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1 Introduction

Using polynomials to approximate the expected utility function is one of

the important issues, see, for example, Feldstein (1969), Samuelson (1970),

Levy and Markowitz (1979), Pulley (1981), Kroll, Levy, and Markowitz

(1984), and Hlawitschka (1994). To obtain the optimal production and hedg-

ing decision with normal random variables, Lien (2008) compares the expo-

nential utility function with its second order approximation. In this paper,

we extend the theory further by comparing the exponential utility function

with a n-order approximation for any integer n. We then propose any ap-

proach with illustration how to get the least n one could choose to get a good

approximation.

2 The Model

Suppose at time 0, a producer intends to produce q units that are planed

to be sold at time 1. The production cost is c(q). Supposing that there is no

production risk, we assume that the price, p̃, at time 1 is a random variable

following a normal distribution such that p̃ ∼ N(µp, σ
2
p). In addition, we

assume that there is a corresponding futures contract that matures at time 1

with price b at time 0. We also assume the producer wants to hedge against

the risk that that price of his/her produced goods may drop so that he/she
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sells h unit of products under the futures contract and he will deliver the h

unit of products against the futures contract at time 1. Let π̃ be the profit

at time 1, we have

π̃ = p̃(q − h) + bh− c(q) . (2.1)

We further assume that the hedger has an exponential utility function u such

that

u(π̃) = − exp(−kπ̃) for k > 0 . (2.2)

where k is the Arrow-Pratt risk aversion coefficient. Using this modeling

setting, one could show that

E[u(π̃)] = − exp(−kµπ) exp

[

1

2
k2(q − h)2σ2

p

]

, (2.3)

where µπ = µp(q − h) + bh− c(q).

From the literature, such as..., it is known that the firm’s optimal pro-

duction decision q∗ depends neither on the risk attitude of the firm nor on

the distribution of the underlying price uncertainty. This is the result from

the notable separation theorem. The firm’s optimal production decision q∗ is

determined by solving b = c′(q∗). When b = µp, the optimal futures position

will be equal to the optimal production decision q∗, that’s, the firm should

completely eliminate its price risk exposure by adopting a full-hedge. To

explore the effect of any order approximation of exponential utility function,
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we follow Lien (2008) and allow b ̸= µp. We first discuss the second-order

approximation in the next section.

3 Second-Order Approximation

Following Tsiang (1972), Gilbert et al. (2006), and Pulley (1981), Lien

(2008) considers the following second-order approximation:

ua
2(π̃) = u(µπ) + u(1)(µπ)(π̃ − µπ) +

1

2
u(2)(µπ)(π̃ − µπ)

2 , (3.1)

where u(i) is the ith derivative of the utility function u. Then, one could show

that:

E
[

ua
2(π̃)

]

= − exp(−kµπ)

[

1 +
1

2
k2(q − h)2σ2

p

]

. (3.2)

Let (q, h2) and (q, h0) be the optimal production levels and futures posi-

tions that maximize E
[

ua
2(π̃)

]

and E
[

u(π̃)
]

in (3.2) and (2.3), respectively.

Lien (2008) shows that if b > µp, q < h0 < h2 and if b < µp, q > h0 > h2. In

other words, the deviation between the optimal production level and the opti-

mal futures position under the second-order approximation is always smaller

than that under the exponential utility framework.
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4 2n-Order Approximation

We first extend Lien (2008)’s results to fourth-order approximation and

replace the utility function ua
2(π̃) in (3.1) by the following fourth-order ap-

proximation:

ua
4(π̃) = u(µπ) + u′(µπ)(π̃ − µπ) +

1

2
u′′(µπ)(π̃ − µπ)

2

+
1

3!
u′′′(µπ)(π̃ − µπ)

3 +
1

4!
u′′′(µπ)(π̃ − µπ)

4.

Then, it can be shown that:

E
[

ua
4(π̃)

]

= − exp(−kµπ)

[

1 +
1

2
k2(q − h)2σ2

p +
1

4!
k4(q − h)4Kp

]

,

where Kp = E(π̃ − µp)
4. For normal distribution, we have Kp = 3σ4

p. Thus,

we can get

E
[

ua
4(π̃)

]

= − exp(−kµπ)

[

1 +
1

2
k2(q − h)2σ2

p +
1

8
k4(q − h)4σ4

p

]

.

