
Munich Personal RePEc Archive

Class Notes in Computer Science (First
Edition)

Goodwin, Roger L

25 September 2015

Online at https://mpra.ub.uni-muenchen.de/66921/

MPRA Paper No. 66921, posted 26 Sep 2015 10:38 UTC

i

Class Notes in Computer Science (First Edition, v1)

Edited by Roger L. Goodwin

Summit Point, WV 25446

Copyright 2005, USA

ii

Editor’s Note: In life, it became too cumbersome for me to look-up equations, theorems, proofs, and
problem solutions from prior courses. I had over three boxes of notes. That is when I decided to typeset
them. I have been doing this for over two decades. These notes can be downloaded for free from the web site
http://www.repec.org/. Note that the beginning of each chapter lists the professor’s name and aliation.
Additionally, the course number, the date the course was taken, and the text book are given.

Contents

1 Discrete Structures (L. J. Randall) 1
1.1 Mathematical Models and Reasoning . 2

1.1.1 Hand-Out of Reasoning Problems . 2
1.1.2 Introduction . 3
1.1.3 Mathematical Reasoning . 3
1.1.4 Homework and Answers . 5
1.1.5 Predicates and Quantifiers . 7
1.1.6 Quiz 1 . 9
1.1.7 Quantifiers with Negation . 10
1.1.8 Homework and Answers . 12
1.1.9 Homework and Answers . 13
1.1.10 Quiz 2 . 14
1.1.11 Logical Inferences . 15
1.1.12 Handout . 17
1.1.13 Homework Handout Questions and Answers . 18
1.1.14 Methods of Proof . 19
1.1.15 Proof Techniques for Quantified Assertions . 21
1.1.16 Homework and Answers . 22

1.2 Sets . 23
1.2.1 Exam 2 . 24
1.2.2 Quiz 3 . 25
1.2.3 Operations on Sets . 26
1.2.4 Homework and Answers . 27
1.2.5 Homework and Answers . 27
1.2.6 Homework and Answers . 28
1.2.7 Complement of Sets . 29
1.2.8 Venn Diagrams . 29
1.2.9 Homework and Answers . 32
1.2.10 Generalized Unions and Intersections . 35
1.2.11 Induction . 35
1.2.12 Inductive Definition of Sets . 36
1.2.13 Set Operations on Σ∗ . 38
1.2.14 Homework and Answers . 38

1.3 Binary Relations . 41
1.3.1 Graph Theory . 41
1.3.2 Homework and Answers . 44
1.3.3 Homework and Answers . 45
1.3.4 Composition of Relations . 46
1.3.5 Closure Operations on Relations . 46
1.3.6 Homework and Answers . 48
1.3.7 Homework and Answers . 48
1.3.8 Homework and Answers . 48

iii

iv CONTENTS

1.3.9 Quiz 4 . 50
1.3.10 Exam 3 . 51
1.3.11 Quiz 5 . 53

2 Theory of Formal Languages (L. J. Randall) 55
2.1 Overview of the Course . 55
2.2 Turing Machines . 57
2.3 The Foundational Programming Languages . 58

2.3.1 The Goto Language . 59
2.3.2 Homework and Answers . 60
2.3.3 The While Language . 63
2.3.4 Flowcharts . 63
2.3.5 Homework and Answers . 64
2.3.6 Homework and Answers . 65
2.3.7 Exam 1 and Answers . 70

2.4 Functions . 71
2.4.1 Computable Functions . 72
2.4.2 Homework and Answers . 75
2.4.3 Primitive Recursion . 76
2.4.4 Mu Recursion . 77
2.4.5 Homework and Answers . 79
2.4.6 Formal Computations Summary . 80

2.5 Context Free Grammars . 81
2.5.1 Exam 2 and Answers . 84
2.5.2 Lambda Productions . 85
2.5.3 Homework and Answers . 87
2.5.4 Homework and Answers . 87
2.5.5 Parsing . 88

2.6 Regular Languages and Finite Automata . 90
2.6.1 Regular Expressions . 93
2.6.2 Pushdown Automata . 94

2.7 Homework and Answers . 97
2.8 Homework and Answers . 99
2.9 Homework and Answers . 99
2.10 Handout and Answers . 99

A Index 103

Chapter 1

Discrete Structures

Place: Old Dominion University
Timeframe: Fall Semester, 1987
Instructor: Jane Randall
Oce: ED 256-7
Phone: 440-3890 (my oce)
Phone: 440-3915 (CS oce)

Oce Hours: Monday: 3:00 - 5:00, Wednesday: 11:00 - 12:00, Friday: 10:00 - 12:00

Course Description: This course will cover a variety of discrete mathematical concepts which have ap-
plications in computer science. Topics will include symbolic logic, set theory, binary relations, and functions.

Prerequisite: CS 160

Text: Discrete Mathematics in Computer Science, by Stanat and McAllister.
Material to be covered: Chapters 0 through 3, and if time permits, part of chapter 4.

Grading: Your grade will be based on the following –

1. Four tests (including the final) 80% (20% each)

2. Several quizes 20%

Make-up tests: A test may be made up only if I am contacted within 24 hours after the test is given and if
the reason for absence is legitimate.

Attendance plolicy: Students are expected to attend class. A student who must miss class is expected to
obtain the assignment and be prepared for the next class meeting.

Honor code: All students are expected to abide by the ODU Honor Code. This means that all exams sub-
mitted are to be the exclusive work of the student. An honor pledge will be required on all work which is
graded.

1

2 CHAPTER 1. DISCRETE STRUCTURES

1.1 Mathematical Models and Reasoning

1.1.1 Hand-Out of Reasoning Problems

1. (a) All Students who major in philosophy wear Calvert Kreem jeans.

(b) None of the students in the Marching and Chowder Society wears Clavert Kreem jeans or majors
in history.

(c) If Jack majors in philosophy, Mary majors in history.

Question: If the statements above are all true, which of the following must also be true?

(A) If Jack majors in philosophy, Mary does not wear Calvert Kreem jeans.

(B) None of the students in the Marching and Chowder Society majors in philosophy.

(C) If Jack wears Calvert Kreem jeans, he majors in philosophy.

(D) If Mary majors in history, Jack is not in the Marching and Chowder Society.

(E) Either Jack or Mary wears Calvert Kreem jeans.

Question: The conclusion ”Jack does not major in philosophy” could be validly drawn from the
statements above if it were established that

I. Mary does not major in history.

II. Jack does not belong to the Marching and Chowder Society.

III. Jack does not wear Calvert Kreem jeans.

(A) I only, (B) II only, (C) III only, (D) I and III, (E) II and III

2. All good athletes want to win, and all athletes who want to win eat a well-balanced diet; therefore, all
athletes who do not eat a well-balanced diet are bad athletes.

Question: If the argument above is valid, then which of the following statements must be true?

(A) No bad athlete wants to win.

(B) No athlete who does not eat a well-balanced diet is a good athlete.

(C) Every athlete who eats a well-balanced diet is a good athlete.

(D) All athletes who want to win are good athletes.

(E) Some good athletes do not eat a well-balanced diet.

Question: Which of the following, if true, would weaken the argument above?

(A) Ann wants to win, but she is not a good athlete.

(B) Bob, the accountant, eats a well-balanced diet, but he is not a good athlete.

(C) All the players on the Burros baseball team eat a well-balanced diet.

(D) No athlete who does not eat a well-balanced diet wants to win.

(E) Cindy, the basketball star, does not eat a well-balanced diet, but she is a good athlete.

1.1. MATHEMATICAL MODELS AND REASONING 3

1.1.2 Introduction

Mathematical modeling is a model which is an analogy for an object, phenomenon, or process. A mathemat-
ical model is a model based on mathematically stated principles. Because of the rigor and lack of ambiguity,
it provides a good means for expressing principles. It has three components:

1. The phenomena or process that is to be modeled.

2. A math structure which is used to make assertions about the object being modeled.

3. A correspondence between the real world object and the math structure.

Example: Consider the position function f(t) = 4t2 + t + 16 where t represents time and f(t) represents
position.

Here is a list of reasons for using models.

1. To present information in a form which is easily understood.

2. To provide a means for simplifying computations.

3. To predict parameter values for events which have not yet occurred.

The value of a model is best measured by its ability to answer questions and to make predictions about the
object being modeled.

1.1.3 Mathematical Reasoning

A proposition is a statement which is either true or false but not both. We say that the true value of the
statement is True or False.

Example: 2 + 4 ≤ 3 is False.

Example: 0 is an integer is True.

Example: 2x = 8 is not a proposition.

Example: ”Close the door” is not a proposition.

Example: ”This sentence is false” is not a proposition because it is both True and False.

Notation: We use capital letters beginning with P to denote arbitrary propositions. The following is a list
of operations on propositions.

1. Negation or not is denoted by ¬. The truth table is:

P ¬P
T F
F T

The value True can also be defined as True ≡ 1 and the value False can be defined as False ≡ 0.

2. Conjunction (i.e. and) is denoted by ∧. The truth table is:

P Q P ∧Q
0 0 0
0 1 0
1 0 0
1 1 1

4 CHAPTER 1. DISCRETE STRUCTURES

3. Disjunction (i.e. or) is denoted by ∨. The truth table is:

P Q P ∨Q
0 0 0
0 1 1
1 0 1
1 1 1

4. Exclusive Or is denoted by ⊕. The truth table is:

P Q P ⊕ Q

0 0 0
0 1 1
1 0 1
1 1 0

5. Implication is denoted by ⇒ . The truth table is:

P Q P ⇒ Q
0 0 1
0 1 1
1 0 0
1 1 1

Q⇒ P is called the converse of P ⇒ Q.

¬Q⇒ ¬P is called the contra-positive of P ⇒ Q.

¬P ⇒ ¬Q is called the inverse of P ⇒ Q.

6. Equivalence is denoted by ⇔ . The truth table is:

P Q P ⇔ Q

0 0 1
0 1 0
1 0 0
1 1 1

Note that P ⇔ Q means the same thing as (P ⇒ Q) ∧ (Q⇒ P).

P Q P ⇒ Q Q⇒ P (P ⇒ Q) ∧ (Q⇒ P)
0 0 1 1 1
0 1 1 0 0
1 0 0 1 0
1 1 1 1 1

Here are some more properties. (P ∨¬Q)⇒ ¬P.

P Q ¬Q P ∨ ¬Q ¬P (P ∨ ¬Q)⇒ ¬P
0 0 1 1 1 1
0 1 0 0 1 1
1 0 1 1 0 0
1 1 0 1 0 0

The distributive property is [P ∧ (Q ∨R)]⇔ [(P ∧Q) ∨ (P ∧R)].

1.1. MATHEMATICAL MODELS AND REASONING 5

P Q R Q ∨R P ∧ (Q ∨R) P ∧Q P ∧R (P ∧Q) ∨ (P ∧R)
0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 1 0 1 0 0 0 0
0 1 1 1 0 0 0 0
1 0 0 0 0 0 0 0
1 0 1 1 1 0 1 1
1 1 0 1 1 1 0 1
1 1 1 1 1 1 1 1

A tautology is a proposition which is always true. A contridiction is a proposition which is always false. A
contigency is a proposition which is not a tautology and is not a contradiction. It is true part of the time
and false part of the time.

Identities on page 15 of the text book. 7, 8, 18, 22. Delete 20 and 21. Logical implications on page 16 of
the text book. Delete 7, 8, and 9. For homework, on page 17 in Section 1.1 of the text book, do problems
1, 3, 4, 5, and 7. Also show (P ⇔ Q)⇔ [(P ⇒ Q) ∧ (Q⇒ P)].

1.1.4 Homework and Answers

These are the homework problems from Section 1.1 on pages 17 and 18 in the textbook.

Show (P ⇔ Q)⇔ [(P ⇒ Q) ∧ (Q⇒ P)].

P Q P ⇔ Q P ⇒ Q Q⇒ P (P ⇒ Q) ∧ (Q⇒ P)

0 0 1 1 1 1
0 1 0 1 0 0
1 0 0 0 1 0
1 1 1 1 1 1

3. Establish whether the following propositions are tautologies, contigencies, or contradictions.

a) P ∨ ¬P Tautology.
b) P ∧ ¬P Contridiction.
c) P ⇒ ¬(¬P)
P P ⇒ ¬(¬P)
0 0 1
1 1 0

⇒ contingency

d) ¬(P ∧Q)⇔ (¬P ∨ ¬Q). Tautology.

e) ¬(P ∨Q)⇔ (¬P ∧¬Q). Tautology.

f) (P ⇒ Q)⇔ (¬Q⇒ ¬P). Tautology.

g) (P ⇒ Q) ∧ (Q⇒ P).
(P ⇒ Q) ∧ (Q⇒ P)

0 1 0 1 0 1 0
0 1 1 0 1 0 0
1 0 0 0 0 1 1
1 1 1 1 1 1 1

⇒ contingency

h) [P ∧ (Q ∨R)]⇒ [(P ∧Q) ∨ (P ∧R)]. Tautology.

6 CHAPTER 1. DISCRETE STRUCTURES

i) (P ∧ ¬P)⇒ Q. Taugology.

j) (P ∨ ¬Q)⇒ Q.
P Q P ∨ ¬Q (P ∨ ¬Q)⇒ Q

0 0 1 0
0 1 0 1
1 0 1 0
1 1 1 1

⇒ contingency

k) P ⇒ (P ∨Q).
P Q P ∨Q (P ⇒ (P ∨Q)
0 0 0 1
0 1 1 1
1 0 1 1
1 1 1 1

⇒ tautology

l) (P ∧Q)⇒ P.
P Q P ∧Q (P ∧Q)⇒ P

0 0 0 1
0 1 0 1
1 0 0 1
1 1 1 1

⇒ tautology

m) (P ∧Q)⇔ P]⇔ [P ⇔ Q]
P Q P ∧Q (P ∧Q)⇔ P P ⇔ Q [(P ∧Q)⇔ P]⇔ [P ⇔ Q]

0 0 0 1 1 1
0 1 0 1 0 0
1 0 0 0 0 1
1 1 1 1 1 1

⇒ contingency

n) [(P ⇒ Q) ∨ (R⇒ S)]⇒ [(P ∨R)⇒ (Q ∨ S)].

[(¬P ∨Q) ∨ (¬R∨ S)]⇒ [¬(P ∨R) ∨ (Q ∨ S)],

¬[(¬P ∨Q) ∨ (¬R ∨ S)] ∨ [¬(P ∨R) ∨ (Q ∨ S)],

[¬(¬P ∨Q) ∧ ¬(¬R ∨ S)] ∨ [(¬P ∧ ¬R) ∨ (Q ∨ S)],

[(P ∧ ¬Q) ∧ (R ∧ ¬S)] ∨ [(¬P ∧ ¬R) ∨ (Q ∨ S)].

Complete the truth table. Contingency.

4. Let P be the proposition ”It is snowing.” Let Q be the proposition ”I will go to town.” Let R be the
proposition ”I have time.” Using logical connectives, write a proposition which symbolizes each of the
following:

4a. i) If it is not snowing and I have time, then I will go to town. (¬P ∧R)⇒ Q,

ii) I will go to town only if I have time. Q⇒ R.

iii) It isn’t snowing. ¬P.

1.1. MATHEMATICAL MODELS AND REASONING 7

iv) It is snowing and I will not go to town. P ∧ ¬Q.

4b. i) Q⇔ (R ∧ ¬P). I will go to town is equivalent to I have time and it is not snowing.

ii) R ∧Q. I have time, and I will go to town.

iii) (Q⇒ R)∧ (R⇒ Q). If I will go to town then I have time, and If I have time then I will go to town.

iv) ¬(R ∨Q). I don’t have time and I won’t go to town.

5. State the converse and contrapositive of each of the following:

a. If it rains, I’m not going. Solution: If I’m not going, it rains. If you don’t go then it won’t rain.

b. I will stay only if you go. Solution: If you go then I will stay. If you don’t go then I won’t stay.

c. I you get 4 pounds, you can bake the cake. Solution: If you bake the cake, you get 4 pounds. If you
don’t bake the cake then you won’t get 4 pounds.

d. I can’t complete the task if you don’t get more help. Solution: If I can’t complete the task, then I
don’t get more help. If I can complete the task, then I get more help.

7. Establish the following tautologies by simplifying the left side to the form of the right side:

a. [(P ∧Q)⇒ P]⇔ 1 Solution:
¬(P ∧Q) ∨ P
(¬P ∨ ¬Q) ∨ P
(¬P ∨ P) ∨ ¬Q
1 ∨ ¬Q
1

b. ¬(¬(P ∨Q)⇒ ¬P)⇔ 0, Solution:
¬((P ∨Q) ∨ ¬P),
¬(P ∨Q) ∧ P,
(¬P ∧ ¬Q) ∧ P,
(¬P ∧ P) ∧ ¬Q,
0 ∧ ¬Q,
0.

1.1.5 Predicates and Quantifiers

Quiz on Section 1.1 on Monday. It will cover truth tables, tautologies, etc. Don’t have to know identities.

The statement P ⇔ Q can be re-stated several ways, such as P if and only if Q or P iÿ Q.

A predicate is a property of an object or a relationship between objects.

Example: x < y means x is less than y where the phrase ”is less than y” is the predicate. ”x is an integer
is an integer” where the phrase ”is an integer” is a predicate.

8 CHAPTER 1. DISCRETE STRUCTURES

Notation: Assertions made with predicates are denoted with capital letters.

Example: x is less than y → L(x, y).

Example: x is tall → T (x).

Example: x+ y = z → S(x, y, z).

The predicate (P) P (x1, x2, ..., xn) is said to have n arguments with individual variables x1, x2,, xn. Values
for the variables are drawn from a non-empty set called the universe, denoted by U.

Example: Let P (x, y) mean x ≤ y where U is the set of integers. Then, P (3, 5) is True. P (6, 6) is True.
P (6, 2) is False.

Example: Let S(x, y) mean x−y = 5 and U be the set of integers. Then, S(12, 7) is True. S(4,−2) is False.

To change a predicate into a proposition, each individual variable must be bound. There are two ways to do
this:

1. A variable is bound when a value is assigned to it.

2. A variable is bound when it is quantified.

This is a list of quantifiers:

1. The universal quantifier ∀ (for all). ∀x P (x) means for all x, P (x) is true if the predicate P (x) is true
for all x in the universe. Otherwise, ∀x P (x) is false.

Example: Let U be the set of integers. ∀x [x > 0] is False.

Example: Let U be the set of natural numbers {1, 2, 3...}. ∀x [x > 0] is True.

Example: Let U be the set of integers. ∀x∀y [x+ y > x] is False.

Example: Let U be the set of integers. ∀x∀y [2(x+ y) = 2x+ 2y] is True.

Note that ∀x P (x)⇒ P (c) is true for any c in the universal set. The notation {c ∈ U} is also used.

2. The existential quantifier ∃ (there exists or for some). ∃x P (x) means there exists x such that P (x) is
true if P (x) is true for at least one x ∈ U, otherwise ∃x P (x) is false.

Example: Let U be the set of integers. ∃x [x > 2] is true.

Example: Let U be the set of natural numbers. ∃x [x = 0] is false.

Note that if P (c) is true, then ∃x P (x) is true.

3. The unique existential quantifier ∃! (one and only one). ∃!x P (x) is true if P (x) is true for exactly one
element in U.

Example: Let U be the set of natural numbers. ∃!x [x < 1] is false.

1.1. MATHEMATICAL MODELS AND REASONING 9

Example: Let U be the set of natural numbers. ∃!x [x = 3] is true.

Example: Let U be the set of natural numbers. ∃!x [x < 2] is true.

Note: Let P (x) represent x ≤ 5 where U is the set of natural numbers. Then, ∀x P (x) = P (1)∧P (2)∧
P (3)∧ P (5) ∧ P (6) · · · .

In general, ∀x P (x) = P (x0) ∧ P (x1) ∧ · · · .

all at least one uniqueness
∀x P (x) ∃x P (x) ∃!x P (x)
∧ ∨ P (x0)⊕ P (x1) ⊕ P (x2) · · ·

When combining more than one quantifier, order is important in predicates with more than one quantifier.
The notation ∀x∀y P (x, y) means ∀x[∀y P (x, y)].

