table 1, spec 3 

 

 

 

 

 

 

####################################### 

#Lines 390-702 generate the EKF-CT-DO results 



#for table 1, spec 4 

####################################### 

call_num<<-1 

 

projectkalman<-function(xx) { 

print(paste("Call number = ",call_num)) 

call_num<<-call_num+1 

#Parameters 

#Provided parameters 

alpha1<-xx[1] 

alpha2<-xx[2] 

alpha3<-xx[3]^2 

beta1<-xx[4] 

beta2<-xx[5] 

beta3<-xx[6]^2 

q11<-(10^(-5))*xx[7]^2 

q22<-(10^(-5))*xx[9]^2 

q12<-(10^(-5))*sqrt(q11*q22)*xx[8]/(1+abs(xx[8])) 

r11<-0 

r22<-0 

r12<-0 

 

Q<-matrix(c(q11,q12,q12,q22),nrow=2) 

R<-matrix(c(r11,r12,r12,r22),nrow=2) 

 

LL<-0 #The value of the log likelihood 

 

timeperiods<-length(Y)-1 

#timeperiods<-2 

steps<-10 

dt<-1/steps 

 

#Initial values 

#The state vector 

Xtt<-array(,c(timeperiods+1,2)) 

Xtt[1,1]<-X[1] 

Xtt[1,2]<-Y[1] 

 



#The error's covariance matrix 

Ptt<-array(,c(timeperiods+1,2,2)) 

Ptt[1,1,1]<-0 

Ptt[1,1,2]<-0 

Ptt[1,2,1]<-0 

Ptt[1,2,2]<-0 

 

#The log likelihood component vector for the output product 

ll<-vector() 

#The mean squared error components 

mse_comp<-vector() 

 

predict_observe<-matrix(nrow=timeperiods+1,ncol=2) 

for (j in 1:timeperiods) { 

#Prediction 

X_pred<-Xtt[j,] 

P_pred<-Ptt[j,,] 

 

for (i in 1:steps) { 

 

X1<-X_pred[1] 

X2<-X_pred[2] 

 

X_pred[1]<-X1+(alpha1*X1+alpha2*X2+alpha3)*dt 

X_pred[2]<-X2+(beta1*X1+beta2*X2+beta3)*dt 

 

f1<-function(x,y) alpha1*x+alpha2*y+alpha3 

f2<-function(x,y) beta1*x+beta2*y+beta3 

 

delta<-0.0001 

F11<-(f1(X1+delta,X2)-f1(X1,X2))/delta 

F12<-(f1(X1,X2+delta)-f1(X1,X2))/delta 

F21<-(f2(X1+delta,X2)-f2(X1,X2))/delta 

F22<-(f2(X1,X2+delta)-f2(X1,X2))/delta 

F<-matrix(c(F11,F12,F21,F22),nrow=2,byrow=TRUE) 

 

P_pred<-P_pred+(F%*%t(P_pred)+P_pred%*%t(F)+Q)*dt 

 



} 

 

Xttminus<-X_pred 

Pttminus<-P_pred 

 

Ht<-diag(2) 

 

predict_observe[j+1,]<-t(t(Ht)%*%Xttminus) 

 

Kt<-Pttminus%*%t(Ht)%*%ginv(Ht%*%Pttminus%*%t(Ht)+R) 

 

Xtt[j+1,]<-Xttminus+Kt%*%(c(X[j+1],Y[j+1])-t(Ht)%*%Xttminus) 

Ptt[j+1,,]<-(diag(2)-Kt%*%Ht)%*%Pttminus 

 

#Log likelihood updating 

LL<-LL+log((2*pi)^(-1/2)) + log((det(t(Ht)%*%Pttminus%*%Ht+R))^(-1/2)) + (-1/2)*t(c(X[j+1],Y[j+1])-

t(Ht)%*%Xttminus)%*%ginv(t(Ht)%*%Pttminus%*%Ht+R)%*%(c(X[j+1],Y[j+1])-t(Ht)%*%Xttminus) 

 

ll[j]<-log((2*pi)^(-1/2)) + log((det(t(Ht)%*%Pttminus%*%Ht+R))^(-1/2)) + (-1/2)*t(c(X[j+1],Y[j+1])-

t(Ht)%*%Xttminus)%*%ginv(t(Ht)%*%Pttminus%*%Ht+R)%*%(c(X[j+1],Y[j+1])-t(Ht)%*%Xttminus) 

 

mse_comp[j]<-t((c(X[j+1],Y[j+1])-t(Ht))%*%Xttminus)%*%(c(X[j+1],Y[j+1])-t(Ht)%*%Xttminus) 

 