Let (q, h4) be the optimal production level and futures position that maxi-

mizes E
[

ua
4(π̃)

]

. Its first-order condition is:

(b−µp)

[

1 +
1

2
k2(q − h)2σ2

p +
1

8
k4(q − h)4σ4

p

]

+k(q−h)σ2
p+

1

2
k3(q−h)3σ4

p = 0.

For h2 that maximizes E
[

ua
2(π̃)

]

, we have the following equation:

(b− µp)

[

1 +
1

2
k2(q − h)2σ2

p

]

+ k(q − h)σ2
p = 0.
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From this equation, we can get

b− µp =
−k(q − h2)σ

2
p

1 + 1
2
k2(q − h2)2σ2

p

. (4.1)

Define M(h) = (b− µp)
[

1 + 1
2
k2(q − h)2σ2

p +
1
8
k4(q − h)4σ4

p

]

+ k(q − h)σ2
p +

1
2
k3(q − h)3σ4

p and incorporate equation (4.1) into the formula of M(h), we

get:

M(h2) = (b− µp)
1

8
k4(q − h2)

4σ4
p +

1

2
k3(q − h2)

3σ4
p

=
1

2
k3(q − h2)

3σ4
p

[

k(b− µp)(q − h2)

4
+ 1

]

=
1

2
k3(q − h2)

3σ4
p ×

4 + k2(q − h2)
2σ2

p

4 + 2k2(q − h2)2σ2
p

.

Thus, we have sign
[

M(h2)
]

= sign
(

q − h2

)

. Furthermore, from equation

(4.1), we obtain the result that when b > µp, q < h2 which, in turn, implies

that M(h2) < 0. On the other hand, by definition, we know that M(h4) = 0

and we obtain the following proposition:

Proposition 4.1. In the above-mentioned model-setting, we have

a. if b > µp, then h2 > h4, and

b. if b < µp, then h2 < h4.

We now ready to develop the theory for the general situation with n ≥ 2

for any integer n. Consider the following 2n−order approximation of the

exponential utility function u in (2.2):

ua
2n(π̃) = u(µπ) + u′(µπ)(π̃ − µπ) +

1

2
u′′(µπ)(π̃ − µπ)

2 + · · ·
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+
1

(2n)!
u(2n)(µπ)(π̃ − µπ)

2n . (4.2)

Take expectation, we get:

E
[

ua
2n(π̃)

]

= − exp(−kµπ)

[

1 +
1

2
k2(q − h)2σ2

p + · · ·+ 1

(2n)!
k2n(q − h)2nM2n

]

,

where M2n = E(p̃− µp)
2n. Under the assumption of normal distribution, we

obtain M2n = (2n − 1)!!σ2n
p . Substituting this into the above equation, we

obtain:

E
[

ua
2n(π̃)

]

= − exp(−kµπ)

[

1 +
1

2
k2(q − h)2σ2

p + · · ·+ 1

(2n)!!
k2n(q − h)2nσ2n

p

]

.

Let (q, h2n) be the optimal production level and futures position that maxi-

mizes E
[

ua
2n(π̃)

]

. The corresponding first-order condition is:

V (h) = (b− µp)

[

1 +
1

2
k2(q − h)2σ2

p + · · ·+ 1

(2n)!!
k2n(q − h)2nσ2n

p

]

+k(q − h)σ2
p + · · ·+ 1

(2n− 2)!!
k2n−1(q − h)2n−1σ2n

p = 0.

For h2n−2, the following equation holds:

(b− µp)

[

1 +
1

2
k2(q − h2n−2)

2σ2
p + · · ·+ 1

(2n− 2)!!
k2n−2(q − h2n−2)

2n−2σ2n−2
p

]

+k(q − h2n−2)σ
2
p + · · ·+ 1

(2n− 4)!!
k2n−3(q − h2n−2)

2n−3σ2n−2
p = 0.