Example: ∀x[∃y P (x, y)] : for every x there is some y — not necessarilary the same y.

Example: ∃y[∀x P (x, y)] : there is some y such that for every x there is a value which makes P true.

Example: ∀x∀y P (x, y) = ∀y∀x P (x, y).

Example: ∃x∃y P (x, y) = ∃y∃x P (x, y).

Read the examples on page 26 in the text book. In Section 1.2 on page 27, do problems 1, 3, 5(d*), 7, and
9.

1.1.6 Quiz 1

1. Using truth tables, show that an implication is equivalent to its contrapositive. Solution:
P Q P ⇒ Q ¬Q ¬P ¬Q⇒ ¬P P ⇒ Q⇔ ¬Q⇒ ¬P)
0 0 1 1 1 1 1
0 1 1 0 1 1 1
1 0 0 1 0 0 1
1 1 1 0 0 1 1

2. Make a truth table for (¬Q ∧ P) ∨ (¬P ⇒ Q). Is this proposition a tautology, contingency, or contra-
diction? Solution: contingency.
P Q ¬Q ¬Q ∧ P ¬P ¬P ⇒ Q (¬Q ∧ P) ∨ (¬P ⇒ Q)
0 0 1 0 1 0 0
0 1 0 0 1 1 1
1 0 1 1 0 1 1
1 1 0 0 0 1 1

3. Le P : dogs bark. Q : cats bite. R : horses swim. Write each of the following in symbolic form.

(a) Horses swim if and only if cats do not bite. Solution: R⇔ ¬Q.

(b) If horses swim then dogs do not bark, and if dogs do not bark then cats bite. Solution: (R →
¬P) ∧ (¬P ⇒ Q).

(c) Either dogs bark or cats bite, but not both. Solution: (P ∨Q) ∧ ¬(P ∧Q).

(d) It is not the case that horses do not swim and dogs do not bark. Solution: ¬(¬R∧ ¬P).

10 CHAPTER 1. DISCRETE STRUCTURES

1.1.7 Quantifiers with Negation

This section covers quantifiers with negation.

1. ¬∀x P (x) means ∃x¬ P (x). Proof:

¬(P (x0) ∧ P (x1) ∧ P (x2) ∧ · · ·) =

¬P (x0) ∨¬P (x1) ∨ ¬P (x2) ∨ · · · =

∃x¬ P (x).

¬∃x P (x) means ∀x ¬P (x). Proof:

¬(P (x0) ∨ P (x1) ∨ P (x2) ∨ · · ·) =

¬P (x0) ∧¬P (x1) ∧ ¬P (x2) ∧ · · · =

∀x¬P (x).

¬∀x∃y∀z P (x, y, z) = ∃x∀y∃z¬P (x, y, z).

2. Conjunction: ∀x[P (x)∧Q(x)]⇔ ∀x P (x)∧ ∀x Q(x). Proof:

[P (x0) ∧Q(x0)]∧ [P (x1) ∧Q(x1)] ∧ [P (x2) ∧Q(x2)] ∧ · · ·

Regroup.

[P (x0) ∧ P (x1) ∧P (x2) ∧ · · ·] ∧ [Q(x0) ∧Q(x1) ∧Q(x2) ∧ · · ·] =

∀x P (x) ∧ ∀x Q(x).

Here are some properties:

1. ¬∀x P (x)⇔ ∃x ¬P (x).

2. ¬∃x P (x)⇔ ∀x ¬P (x).

3. ∀xP (x)∧Q(x))⇔ ∀x P (x)∧∀x Q(x). This is not the same as ∃x(P (x)∧Q(x)) = ∃x P (x)∧∃x Q(x).
Left-proof:

(P (x0) ∧Q(x0)) ∨ (P (x1) ∧Q(x1)) ∨ (P (x2) ∧Q(x2)) ∨ · · · .

∃x P (x) ∧ ∃x Q(x)⇔

Right-proof:

[P (x0) ∨ P (x1) ∨P (x2) ∨ · · ·] ∧ [Q(x0) ∨Q(x1) ∨Q(x2) ∨ · · ·].

1.1. MATHEMATICAL MODELS AND REASONING 11

4. ∃x(P (x)∧Q(x))⇒ ∃x P (x) ∧ ∃x Q(x) is true.

5. ∀x(P (x)∨Q(x)) = ∀x P (x) ∨ ∀x Q(x). Also, ∃x(P (x)∨Q(x))⇔ ∃x P (x) ∨ ∃x Q(x).

6. ∀x(P (x)∨Q(x))⇐ ∀x P (x) ∨ ∀x Q(x).

The scope of a quantifier is that part of an assertion in which variables are bound by the quantifier. It is the
smallest subexpression which is consistent with the parenthesis of the expression.

Example: ∀x[P (x)∧Q]. The scope of ∀ is [P (x)∧Q].

Example: ∀xP (x)∧Q. The scope of ∀ is P (x).

Example: ∀xP (x)∧Q(x)⇔ ∀yP (y) ∧Q(x). The scope of ∀ is P (x).

Result: Predicates which occur in ∨ and ∧ assertions and which are not bound by a quantifier may be
removed from the scope of the quantifier.

Example: ∀x[P (x)∧Q]⇔ ∀x P (x) ∧Q. Q is not bound by ∀. Proof:

∀x[P (x)∧Q]⇔

[P (x0) ∧Q] ∧ [P (x1) ∧Q]∧ [P (x2) ∧Q]∧ · · ·

[P (x0) ∧P (x1) ∧ P (x2) ∧ · · ·] ∧ [Q∧Q ∧Q ∧ · · ·]

∀x P (x) ∧Q.

Example: ∀x[P (x)∧Q]⇔ ∀x P (x) ∨Q. Proof:

[P (x0) ∨Q] ∧ [P (x1) ∨Q]∧ [P (x2) ∨Q]∧ · · ·

[P (x0) ∧P (x1) ∧ P (x2) ∧ · · ·] ∨Q

∀x P (x) ∨Q.

Example: ∃x[P (x)∧Q]⇔ ∃x P (x) ∧Q.

Example: ∃x[P (x)∨Q]⇔ ∃x P (x) ∨Q.

Example: ∀x[P (x)∧Q(y)]⇔ ∀x P (x) ∧Q(y).

In Section 1.3 of the textbook, page 37, do problems 1a-d, 2, 3a-c, 4, 9. On Friday, Quiz 2 which will cover
Sections 1.2 and 1.3.

12 CHAPTER 1. DISCRETE STRUCTURES

1.1.8 Homework and Answers

Section 1.2 homework and answers on Page 27 of the textbook.

1. Let S(x, y, z) denote the predicate x+ y − z, P (x, y, z) denote x · y = z, and L(x, y) denote x < y. Let
the universe of discourse be the natural numbers N. Using the above predicates, express the following
assertions. The phrase ”there is an x” does not imply that x has a unique value.

a. For every x and y, there is a z such that x+ y = z. Solution: ∀x∀y S(x, y, z).

b. No x is less than 0. Solution: ∀x¬L(x, 0).

c. For all x, x+ 0 = x. Solution: ∀x S(x, 0, 0).

d. For all x, x · y = y for all y. Solution: ∀x∀y P (x, y, y).

e. There is an x such that x · y = y for all y. Solution: ∃x∀y P (x, y, y).

3. Determine which of the following propositions are true if the universe is the set of integers I and ·
denotes the operation of multiplication.

a. ∀x, ∃y[x · y = 0]. True

b. ∀x, ∃!y[x · y = 1]. False (x = 0).

c. ∃y, ∀x[x · y = 1]. False.

d. ∃y, ∀x[x · y = x]. True.

5. Specify a universe discourse for which the following propositions are true. Try to choose the universe
to be as large a subset of the integers as possible. Explain any diculties.

a. ∀x[x > 10]. Solution: U = {11, 12, 13, ...}.

b. ∀x[x = 3]. Solution: U = {3}.

c. ∀x∃y[x+ y = 436]. Solution: U = integers.

d. ∃y∀x[x+ y < 0]. Solution: U = integers, |y| > |x|.

7. Consider the univers of integers I.

a. Find the predicate P (x) which is false regardless of whether the variable x is bound by ∀ or ∃. Solution:
x = x+ 1. P (x)[x = 1

2].

b. Find the predicate P (x) which is true regardless of whether the variable x is bound by ∀ or ∃. Solution:
x = x. [x+ 1 > x].

c. Is it possible for a predicate P (x) to be true regardless of whether the variable is bound by ∀, ∃ or ∃!?
Justify your answer. Solution: Yes. The universal set equal to one element say 1 [x = 1 for all cases].

9. Consider the universe of integers and let P (x, y, z) denote x−y = z. Transcribe the following assertions
into logical notation.

a. For every x and y, there is some z such that x− y = z. Solution: ∀x∀y∃z P (x, y, z).

b. For every x and y, there is some z such that x− z = y. Solution: ∀x∀z∃y P (x, y, z).

c. There is an x such that for all y, y − x = y. Solution: ∃x∀y P (x, y, y).

d. When 0 is subtracted from any integer, the result is the original integer. Solution: ∀x∃y P (x, y, x).

e. 3 subtracted from 5 gives 2. Solution: P (5, 3, 2).

Some additional observations: If ∃P (x) is false, then ∀x P (x) is false. If ∀x P (x) is true, then ∃x P (x)
is true.

1.1. MATHEMATICAL MODELS AND REASONING 13

1.1.9 Homework and Answers

This is Section 1.3 homework and answers on page 37 from the textbook.

1. Let P (x, y, z) denote xy = z. Let E(x, y) denote x = y. Let G(x, y) denote x > y. Let the universe of
discourse be the integers. Transcribe the following into logical notation.

a. If y = 1, then xy = x for any x. Solution: ∀y[E(y, 1)⇒ ∀x P (x, y, x)].

b. If xy = 0, then x = 0 and y = 0. Solution: ∀x∀y[¬P (x, y, 0)⇒ ¬E(x, 0)∧ ¬E(y, 0)].

c. If xy = 0, then x = 0 or y = 0. Solution: ∀x∀y[P (x, y, 0)⇒ E(x, 0) ∨E(y, 0)].

d. 3x = 6 if and only if x = 2. Solution: ∀x[P (3, x, 6)⇔ E(x, 2)].

2. Let the universe of discourse be the set of arithmetic assertions with predicates defined as follows: P (x)
denotes ”x is provable. T (x) denotes ”x is true.” S(x) denotes ”x is satisfiable.” D(x, y, z) denotes
”z is the disjuntion x ∨ y.” Translate the following assertions into English statements. Make your
transcriptions as natural as possible.

a. ∀x[P (x)⇒ T (x)]. Solution: For all arithmetic assertions x such that if x is provable, then x is true.

b. ∀x[T (x)∨ ¬S(x)]. Solution: For all x such that x is true or x is not satisiable.

c. ∃x[T (x)∧ ¬P (x)]. Solution: For all x such that if x is true, then x is not provable.

d. ∀x∀y∀z[[D(x, y, z) ∧ P (z)]⇒ [P (x)∨ P (y)]]. Solution: For all x, y, and z if z is disjunction x ∨ y and
z is provable, then x is provable or y is provable.

e. ∀x[T (x) ⇒ ∀y∀z[D(x, y, z) ⇒ T (z)]]. Solution: For all x if x is true, then for all y and z if z is the
disjunction x ∨ y then z is true.

3. Put the following into logical notation. Choose predicates so that each assertion requires at least one
quantifier.

a. There is one and only one even prime. Solution: P (x) = the even numbers. Q(x) = the prime numbers.
∃!x [P (x)∧Q(x)].

b. No odd numbers are even. Solution: P (x) = the even numbers. Q(x) = the odd numbers. ∀x [Q(x)⇒
¬P (x)]. ∀x[¬P (x)∨ ¬Q(x)].

c. Every train is faster than some cars. Solution: P (x) = trains. Q(y) = cars. R(x, y) = trains travel
faster than cars. ∀x[P (x)⇒ ∃y[Q(y) ∧R(x, y)].

d. Some cars are slower than all trains but at least one train is faster than every car. Solution: ∃x¬P (x).
¬∀x P (x).

9. Show that the following are valid for the universe of natural numbers N either by expanding the
statement or by applying identities.

a. ∀x∀y[P (x) ∨Q(y)]⇔ [∀xP (x)∨ ∀yQ(y)]. Solution: ∀x∀y[P (x) ∨Q(y)]⇔ [∀x P (x) ∨ ∀y Q(y)].

∀x[∀y[P (x)∨Q(y)]⇔

∀x[P (x)∨ ∀yQ(y)] ⇔

∀xP (x)∨ ∀yQ(y).

14 CHAPTER 1. DISCRETE STRUCTURES

b. ∃x∃y[P (x) ∧Q(y)]⇒ ∃xP (x). Solution: P ∧Q⇒ P.

e. ∀x∀y[P (x)⇒ Q(y)]⇔ [∃xP (x)⇒ ∀yQ(y)]. Solution:

∀x∀y[P (x)⇒ Q(y)]⇔

∀x∀y[¬P (x)∨Q(y)]

∀x¬P (x)∨ ∀yQ(y)

¬∃xP (x)∨ ∀yQ(y)

∃xP (x)⇒ ∀yQ(y).

1.1.10 Quiz 2

September 11, 1987

1. Let the universe be the set of integers. Determine whether each of the following propositions is True
or False. Explain your answers.

(a) ∀x∃!y[3x− y = 5]. Solution: True because if x is positive, y can be negative. If x is negative, y
can be positive to make up the diÿerence.

(b) ∃x[x = 1
x
]. Solution: True at x = 1. ∃ only takes at least one case to make it true.

(c) ∀x∃y[x = 2y]. Solution: False. What if x is an odd number? Then, y would have to be a real
number that is not in the universe.

(d) ∀x∀y[(x + y > 0) ∨ (x + y < 0)]. Solution: False. What if x and y equal to zero? Then neither
case would hold true.

(e) ∃y∀x[y · x = x]. Solution: True for the case y = 1. Then, any x would hold true.

2. Prove the following identity by expanding the left-hand side. ∀x¬P (x)⇔ ¬∃xP (x). Solution:
¬P (x0) ∧ ¬P (x1) ∧¬P (x2) ∧ · · · ⇔
¬(P (x0) ∨ P (x1) ∨ P (x2) ∨ · · ·)⇔
¬∃xP (x).

3. Prove the following identity by expanding the left-hand side. ∃x[Q(y) ∧ P (x)]⇔ Q(y) ∧ ∃xP (x). So-
lution:
(Q(y) ∧ P (x0)) ∨ (Q(y) ∧ P (x1)) ∨ (Q(y) ∧ P (x2)) ∨ · · ·)⇔
Q(y) ∧ (P (x0) ∨ P (x1) ∨ P (x2) ∨ · · ·)⇔
Q(y) ∧ ∃xP (x)

1.1. MATHEMATICAL MODELS AND REASONING 15

1.1.11 Logical Inferences

A proof is a sequence of statements which establishes that a theorem is true. The sequence of assertions in
a proof consists of three things:

1. Axioms or previously proved theorems.

2. Hypotheses of the theorem.

3. Assertions inferred from previous assertions in the proof.

Some rules of inference include:

1. Modus ponens

P
P ⇒ Q
∴ Q

Example:

If it rains, then I will study.
It rains.
∴ I will study.

An argument iÿ, the conjunction of the hypotheses, implies the conclusion is a tautology.

P Q P ⇒ Q P ∧ (P ⇒ Q) [P ∧ (P ⇒ Q)]⇒ Q

0 0 1 0 1
0 1 1 0 1
1 0 0 0 1
1 1 1 1 1

2. Modus tollens.

¬Q
P ⇒ Q

∴ ¬P

3. Addition.

P

∴ P ∨Q

4. Simplification.

P ∧Q
∴ P

5. Disjunctive syllogism.

P ∨Q
¬P
∴ Q

[(P ∨Q) ∧ ¬P]⇒ Q.

16 CHAPTER 1. DISCRETE STRUCTURES

6. Hypothetical syllogism.

P ⇒ Q
Q⇒ R
∴ P ⇒ R

7. Conjunction.

P
Q
∴ P ∧Q

8. Constructive delimma.

(P ⇒ Q) ∧ (R⇒ S)
P ∨R
∴ Q ∨ S

9. Destructive delimma.

(P ⇒ Q) ∧ (R⇒ S)
¬Q ∨ ¬S
∴ ¬P ∨ ¬R

Some fallacious agruments include the following:

P ⇒ Q
Q
∴ P

and

P ⇒ Q
¬P
∴ ¬Q

Some more complex arguments:

Example: Prove that the following argument is valid.

1.P ⇒ Q
2.Q⇒ R
3.¬R
∴ ¬P

Assertions Reasons
1. P ⇒ Q Hypothesis 1
2. Q⇒ R Hypothesis 2
3. P ⇒ R Hypotheses 1,2 and hypothetical syllogism
4. ¬R Hypothesis 3
5. ¬P Hypotheses 3,4 and modus tollens

Exam #1 will be on Monday, September 21. It covers Sections 1.1 thru 1.4.

Example:

1.1. MATHEMATICAL MODELS AND REASONING 17

1.R⇒ ¬S
2.¬M ⇒ T
3.¬P ⇒ R
4.T ⇒ S
∴ ¬P ⇒M

Assertions Reasons

1. ¬P ⇒ R Hypothesis 3
2. R⇒ ¬S Hypothesis 1
3. ¬S ⇒ ¬T Contrapositive
4. ¬T ⇒M Contrapositive of hypothesis 2
5. ¬P ⇒M Hypothesis 1,23,4 and hypothetical syllogism

Example: Premises:

1.A⇒ ¬B
2.¬C ⇒ F
3.A∨ ¬C
4.¬B ⇒ D
5.F ⇒ H
∴ D ∨H

Assertions Reasons
1. A⇒ ¬B Hypothesis 1
2. ¬B ⇒ D Hypothesis 4
3. A⇒ D Hypothesis 1,2
4. ¬C ⇒ F Hypothetical syllogism
5. F ⇒ H Hypotheses 2,5
6. ¬C ⇒ H Hypotheses 4,5 and chain rule
7. (A⇒ D) ∧ (¬C ⇒ H) Hypotheses 3,6 and conjunction
8. A ∨ ¬C Hypothesis 3
9. D ∨H Hypotheses 7,8 and constructive delimma

The test covers Sections 1.1 to 1.4, truth tables, the operators +,−,⊕,⇒, and ⇔ . You must know
how to read symbolic form to English and vise-versa; page 15 Table of Identities (omit 20 and 21); page 16
implications (omit 7, 8, and 9); qualifiers — read, figure true / false of propositions; properties; proofs of
valid arguments with truth tables; rules of inference (page 41).

1.1.12 Handout

3.

S ⇒ L
¬S ⇒ ¬F
SON⇒ ¬L
∴

SON⇒ ¬L
¬L⇒ ¬S
¬S ⇒ ¬F
∴ SON⇒ ¬F

4.

D ⇒ ¬W
O ⇒W
P ⇒ D

P ⇒ D
D ⇒ ¬W
¬W ⇒ ¬O
∴ p→ ¬O

18 CHAPTER 1. DISCRETE STRUCTURES

5.

B ⇒ I
C ⇒ ¬D
I ⇒ D

∴

B ⇒ I
I ⇒ ¬D
D ⇒ ¬C
∴ B ⇒ ¬C

1.1.13 Homework Handout Questions and Answers

Verify that the following argument forms are valid.