} 

 

predict_observe<<-predict_observe 

 

actual_vegans_change<<-Y[2:(timeperiods)]-Y[1:(timeperiods-1)] 

predicted_vegans_change<<-predict_observe[2:(timeperiods),2]-Y[1:(timeperiods-1)] 

plot(c(0,1:(timeperiods-1)),c(-

0.01,predicted_vegans_change),col="red",type="l",xlab="Time",ylab="Sales",main=paste("Vegans; black=actual, 

red=predicted",";",alpha1,";")) 

lines(1:(timeperiods-1),actual_vegans_change,col="black",type="l") 

 

actual_vegetarians_change<<-X[2:(timeperiods)]-X[1:(timeperiods-1)] 

predicted_vegetarians_change<<-predict_observe[2:(timeperiods),1]-X[1:(timeperiods-1)] 



plot(c(0,1:(timeperiods-1)),c(-

0.01,predicted_vegetarians_change),col="red",type="l",xlab="Time",ylab="Sales",main=paste("Vegetarians; black=actual, 

red=predicted","; a1=",alpha1,"; a2=",alpha2,"; a3=",alpha3)) 

lines(1:(timeperiods-1),actual_vegetarians_change,col="black",type="l") 

 

ll<<-ll 

 

mse<<-sum(mse_comp)/timeperiods 

 

LL<<-LL 

print(paste("LL=",LL,sep="")) 

 

as.numeric(LL) 

} 

 

 

 

projectkalman_original_params<-function(xx) { 

print(paste("Call number = ",call_num)) 

call_num<<-call_num+1 

#Parameters 

#Provided parameters 

alpha1<-xx[1] 

alpha2<-xx[2] 

alpha3<-xx[3] 

beta1<-xx[4] 

beta2<-xx[5] 

beta3<-xx[6] 

q11<-(10^(-5))*xx[7] 

q12<-(10^(-5))*xx[8] 

q22<-(10^(-5))*xx[9] 

r11<-0 

r12<-0 

r22<-0 

 

Q<-matrix(c(q11,q12,q12,q22),nrow=2) 

R<-matrix(c(r11,r12,r12,r22),nrow=2) 

 



LL<-0 #The value of the log likelihood 

 

timeperiods<-length(Y)-1 

steps<-10 

dt<-1/steps 

 

#Initial values 

#The state vector 

Xtt<-array(,c(timeperiods+1,2)) 

Xtt[1,1]<-X[1] 

Xtt[1,2]<-Y[1] 

 

#The error's covariance matrix 

Ptt<-array(,c(timeperiods+1,2,2)) 

Ptt[1,1,1]<-0 

Ptt[1,1,2]<-0 

Ptt[1,2,1]<-0 

Ptt[1,2,2]<-0 

 

#The log likelihood component vector for the output product 

ll<-vector() 

#The mean squared error components 

mse_comp<-vector() 

 

predict_observe<-matrix(nrow=timeperiods+1,ncol=2) 

for (j in 1:timeperiods) { 

#Prediction 

X_pred<-Xtt[j,] 

P_pred<-Ptt[j,,] 

 

for (i in 1:steps) { 

 

X1<-X_pred[1] 

X2<-X_pred[2] 

 

X_pred[1]<-X1+(alpha1*X1+alpha2*X2+alpha3)*dt 

X_pred[2]<-X2+(beta1*X1+beta2*X2+beta3)*dt 

 



f1<-function(x,y) alpha1*x+alpha2*y+alpha3 

f2<-function(x,y) beta1*x+beta2*y+beta3 

 

delta<-0.0001 

F11<-(f1(X1+delta,X2)-f1(X1,X2))/delta 

F12<-(f1(X1,X2+delta)-f1(X1,X2))/delta 

F21<-(f2(X1+delta,X2)-f2(X1,X2))/delta 

F22<-(f2(X1,X2+delta)-f2(X1,X2))/delta 

F<-matrix(c(F11,F12,F21,F22),nrow=2,byrow=TRUE) 

 

P_pred<-P_pred+(F%*%t(P_pred)+P_pred%*%t(F)+Q)*dt 

 

} 

 

Xttminus<-X_pred 

Pttminus<-P_pred 

 

Ht<-diag(2) 

 

predict_observe[j+1,]<-t(t(Ht)%*%Xttminus) 

 

Kt<-Pttminus%*%t(Ht)%*%ginv(Ht%*%Pttminus%*%t(Ht)+R) 

Xtt[j+1,]<-Xttminus+Kt%*%(c(X[j+1],Y[j+1])-t(Ht)%*%Xttminus) 

Ptt[j+1,,]<-(diag(2)-Kt%*%Ht)%*%Pttminus 

 