From this equation, we can get

b− µp = −
k(q − h2n−2)σ

2
p + · · ·+ 1

(2n−4)!!
k2n−3(q − h2n−2)

2n−3σ2n−2
p

1 + 1
2
k2(q − h2n−2)2σ2

p + · · ·+ 1
(2n−2)!!

k2n−2(q − h2n−2)2n−2σ2n−2
p
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Plugging this equation in the formula of V (h), we get:

V (h2n−2) = (b− µp)
1

(2n)!!
k2n(q − h2n−2)

2nσ2n
p +

1

(2n− 2)!!
k2n−1(q − h2n−2)

2n−1σ2n
p

=
1

(2n− 2)!!
k2n−1(q − h2n−2)

2n−1σ2n
p

[

k(b− µp)(q − h2n−2)

2n
+ 1

]

=
1

(2n− 2)!!
k2n−1(q − h2n−2)

2n−1σ2n
p ×

2n+ (n− 1)k2(q − h2n−2)
2σ2

p + · · ·+ 2
(2n−2)!!

k2n−2(q − h2n−2)
2n−2σ2n−2

p

2n+ nk2(q − h2n−2)2σ2
p + · · ·+ 2n

(2n−2)!!
k2n−2(q − h2n−2)2n−2σ2n−2

p

.

Thus, we have sign
[

V (h2n−2)
]

= sign
(

q − h2n−2

)

. Furthermore, from equa-

tion (4.3), we obtain the result that when b > µp, q < h2n−2, which leads to

V (h2n−2) < 0. By definition, V (h2n) = 0, and thus, we can conclude that

h2n−2 > h2n when b > µp. Similarly, it can be shown that when b < µp, we

can have h2n−2 < h2n. We summarize the results in the following proposition:

Proposition 4.2. In the above-mentioned model-setting, we have

a. if b > µp, then h2 > h4 > · · · > h2n, and

b. if b < µp, then h2 < h4 < · · · < h2n.

5 2n-Order Approximation and the True Value

We turn to compare the 2n-order approximation with the true value. To

do so, we first compare with the true utility function.

E[u(π̃)] = − exp(−kµπ) exp[
1

2
k2(q − h)2σ2

p].
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let (q, h0) be the optimal production level and futures position that maximizes

E[u(π̃)]. In this case, the objective function can be simplified to µπ−(1/2)kσ2
π

and the first-order condition is

(b− µp) + k(q − h)σ2
p = 0.

Note that we can rewrite V (h) as follows:

V (h) = (b− µp)

[

1 +
1

2
k2(q − h)2σ2

p + · · ·+ 1

(2n)!!
k2n(q − h)2nσ2n

p

]

+k(q − h)σ2
p

[

1 + · · ·+ 1

(2n− 2)!!
k2n−2(q − h)2n−2σ2n−2

p

]

=
[

(b− µp) + k(q − h)σ2
p

]

[

1 + · · ·+ 1

(2n− 2)!!
k2n−2(q − h)2n−2σ2n−2

p

]

+(b− µp)
1

(2n)!!
k2n(q − h)2nσ2n

p .

As a result, we can have

V (h0) = (b− µp)
1

(2n)!!
k2n(q − h0)

2nσ2n
p .

Consequently, signV (h0)=sign(b − µp). This implies that when b > µp,

V (h0) > 0. By definition, V (h2n) = 0, and thus, we can conclude that

h0 < h2n when b > µp. Similarly, it can be shown that when b < µp, we have

h0 > h2n. We summarize the results in the following proposition:

Proposition 5.1. In the above-mentioned model-setting, we have

a. if b > µp, then h2 > h4 > · · · > h2n > h0, and

b. if b < µp, then h2 < h4 < · · · < h2n < h0.
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6 Good Approximation

We now propose an approach to find the least n one could choose to get

a good approximation. To do so, we first consider the situation in which

n → ∞. Since it is well known that (2n)!! = 2nn!, we can rewrite the

2n−order approximation to be:

E
[

ua
2n(π̃)

]

= − exp(−kµπ)

[

1 +
1

2
k2(q − h)2σ2

p + · · ·+ 1

n!2n
k2n(q − h)2nσ2n

p

]

.