1. Form:

¬Q⇒ ¬R
R
P ⇒ ¬Q
∴ ¬P

Solution:

Assertions Reasons

1. ¬Q⇒ ¬R Hypothesis 1
2. R⇒ Q Assertions 1, Contrapositive
3. R Hypothesis 2
4. Q⇒ ¬P Hypothesis 3, Contrapositive
5. Q Assertions 3, 2, Modus ponens
6. ¬P Assertions 4, 5, Modus ponens

2. Form:

(P ⇒ ¬Q) ∧ (¬R⇒ S)
¬P ⇒ ¬R
∴ ¬Q∨ S

Solution:

Assertions Reasons

1. ¬P ⇒ ¬R Hypothesis 2
2. P ∨ ¬R Equivalence
3. (P ⇒ ¬Q) ∧ (¬R⇒ S) Hypothesis 1
4. ¬Q∨ S Assertions 2,3, Constructive dilemma

3. Form:

¬B ⇒ F
I ⇒ ¬C
A⇒ ¬B
F ⇒ I
∴ A⇒ ¬C

Solution:

Assertions Reasons
1. A⇒ ¬B Hypothesis 3
2. ¬B ⇒ F Hypothesis 1
3. F ⇒ I Hypothesis 4
4. I ⇒ ¬C Hypothesis 2
5. A⇒ ¬C Assertions 1,2,3,4, Hypothetical syllogism

1.1. MATHEMATICAL MODELS AND REASONING 19

4. Form:

N ⇒ ¬R
¬M ⇒ N
R
P
∴M ∧P

Solution:

Assertions Reasons

1. N ⇒ ¬R Hypothesis 1
2. R⇒ ¬N Hypothesis 1, Contrapositive
3. ¬M ⇒ N Hypothesis 2
4. ¬N ⇒M Assertion 3, Contrapositive
5. R⇒M Assertions 2,4, Hypothetical syllogism
6. R Hypothesis 3
7. M Assertion 5, 6, Modus ponens
8. P Hypothesis 4
9. M ∧ P Assertion 7, 8, Conjunction

5. Form:

¬F ⇒ C
¬C ∨ ¬D
B ⇒ ¬F
D
∴ ¬B

Solution:

Assertions Reasons

1. ¬C ⇒ ¬D Hypothesis 2
2. C ⇒ ¬D Hypothesis 2, Equivalence
3. D ⇒ ¬C Assertion 2, Contrapositive
4. ¬C ⇒ F Hypothesis 1, Contrapositive
5. F ⇒ ¬B Hypothesis 3, Contrapositive
6. D Hypothesis 4
7. ¬B Assertions 3, 4, 5, 6, Hypothetical syllogism

1.1.14 Methods of Proof

There are several techniques for proving implications.

1. Vacuous proof of P ⇒ Q. (Rows 1, 2) Recall P ⇒ Q is True whenever P is False. If we can establish
that P is False, then we say vacously that P ⇒ Q is True.

2. Trivial proof of P ⇒ Q (Rows 2,4) Observe that P ⇒ Q is true whenever Q is True. So, if we establish
Q as True, then P ⇒ Q is True.

3. Direct proof of P ⇒ Q. P ⇒ Q is True when P and Q are both True. Assume that P is True and
show that Q is also True.

4. Indirect proof of P ⇒ Q.We show that the contrapositive is true by direct proof. Assume ¬Q is True
and show that ¬P is also True.

5. If the premise is a conjunction (P0 ∧ P1 ∧ P2 ∧ P3 · · · ∧ Pn) ⇒ Q, we look at the contrapositive
¬Q⇒ ¬(P1 ∧ P2 ∧ P3 ∧ · · ·Pn) or ¬Q⇒ ¬P1 ∨ ¬P2 ∨ ¬P3 ∨ · · ·¬Pn is True if ¬Q⇒ ¬Pi for at least
one i.

20 CHAPTER 1. DISCRETE STRUCTURES

6. If the premise is a disjunction,

(P0 ∨ P2 ∨P3 ∨ · · · ∨Pn)⇒ Q⇔

¬(P0 ∨ P2 ∨ P3 ∨ · · · ∨ Pn) ∨Q⇔

(¬P0 ∧ ¬P2 ∧ ¬P3 ∧ · · · ∧ ¬Pn) ∨Q⇔

(¬P0 ∨Q) ∧ (¬P2 ∨Q) ∧ (¬P3 ∨Q) ∧ · · · ∧ (¬Pn ∨Q)⇔

(P0 ⇒ Q) ∧ (P2 ⇒ Q) ∧ · · · ∧ (Pn ⇒ Q)

is True when Pi ⇒ Q for all i between 0 and n called a proof by cases.

Some other proof techniques include:

1. Proofs of equivalence.

(a) Use P ⇔ Q means (P ⇒ Q) and (Q⇒ P). Show the two parts seperately. P ⇔ Q is also read if
and only if.

(b) Begin with an equivalence R⇔ S and proceed through a sequence of equivalencies to eventually
generate P ⇔ Q.

2. Proof by contradiction. Assume that the opposite with negation is true. Eventually, you arrive at a
contridiction. The contradiction implies that the assumption was incorrect.
Note: Theorem: P ⇒ Q. Assume ¬(P ⇒ Q) is true. Then,

¬(P ⇒ Q)

¬(¬P ∨Q)

(P ∧ ¬Q)

i.e. assume True so that P is True and Q is False. 0 = 1 is a contradiction to ¬(P ⇒ Q) ∴ P ⇒ Q.

Theorem: For all integers x, x is even iÿ x2 is even. Proof: Case 1 (the only if part). Show if x is even,
then x2 is even. x2 = (2k)2 = 4k2 = 2(2k2) where 2k2 ∈ I. So, x2 is even. Case 2 (the if part). Show if x2

is even, then x is even. Use an indirect proof. Prove if x is not even, then x2 is not even. x is not even ⇒ x
is odd ⇒ x = 2k + 1 where k ∈ I ⇒ x2 = (2k + 1)2 ⇒ x2 = 4k2 + 4k + 1 ⇒ x2 = 2(2k2 + 2k) + 1 ∈ I ∴ x2

is odd (i.e. x2 is not even).

Theorem: If the product of two integers (A and B) is even, then either A is even or B is even. A×B even
⇒ A even ∨B even. Proof (indirect proof):

¬(A even ∨B even)⇒ ¬AB even

Show

1.1. MATHEMATICAL MODELS AND REASONING 21

A odd ∧B odd ⇒ AB odd

A odd ∧B odd ⇒ A = 2k + 1 ∧B = 2n+ 1 k, n ∈ I

⇒ AB = (2k + 1)(2n+ 1)

⇒ AB = 4kn+ 2k + 2n+ 1 =

2(2kn+ k + n) + 1,

2kn+ k + n ∈ I

∴ AB is odd.

Theorem: If A is an integer, such that A− 2 is divisible by 3, then A2− 1 = (A+ 1)(A− 1) is divisible by
3. Proof (direct proof): Assume that A−2 is divisible by 3⇒ A−2 = 3k where k ∈ I ⇒ A−2+3 = 3k+3
⇒ A+ 1 = 3(k + 1) ⇒ A2 − 1 = (A + 1)(A− 1) = 3(k + 1)(k − 1). (k + 1), (k− 1) ∈ I ∴ A2 − 1 is divisible
by 3.

Theorem: If n is a prime number diÿerent from 2, then n is odd. A prime number is any natural number
greater than 1 which is divisible only by itself and 1.

Proof: By contradiction. Recall that to prove P ⇒ Q, assume ¬(P ⇒ Q) ⇔ (P ∧ ¬Q). Assume n is prime
and n = 2 and n is even.
n is even
⇒ n = 2k where k ∈ Interger, k = 1.
⇒ n is divisible by 2
n is not prime
Contradiction: n is prime.
∴ If n is prime and = 2, then n is odd.

Homework: page 56, 1a, b, c, i, j, m.

1.1.15 Proof Techniques for Quantified Assertions

1. Assertions of the form ¬∃xP (x) can be proved best by contradiction. Assume ∃xP (x) and derive a
contradiction.

2. To prove ∃xP (x) :

(a) Constructive existence proof — find a c such that P (c) is true ⇒ ∃xP (x) is true.

(b) Non-constructive existence proof — a proof by contradiction. Assume ¬∃xP (x) and derive a
contradiction.

3. To prove ¬∀xP (x) :

(a) Constructive proof: Find a particular value of x, c such that P (c) is false.

(b) Non-constructive proof: proof by contradiction.

4. To prove ∀xP (x) show that P (x) is true for an arbitrary x.

Homework: all of # 1 on page 56 in the textbook.

22 CHAPTER 1. DISCRETE STRUCTURES

1.1.16 Homework and Answers

Problem 1 on page 56 in the textbook.

1. Prove or disprove each of the following assertions. Indicate the proof technique employed. Consider
the universe to be the the set of integers I. Put each assertion into logical notation. You must assume
the following five definitions and properties of itegers.

1. An integer n is even if and only if n = 2k for some integer k.

2. An integer n is odd if and only if n = 2k + 1 for some integer k.

3. The product of two non-zero integers is positive if and only if the integers have the same sign.

4. For every pair of integers x and y, exactly one of the following holds: x > y, x = y or x < y.

5. If x > y, then x− y is positive. If x = y then x− y = 0. If x < y, then x− y is negative.

a. An integer is odd if its square is odd. Solution: ∀x[x2 odd⇒ x odd]. If x2 is odd, then x is odd. Proof
(indirect): If x is not odd, then x2 is not odd.

x is not odd ⇒ x is even.
⇒ x = 2k where k ∈ Integer.
⇒ x2 = (2k)2.
⇒ x2 = 4k2 = 2(2k2) ∈ Integer.
⇒ x2 is even.
x2 is not odd.

b. The sum of two even integers is an even integer. Solution: If two even integers are added, then the
result is an even integer. Proof (direct): ∀x∀y[x even ∧ y even ⇒ x+ y even]
x, y are even ⇒ x = 2k, k ∈ Integers.
y = 2n, n ∈ Integers.
⇒ x+ y = 2k + 2n.
⇒ x+ y = 2(k + n) ∈ I.
∴ x+ y is even.

c. The sum of an even integer and an odd integer is an odd integer. Solution: If an even and odd number
are added together, then the result is odd. ∀x∀y[x even ∧ y odd ⇒ x+ y odd].
x+ y is odd ⇒ x = 2k, k ∈ Integers.
y = 2n+ 1, n ∈ I.
⇒ x+ y = 2k + 2n+ 1.
⇒ x+ y = 2(k + n) + 1.
⇒ 2(k + n) + 1 ∈ Integer.
∴ x+ y is odd.

d. There are two odd integers whose sum is odd: Solution: ∃x∃y[x odd ∧ y odd ∧ x+ y odd]. Show it is
a false statement. Show ¬∃x∃y[x odd ∧ y even ∧ x+ y odd] is true.
∀x∀y¬[(x odd ∧ y odd) ∧ x+ y odd].
∀x∀y¬[(x odd ∧ y odd) ∨ ¬[x+ y odd].
∀x∀y[(x odd ∧ y odd) ⇒ ¬[x+ y odd].
∀x∀y[x odd ∧ y odd ⇒ x+ y even].
x odd ⇒ 2k + 1, k ∈ I.
y odd ⇒ 2n+ 1, n ∈ I.
x+ y = 2k + 2n+ 2 = 2(k + n+ 1), k+ n+ 1 ∈ I.
∴ x+ y is even.

1.2. SETS 23

e. The square of any integer is negative. Solution: ∀x[x2 < 0] is false. If x = 1, x2 = 1 > 0; x = 1 is a
counter example.

g. There does not exist an integer x such that x2 + 1 is negative. Solution: ¬∃x[x2+ 1 < 0] true.
∀x¬[x2+ 1 < 0].
∀x[x2 + 1 ≥ 0].
x2 = x× x ≥ 0.
⇒ x2 + 1 ≥ 0.

i. If 1 = 3, then the square of any integer is negative. Solution: Vacuous proof.

j. If 1 = 3, then the square of any integer is positive. Solution: Vacuous proof.

k. The sum of any two primes is a prime number. Solution: 7, 11.

l. There exists two primes whose sum is prime: Solution: 2,3.

m. If the square of any integer is negative, then 1 = 1. Solution: Vacuous proof.

1.2 Sets

A set is a collection of objects or elements. Capital letters denote sets and lower case letters denote elements
of sets. To describe a set:

1. List elements {1, 2, 3}.

2. Set builder notation {x|x is a natural number}.
{p
q
|p and q are integers and q = 0} = rational numbers.

The null set or the empty set is the set which contains no elements. This is denoted by ∅. The null set
∅ = {∅}. Sets can be:

1. Finite — has a last element.

2. Infinite

Sets A and B are equal (A = B) if they contain exactly the same elements {1, 2, 3} = {3, 2, 1}. A = B iÿ
every element in A is also in B and every element in B is also in A. A = B iÿ ∀x[(x ∈ A ⇒ x ∈ B) ∧ (x ∈
B ⇒ x ∈ A)].

A is a subset of B if every element of A is also an element of B. This is denoted by A ⊂ B. A ⊂ B ⇔ ∀x[x ∈
A⇒ x ∈ B]. If A ⊂ B then B ⊃ A.

Let U be a universal set. Then, A ⊂ U for all sets A. Proof: x ∈ A⇒ x ∈ U. A ⊂ U by definition.

(A = B) iÿ (A ⊂ B ∧B ⊂ A). Proof: Only if part (left to right) definition of subsets.

Corrolary: (falls directly from something proved) A ⊂ A. Proof: Since every set is equal to itself, then
every set must be a subset of itself.

If A ⊂ B and B ⊂ C, then A ⊂ C. Proof:
A ⊂ B ⇔ x ∈ A⇒ x ∈ B.
B ⊂ C ⇔ x ∈ B ⇒ x ∈ C.
A ⊂ C ⇔ x ∈ A⇒ x ∈ C.

24 CHAPTER 1. DISCRETE STRUCTURES

Prove ∅ ⊂ A, ∀A. Proof: ∅ ⊂ A ⇔ x ∈ ∅ ⇒ x ∈ A. Vacuous proof. x ∈ ∅ has no elements and therefore
always false making the implication always true.

Let ∅ and ∅ both be null sets. Then, ∅ = ∅. Proof: if ∅ is null, then ∅ ⊂ ∅. If ∅ is null then ∅ ⊂ ∅. ∴ ∅ = ∅.

A singleton set is a set with exactly one element. For example, S = {a}. Result: every singleton set has
exactly two subsets, the ∅ set and the subset itself. Result: ∅ has one subset, ∅.

Example: S = {a, b}. The subsets are ∅, S, {a}, {b}. (22).

Example: S = {a, b, c} has 8 choices (23).

Example: S = {x1, x2, ..., xn} has 2n.

A set with n elements has 2n subsets.

Homework: page 79, 1-4 all, section 2.2 omit; section 2.3 page 84 1, 3, 4, 5.

Quiz # 3 — Friday October 9. 1 proof from Section 1.5. 2-3 problems from Sections 2.1 and 2.3.

Exam # 2 — Friday October 16. Section 1.5, 2.1, 2.3, 2.4.

1.2.1 Exam 2

1. Prove each of the following assertions using the method indicated.

(a) The cube of an even integer is even. Direct proof. Solution: If x is even, then x3 is even. Assume
x is even,
⇒ x = 2k where k is an integer
⇒ x3 = (2k)3

⇒ x3 = 8k3

⇒ x3 = 2(4k3) where 4k3 ∈ Integer
∴ x3 is even.

(b) If x is an odd integer, then x2 is odd. Proof by contradiction. Solution: ¬(x odd ⇒ x2 odd)
⇔ ¬(¬x odd ∨x2 odd)
⇔ x odd ∧¬x2 odd
⇔ x odd ∧x2 even
Let x = 2k+ 1 where k ∈ Integer
Then, x2 = (2k + 1)2 = 4k2 + 4k + 1 = 2(2k2 + 2k) + 1
where 2k2 + 2k ∈ Integer
∴ x2 is odd which contradicts x2 even.
∴ x2 is even.

(c) There is a prime number which is not odd. Constructive existence. Solution: Find a prime x such
that x = 2k. 2 is an even prime number.

(d) If x2 is an odd integer, then x is an odd integer. Indirect proof. Solution: if x is not odd, then x2

is not odd. Assume x is not odd ⇒ x is even
⇒ x = 2k where k ∈ Integer
⇒ x2 = (2k)2

⇒ x2 = 4k2

⇒ x2 = 2(2k2) where 2k2 ∈ Integer

1.2. SETS 25

∴ x2 is even.
∴ x2 is not odd.

2. Give all subsets of {∅, {1}, 2}. Solution: 23 = 8. ∅, {∅}, {{1}}, {2}, {∅, {1}}, {∅, 2}, {{1}, 2}, and
{∅, {1}, 2}.

3. Draw a Venn diagram for (A− B) ∪C. See Figure 1.1.

Figure 1.1: Venn diagram for problem 3a on Exam 2.

Figure 1.2: Venn diagram for problem 3b on Exam 2.

(a) Draw a Venn diagram for (B ∪C) ∩A. See Figure 1.2.

4. Let U = {5, 6, 7, ..., 15}, A = {5, 9, 10, 11, 14}, B = {5, 7, 8, 9, 11, 15}, and C = {6, 7, 9, 10,14,15}. Give
each of the following sets.

(a) A ∩B. Solution: A = {6, 7, 8, 12,13, 15}. A ∩B = {7, 8, 15}.

(b) C − (A ∪B). Solution: A ∪B = {5, 7, 8, 9, 10, 11, 14,15}. C − (A ∪B) = {6}.

(c) (A ∩C). Solution: A ∩C = {9, 10, 14}. (A ∩C) = {5, 6, 7, 8,11,12,13,15}.

5. Prove the following identities.

(a) A− ∅ = A. Solution: Let x ∈ A − ∅ ⇔ x ∈ A ∧ x ∈ ∅ ⇔ x ∈ A ∧ 1⇔ x ∈ A. ∴ A− ∅ = A.

(b) A∪(A∩B) = A∪B. Solution: Let x ∈ A∪(A∩B). Then, x ∈ A∨x ∈ (A∩B)⇔ x ∈ A∨(x /∈ A∧x ∈
B) ⇔ (x ∈ A ∨ x /∈ A) ∧ (x ∈ A ∨ x ∈ B)⇔ 1 ∧ (x ∈ A ∨ x ∈ B)⇔ x ⊂ A ∨ x ∈ B ⇔ x ∈ A ∪B
∴ A ∪ (A ∩B) = A ∪B.

1.2.2 Quiz 3

1. Probe the following assertion by using a direct proof: The product of an even integer and an odd
integer is even. Solution:
x is even ∧y is odd ⇒ x · y even
x even ∧ y odd ⇒
x = 2k where k ∈ I
y = 2n+ 1 where n ∈ I
 x · y = 2k(2n+ 1)
⇒ x · y = 4kn+ 2k

26 CHAPTER 1. DISCRETE STRUCTURES

⇒ x · y = 2(2kn+ k)
⇒ (2k + k) ∈ I
∴ x · y even.

2. List all subsets of {{2}, 5}. Solution: ∅, {{2}, 5}, {{2}}, {5}.

3. Let S = {4, 5, 9, 12, 14, 20}. How many subsets does S have? Solution: 26 = 64 subsets.

4. Disprove the following statements by finding a counterexample for each.

(a) (A ∈ B ∧B /∈ C)⇒ A /∈ C. Solution: A ∈ B ∧B /∈ C ∧A ∈ C.

(b) (A ⊂ B ∧A ⊂ C)⇒ B ⊂ C. Solution: A = {1}, B = {1, 2, 3}, C = {1, 2, 4}.

1.2.3 Operations on Sets

The union of sets A and B is A ∪ B = {x|x ∈ A ∨ x ∈ B}. The intersection of sets A and B is
A ∩B = {x|x ∈ A ∧ x ∈ B}. The diÿerence of sets A and B is A −B = {x|x ∈ A ∧ x /∈ B}.

Example: A = {1, 2, 3, 4, 5}. B = {2, 4, 6}. A ∪B = {1, 2, 3, 4,5, 6}. A ∩B = {2, 4}. A −B = {1, 3, 5}.

Sets A and B are called disjoint if they have no elements in common. A ∩B = ∅. A collection, C, of sets in
which any two elements are disjoint is called a collection of pairwise disjoint sets.

Example: C = {{1, 2, 3}, {4},{5,6}}.