#Log likelihood updating 

LL<-LL+log((2*pi)^(-1/2)) + log((det(t(Ht)%*%Pttminus%*%Ht+R))^(-1/2)) + (-1/2)*t(c(X[j+1],Y[j+1])-

t(Ht)%*%Xttminus)%*%ginv(t(Ht)%*%Pttminus%*%Ht+R)%*%(c(X[j+1],Y[j+1])-t(Ht)%*%Xttminus) 

 

ll[j]<-log((2*pi)^(-1/2)) + log((det(t(Ht)%*%Pttminus%*%Ht+R))^(-1/2)) + (-1/2)*t(c(X[j+1],Y[j+1])-

t(Ht)%*%Xttminus)%*%ginv(t(Ht)%*%Pttminus%*%Ht+R)%*%(c(X[j+1],Y[j+1])-t(Ht)%*%Xttminus) 

 

mse_comp[j]<-t((c(X[j+1],Y[j+1])-t(Ht))%*%Xttminus)%*%(c(X[j+1],Y[j+1])-t(Ht)%*%Xttminus) 

 

} 

 

predict_observe<<-predict_observe 

 



actual_vegans_change<<-Y[2:(timeperiods)]-Y[1:(timeperiods-1)] 

predicted_vegans_change<<-predict_observe[2:(timeperiods),2]-Y[1:(timeperiods-1)] 

plot(c(0,1:(timeperiods-1)),c(-

0.01,predicted_vegans_change),col="red",type="l",xlab="Time",ylab="Sales",main=paste("Vegans; black=actual, 

red=predicted",";",alpha1,";")) 

lines(1:(timeperiods-1),actual_vegans_change,col="black",type="l") 

 

actual_vegetarians_change<<-X[2:(timeperiods)]-X[1:(timeperiods-1)] 

predicted_vegetarians_change<<-predict_observe[2:(timeperiods),1]-X[1:(timeperiods-1)] 

plot(c(0,1:(timeperiods-1)),c(-

0.01,predicted_vegetarians_change),col="red",type="l",xlab="Time",ylab="Sales",main=paste("Vegetarians; black=actual, 

red=predicted","; a1=",alpha1,"; a2=",alpha2,"; a3=",alpha3)) 

lines(1:(timeperiods-1),actual_vegetarians_change,col="black",type="l") 

 

ll<<-ll 

 

mse<<-sum(mse_comp)/timeperiods 

 

LL<<-LL 

print(paste("LL=",LL,sep="")) 

 

as.numeric(LL) 

} 

 

 

 

 

#Alternative varcov estimates 

############################################## 

#A wrapper for returning the vector of ll 

############################################## 

ll_projectkalman_original_params<-function(xx) { 

projectkalman_original_params(xx) 

ll 

} 

 

############################################## 

#The I_{OP} matrix 



############################################## 

Iop_projectkalman_original_params<-function(xx) { 

jac<-jacobian(ll_projectkalman_original_params,xx) 

Iop<-matrix(0,nrow=ncol(jac),ncol=ncol(jac)) 

for (iopi in 1:nrow(jac)) { 

Iop<-Iop+jac[iopi,]%*%t(jac[iopi,]) 

} 

Iop<-Iop/nrow(jac) 

Iop 

} 

 

############################################## 

#Optimisation 

############################################## 

 

optimise_eqn<-function() { 

alpha1<-0.1 

alpha2<-0.1 

alpha3<-0.1 

beta1<-0.1 

beta2<-0.1 

beta3<-0.1 

q11<-0.5 

q12<-0.1 

q22<-0.5 

 

 

paramvalues<-c(alpha1,alpha2,alpha3,beta1,beta2,beta3,q11,q12,q22) 

 

estvals<<-optim(paramvalues,projectkalman,hessian=FALSE,control=list(trace=3,maxit=4000,fnscale=-1)) 

 

pr<<-estvals$par 

 

estpars<<-c(pr[1],pr[2],pr[3]^2,pr[4],pr[5],pr[6]^2,pr[7]^2,sqrt((pr[7]^2)*(pr[9]^2))*pr[8]/(1+abs(pr[8])),pr[9]^2) 

 

call_num<<-1 

 

Iop<-Iop_projectkalman_original_params(estpars) 



varop<-(1/length(X))*solve(Iop) 

 

#Stdevs from the second derivative method 

stdevs<-sqrt(diag(varop)) 

pvalues<<-sapply(1:length(estpars),function(x) 2*(1-pnorm(abs(estpars[x]),0,stdevs[x]))) 

#The parameters and their standard deviations 

print(rbind(estpars,stdevs,pvalues,mse,LL[1,1])) 

 

 

output_vals<<-rbind(estpars,stdevs,pvalues,mse,LL[1,1]) 

output_vals 

} 

 

 

 

############################################## 

#Find the generating parameters 

############################################## 

optimise_eqn() 

output_vals 

#This is table 1, spec 4 

 