Take limit to both sides of the above equation, we get

lim
n→∞

E
[

ua
2n(π̃)

]

= − exp(−kµπ) lim
n→∞

[

1 +
1

2
k2(q − h)2σ2

p

+ · · ·+ 1

n!2n
k2n(q − h)2nσ2n

p

]

= − exp(−kµπ) exp

[

1

2
k2(q − h)2σ2

p

]

= E
[

u(π̃)
]

.

Thus, we can conclude that h2n → h0. Together with the Cauchy convergence

principle, we summarize all the above results in the following theorem:

Theorem 6.1. Let π̃ defined in (2.1) be the profit at time 1 and q be the

optimal production level and suppose that h0 and h2n be the optimal futures

position that maximizes E[u(π̃)] and E
[

ua
2n(π̃)

]

in which u and ua
2n are de-

fined in (2.2) and (4.2), respectively. Under the assumption stated in Section

2, for any integer n, we have

a. if b > µp, then h2 > h4 > · · · > h2n > h0, and

b. if b < µp, then h2 < h4 < · · · < h2n < h0.

10



c. h2n → h0 for any n → ∞, and

d. for any α > 0, there exists N such that for all n > N , |h2n−h2(n−1)| <
α.

Thus, to get a good approximation for E[u(π̃)], one may apply part (d)

of Theorem 6.1, and decide the level of tolerance, α > 0, and compute h2n

and h2(n−1) and thereafter get |h2n − h2(n−1)| and choose n if one finds that

|h2n − h2(n−1)| < α.

7 Illustration

Now we present an example to illustrate our Theorem 6.1. Consider

p̃ ∼ N(1, 1), u(π̃) = − exp(−π̃). That’s, we take µp = σp = k = 1. Thus

b = c′(q) and h0 = q − (kσ2
p)

−1(µp − b) = q + b − 1. While for h2, it’s the

solution to the following equation:

(b− µp)

[

1 +
1

2
k2(q − h)2σ2

p

]

+ k(q − h)σ2
p = 0.

The above equation can also be rewritten as follows:

(b− 1)

[

1 +
1

2
(q − h)2

]

+ (q − h) = 0.

Solving the above quadratic equation, we can get the solution

q − h2 =
−1±

√

1− 2(b− 1)2

b− 1
.

11



Now let b = 1.5 > 1 = µp, then

q − h2 = −2±
√
2.

Notice that the second order condition asks that

−(b− 1)(q − h2)− 1 < 0.

Thus we can conclude that

q − h2 = −2 +
√
2.

Thus h2 − h0 = 1.5−
√
2 > 0.05.

Now assume that b = 0.5 < 1 = µp, then

q − h2 = 2±
√
2.

According to the second order condition, we can finally obtain that

q − h2 = 2−
√
2.

Thus h0 − h2 = 1.5−
√
2 > 0.05. In both cases, |h0 − h2| > 0.05.

8 Concluding Remarks

The findings in our paper draw several inference. First, it is generally

known that normal distribution coupled with exponential expected utility
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produces a mean-variance approach. We also know that, a quadratic ap-

proximation also leads to a mean-variance approach. In this paper, we find

that the result of the exponential expected utility as shown in Section 2 is dif-

ferent from that of the quadratic approximation as shown in Section 3. Thus,

the findings in our paper imply that the mean-variance approach generated

from using normal distribution coupled with exponential expected utility is

different from that generated from using normal distribution coupled with a

quadratic utility.

Lastly, Hlawitschka (1994) argues that the usefulness of Taylor series

approximations is strictly an empirical issue unrelated to the convergence

properties of the infinite series, and, most importantly, that even for a con-

vergent series adding more terms does not necessarily improve the quality

of the approximation. We note that our finding suggests the argument from

Hlawitschka (1994) may not be correct because in our case adding more terms

does improve the quality of the approximation and actually when the number

of terms increases, the approximation converges to the true value.
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