The union and intersection are both commutative and associative operations. A∪B = B∪A is commutative.
A∩B = B ∩A is commutative. A∪ (B ∪C) = (A ∪B) ∪C is associative and A∩ (B ∩C) = (A∩B) ∩C is
associative. Proof:
Show that A ∩B = B ∩A.
x ∈ A ∩B ⇔ x ∈ A ∧ x ∈ B.
⇔ x ∈ B ∧ x ∈ A.
⇔ x ∈ B ∩A.

Recall:

1. R ⊂ S ⇔ x ∈ R⇒ x ∈ S.

2. If R ⊂ S and S ⊂ R, then R = S.

The union and intersection distribute over each other. A∪ (B ∩C) = (A∪B) ∩ (A∪C) and A ∩ (B ∪C) =
(A ∩B) ∪ (A ∩C). Proof:
A ∪ (B ∩C) = (A ∪B) ∩ (A ∪C)
x ∈ A ∪ (B ∩C)⇔ x ∈ A ∨ x ∈ (B ∩C)
⇔ x ∈ A ∨ [x ∈ B ∧ x ∈ C]
⇔ (x ∈ A ∨ x ∈ B) ∧ (x ∈ A ∨ x ∈ C)
⇔ x ∈ (A ∨B) ∧ x ∈ (A ∪C)
⇔ x ∈ (A ∪B) ∩ (A ∪C)
∴ A ∪ (B ∩C) = (A ∪B) ∩ (A ∪C)

Page 88, Theorem 2.43: Show that A ∪ ∅ = A. Proof:
x ∈ (A ∪ ∅)⇔ x ∈ A ∨ x ∈ ∅.
⇔ x ∈ A ∨ ∅.
⇔ x ∈ A.
∴ A ∪ ∅ = A.

1.2. SETS 27

Theorem: A −B ⊂ A. Proof:
x ∈ A −B ⇔ x ∈ A ∧ x /∈ B.
⇒ x ∈ A.
∴ A −B ⊂ A.

Theorem: A ⊂ A ∪B. Proof:
x ∈ A⇒ x ∈ A ∨ x ∈ B.
⇔ x ∈ A ∪B.
∴ A ⊂ A ∪B.

1.2.4 Homework and Answers

Section 2.1, page 79 1-4 in the textbook.

1. Specify the following sets explicitly.

a. The set of non-negative integers less than 5. Solution: {0, 1, 2, 3, 4}.

b. The set of letters in your first name. Solution: {r, o, g, e, r}.

c. The set whose only element is the first president of the United States. Solution: {washington}.

d. The set of prime numbers between 10 and 20. Solution: {11, 13, 17, 19}.

e. The set of positive multiples of 12 which are less than 65. Solution: {12, 24, 48, 60}.

2. For each of the following, choose an appropriate universe of discourse and a predicate to define the set.
Do not use ellipses.

a. The set of integers between 0 and 100. Solution: {x|x > 0 ∧ x < 100}.

b. The set of odd integers. Solution: {x|∃y[x = 2y + 1]}.

c. The set of integer multiples of 10. Solution: {x|∃y[x = 10y]}.

d. The set of human fathers. Solution: U = all humans. {x|x is a father }.

e. The set of tautologies. Solution: U = tautalogies.

3. List the members of the following sets.

a. {x|x ∈ I ∧ 3 < x < 12}. Solution: {4, 5, 6, 7,8,9, 10, 11}.

c. {x|x = 2 ∨ x = 5}. Solution: {2, 5}.

4. Determine which of the following sets are equal. The universe of discourse is I. A = {x|x is even and
x2 is odd}. B = {x|∃y[y ∈ I ∧ x = 2y]}. C = {1, 2, 3}. D = {0, 2,−2, 3, 4,−4, ...}. E = {2x|x ∈ I}.
F = {3, 3, 2, 1,2}. G = {x|x3−6x2−7x−6 = 0}. Solution: A = ∅. B = {−4,−2, 0, 2, 4}. C = {1, 2, 3}.
D = {0, 2,−2, 3,−3,4,−4, ...}. E = evens. F = {3, 2, 1}. G = ∅. Result p

a
where p is a factor of a0 and

a is a factor of an. B = E, C = F, and A = G.

1.2.5 Homework and Answers

Page 84: Section 2.3, problems 1, 3, 4, 5 in the textbook.

1. List all alphabets of the following sets.

a. {1, 2, 3}. Solution: 23 = 8. {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}, ∅.

28 CHAPTER 1. DISCRETE STRUCTURES

b. {1, {2, 3}}. Solution: 22. ∅, {1}, {{2, 3}}, {1, {2, 3}}.

c. {{1, {2, 3}}}. Solution: ∅, {{1, {2, 3}}.

d. ∅, Solution: {∅}.

e. {∅, {∅}}, Solution: ∅, {∅}, {{∅}}.

3. Let A, B and C bet sets. If A ∈ B and B ∈ C, is it possible that A ∈ C? Is it always true that A ∈ C?
Give examples to support your assertions. Solution: Yes A = {1}. No B = {2, {5, 6},{1}}. Not always
true C = {{1}, {2, {5, 6}}}. A ∈ B, B ∈ C. ∴ A ∈ C.

5. Briefly describe the diÿernce between the sets {2} and {{2}}. List the elements and all the subsets of
each set. Solution: {2} contains the element 2. {{2}} contains the set {2}. The type of element is
diÿerent. The set {2} has the subsets ∅, {2}. The set {{2}} has the subset {2}.

1.2.6 Homework and Answers

Page 88 Theorem 2.4.3 prove parts (m), (n), and (p).

m. Prove A ∩ (B − A) = ∅. Solution:
x ∈ A ∩ (B − A)⇔
x ∈ A ∧ x ∈ (B −A)⇔
x ∈ A ∧ (x ∈ B ∧ x /∈ A)⇔
(x ∈ A ∧ x /∈ A) ∧ x ∈ B ⇔
0 ∧ x ∈ B ⇔
0⇔
x ∈ ∅
∴ A ∩ (B − A) = ∅.

n. Prove A ∪ (B − A) = A ∪B. Solution:
x ∈ A ∪ (B − A)⇔
x ∈ A ∨ x ∈ (B −A)⇔
x ∈ A ∨ (x ∈ B ∧ x /∈ A)⇔
(x ∈ A ∨ x ∈ B) ∧ (x ∈ A ∨ x /∈ A)⇔
(x ∈ A ∨ x ∈ B) ∧ 1⇔
x ∈ A ∨ x ∈ B
x ∈ (A ∪B).

p. Prove A− (B ∩C) = (A− B) ∪ (A− C). Solution:
x ∈ A − (B ∩C)⇔
x ∈ A ∧ x /∈ (B ∩C)⇔
x ∈ A ∧¬x ∈ (B ∩C)⇔
x ∈ A ∧¬(x ∈ B ∧ x ∈ C)⇔
x ∈ A ∧ (¬x ∈ B ∨¬x ∈ C)⇔
(x ∈ A ∧ ¬x ∈ B) ∨ (x ∈ A ∧¬x ∈ C)⇔
(x ∈ A ∧ x /∈ B) ∨ (x ∈ A ∧ x /∈ C)⇔
(x ∈ (A −B)) ∨ (x ∈ (A− C))⇔
x ∈ (A −B) ∪ (A −C)⇔
∴ A− (B ∩C) = (A− B) ∪ (A− C).

1.2. SETS 29

1.2.7 Complement of Sets

Let A ⊂ U. Then, the complement of A is denoted by Ā and is given by Ā = U − A = {x|x /∈ A}.

Example: Let U = {1, 2, 3, 4, 5} and A = {2, 5}. Then, Ā = {1, 3, 4}.

Let A ⊂ U. Then the following statements are true:

1. A ∪ Ā = U.

2. A ∩ Ā = ∅.

Proof: A ∪A = U.
x ∈ A ∪A⇔
x ∈ A ∨ x ∈ A⇔
x ∈ A ∨ x /∈ A⇔
1⇔
x ∈ U.
∴ A ∪A = U.

Proof: A ∩A = ∅. Let A ⊂ U ∧B ⊂ U. Then, B = A iÿ A ∪B = U ∧A ∩B = ∅. Proof (only part):
If B = A, then A ∪B = A ∪A = U ∧A ∩B = A ∩A = ∅. If A ∪B = U ∧A ∩B = ∅, then B = A.
B = U ∩B
= (A ∪A) ∩B
= (A ∩B) ∪ (A ∩B)
= ∅ ∪ (A ∩B)
= (A ∩A) ∪ (A ∩B)
= A ∩ (A ∪B)
= A ∩ U
= A.

Let A ⊂ U. Then, A = A.

1.2.8 Venn Diagrams

Figure 1.3: Venn diagram of the intersection of two sets being the null value.

30 CHAPTER 1. DISCRETE STRUCTURES

Figure 1.4: Venn diagram of the intersection of two sets.

Figure 1.5: Venn diagram of the union of two sets.

Figure 1.6: Venn diagram of a complicated intersection.

1.2. SETS 31

Figure 1.7: Venn diagram of a complicated negation.

Figure 1.8: Venn diagram of negation and union.

32 CHAPTER 1. DISCRETE STRUCTURES

This section covers Venn diagrams and De’Morgan’s laws. Let A ⊂ U ∧ B ⊂ U. Then, the following are
De’Morgan’s Laws:

1. A ∪B = A ∩B.

2. A ∩B = A ∪B.

Venn diagrams are used to represent set operations. See Figures 1.3 thru 1.8.

Do problems 1a, b and 10 on page 92.

1.2.9 Homework and Answers

Page 92 of the textbook.

Figure 1.9: Venn diagram of Problem 1a A ∩B = A ∪B.

Figure 1.10: Venn diagram of Problem 1a A− (B ∪C).

1. Construct Venn diagrams for each of the following.

1.2. SETS 33

Figure 1.11: Venn diagram of Problem 1a A ∩ (B ∪C).

Figure 1.12: Venn diagram of Problem 1b (i).

Figure 1.13: Venn diagram of Problem 1b (ii).

34 CHAPTER 1. DISCRETE STRUCTURES

Figure 1.14: Venn diagram of Problem 1b (iii).

a. A ∪ B. Solution: See Figure 1.5. A ∩ B = A ∪B. See Figure 1.9. A − (B ∪C). See Figure 1.10.
A ∩ (B ∪C). See Figure 1.11.

b. Give a formula which denotes the shaded portion of each of the following Venn diagrams. Solution:
See Figure 1.12. (i) (B ∩C)−A. See Figure 1.13. (ii) (A ∪B ∪C)∪ (A∩B∩C). See Figure 1.14. (iii)
∅.

10. Prove the following identities.

a. A ∪ (A ∩B) = A. Solution:
x ∈ A ∪ (B ∩A)
x ∈ (A ∨ (B ∧A))
x ∈ (A ∨B) ∧ x ∈ (A ∨A)
x ∈ (A ∨B) ∧ x ∈ A
x ∈ (A ∧A) ∨ x ∈ (A ∧B)
x ∈ A ∨ x ∈ (A ∧B).

b. A ∩ (A ∪B) = A. Solution:
x ∈ A ∩ (A ∪B)
x ∈ A ∧ x ∈ (A ∨B)
(x ∈ A ∧ x ∈ A) ∨ (x ∈ A ∧ x ∈ B)
x ∈ A ∨ x ∈ (A ∧B)
x ∈ A
∴ A.

c. A− B = A ∩B. Solution:
x ∈ A −B
x ∈ A ∧ x /∈ B
x ∈ A ∩B
A ∩B.

d. A ∪ (A ∩B) = A ∪B. Solution:
x ∈ A ∪ (A ∩B)
x ∈ A ∨ (x /∈ A ∧ x ∈ B)

1.2. SETS 35

(x ∈ A ∨ x /∈ A) ∧ (x ∈ A ∨ x ∈ B)
1 ∧ x ∈ (A ∨B)
x ∈ (A ∪B)
(A ∪B).

e. A ∩ (A ∪B) = A ∩B. Solution:
x ∈ A ∩ (A ∪B)
x ∈ A ∩ x ∈ (A ∪B)
x ∈ A ∩ (x /∈ A ∪ x ∈ B)
x ∈ A ∧ (x /∈ A ∨ x ∈ B)
(x ∈ A ∧ x /∈ A) ∨ (x ∈ A ∧ x ∈ B)
0 ∨ (x ∈ A ∧ x ∈ B)
x ∈ (A ∧B)
x ∈ (A ∩B)
A ∩B.

1.2.10 Generalized Unions and Intersections

Test on Section 1.5. Direct proof, indirect proof, vacuous proof, trivial proof, contradition proof, constructive
proof. Section 2.1, 2.3 and 2.4. Set operations, subsets and Venn diagrams. Prove page 88 but not f and g.

If C is a non-empty collection of subsets of U, then

1. The union of the elements of C is ∪s∈CS = {x|∃s[s ∈ C ∧ x ∈ S}.

Example: C = {{1, 2, 3}, {3,4},{2,5,8}}. ∪s∈CS = {1, 2, 3, 4,5, 8}.

2. The intersection of the elements of C is ∩s∈CS = {x|∀s s ∈ C ⇒ x ∈ S}.
Also, ∩s∈CS = ∅.

The power set of a set A is denoted by P (A) and is the set of all subsets of A.

Example: A = {a, b}. P (A) = {∅, {a, b}, {a},{b}}.

Do problems 11, 14, and 15 on page 94 in the textbook.

1.2.11 Induction

Inductively defined sets are all infinite. An inductive definition has 3 components:

1. The basis clause — it establishes that certain elements are in the set.

2. The inductive clause — this describes how elements of the set can be combined to form new elements
of the set.

3. The extremal clause — this asserts that the only elements in the set are those which can be generated
by applying clauses (1) and (2) a finite number of times.

Example: Define the set of even, non-negative integers E = {0, 2, 4, 6, ...}.

1. Basis — 0 ∈ E.

2. Inductive — If n ∈ E, then n+ 2 ∈ E.

36 CHAPTER 1. DISCRETE STRUCTURES

3. Extremal — All elements in E can be generated by a finite number of applications of caluses (1) and
(2).

Prove that 8 ∈ E. Solution:
0 ∈ E. Basis
0 ∈ E ⇒ 0 + 2 ∈ E. Inductive
2 ∈ E ⇒ 2 + 2 ∈ E. Inductive
4 ∈ E ⇒ 4 + 2 ∈ E. Inductive
6 ∈ E ⇒ 6 + 2 ∈ E. Inductive

An alphabet denoted by Σ is a finite non-empty set of symbols or characters. A word or a string over Σ is a
string of finite number of symbols from Σ.

Example: If x = a1a2 · · ·an is a string over sigma (Σ), the length of x is n.

The null string or empty string is denoted by Λ and is the string of length 0. If x and y are strings over
Σ and x = a1a2 · · ·an and y = b1b2 · · ·bm, then x concatenated with y is denoted by xy is the string
xy = a1a2 · · ·anb1b2 · · ·bm. Note that concatenation is not commutative. If Σ is an alphabet, then Σ+

denotes a set of all non-empty strings over sigma (Σ).

1. Basis — if a ∈ Σ, then a ∈ Σ+.

2. Inductive — if x ∈ Σ+, and a ∈ Σ, then ax ∈ Σ+.

3. Extremal — Σ+ contains only those strings which can be generated by a finite number of applications
of (1) and (2).

Example: Σ = {a, b}. Prove babba ∈ Σ+. Go right-to-left.
a ∈ Σ+. Basis
ba ∈ Σ+. Inductive
bba ∈ Σ+. Inductive
abba ∈ Σ+. Inductive
babba ∈ Σ+. Inductive

The transitive closure Σ∗ of Σ is the set of all finite length strings over Σ. Σ∗ = Σ+ ∪ {Λ}. The inductive
definition of Σ∗ is as follow:

1. Basis — Λ ∈ Σ∗.

2. Inductive — If x ∈ Σ∗ and a ∈ Σ, then ax ∈ Σ∗.

3. Extremal — The same.

For any string x over Σ, xΛ = Λx = x.

Example: Σ = {a, b}. Σ∗ = {Λ, aΛ, bΛ, ...}.

1.2.12 Inductive Definition of Sets

This section covers the bottom of page 97 of the textbook and page 98, part A.

Let S equal to well formed arithmetic expressions. S = {0, 1, 2, ...,9,10,11,12,13, ..., (+0), (2 + 9),

31
42

,

(2 + 0×

31
42

, ...}. Part B: V = {P,Q,R, ...}.. Basis: {0, 1, P,Q,R, (P ∨Q), (¬(P ∨Q)).

Inductive proofs: These are proofs of assertions of the form ∀xP (x). The universe is inductively defined.
The proofs have 2 parts:

1.2. SETS 37

1. Basis — show that P (x) is true for all elements in the basis part of the definition.

2. Induction — show that every element obtained using the indutive clause of the difinition satisfies P (x)
of all elements used in its construction also satisfies P (x).

Example: Let U = natural numbers = {0, 1, 2, ...}. The natural numbers N are defined as follow:

1. 0 ∈ N.

2. If n ∈ N, then n + 1 ∈ N.

3. Same.

To use this definition to prove ∀xP (x), show that

1. P (0) is true

2. Show ∀n[P (n)⇒ P (n+ 1)].

This is called the first principle of mathematical induction.

Example: ∀n ∈ N.
n

i=0 i =
n(n+1)

2 . Proof:

1. If n = 0,
0

i=0 =
0(1)
2 = 0 = 0.

2. Assume P (n) is true. Show that P (n+ 1) is also true.

n+1

i=0

i = (n+ 1) +

n

i=0

i =

2(n+ 1)

2
+
n(n+ 1)

2
=

2(n+ 1) + n(n+ 1)

2
=

(n+ 1)(n + 2)

2

∴ ∀nP (n).

For the first principle of mathematical induction over natural numbers:

(a) Show that P (0) is true.

(b) Assume P (n) is true, then show P (n+ 1) is true.

Applied to binary trees, this gives the following result. If a binary tree has n nodes, then there are
n+ 1 nil pointers. Proof:

(a) If n = 1, then there are 2 nil pointers.

(b) Assume if there n nodes, then there are n + 1 nil pointers. Show if there are n + 1 nodes then
there are n + 2 nil pointers. Add 1 node to a tree with n nodes. The original tree had n + 1 nil
pointers. By adding 1 node, one nil pointer is lost, but 2 nil pointers are gained. So, the total
gain is 1 nil pointer. ∴ There are now n+ 2 nil pointers.

38 CHAPTER 1. DISCRETE STRUCTURES

The second principle of induction: Assume P (k) is true for all k < n. Show that P (n) is also true.

procedure inorder(p: pointer);
begin
if p <> nil then
begin
inorder(p↑ .left);
process(p);
inorder(p↑ .right);
end;
end;

Prove that the procedure INORDER correctly visits the nodes in a tree of size n. Proof: Assume that
INORDER works correctly on all trees with fewer than n nodes. Each node has at most n − 1 nodes.

1.2.13 Set Operations on Σ
∗

Set operations on Σ∗, where Σ∗ is equal to the set of all finite length strings over Σ (chosen characters).
Note that Λ ∈ Σ∗. Let x ∈ Σ∗ and n ∈ N, then

(a) Basis — x0 = Λ.

(b) Induction — xn+1 = xnx.

Example: Σ = {a, b, c}. Choose x = abc ∈ Σ∗.
x0 = (abc)0 = Λ
x1 = x0 · x = Λ · x = abc
x2 = x1 · x = abc · abc = abcabc.

Example: {(a, b)n|n ≥ 0} = {Λ, ab, abab, ababab, ...}.

Example: {(anbn|n ≥ 0} = {Λ, ab, aabb, aaabbb, ..., }.

Let Σ be a finite alphabet. Then a language over Σ is any subset of Σ∗.

Example: Σ = {a, b, c}. Let A = {ab, acc, b, ca}. A is a language over Σ.

Σ is equal to the set of ASCII characters. Σ∗ is equal to all finite strings of ASCII characters. Let A
equal to the set of all legal Pascal commands or programs. If A and B are languages over Σ, then the
set product of A with B is the language consisting of all strings formed by concatinating an element of
A with an element of B.

Example: Σ = {a, b, c}. A = {a, bc}. B = {Λ, b, ac}. Then, AB = {a, ab, aac, bc, bcb, bcac}. Also,
AB = BA.

Quiz on Monday: Induction and sets. Don’t have to know Section 2.7.1 on 113. Know Section 2.7.3
on page 115. Have to know 1 induction proof like the one on page 107 #4 and 6. Given an induction
definition — work with it — prove an element is in the set. Know Section 2.5 and 2.7

1.2.14 Homework and Answers

Page 106 - 107, 1, 3, 4, 6a, b, c in the textbook.

1.2. SETS 39

1. Give inductive definitions for the following sets.

a. The set of unsigned integers in decimal representation. The defined set should include 4, 167,
0012, etc. Solution: Unsigned integers equals to S. Basis: let D = {0, 1, 2, ...,9}. If d ∈ D, then
d ∈ S. Induction: If x ∈ S, and d ∈ D, then xd ∈ S. External: 271 is an unsigned integer. So,
Step:

(a) 2 ∈ S.

(b) 2 ∈ S, 7 ∈ D ⇒ 27 ∈ S.

(c) 27 ∈ S, 1 ∈ D ⇒ 271 ∈ S.

b. The set of real numbers with terminating fractional parts in decimal representation. The defined
set should include 6.1, 712., 01.2100, 0.190, etc. Solution: Real number with terminating frac-
tional parts equal to S. Basis: let D = {0, 1, 2, ...,9}. If d ∈ D, then d· ∈ S and ·d ∈ S. Induction:
If x ∈ S and d ∈ D, then xd ∈ S and dx ∈ S. Extremal: consider 21.68. So,
Step:

(a) 1. ∈ S.

(b) 1. ∈ S ∧ 2 ∈ D ⇒ 21. ∈ S.

(c) 21. ∈ S ∧ 6 ∈ D ⇒ 21.6 ∈ S.

(d) 21.6 ∈ S ∧ 8 ∈ D ⇒ 21.68 ∈ S.

3. Give an inductive definition of n! and use it to prove the identity

n! =

n

i=1

i.

Solution: n! = n(n− 1)(n − 2) · · ·3 · 2 · 1. Basis: 1! = 1. Induction: show
n+1

i=1 i = (n + 1)!

n+1

i=1

i = (n+ 1)

n

i=1

i =

(n+ 1)n! =

(n+ 1)!

4. Prove by induction that (1 + 2+ 3+ · · ·+ n)2 = 13 + 23 + 33 + · · ·+ n3 for all n ∈ I + . Solution:
Proof basis case. n = 1, P (1) = 12 = 13 = 1. Induction: Assume P (n) is true. Show P (n+ 1) is
true.

P (n+ 1) =

(1 + 2+ · · ·+ n+ (n+ 1))2 =

(13 + 23 + 33 + · · ·+ (n+ 1)3) =

(1 + 2+ · · ·+ n+ 1)2 =

((1 + 2 + · · ·+ n) + (n+ 1))2 =

(1 + 2+ 3 + · · ·+ n)2 + 2(1 + 2 + · · ·+ n)(n+ 1) + (n+ 1)2 =

13 + 23 + · · ·+ n3 +
2n(n+ 1)(n+ 1)

2
+ (n + 1)2 =

13 + 23 + · · ·+ n3 + n(n+ 1)2 + (n+ 1)2 =

13 + 23 + · · ·+ n3 + (n+ 1)2(n+ 1) =

13 + 23 + · · ·+ n3 + (n+ 1)3.

40 CHAPTER 1. DISCRETE STRUCTURES

6. Prove each of the following relationships for all n ∈ N.

a.
n

i=0 i
2 = n(n+1)(2n+1)

6 . Basis: n = 0.
0

i=0 i
2 = 0(0+1)(0+1)

6 = 0 = 0. Induction: Assume
n

i=0 i
2 =

n(n+1)(2n+1)
6 . Show that

n+1
i=0 i

2 =
(n+1)(n+2)(2n+3)

6 .

n+1

i=0

i2 = (n+ 1)2 +

n

i=0

i2 =

(n+ 1)2 +
n(n+ 1)(2n+ 1)

6
=

6(n+ 1)2

6
+
n(n+ 1)(2n+ 1)

6
=

6(n+ 1)2 + n(n+ 1)(2n+ 1)

6
=

(n+ 1)[6(n+ 1) + n(2n+ 1)]

6
=

(n+ 1)[6n+ 6 + 2n2 + n]

6
=

(n+ 1)[2n2 + 7n+ 6]

6
=

(n+ 1)(n+ 2)(2n+ 3)

6
.

b.
n

i=0(2i+1) = (n+1)2 = P (n). Solution: For the basis case, show that P (0) = 0.
0

i=0(2i+1) =
(0 + 1)2, 1 = 1. For the induction case, show P (n+ 1) is also true.

P (n+ 1) =

n+1

i=0

(2i+ 1) = (n+ 2)2

n+1

i=0

(2i + 1) = (2(n+ 1) + 1) +

n

i=0

2i + 1 =

(2n+ 3) + (n+ 1)2

2n+ 3 + n2 + 2n+ 1 =

n2 + 4n+ 4 =

(n+ 2)2.

c.
n

i=0 i(i!) = (n+ 1)!− 1. Solution: Show
n

i=0 i(i!) = (n+ 1)!− 1. Basis: if n = 0,
0

i=0 i(i!) =
(0 + 1)! − 1 = 0(0!) − 1 = 0 = 0. Induction: Assume that

n

i=0 i(i!) = (n + 1)! − 1. Show
n+1

i=0 i(i!) = (n + 2)!− 1.

n+1

i=0

i(i!) =

(n+ 1)(n+ 1)! +

n

i=0

i(i!) =

(n+ 1)(n+ 1)! + (n+ 1)!− 1 =

(n+ 1)![(n+ 1) + 1]− 1 =

(n+ 1)![(n+ 2)]− 1 =

(n+ 2)!− 1.

1.3. BINARY RELATIONS 41

1.3 Binary Relations

An ordered n−tuple is a sequence of n objects denoted by < a1, a2, ..., an > where ai represents the i
th com-

ponent of the n tuple. If n = 2, we have an ordered pair. If n = 3, we have an ordered triple. The Cartesian
product of sets A1, A2, ... An is denoted by A1×A2×A3×· · ·×An and is given by {< a1, a2, ..., an > |ai ∈ Ai}.

Example: A = {2, 4}. B = {a, b, c}. A × B = {< 2, a >,< 2, b >,< 2, c >,< 4, a >,< 4, b >,< 4, c >}.
B × A = {< a, 2 >,< b, 2 >,< c, 2 >,< a, 4 >,< b, 4 >,< c, 4 >}. A × B = B × A. Let C = {6}.
ABC = A× B × C = {< 2, a, 6 >,< 2, b, 6 >,< 2, c, 6 >,< 4, a, 6 >,< 4, b, 6 >,< 4, c, 6 >}. A2 = A × A =
{< 2, 2 >,< 2, 4 >,< 4, 2 >,< 4, 4 >}. An = A× A×A × · · · ×A.

 equals to the real numbers. 2 = R × R = {< x, y > |x, y ∈ }. A relation, R, is an n−ariry relation on
n

i=1Ai if R is a subset of
n

i=1Ai. If R = ∅, then we say R is the empty relation. If R =
n

i=1Ai, then we
say R is the universal relation. If n = 1, then R is a unary relation. If n = 2, then R is a binary relation. If
R is a binary relation on A, then R ⊂ A × A. Let P be a predicate. Define P as P < a1, a2, a3, ..., an > is
true iÿ < a1, a2, ..., an >∈ R.

Example: Let A = natural numbers = {0, 1, 2, ...}. Let P (x, y) mean x < y. P corresponds to a binary
relation on A. R = {< x, y > |x < y}.

Some notation: < a, b >∈ R is donoted by a R b. Read page 124 and the top of page 125 in the textbook.
There are 4 examples. Define < (less-than relation). Basis: 0 < 1. Induction: if x < y, then x < y + 1.
x+ 1 < y + 1.

R is a binary relation on set A if R ⊂ A ×A. {< x, y > |x, y ∈ A}.

1.3.1 Graph Theory

A directed graph (digraph) is an ordered pair of the form D =< A,R > where A is a set and R is a binary
relation on A. R ⊂ A×A. Elements of A are the nodes or vertices of the graph. Elements of R are the edges
or arcs or lines of the graph. We will assume that A is finite. If < x, y >∈ R, then we write x R y. This will
mean that there is an arrow from x to y in the graph.

Example: A = {a, b, c}. R = {< a, b >,< b, c >,< c, c >}. G :< A,R > is a graph.

To represent a graph in a computer:

1. Incidence matrix

a b c
a 0 1 0
b 0 0 1
c 0 0 1

This representation takes alot of space.

2. Adjacency list

An edge orginates at a and terminates at b. A = {a, b, c}. D =< A,R > . R ⊂ A × A. R = {< a, b >,<
a, c >,< b, a >,< b, c >,< c, c >}. Let D =< A,R > be a directed graph with a, b ∈ A. An undirected path
P from a to b is a finite sequence of verticies such that P =< c0, c1, c2, ..., cn > such that 3 things are true:

1. c0 = a.

2. cn = b.

42 CHAPTER 1. DISCRETE STRUCTURES

3. Either ci R ci+1 or ci+1 R ci, ∀0 ≤ i ≤ n. The latter is not in directed graphs. The path from b to c
for undirected graphs is < b, c >,< b, a, c >,< b, a, b, c, c > . The path from c to b is undirected.

If P is a directed path from a to b then:

1. Vertex a is the initial vertex. Vertex b is the terminal vertex.

2. The length of the path is n edges.

3. If all the verticies of P are distinct except possibly c0 and cn, then P is a simple or cordless path.

4. If c0 = cn, then P is a cycle.

Figure 1.15: Diagram of a disconnected, strongly connected, and connected graphs.

Figure 1.16: Diagram of a complete graph.

Digraph D =< A,R > is strongly connected if for all verticies, ∀a, b ∈ A, there is a directed path from a to
b and from b to a. D is connected if ∀a, b ∈ A there is an undirected path from a to b. D is disconnected if
there exist verticies a, b ∈ A such that there is no undirected path between a and b.

Example: See Figure 1.15.

D is complete over A if R = A× A. See Figure 1.16.

Let R be a binary relation on set A. R ⊂ A× A. Then,

1. R is reflexive if x R x ∀x ∈ A. Loops.

1.3. BINARY RELATIONS 43

Figure 1.17: Diagram A for problem 2 on page 130 in the textbook.

Figure 1.18: Diagram B for problem 2 on page 130 in the textbook.

Figure 1.19: Diagram of the solution to homework question 3a on page 130 in the textbook.

Figure 1.20: Diagram of the solution to homework question 3b on page 130 in the textbook.

44 CHAPTER 1. DISCRETE STRUCTURES

2. R is irreflexive if x R/ x ∀x ∈ A. No loops.

3. R is symmetric if x R y ⇒ y R x∀x, y ∈ A. 2 edges.

4. R is antisymmetric if (x R y ∧ y R x)⇒ (x = y)∀x, y ∈ A. No double edges.

5. R is transitive if (x R y ∧ y R z)⇒ x R z∀x, y, z ∈ A.

Do problems on page 130, #1, 2a, b, c, 3, 4, 5, 6.

1.3.2 Homework and Answers

Problems on page 130 in the textbook. #1, 2a, b, c, 3, 4, 5, 6.

1. Let A = {0, 1, 2, 3, 4}. For each of the predicates given below, specify the set of n-tuples in the n-
ary relation over A which corresponds to the predicate. For parts (d) - (f), draw the diagram which
represents the relation.

a. P (x)⇔ x ≤ 1. Solution: R = {< 0 >,< 1 >}.

b. P (x)⇔ 3 > 2. Solution: {< 0 >,< 1 >,< 2 >,< 3 >,< 4 >}.

c. P (x)⇔ 2 > 3. Solution: Always false ∅.

e. P (x, y)⇔ ∃k[x = ky ∧ k < 2]. Solution: K = 0, 1. R = {< 0, 0 >,< 0, 2 >,< 0, 3 >,< 0, 4 >,< 1, 1 >
,< 2, 2 >,< 3, 3 >,< 4, 4 >}.

2. For the following digraphs A and B in Figures 1.17 and 1.18.

a. Find all simple paths from node a to node c. Give the path lengths. Solution: Graph A. < a, b, d, c > .
n = 3. Graph B {< a, c >}, {< a, b >,< b, c >}.

b. Find the indegree and outdegree of each node. Solution: GraphA. Indegree a 1, b 1, and c 1.Outdegree
a 1, b 1, and c 1. Graph B. Indegree a 3, b 3, and c 3. Outdegree a 3, b 3, and c 3.

c. Find all simple cycles with initial and terminal node a. Solution: Graph A : < a, bd, c, a >,< a > .
Graph B : {< a, b, c, a >} {< a, c, b, a >}.

3. For each of the following, sketch a digraph of the given binary relation on A. State whether the digraph
is disconnected, connected, or strongly connected and state how many components the digraph has.

a. [< 1, 2 >,< 1, 3 >,< 2, 4 >] where A = {1, 2, 3, 4}. Solution: Connected. See Figure 1.19.

b. [< 1, 2 >,< 3, 1 >,< 3, 3 >] where A = {1, 2, 3, 4}. Solution: Disconnected. See Figure 1.20.

c. [< x, y > |0 ≤ x < y ≤ 3] where A = {0, 1, 2, 3, 4}. Solution: Disconnected.

e. [< x, y > |0 ≤ x− y < 3] where A = {0, 1, 2, 3, 4}. Solution: R = {< 0, 0 >,< 1, 0 >,< 1, 1 >,< 2, 0 >
,< 2, 1 >,< 2, 3 >,< 3, 1 >,< 3, 2 >,< 3, 3 >,< 4, 2 >,< 4, 3 >,< 4, 4 >}.

4. Construct the incidence matrix for the following binary relation on [0, 1, 2, 3,4, 5, 6] : {< x, y > |x <
y ∨ x is prime }. Solution: Connected.

1 2 3 4 5 6 7 8

0 0 1 1 1 1 1 1
1 0 0 1 1 1 1 1
2 1 1 1 1 1 1 1
3 1 1 1 1 1 1 1
4 0 0 0 0 0 1 1
5 1 1 1 1 1 1 1
4 0 0 0 0 0 0 0

1.3. BINARY RELATIONS 45

5. For each of the following, give an inductive definition for the relation R on N. In each case, use your
definition to show x ∈ R.

a. R = {< a, b > |a ≥ b};x =< 3, 1 > . Solution: Basis: 0 ≥ 0 or < 0, 0 >∈ R or 0 R 0. Induction: if
x ≥ y, then x+ 1 ≥ y and x+ 1 ≥ y + 1. For example, prove that 5 ≥ 3.
0 ≥ 0 basis
1 ≥ 0
2 ≥ 0
3 ≥ 1
4 ≥ 2
5 ≥ 3.

b. R = {< a, b > |a = 2b};x =< 6, 3 > . Solution: Basis: < 0, 0 >∈ R. Induction: if < x, y >∈ R, then
< x+ 2, y + 1 >∈ R.

c. R = {< a, b, c > |a + b = c};x =< 1, 1, 2 > . Solution: Basis: < 0, 0, 0 >∈ R. Induction: If
< x, y, z >∈ R then < x+ 1, y, z + 1 >∈ R. If < x, y, z >∈ R then < x, y + 1, z + 1 >∈ R. Show that
< 2, 3, 5>∈ R.
< 0, 0, 0>∈ R
< 1, 0, 1>∈ R
< 2, 0, 2>∈ R
< 2, 1, 3>∈ R
< 2, 2, 4>∈ R
< 2, 3, 5>∈ R.

6. Let A = {1, 2, 3}.

a. List the unary relation on A. Solution: If R is a unary relation on A, then R ⊂ A. R = ∅. R = {< 1 >
,< 2 >,< 3 >}. R = {< 1 >}, {< 2 >}, {< 3 >}, {< 1, 2 >}, {< 1, 3 >}, {< 2, 3 >}.

b. How many binary relations are there on A? Solution: R ⊂ A × A is a binary relation. A × A has 9
elements. ∴ 29 subsets = 512.

1.3.3 Homework and Answers

Figure 1.21: Diagram to homework question 1a on page 147 in the textbook.

Figure 1.22: Diagram to homework question 1b on page 147 in the textbook.

Page 147 and 148 in the textbook.

46 CHAPTER 1. DISCRETE STRUCTURES

1. List the properties defined in Definition 3.3.1 which hold for the relations represented by the following
graphs.

a. See Figure 1.21. Solution: Not reflexive. Not irreflexive. Not symmetric. Antisymmetric. Transitive.

b. See Figure 1.22. Solution: Relfexive. Not irreflexive. Symmetric. Not antisymmetric. Transitive.

3. Consider the set of integers I. Fill in the following table with Yes and No according to whether the
relation possesses the property. The notation ∅ denotes the empty set, I × I is the universal relation,
and D denotes ”divides with an integer quotient” (e.g. 4D8 but 4D/7). Solution: D : R = {< x, y > |x
divides y}. For example, < 4, 8 >∈ R.
I × I ≤ D
Reflective Reflexive Not reflexive
Not Irreflective Not Irreflective Not Irreflective
Symmetric Not symmetric No
Not antisymmetric Antisymmetric No
Transitive Transitive Yes

1.3.4 Composition of Relations

Let R1 be a relation from A to B. R1 ⊂ A ×B. Let R2 be a relation from B to C. R2 ⊂ B × C. Then, the
composite relation from A to C is denoted by R1 ·R2 or R1R2 and is given by R1R2 = {< a, c > |a ∈ A∧ c ∈
C ∧ ∃b[b ∈ B∧ < a, b >∈ R1∧ < b, c >∈ R2]}.

Example: A = {0, 1, 2}. B = {a, b, c}. C = {y, z}. R1 = {< 0, a >,< 1, b >,< 1, c >,< 2, b >}.
R2 = {< a, 2 >,< b, y >,< b, z >,< c, y >}. R1R2 = {< 0, z >,< 1, y >,< 1, z >,< 2, y >,< 2, z >}. R2R1

is impossible.

If R1 ⊂ A × B ∧ R1 ⊂ B × C then R1R2 ⊂ A × C. R1R2 = {< a, c > |a ∈ A, c ∈ C, ∃b[b ∈ B∧ < a, b >∈
R1∧ < b, c >∈ R2]}. Let R be a binary relation on set A. Then, the nth power of R is denoted by Rn, is
defined by

1. R0 = {< x, x > |x ∈ A} i.e. R0 means ”=.”

2. Rn+1 = Rn ·R.

Example: A = {a, b, c}. R = {< a, b >,< a, c >,< b, b >,< c, a >}. R0 = {< a, a >,< b, b >,< c, c >}.
R1 = R0R = {< a, b >,< a, c >,< b, b >,< c, a >}. R2 = R1R = {< a, b >,< a, a >,< c, b >,< c, c >,<
b, b >}. R3 = R2R = {< a, b >,< a, c >,< b, b >,< c, b >,< c, a >}.

1.3.5 Closure Operations on Relations

Let R be a binary relation on set A. Then, the reflexive closure of R, r(R), is the relation R such that:

1. R is reflexive.

2. R is a super-set of R i.e. R ⊃ R.

3. R is the smallest relation which satisfies (1) and (2).

Example: A = {a, b, c, d}. R = {< a, b >,< b, b >,< b, d >,< c, c >,< d, a >}. R is not reflexive.
R = r(R) = {< a, b >,< b, b >,< b, d >,< c, c >,< d, a >,< a, a >,< d, d >}.

Let E be the binary relation of equality on any set A i.e. E = {< x, x > |x ∈ A}. Notice that r(R) = R∪E
by a computer.

1.3. BINARY RELATIONS 47

Figure 1.23: Diagram illustrating an example of adding arc to show the diÿerent relations.

Figure 1.24: Diagram illustrating an example of reflexive, antisymmetric, transitive, and partial order.

Example: A = {a, b, c, d}. R = {< a, a >,< a, c >,< b, c >,< d, b >,< d, d >}. R is not symmetric. A R c
but c R/ a. S(R) = {< a, a >,< a, c >,< b, c >,< d, b >,< d, d >,< c, a >,< c, b >, b, d >}.

Let R be a binary relation on A. Then, Rc is called the converse of R and is given by Rc = {< y, x > | <
x, y >∈ R}. Result: S(R) = R ∪Rc by a computer. Another result: R is symmetric iÿ R = Rc.

Example: A = {a, b, c}. R = {< a, b >,< b, a >,< a, c >}. R is not transitive. t(R) = {< a, b >< b, a >,<
a, c >,< a, a >,< b, c >,< b, b >}. Note that t(R) = R ∪Rn.

Example: Consider Figure 1.23. A = {a, b, c, d}. Add < a, a >,< c, c >,< d, d > to make it reflexive. Add
< b, c > to make it symmetric. Add < a, d >,< d, a > to make it transitive.

Page 161 in the textbook, do problem 1.

Let R be a binary relation on set A. Then, R is a partial order if R is reflexive, antisymmetric, and transitive.
The digraph < A,R > is called a partially ordered set or poset. If R is a partial order on A then we write
a ≤ b, when a R b.

Example: ” ≤ ” on integers is a partial order.

Example: ” ⊂ ” on the power P (A) is a partial order. Let T ∈ P (A). T ⊂ T ⇒ reflexive. T, S,R ∈ P (A).
T ⊂ S ∧ S ⊂ T ⇒ S = T ⇒ antisymmetric. T ⊂ S ∧ S ⊂ R⇒ T ⊂ R⇒ transitive. See Figure 1.24

In a poset diagram, all loops are omitted; all edges implied by the transitive property are omitted; and all
arrows are omitted. Let R be a binary relation on set A. R is a quasi order if R is transitive and irreflexive.
Note it will also be antisymmetric. Does (x R y ∧ y R x)⇒ x = y? If x R y ∧ y R x then x R x (transitive
property) which is a contradiction by being irreflexive. Let E = {< x, x > |x ∈ A}. Results:

1. If R is a quasi-order then R ∪E must be a partial order.

2. If R is a partial order then R− E is quasi-order.

Partial order (≤) on set A is a linear order if a ≤ b or b ≤ a, ∀a, b ∈ A. The digraph < A,R > is called a
linear ordered set.

Example: ” ≤ ” on I is a linear order.

48 CHAPTER 1. DISCRETE STRUCTURES

Example: A = {a, b}. P (A) = {emptyset}, {a, b}, {a}, {b}. R ∼ C. Not linear order.

If < A,≤> is a poset and if B ⊂ A, then:

1. b ∈ B is a greatest element of B if b ≤ b∀b ∈ B.

2. b ∈ B is a least element of B if b ≤ b∀b ∈ B.

Let R be a binary relation on A. Then R is a well order if R is a linear order and every non-empty subset
of A has a least element. < A,R > is called a well ordered set.

Example: ” ≤ ” on I but is well ordered on N. It is a linear order.

On page 175 in the textbook, do problems 1 and 3.

1.3.6 Homework and Answers

Page 153 of the textbook, Section 3.4

1. Let R1 and R2 be relations on a set A = {a, b, c, d} where R1 = {< a, a >,< a, b >, b, d >} and
R2 = {< a, d >,< b, c >,< b, d >,< c, b >}. Find R1, R2, R2R1, R

1
1, and R

2
2. Solution: R

2
1 = R1

1 ·R1 =
{< a, a >,< a, b >,< a, d >}.

9. Let R1 and R2 be arbitrary relations on a set A. Prove or disprove the following assertions.

a. If R1 and R2 are reflective, then R1R2 is reflective. Solution: True. b-e is False. R1 is reflexive
⇒< x, x >∈ R, ∀x ∈ A. R2 is reflexive ⇒< x, x >∈ R2∀x ∈ A. R1R2 < x, x > ∀x ∈ A.

b. If R1 and R2 are irreflective, then R1R2 is irreflective. Solution: False. Find a counter example — one
that is reflexive. A = {a, b, c}. R1 = {< a, b >,< b, c >,< c, a >}. R2 = {< b, a >,< c, b >,< b, c >}.
R1 ·R2 = {< a, a >,< a, c >,< b, b >}. ∴ R1R2 is not irreflexive.

1.3.7 Homework and Answers

Page 161 of the textbook, Section 3.5

Figure 1.25: Diagram for problem 1b on page 161 in the textbook.

1b. Find the reflective, symmetric, and transitive closures of each of the graph in Figure 1.25. Solution:
Reflexive {< b, b >}. Symmetric {< b, a >}. Already transitive.

1.3.8 Homework and Answers

Page 175, problems 1 and 3.

1. Fill in the following table describing the characteristics of the given ordered sets.

1.3. BINARY RELATIONS 49

Figure 1.26: Diagram for problem 3a on page 175 in the textbook.

Figure 1.27: Diagram for problem 3b on page 175 in the textbook.

Figure 1.28: Diagram for problem 3c on page 175 in the textbook.

Figure 1.29: Diagram for problem 3d on page 175 in the textbook.

Figure 1.30: Diagram for problem 3e on page 175 in the textbook.

Figure 1.31: Diagram for problem 3f on page 175 in the textbook.

50 CHAPTER 1. DISCRETE STRUCTURES

Figure 1.32: Diagram for problem 3g on page 175 in the textbook.

Quasi Partial Linear Well
Ordered Ordered Ordered Ordered

< N,<> Yes No No No
< N,≤> No Yes Yes Yes
< I,≤> No Yes Yes No
< R,≤> No Yes Yes No
< P (N), proper containment > Yes No No No
< P (N),⊂> No Yes No No
< P ([a]),⊂> No Yes Yes Yes
< P ([∅]),⊂> No Yes Yes Yes

3. State which of the following digraphs represent a quasi-order; a poset; a linearly ordered set; a well
ordered set;

a. See Figure 1.26. Solution: Partial, not linear, not well.

b. See Figure 1.27. Solution: Partial, linear, well.

c. See Figure 1.28. Solution: No order. Symmetric.

d. See Figure 1.29. Solution: No order. Not transitive.

e. See Figure 1.30. Solution: Partial. Not linear < b, d >,< b, c > . Not well.

f. See Figure 1.31. Solution: Not partial — not transitive. Not linear, well quasi.

g. See Figure 1.32. Solution: No orders. Not reflexive or transitive.

The final exam will be Wednesday, December 9 from 1:00 to 2:00pm. It will cover Section 3.3 properties
of binary relations; Section 3.4 Composition; also take powers of relations; Section 3.5 reflexive, symmetry,
transitive closures of binary relation; Section 3.6 order relations. Oce hours are Friday 10-12, Tues 10-12
and Weds 12-1.

1.3.9 Quiz 4

November 2, 1987

1. Using induction, prove the following
n

i=1 i
3 =

n(n+1)

2

2

. Solution: basis, let n = 1. Then
1

i=1 i
3 =

1(1+1)

2

2

= 13 = 12 = 1 = 1. Induction: assume

n

i=1

i3 =

n(n+ 1)

2

2

is true.

Show

n+1

i=1

i3 =

(n+ 1)(n+ 2)

2

2

1.3. BINARY RELATIONS 51

is true.

n+1

i=1

i3 =
n

i=1

i3 + (n+ 1)3 =

n(n + 1)

2

2

+ (n + 1)3 =

n(n + 1)

2

n(n+ 1)

2

+ [(n+ 1)(n+ 1)(n+ 1)] =

(n+ 1)2

n2

4
+ n+ 1

=

(n+ 1)2

n2

4
+
4n

4
+
4

4

=

(n+ 1)2

n+ 2

2

2

=

(n + 1)(n+ 2)

2

2

.

2. Define a set S inductively as follows:

(a) 1 ∈ S.

(b) If x ∈ S, then x1 ∈ S.
If x ∈ S, then 0x ∈ S.
If x ∈ S and y ∈ S, then xy ∈ S.
Using this definition, verify that 1101 ∈ S. Solution: Basis: 1. Step 2 induction: 01. Step 3
induction: 101. Step 4 induction: 1101.

3. Let Σ = {c, d}, A = {c, dd}, B = {Λ, cd, d}, and C = {d}. Find:

(a) AB. {c, dd}, {Λ, cd, d}. AB = {c, ccd, cd, dd, ddcd, ddd}.

(b) A2. {c, dd}, {c, dd}. A2 = {cc, cdd, ddc, dddd}.

(c) C∗. C0 ∪ C1 ∪ C2 ∪ · · · ∪ Cn where C0 = {Λ}, C1 = {d}, C2 = C1C = {dd}, C3 = C2C1 =
{dd}{d}= {ddd}, and so on.

1.3.10 Exam 3

November 18, 1987

1. Prove by induction that
n

i=1 2
i−1 = 2n − 1. Solution:

Basis:
1

i=1 2
i−1 = 21 − 1 = 21−1 = 21 − 1 = 20 = 1 = 1 = 1.

Induction: Assume
n

i=1 2
i−1 = 2n − 1 is true. Then show

n+1
i=1 2

i−1 = 2(n+1) − 1.
n+1

i=1 2
i−1 = 2n +

n

i=1 2
i−1.

2. Let Σ = {c, d, g} be an alphabet, and let A = {cg, d} and B = {Λ, c, gg} be languages over Σ. List the
elements in the following sets.

(a) AB. {cg, d}, {Λ, c, gg}. Solution: AB = {cg, d, cgc, dc, cggg, dgg}.

(b) B2. {Λ, c, gg}, {Λ, c, gg}.n Solution: B2 = {Λ, c, gg, cc, cgg, ggc, gggg}.

(c) A+. {A∪A2∪A3∪· · · . A1 = {cg, d}. Solution: A2 = {cg, cg, cgd, dcg, dd}.A+ = {cg, d, cgcg, cgd, dcg, dd, ...}

52 CHAPTER 1. DISCRETE STRUCTURES

Figure 1.33: Digraph for problem 4 on Exam 3.

3. Give an inductive definition of the binary relation on N = {0, 1, 2, ...} where R = {< a, b > |b = 3a}.
{< 0, 0 >,< 1, 3 >,< 2, 6 >, ...}. Basis: < 0, 0 >∈ R. Induction: if < x, y >∈ R then < x+1, y+3 >∈
R.

4. Sketch the digraph which corresponds to A = {3, 4, 5, 6, 7,8} and R = {< x, y > |2 ≤ x − y < 4}.
R = {< 8, 5 >,< 8, 6 >,< 7, 4 >,< 7, 5 >,< 6, 3 >,< 6, 4 >, 5, 3 >}. See Figure 1.33.

(a) Is the digraph connected, strongly connected, or disconnected? Connected. There are arrows to
each vertex in the graph. It is not disconnected because there is an undirected path to each node.

(b) Give the incidence matrix for the digraph.
x/y 3 4 5 6 7 8
3 0 0 0 0 0 0
4 0 0 0 0 0 0
5 1 0 0 0 0 0
6 1 1 0 0 0 0
7 0 1 1 0 0 0
8 0 0 1 1 0 0

5. Let A = {x, y, z, w}.How many binary relations are there on A? Explain. Solution: A×A has 4×4 = 16
tuples. So, there are 216 binary relations or subsets on A.

6. Indicate which of the properties listed are satisfied by the given digraph. For each property which is
not satisfied, give an example to show it is not.

Figure 1.34: Digraph for problem 6a on Exam 3.

Figure 1.35: Digraph for problem 6b on Exam 3.

(a) See Figure 1.34. reflexive. No, a is not related to itself.
irreflexive. No, c is related to itself.

1.3. BINARY RELATIONS 53

symmetric. No, a R c but c R/ a.
antisymmetric. No, a R b ∧ b R a, but a = b.
transitive. No, a R c ∧ c R d, but a R/ d.

(b) See Figure 1.35. reflexive. Yes.
irreflexive. No, no node such that x R/ x.
symmetric. Yes.
antisymmetric. No, a R c and c R a but c = a.
transitive. Yes.

1.3.11 Quiz 5

Figure 1.36: Digraph for problem 2 on Quiz 5.

1. Let A = {0, 1, 2, 3, 4}.Give the relation over A which corresponds to the predicate P (x, y, z)⇔ x+2y ≥
z. Solution: R = {< 0, 0, 0 >,< 0, 1, 2 >,< 0, 2, 4 >,< 1, 0, 1 >,< 1, 1, 3 >,< 2, 0, 2 >,< 2, 1, 4 >,<
3, 0, 3>,< 4, 0, 4 >}. The L. J. Randall’s comment is ”there are many others.”

2. Let A = {1, 2, 3, 4, 5} and let R be the binary relation on A defined by R = {< x, y > |x is prime and
x ≤ y}. Sketch the digraph which corresponds to < A,R > . Solution: See Figure 1.36.

3. Give an inductive definition of the relation of > on N = {0, 1, 2, ...}. Solution: basis < 1, 0 >∈ R.
Induction: if < x, y >∈ R, then a) x+ 1 > y, and b) x+ 1 > y + 1.

(a) Use your definition to verify that 6 > 4. Solution: basis < 1, 0 > . Induction
< 2, 1 >
< 3, 2 >
< 4, 3 >
< 5, 4 >
< 6, 4 >

54 CHAPTER 1. DISCRETE STRUCTURES

Chapter 2

Theory of Formal Languages

Instructor: Jane Randall
CS 390/590
Course Outline, Summer 1988
Oce ED-249-1
Phone 440-3890, Main 3915
Oce Hours: Monday, Wednesday 3:00 - 3:30pm

Course Description: This is an introduction to theoretical computer science. Topics covered will include
Turing machines, foundational programming languages, computable functions, context-free grammars for
formal languages, and finite automata.

Prerequisites: CS 281

Text: Elementary Computability, Formal Languages, and Automata, by Robert McNaughton.

Grading for 390: Your grade will be based on three tests, including the final. Each test will be 33.33% of
your grade.

Make-up tests: A test may be made up only if I am contacted within 24 hours after the test is given
and if the reason for absence is legitimate.

Attendance policy: Students are expected to attend class. A student who must miss class is expected to
obtain the assignment and be prepared for the next class meeting.

Honor code: All students are expected to abide by the ODU Honor Code. An honor pledge will be required
on all work which is to be graded.

2.1 Overview of the Course

This section gives an overview of the course. There are 3 main topics:

55

56 CHAPTER 2. THEORY OF FORMAL LANGUAGES

1. Computability — The study of what is computable and what is not; what problems can be solved
using algorithms.

2. Formal languages — Special languages like programming languages or symbolic logic which have strict
rules governing them.

3. Automata — Idealized computational models such as computers of which there is no physical instance.

The theory of computability is a study of problems which are solvable by algorithms and of problems which
are not solvable. A problem is a class of questions. Each question in the class is an instant of the problem.

Example: Problem: What is the value of 2x+ 1 where x is some integer?

Example: Instance: What is the value of 2x+ 1 when x = 5?

We will assume that all questions (and answers) must be expressed in some written language like English or
a programming language. We also assume that it is possible to determine whether an answer to a problem
is correct or not. There are two math problem types:

1. Determine the value of a function for given values for its arguments. For example, if f(x) = 2x + 1,
find f(5).

2. Decidable problems. Problems requiring yes/no answers. For example, is x = 3 a solution to the
equation x2 + 1 = 12?

An algorithm for a problem is an organized set of commands for answering on demand any question that is
an instance of the problem subject to the following:

1. The algorithm is written as a finite expression A, in some language.

2. Exactly which question is answered by executing the algorithm is determined by setting the inputs
before execution begins.

3. Execution of the algorithm is a step-by-step process where the total result of the action during any
one step is simple.

4. The action at each step and all results of this action are strictly determined by expression A, by the
inputs, and by the results of the previous steps.

5. Upon termination, the answer to the question is a clearly specified part (the output) of the result of
execution.

6. Whatever the input values, execution will terminate after a finite number of steps.

A procedure for a problem is an organized set of commands which satisfy conditions (1) thru (5) of the
definition of the algorithm i.e. there may be inputs such that the procedure does not terminate after a finite
number of steps. A future result will tell us that there is no method (or algorithm) for determining whether a
procedure will always halt or even whether it will halt for a particular set of inputs. This is called the halting
problem. A non-deterministic procedure is an organized set which satisfy conditions (1), (2), (3) and (5). A
problem is solvable if there is an algorithm for it. Otherwise, it is non-solvable. A decision procedure is an
algorithm for a class of questions for which all answers are either ”yes” or ”no.” A problem is decidable if it
has a decision procedure. It is un-decidable otherwise. Some examples of algorithms include the Euclidean
algorithm for finding the greatest common divisor of two natural numbers; and the Labyrinth algorithm for
determining whether a particular object is in a labyrinth.

We will represent the labyrinth by a graph. A graph is a ordered pair (N,E) where N is a finite set of nodes
and E is a finite set of edges, each of which connects two distinct nodes. See Figure ??. A walk from N0 to

2.2. TURING MACHINES 57

Nn is a sequence where n ≥ 0 and Ei connects nodes Nj−1 and Nj .

Example: A, e1, B, e3, C, e4, D is a walk from A to D.

A path from N0 to Nn is a walk N0, E1, N1, E2, ..., En, Nn where Ni = Nj where i = j. All nodes are distinct
in a path. A graph is connected if for any two nodes, there is a path between them. Some assumptions for
the labyrinth problem include:

1. The graph representing the labyrinth must be connected.

2. There is an origin node labeled A.

3. One of the edges from A is named the leading edge.

4. If there is a target node in the labyrinth, it is labeled T.

5. Initially, no nodes or edges are colored.

6. Edges can be colored and re-colored using the colors yellow and red.

The labyrinth problem: beginning at A, travel through the graph and determine whether or not there is a
node labeled T. Return to node A with the answer. See Figure ??

2.2 Turing Machines

Alan Turing proposed Turing machines in a 1936 paper. The Turing machine, as discussed here, is a n
example of a deterministic finite state automaton. The machine consists of a read/write head and infinite
tape. The machine can assume a finite number of states and works with a finite character set. During a
time cycle, the machine reads on a position on the tape and either halts or takes an action depending on
what it reads and the state that it is in at the time of the read. There are at most four possible actions per
time cycle:

1. Erase the symbol, just read.

2. Print a new symbol at the current position if there is no symbol already there.

3. Move one position left or right.

4. Change to a new state.

We will discuss how a Turing machine works by means of a table which gives all possible states, all possible
characters which can be read, and the corresponding actions taken. Some notation: B represents a blank.
No entry in the table means the machine halts in that situation. Execution begins at the first non-blank
character. See Figure ??.

R Move one position to the right.
L Move one position to the left.

* Indicates start of new number.
qi State change.

Example: Consider the input ∗// ∗ ///. The output is ∗/////. It adds two numbers.

We will represent non-negative integers by using a unary number system.

0→ ∗
1→ ∗/
2→ ∗//
3→ ∗///

58 CHAPTER 2. THEORY OF FORMAL LANGUAGES

When the input consists of more than one number, we write them consecutively on tape. See Figure 2.1.6
on page 28 in the textbook. Analysis:

1. The input is a string over the alphabet {b, c}.

2. An ∗ will be used to separate the input string from the copy.

3. The machine alphabet will consist of {b, c, ∗, y, z}.

4. As characters from the input string are copied, ”b” will be changed to ”y” and ”c” will be changed to
”z.”

5. The ”y’s” and ”z’s” are changed back to ”b’s” and ”c’s” at the end.

Example: Input → c b b c.

c b b c * c b
↑ ↑ ↑ ↑ ↑
q1 → → → →

↑ ↑ ↑ ↑ ↑
← ← ← ← q2

↑ ↑ ↑ ↑ ↑ ↑
q3 qc → → → →

← ← ← ← ← q2
↑ ↑ ↑ ↑ ↑ ↑ ↑
q3 qb q2

Finish the table for homework.

Turing machines are often used to compute function values. Turing machine M computes function f with
n non-negative integer arguments i1, i2, ..., in if M begins with the sequence i1, i2, ..., in as input and upon
halting, contains one number on the tape which is f(i1, i2, ..., in). Figure 2.1.8 in the textbook is not a
function. It leaves two numbers on the output string. Figure 2.1.8 in the textbook analysis:

1. A copies the strokes of i into the positions immediately following the strokes of j.

2. As each stroke is copies, ..., etc.

Figure 2.1.9 in the textbook is multiplication. The input string ∗// ∗ ///⇒ ∗// ∗ ///∗ ⇒ ∗/B ∗ ///∗ ///⇒
∗BB ∗ /// ∗ //////.

Homework: On page 34 of the textbook, problems 1 thru 4, 8 thru 11. Skip Sections 2.2.1, 2.2.2, 2.2.3, and
2.2.4.

2.3 The Foundational Programming Languages

To study algorithms in terms of programs, we will develop two simplistic programming languages:

1. The Goto language.

2. The While language.

Both the Goto and While languages are formal string languages. The rules that govern them is very precise.
To define each language, we do the following:

1. Enumerate the alphabet.

2. Define certain kinds of strings called syntactic categories.

3. Explain the meaning of each string in each syntactic category (semantics).

2.3. THE FOUNDATIONAL PROGRAMMING LANGUAGES 59

2.3.1 The Goto Language

The alphabet of the Goto language consists of 0-9, A, B, ..., Z (capitals only), :, ;, =, (,). The syntax
categories are:

1. Numeral — a single digit or a string of digits which does not begin with zero.

2. Name — any string of letters and digits which begins with a letter.

3. Unlabeled command — there are 7 types.

(a) Name := name — unlabeled variable assignment.

(b) Name := numeral — unlabeled numerical assignment.

(c) INCR(name) — unlabeled increment.

(d) DECR(name) — unlabeled decrement.

(e) GOTO name — unlabeled unconditional transfer.

(f) If name = 0 GOTO name — unlabeled conditional transfer.

(g) HALT — unlabeled halt.

4. Name — unlabeled command (label)

5. Program — a single command or a sequence of commands (labeled or unlabeled) seperated by semi-
colons. Blanks are not part of the syntax.

See Section 3.1.3 in the textbook for a discussion of parsing a program in the GOTO language. The semantics
of the GOTO assumptions are:

1. The machine has unlimited storage.

2. All numbers are non-negative integers.

3. Before execution, each variable is assigned a storage location and input values are loaded into these
locations.

See Section 3.2.1 in the textbook for a complete description of the meaning of each command.

Example: DECR(x1) means subtract 1 from the storage location for x1, unless x1 is zero.

Notice the conditions which will cause the machine to halt. Know the three ways. A time cycle is the time
during which the machine executes one command. A run history is a table showing each time cycle, the
command executed, and the numbers in each storage location at the beginning and end of each time cycle.
Consider Figure 3.2.1 on page 50 in the textbook which adds x, y and stores in z. Define a proper program
in the Goto language as one satisfying:

1. For every label after a GOTO, there is exactly one labeled command in the program which has that
label.

2. The last command is either a halt or an unconditional transfer. Avoid the default halt situation.

Homework, page 34, problems 1, 2,3, 4, 8, 9, 10, 11 in the textbook.

60 CHAPTER 2. THEORY OF FORMAL LANGUAGES

2.3.2 Homework and Answers

This is the assignment on page 34 in the textbook. Problems 1 thru 4, 8 thru 11.

These computations are similar to the copying machine of Section 2.1.3 in the textbook. In each case, design
a Turing machine which, when given a string W over the alphabet {c, d} will transform the tape into the
output tape as indicated. The input string W is to be written on consecutive squares of an otherwise blank
tape; and your machine is to begin in state q1 on the leftmost nonblank square. Make sure that your machine
computes correctly for every string W of length one or more over the alphabet {c, d}.

There is no restriction on how much tape you may use in the computation; or on which particular set of
squares in reference to the input location the output string appears on. However, the output must appear
exactly as specified, which may require that the machine ”clean up” excess characters before halting. Nothing
but the output should be on the output at the halt.

1. The output is the string W written backwards on consecutive squares. Solution:
State B c d z *

q1 ∗q3 R R
q2 q4 L L Lq3
q3 Rq5 zRqc zRqd L L
qc cLq2 R R R R
qd dLq2 R R R R
q4 Rq5
q5 BR BR

2. The output is a string written on consecutive squares with the same number of cs and with the same
number of ds. In other words, the output is the input string with the input characters put in alpha-
betical order. Solution:

1

Place * at end

2

loop: find c;
change to z — send to end;

restart

3

loop: find d;
change to z — send to end;

State B d c z *
a1 ∗La2 R R
a2 Ra4 L zRac L L
ac cLa3 R R R R
a3 a2 L L L L
a4 R R La5
a5 a10 zRad L
ad dLa6 R R R R
a6 L L La7
a7 Ra8 zRad L
a8 BR BR

3. The output is the stringW written on the tape with a single blank space between each pair of adjacent
characters. Solution:

2.3. THE FOUNDATIONAL PROGRAMMING LANGUAGES 61

Comment State B c d z / *
Initialize a1 a2 R R

a2 ∗La3
Reset a3 Ra4 L L L L L

Put c at end a4 zRac zRad R La5
ac cac2 R R R R
ac2 R/a3
ad dad2 R R R R
ad2 R/a3

Clean-up a5 Ra6 L L
a6 R R BR BR BR

4. The output is the string W (as written as input) followed without a blank by (1)*MORE.; if there are
more cs than ds in W. (2) *EQUAL; if there are as many cs as ds in W, or (3) LESS; if there are
fewer cs than ds in W. Solution:
State B c d x y * Comment

a1 a2 R R
a2 ∗La3
a3 Ra4 L L L

a4 a5 a5 B empty string
a5 xa6 R R R aa more ds
a6 Ra7 L L L L

a7 R ya8 R R a11 more or equal cs
a8 Ra5 L L L L

a9 R R R Ra10 less cs
a10 Less a14
a11 R a12 R R Ra13
a12 More a14 R R R R more cs
a13 Equal a14 Equal cs

a14 Ra15 L L L L L Clean-up
a15 cR dR

Design Turing machines to compute the following functions according to the conventions laid down in Section
2.1.4 in the textbook.

8. Absolute diÿerence:

|i1 − i2| =

i1 − i2, If i1 ≥ i2.
i2 − i1, If i1 < i2.

Solution:

62 CHAPTER 2. THEORY OF FORMAL LANGUAGES

State B / * $ α x Comment
a1 a2 R R
a2 $La3
a3 B L αLa3,5
a4 xRa5 R Ra8 R cancel /’s
a5 R Ra6
a6 xa7 R
a7 L a4 La11 L L
a8 xRa9 R i1 > i2
a9 /a10 R R
a10 L L Ra8
a11 L a12 L L L
a12 xRa15 R R Ra13 R
a13 /a14 R R R
a14 a16
a15 /a11 R R R R i1 > i2
a16 L a17 L L L clean-up
a17 R BR * BR BR

9. QU (i1, i2) equals to the quotient when i1 is divided by i2. This is sometimes written as [i1/i2] or i1/i2.

The quotient is the greatest integer not greater than i1/i2. Solution: QU (i1, i2).

bb bb

∗/////// ∗ // ∗ / .
bbbbb

∗///// bb

bb

∗// ∗///.

State B * α / x $ Comment

a1 $La2 R R Prep string
a2 αa3 L
a3 Ra4 L L

a4 a11 Ra5 R R
a5 xLa6 R a8 Division
a6 La7 L
a7 a11 xRa4 L
a8 /La9 R R
a9 L La10
a10 a4 /L Reset divisor

a11 BR BR BR ∗a12 Clean-up
a12

10. REM (i1, i2) ∗//

bbb

/// ∗

bbb

/// .

bb

∗// bbb ∗

bbb

/// where b = erase.

11. MIN (x1, ..., xn) equals to the smallest value among x1, x2, ..., xn. Your Turing machine should work

for any value of n ≥ 2. Solution: MIN (x1, x2). ∗

ccc

/// // ∗

cc

// . ∗

cc

// ∗

cc

// /// ∗

cc

// // ∗

cc

// ///
where c = erase.

2.3. THE FOUNDATIONAL PROGRAMMING LANGUAGES 63

State B / x * $ y Comment
a1 $La2 R R Prep string
a2 Ra3 L L
a3 Ra4
a4 xRa5 Find min
a5 Ra6 a7 a7
a6 a3
a7 La8
a8 yL a9 Put min at end
a9 R xa10
a10 /a11 R R R R R
a11 a12 L L L L a9
a12 Ra13 Clean-up
a13 BR BR BR a14
a14 *

2.3.3 The While Language

The alphabet is the same as the GOTO language plus the characters >, [,]. The syntactic categories are:

1. Numeral — a single digit or a string of digits which does not begin with zero.

2. Name — any string of letters and digits which begins with a letter.

3. Command — 7 types (unlabeled).

(a) Variable assignment — := name is an unlabeled variable assignment. Level 0 command.

(b) Numeric assignment—Name := numeral is an unlabeled numerical assignment. Level 0 command.

(c) Increment — INCR(name) is an unlabeled increment. Level 0 command.

(d) Decrement — DECR(name) is an unlabeled decrement. Level 0 command.

(e) Unilateral conditional of level i + 1 (i ≥ 0) : If name = 0 then [Program of level i]

(f) Bilateral conditional of level i + 1 : If name = 0 then [Program of level i] Else [Program of level
k] where i = max(i, k).

(g) While command of level i + 1 : While name > 0 Do [Program of level i]

A program of level i is a command of level i or a sequence of commands of maximum level i separated by
semicolons. Levels tell how deeply nested commands are. There are no labels in the While language. Halt
is missing. Each command is executed in turn. The machine halts after the last command is executed. See
Section 3.3.2 in the textbook for a description of how commands are executed. In Figure 3.3.1 on page 56
of the textbook, the second While is level 1; the first While is level 2; and Program is level 2. A While
language program can easily be translated into the Goto language such that the two programs have identical
flowcharts. It is not always possible to translate a Goto language program into the While language and have
identical flowcharts.

Homework: page 57, problem 1 in the textbook.

2.3.4 Flowcharts

A flowchart is a directed graph. A directed graph is an ordered pair (N,A) where N is a finite set of nodes
and A is a finite set of arcs or edges. Each arc goes from a node to a node (possibly the same node). A walk
and a path are defined for a directed graph similar to the directions in Section 2.1. A flowchart is a directed
graph whose nodes are circles, rectangles, and diamonds.

• Rectangle — represents a command.

64 CHAPTER 2. THEORY OF FORMAL LANGUAGES

• Circle — represents Begin, Halt.

• Diamond — represents a decision.

A flowchart represents a program. The language of flowcharts is a non-string formal language. Figure 3.4.1
on page 60 in the textbook is the sum of x + y = z. Figure 3.4.2 in the textbook is a schematic flowchart.
It contains non-existent commands. Some programs may not always halt. Many functions are extremely
dicult to compute. It may be hard to check that all possible situations eventually halt. Some math
programs seek to find a number which satisfies a certain property without knowing whether such a number
exists. Future results:

1. All computable functions can be expressed as programs in the Goto and While language.

2. There is no algorithm to tell whether a program in the Goto and While language will halt for a given
input.

For homework, do problems 1, 2, 4, 5, 7, 8, 9, 10, 11, and 12 on page 64 in the textbook.

2.3.5 Homework and Answers

Page 57, problem 1 in the textbook.

1. Consider the following WHILE-language program of level 3 in which X and Y are inputs; Z is an
output; and U is an auxiliary variable. Translate the program on page 58 in the textbook into
a GOTO-language program, in executing which the machine will do the same things in order for
each value of the inputs X and Y. Your program must have exactly the same variables, inputs, and
outputs; and at the halt the value of the output must be the same. The program in this exercise
computes the function Z = f(X,Y) where f(X,Y) is the sum of the positive terms in the sequence
2x, 2(x− 3), 2(x− 6), ...,2(x− 3(y− 1)), (x− 3y), (x− 3y− 1), (x− 3y− 2), For Y = 0, this sequence
is X,X − 1, X − 2, Solution:

1

z:= 0
INCR(y);
same: If x = 0 then HALT;
u := x;
DECR(y);

if y = 0 then GOTO loopif;
DECR(x);
DECR(x);
DECR(x);
loop1: If u = 0 then GOTO same;
DECR(u);
INCR(z);
INCR(z);
GOTO loop1;

loopif: DECR(x);
loop2: if u = 0 then GOTO same;
DECR(u);
INCR(z);
GOTO loop2;

2.3. THE FOUNDATIONAL PROGRAMMING LANGUAGES 65

2.3.6 Homework and Answers

Page 64, problems 1, 2, 4, 5, 7, 8, 9, 10, 11, and 12.

1. Give a run history in tabular form for the multiplication program in the GOTO language which was
given for the flowchart of Figure 3.4.4, assuming that X, Y, W, and U are set at 3 and 2;1914, and
1939, respectfully. You will trace the multiplication of 3 by 2. Number the commands in the program
1 thru 9. Solution:

Time

Cycle Line x y W U

\ 3 2 1914 1939

1 1 -----------------------

/ - - 0 -

\

2 2 -----------------------

/

\ - - - -

3 3 -----------------------

/

\ - 1 - -

4 4 -----------------------

/

\ - - - 3

5 5 -----------------------

/

\ - - - -

6 6 -----------------------

/

\ - - - 2

and so on...

In each of the following, write a program to compute the function F that is indicated. Let x1, X2, X3, ...
and so on, be your input variables; or simply Xif there is only one; and let Y be your output variable,
with auxiliary variables as you see fit. The values of your input variables may be destroyed in the
working of your program. You may give your answer as a detailed flowchart, as a GOTO-language
program, or as a WHILE-language program, as you choose.

2. F (X1, X2) is the maximum of two values X1, X2. Solution:

1

y:= 0
loop: If x1 = 0 then GOTO bottom1;
DECR(x1);
if x2 = 0 then GOTO bottom2;
DECR(x2);
GOTO loop;
bottom1: y:= x1;
Halt;
bottom2: y:= x2;
Halt;

5. The given function is:

f(x1, x2) =

0, If X1 ≤ X2.
X1 −X2, If X1 > X2.

66 CHAPTER 2. THEORY OF FORMAL LANGUAGES

Solution:

1

if x1 = 0 then GOTO case3;
top: DECR(x1);
if x1 = 0 then GOTO case1;
DECR(x2);
if x2 = 0 then GOTO case2;
GOTO top;
case1: y:= x1;
DECR(x2);
if x2 = 0 then y:=0;
HALT;
case2: y:= x1;
HALT;
case3: y:= 0;
HALT;

7. The given function is:

f(x) =

X, If X is divisible by 3.
X − 1, If X is not divisible by 3.

Solution:

1

x1:= x;
top: DECR(x1);
if x1 = 0 then GOTO bottom2;
DECR(x1);
if x1 = 0 then GOTO bottom2;
DECR(x1);
if x1 = 0 then GOTO bottom;
GOTO top;
bottom2: y:= DECR(x);
HALT;
bottom: y:=x;
HALT;

8. The given function is:

f(x) =

2X, If X is even.
3X, If X is odd.

Solution:

2.3. THE FOUNDATIONAL PROGRAMMING LANGUAGES 67

1

x1:=x;
top: DECR(x1);
if x1 = 0 then GOTO x2;
DECR(x1);
if x1 = 0 then GOTO x3;
GOTO top;
x3: w:= 0; z:= 2;
outter: if z = 0 GOTO exit1;
DECR(z);
u:= x;
inner: if u = 0 GOTO outter;
DECR(u);
INCR(w);
GOTO inner;
exit1: HALT;
x2: w:= 0; z:= 3;
outter2: if z = 0 GOTO exit2;
DECR(z);
u:= x;
inner2: if u = 0 then GOTO outter2;
DECR(u);
INCR(w);
GOTO inner2;
exit2: HALT;

9. The given function is:

f(X1, X2) =

0, If X1 = X2.
1, If X1 = X2.

Solution:

1

top: DECR(x1);
DECR(x2);
if x1 = 0 then GOTO bottom;
if x2 = 0 then GOTO bottom2;
GOTO top;
bottom: if x2 = 0 then GOTO exityes;
y:= 1;
HALT;
exityes: y:= 0;
HALT;
bottom2: if x1 = 0 then GOTO exit2yes;
y:= 1;
HALT;
exit2yes: y:= 0;
HALT;

11. F (X1, X2) is the quotient when X1 is divided by X2 = 0. F (X1, X2) = 0 if X2 = 0. See Figure 2.1
for the solution.

12. F (X1, X2) is the remainder when X1 is divided by X2 = 0. F (X1, X2) = X1 if X2 = 0. See Figure
2.2 for the solution.

68 CHAPTER 2. THEORY OF FORMAL LANGUAGES

Figure 2.1: This figure shows the solution to problem 11 on page 65 in the textbook

2.3. THE FOUNDATIONAL PROGRAMMING LANGUAGES 69

Figure 2.2: This figure shows the solution to problem 12 on page 65 in the textbook

70 CHAPTER 2. THEORY OF FORMAL LANGUAGES

2.3.7 Exam 1 and Answers

1. Explain the diÿerence between an algorithm and a procedure. Solution: An algorithm always halts. A
procedure may or may not halt. Procedures contain algorithms.

2. The Euclidean Algorithm produces an answer to the problem ”find the greatest divisor of two positive
integers x1 and x2.”

(a) Give an instance of this problem. Solution: x1 = 3 and x2 = 6. Find the GCD. The answer is 3.

(b) Is this problem solvable or decidable? Explain. Solution: The GCD problem is solvable. It’s not
decidable because it does not return a yes / no answer. It is solvable because there is algorithm
for it.

3. An algorithm must be deterministic. Explain what this means. Solution: Given the same set of
inputs for each execution of the same algorithm, the algorithm will execute the same steps in the same
order every time. To be deterministic means that the result of a step depends on expression A (the
algorithm), the inputs and the results of previous steps.

4. Design a Turing machine which takes as input a non-empty string W over the alphabet {a, b} and
which produces as output string W with the first and last characters interchanged. For example, if the
input is abbab, then the output is bbbaa. Give a short description of each state of your machine. Be
sure to cover special cases such as strings of length one. Solution:

State B a b z ∗
a1 a2 R R prepare string
a2 ∗La3
a3 Ra6 L zRa L L find all bs
a4 a5 R R R R
a5 bL L a3
a6 zRa7 R a10 find all as
a7 a8 R R R R
a8 aLa9
a9 Ra6 L L L L

a10 BL BL erase input

5. Write a GOTO language program to compute the function F (X1, X2) = MIN (X1, X2). Use Y as
your output variable.

1

z1:= x1;
z2:= x2;
top: DECR(z1);
If z1 = 0 Then GOTO minx1;
DECR(z2);
If z2 = 0 then GOTO minz2;
GOTO top;
minx1: y:= x1;
HALT;
minx2: y:= x2;
HALT;

6. Describe the diÿerence between a total function and a partial function. Solution: A total function
always returns one value for n-tuples; otherwise it is a partial function.

(a) Give an example of a total function. Solution: addition.

2.4. FUNCTIONS 71

Figure 2.3: This figure shows the flowchart for problem 8 on Exam 1

(b) Give an example of a partial function. Solution: square root.

7. Write a DO-TIMES program to compute the function:

f(x1, x2) =

0, If x1 ≤ x2.
x1 − x2, If x1 > x2.

Use y as your output variable.

1

z1:= x1:
z2:= x2;
DO z1 TIMES
[DECR(z1);
DECR(z2);
If z2 = 0 Then [y:= z1]
Else y:= 0]

8. Give either a WHILE language program or a detailed flowchart to compute the function:

f(x) =

x, If x is even.
x+ 1, If x is odd.

Use y as your output variable. Solution: See Figure 2.3.

2.4 Functions

Assume the universal set is non-negative integers. F is an n-argument function if f associates with each
n-tuple (x1, x2, ..., xn) at most one number. If this number exists, it is called the value of f for the given

72 CHAPTER 2. THEORY OF FORMAL LANGUAGES

arguments. If no number exists, then the function is undefined. An argument function f is a total function
if f always computes a value for every n-tuple. Otherwise, f is a partial function.

Example: The addition function is total.

Example: The square root function is partial.

A program P computes a function F of n arguments with respect to a sequence of n+1 variables if for each
n-tuple x1, x2, ..., xn when P is run with the first n variables of S as x1, ..., xn input. Then,

1. If f(x1, ..., xn) has a value then the program will halt in a finite amount of time and the (n + 1)st

variable of S has value f(x1, ..., xn) at the halt.

2. If f(x1, ..., xn) is undefined, then program P will never halt.

Skip Section 3.6.3 Verification in the textbook. Add a new command to the While language.

• DO x TIMES [program] — execute the program the number of times equal to the value of x when the
command is first executed even if x changes.

Example: x := 4.DO x TIMES [INCR(x)]. The program part in the DO-TIMES loop gets executed 4 times.

A DO-TIMES program is a While language which contains no While command. It may contain DO-TIMES
commands. This results in DO-TIMES programs that always halts. Every DO-TIMES can be written as a
While command.

Homework: Chapter 3, page 82 # 1, 3 in the textbook.

2.4.1 Computable Functions

We wish to be able to describe the set of computable functions over the non-negative integers. We will study
four types of formal definitions for functions:

1. Explicit definition.

2. Primitive recursion.

3. Mu recursion.

4. General equational definition.

Each of these is dependent on the concept of functional expressions.

1. Numeral — the same as in GOTO and WHILE.

2. Variable — one of x, y or z or one of these letters followed by a numeral subscript.

3. Function symbol — one of f, g or h or one of these followed by a numeral subscript. Can also be S for
successor function. Also can be any symbol introduced by a function definition.

4. Functional expression of level 0 — a numeral or a variable.

5. Functional expression of level i + 1 — At least one funct.expr is of level i; none are of level greater
than i. For example, f(4, x1, z5, 8) is level 1. Another example: f(x, y, g(x), h(y, z)) is level 2 because
x, y is level 0 and g(x) and h(y, z) are level 1.

6. Equation — functional expression = function expressions.

2.4. FUNCTIONS 73

An explicit definition of a function with n arguments is an equation with a function symbol followed by the
argument variables on the left-hand side. The right side is a functional expression with no variables except
those given as arguments and using only known function symbols.

Example: Assume that multiplication and addition are known function symbols. f(x, y) = +(∗(x, y, 2) ≈
x ∗ y + 2.

Example: g(z) = ∗(z, S(z)) ≈ z ∗ (z + 1).

Example: h(x, y, z) = +(+(∗(3, x), y), ∗(2, z)) ≈ (3x+ y) + 2 ∗ z.

If functions g and h are known, then a primitive recursion definition of the n-argument function f from g
and h is a pair of equations of the form

f(x1, x2, ..., xn−1, 0) = g(x1, x2, ..., xn−1)
f(x1, x2, ..., xn−1, S(xn)) = h(x1, x2, ..., xn, f(x1, x2, ..., xn))

Example: To define addition,

+(x, 0) = x
+(x, S(y)) = S(+(x, y))

+(3, 2) = +(3, S(1)) = S(+(3, 1)). +(3, 1) = +(3, S(0)) = S(+(3, 0)) = S(3) = 4 = S(4) = 5.

Example: To define multiplication,

∗(x, 0) = 0
∗(x, S(y)) = +(x, ∗(x, y))

Example: To define factorial,

f(0) = 1
f(S(x)) = ∗(S(x), f(x))

Example: To define exponentiation,

↑ (x, 0) = 1
↑ (x, S(y)) = ∗(x, ↑ (x, y))

Notice that 00 = 1 by this definition.

Example: To define the predecessor function,

P (0) = 0
P (S(x)) = x

Example: To define the floored subtraction,

−̇(x, 0) = x
−̇(x, S(y)) = P (−̇(x, y))

−̇(6, 2) = −̇(6, S(1)) = P (−̇(6, 1)) = −̇(6, 1) = (6, S(0)) = P (−̇(6, 0)) = P (6) = 5 = P (5) = 4.

Example: To define the signum function,

SG(0) = 0
SG(S(x) = 1

74 CHAPTER 2. THEORY OF FORMAL LANGUAGES

where

SG(x) =
0 if x = 0.
1 if x > 0.

Example: To define the inverse of the signum function (SG),

ISG(0) = 1
ISG(S(x) = 0

Another way to state the inverse of the signum function is

ISG(x) =
1 if x = 0.
0 if x > 0.

Some more examples using explicit definitions follows.

Example: The absolute diÿerence is defined as ABD(x, y) = +(−̇(x, y, −̇(y, x)) where if x ≤ y then
−̇(x, y) = 0 and −̇(y, x) = y − x. If x > y, then −̇(x, y) = x− y and −̇(y, x) = 0.

Example: The maximum function is defined as max(x, y) = +(x, −̇(y, x)) where if x < y, +(x, y − x) =
x+ y − x = y and if x ≥ y, +(x, −̇(y, x)) = +(x, 0) = x.

Example: The minimum function is defined as min(x, y) = −̇(x, −̇(x, y)) where if x < y, −̇(x, 0) = x and
if x ≥ y, −̇(x, x− y) = x− x+ y = y.

Example: The greater-than function is defined as

GT (x, y) = SG(−̇(x, y)) =

1 if x > y.
0 if x ≤ y.

Example: The greater-than or equal-to function is defined as

GE(x, y) = GT (S(x), y) =

1 if x ≥ y.
0 if x < y.

Example: The equal function is defined as

EQ(x, y) = ∗(GE(x, y), GE(y, x)) =

1 if x = y.
0 Otherwise.

We can use these basic functions to define more complex functions.

Example: Definition by cases.

f(x) =

3 if x < 3.
2x if 3 ≤ x ≤ 6.
x− 2 if x > 6.

The above function can be defined explicitly by f(x) = 3 ∗GT (3, x) + 2x ∗GE(x, 3) ∗GE(6, x) + −̇(x, 2) ∗
GT (x, 6).

Example: The remainder function. We wish to define the function REM (x, y) equal to the remainder
when x is divided by y. Recall if x is divided by y, then x = y · a+ r, 0 ≤ r ≤ y − 1. Observation:

REM (x+ 1, y) =

0 if REM (x, y + 1) = y.
REM (x, y) + 1 Otherwise.

2.4. FUNCTIONS 75

Due to the way primitive recursive functions are given, we cannot define the function REM (x, y) this way.
So, we will define a new function f by primitive recursion such that:

REM (x, y) = f(x, y) =

f(y, 0) = 0
f(y, S(x)) = S(f(y, x))∗
ISG(EQ(S(f(y, x)), y))

This remainder function REM (S(x), y) = [REM (x, y) + 1].

Example: The quotient function is explicitly defined as QU (x, y) equal to the quotient where x is divided
by y. Observation:

QU (x+ 1, y) =

Q(x, y) if REM (x+ 1, y) = 0.
Q(x, y) + 1 if REM (x+ 1, y) = 0.

We will define g by primitive recursion such that

QU (x, y) = g(y, x) =

g(y, 0) = 0
g(y, S(x)) = g(y, x) + ISG(REM (S(x), y))

Then, QU (x+ 1, y) = QU (x, y)+ If REM (x+ 1, y) = 0, then ISG(REM...) = 1.

Do the following problems on page 98 in the textbook. # 1, 2, 3, 4, 9, 12, 17. Test on Wednesday. It
covers Chapter 1 algorithm requirements (understand steps), Labyrinth and Euclidean algorithms. Chapter
3. Know commands in languages, trace programs, write programs.

2.4.2 Homework and Answers

Problems on page 98 of the textbook.

Define the function described in each exercise by using primitive recursion or explicit definition or both,
from the functions listed in Section 4.2.4 in the textbook. If possible, define the function entirely by means
of explicit definition.

1. MUL(x, y) = 1 if x is an integral multiple of y. MUL(x, y) = 0 if not. Note that MUL(0, y) = 1 but
MUL(x, 0) = 0 if x = 0. Solution:

MUL(x, y) =

0 if y = 0 and x = 0.
1 if x = 0 and y = 0.
SG((REM (y, x)

2. CON (x, y, z) = 1 if REM (x, z) = REM (y, z). CON (x, y, z) = 0 if REM (x, z) = REM (y, z). Solu-
tion: CON (x, y, z) = EQ(REM (x, z), REM (y, z)).

3. SD(x) is the sum of the positive integer divisors of x for x = 0. For example, SD(1) = 1. SD(3) = 4.
SD(6) = 12. Solution:

SD(x) =

f(x, 0) = 0
f(x, y) = +(x,QU (x, S(u)) ∗ ISG(REM (x, S(y))))

4. PR(x) = 1 if x is prime. PR(x) = 0 otherwise. For example, PR(0) = PR(1) = PR(4) = 0.
PR(2) = PR(3) = PR(7) = 1. Solution:

PR(x) =

1 If x is prime.
0 Otherwise.

x is prime iÿ x has exactly two divisors. D(x) counts the number of divisors of x. PR(x) = EQ(D(x), 2).

76 CHAPTER 2. THEORY OF FORMAL LANGUAGES

9. f(0) = 1 for all x. f(x + 1) =↑ (2, f(x)) if x is even. f(x + 1) =↑ (f(x), 2) if x is odd. Solution:

f(x+ 1) =

↑ (2, f(x)), If x is even.
↑ (f(x), 2), If x is odd.

f(0) = 1. f(S(x)) = ISG(REM (x, 2))∗ ↑ (2, f(x)) + SG(REM (x, 2))∗ ↑ (f(x), 2).

12. Solution:

f(x, y, z) =

x+ y, If 50 ≤ x+ y ∗ z ≤ 100.
z, Otherwise.

f(x, y, z) = (x+y)∗GE(x+y ∗ z, 50)∗GE(100, x+y∗ z)+ z ∗GT (50, x+y∗ z)+ z ∗GT (x+y∗ z, 100).

Assume f, f1, f2, ... are given total functions of one argument whose mathematical nature you do not know.
In each case, a one argument function h is described intuitively in terms of these. Define h by means of a
primitive recursion or explicit definition.

17. h(x) =
x

i=0 f(x). Solution:

h(x) =

x

i=0

f(i) = f(0) + f(1) + · · ·+ f(x).

Note that h(x+ 1) = f(0) + h(1) + · · ·+ f(x) + f(x + 1). Then,

h(x) =

h(0) = f(0)
h(S(x)) = h(x) + f(S(x))

22. h(x) = 1 if both f1(x) = 1 and f2(x) = 1. h(x) = 0 otherwise. Solution: h(x) = EQ(f1(x), 1) ∗
EQ(f2(x), 1).

2.4.3 Primitive Recursion

Recall that we defined

1. Addition

+(x, 0) = x
+(x, S(y)) = S(+(x, y))

2. Multiplication

∗(x, 0) = 0
∗(x, S(y)) = +(x, ∗(x, y))

3. Exponentiation

↑ (x, 0) = 1
↑ (x, S(y)) = ∗(x, ↑ (x, y))

Define:

2.4. FUNCTIONS 77

• Φ0(x, y) = S(y).

• Φ1(x, y) = +(x, y).

• Φ2(x, y) = ∗(x, y).

• Φ3(x, y) =↑ (x, y).

Similarily, define Φ4(x, 0) = 1. Φ4(x, S(y)) =↑ (x,Φ4(x, y)). Notice that Φ4(2, 0) = 1 gives the next power.
Φ4(2, 1) = 2. Φ4(2, 2) = 4. Φ4(2, 3) = 24 = 16. Φ4(2, 4) = 216 = 65536. Φ4(2, 5) = 265536. In general,
Φ4(x, 0) = 1. Φ4(x, 1) = x1 = x. Φ4(x, 2) = xx. Φ(x, 3) = xx

x

. and so on. Likewise, define Φ5 = (x, 0) = 1.
Φ5(x, S(y)) = Φ4(x,Φ5(x, y)). Verify that Φ5(2, 4) = Φ4(2, 65536). Continuing in this manner, we can define
an entire sequence of functions Φ0, Φ1, Φ2, ..., Φi, Φi+1, ... such that

Φi+1(x, 0) = 1
Φi+1(x, S(y)) = Φi(x,Φi+1(x, y))

Notice that for each x ≥ 2, Φi+1(x, y) increases faster with y than Φi(x, y). The class of primitive recur-
sive functions consists of all functions which can be divided by explicit definition or primitive recursion.
Φ0,Φ1,Φ2, ... are in the class of primitive recursive functions. All functions in the class are computable. The
Ackerman function (A) :

A(0, x, y) = S(y)
A(1, x, y) = +(x, y)
A(2, x, y) = ∗(x, y)
A(SSS(z), x, 0) = 1
A(SSS(z), x, S(y)) = A(SS(z), x, A(SSS(z), x, y))

In general, A(i, x, y) = Φi(x, y). A is computable, but A is not in the class of primitive recursive functions
(not primitive recursion and not explicit either). The trivial cases of S, +, ∗, and ↑ are not the same
as the Ackerman function. If we define h(x) = A(x, x, x) then h increases faster than any one-argument
primitive-recursion function.
We wish to formally show how to compute the value of a function. We will begin with a set of equations which
define the function and generate a sequence of equations which ends with the evaluation. Some definitions
and notation:

• An evaluation — ∗(3, 5) = 15.

• Rule of uniform substitution — Given ∗(x, S(y)) = +(x, ∗(x, y))⇒ ∗(3, S(y)) = +(3, ∗(3, y)).

• Rule of evaluation replacement — Given ∗(4, 0 = 0, ∗(4, 1) = +(4, ∗(4, 0))⇒ ∗(4, 1) = +(4, 0).

The fourth means to define a function: An n argument function, Q, is equationally defined by a set of
equations, Φ, if for every n-tuple (i1, i2, ..., in), no two distinct evaluations for Q(i1, i2, ..., in) are derived from
Φ. All explicit, primitive recursion, and mu recursion definitions can be converted to equational definitions.

2.4.4 Mu Recursion

Add µ and [] to our syntax for defining functions. A mu expression has the form (µV)[E = 0] where V
equals a variable and E equals an expression. The minimum value of V such that E = 0. A mu recursion
definition of an f with n arguments has the form f(x1, x2, ..., xn) = (µV)[functional expression = 0] where
the functional expression has only x1, x2, ..., xn, V. We will assume that the functional expression contains
no mu expressions and that it contains only function symbols for total functions.

Example: f(x, y) = (µz)[ISG(EQ(y ∗ z, x)) = 0] i.e. f(x, y) equals to the smallest value of z such that
y ∗ z = x. f(8, 4) = (µz)[ISG(EQ(4 ∗ z, 8)) = 0] = 2. f(7, 4) has no value.

78 CHAPTER 2. THEORY OF FORMAL LANGUAGES

f(x, y) = (µz)[−̇(x, z) = 0]. f(3, 7) = (µz)[−̇(3, 2) = 0] = 3, 3− 2 = 0.

Define f(x, y) to be the least common multiple of x and y. If either x = 0 or y = 0, then let f(x, y) = 0.
If z = LCM (x, y), then z is the smallest number such that z is divisible by x and y. f(x, y) = (µz)[x ∗ y ∗
(ISG(z) +REM ((z, x) +REM (z, y)) = 0].

1. If x or y equal to zero, then z is zero. Consider f(x, y) = 0.

2. If neither x nor y equal to zero, consider f(3, 6) = (µz)[3 ∗ 6 ∗ (ISG(z) +REM (z, 3) +REM (z, 6)) =
0] = 6.

f can be defined in two steps as follows:

1. Explicit — g(x, y, z) = x ∗ y ∗ (ISG(z) +REM (z, x) +REM (z, y)).

2. Mu Recursion — f(x, y) = (µz)[g(x, y, z) = 0].

Example: Another definition for the quotient. Recall if x is divided by y, then x = y · a+ r. ⇒ x ≥ y · a
and ⇒ y · a ≤ x. So, define QU (x, y) equal to the largest non-negative integer, w, such that w · y = x = the
smallest z such that z · y > x − 1. To illustrate, QU (7, 3) = largest w where w · 3 ≤ 7⇒ w = 2. QU (7, 3) =
smallest z where z· > 7 − 1 ⇒ z = g(x, y) = (µz)[y ∗ ISG(GT (z ∗ y, x)) = 0]. QU (x, y) = P (g(x, y)).
QU (x, 0) = (µz)[0 ∗ · · · = 0] = 0. QU (x, 0) = P (0) = 0.

Since mu recursive definitions can lead to partial functions, we see that there is a relationship between mu
recursion functions and the halting problem.

Example: f(x) = (µz)[↑ (z, 2) = x] is the partial square root function. z = 5 is an example.

Example: g(x, y) = (µz)[ISG(z) + REM (z, x) + REM (z, y) = 0] is the partial positive least common
multiple function. g is undefined when x = 0 or y = 0. Programs for defined functions include:

• If f is defined explicitly in terms of other functions for which the While-language programs exist, then
it is possible to write a While-language program with no new loops which computes f. See Section
4.5.1 in the textbook.

• The previous result applies for the Goto-language, also.

• If f is defined by primitive recursion in terms of other functions for which the While-language programs
exist, then it is possible to construct a DO-TIMES program which computes f. See Section 4.5.2 in
the textbook.

• If f is defined by a sequence of explicit definitions and primitive recursions, then f is computable by
the DO-TIMES program.

• If f is defined by mu recursion in terms of total functions which has a While-language program, then
f can be computed by a While-language program. See Section 4.5.3 in the textbook. The program for
f may not always halt.

Some additional results include:

• Any function which is computed by a DO-TIMES program is in the class of primitive recursion func-
tions. This means it can be defined from the successor function by a sequence of explicit definitions
and primitive recursions.

• Any function, partial or total, which can be computed by a While-language program can be defined by
repeated applications of explicit definitions, primitive recursions, and mu recursion. This is the class
of mu-recursion functions.

2.4. FUNCTIONS 79

• A function is mu-recursive if it can be defined in a sequence of steps from the successor function by
explicit definition, primitive recursion, and mu recursion.

• A function is equationally definable if it can be equationally defined in the formalism of functional
expressions.

All classes of functions are equal. This is the class of computable functions.

Homework: problems on page 119, #1, 3, 5, 7.

2.4.5 Homework and Answers

Problems from page 119 in the textbook.

1. Assume as given, the function PR where PR(x) = 1 if x is prime; and PR(x) = 0 if x is not prime. (a)
Define f from PR by mu recursion where f(x) is the smallest prime number greater than x. (b) Define
g by mu recursion, possibly with the help of explicit definition, where g(x) is the greatest prime number
less than x. Note that g is a partial function since g(0), g(1) and g(2) have no values. (c) By means of
primitive recursion from f, define the one-argument function PRIME where PRIME(x) = the xth

prime in order of magnitude counting 2 as the zero-th prime. Thus PRIME(0) = 2. PRIME(1) = 3.

a. Solution: f(x) = smallest prime > x. f(x) = (µz)[ISG(PR(z) ∗GT (z, x)) = 0].

b. Solution: g(x) = greatest prime< x. Find z = −̇(x,w) such that z is minimized. Note that w = −̇(x, z).

h(x) = (µz)[ISG(PR(−̇(x, z))) + ISG(z) = 0]
g(x) = −̇(x, h(x))

c. Solution: Prime(0) = 2. Prime(1) = 3. Prime(2) = 5. Prime(3) = 7. f(x) = smallest prime > x. By
primitive recursion, Prime(0) = 2; Prime(S(x)) = f(Prime(x)).

3. Define each of the two functions by mu recursion, possibly with the help of explicit definition. (a)
g(x) = 0 if x is a perfect square. Otherwise g(x) has no value. (b) h(x) = 0 if x is not a perfect square.
Otherwise h(x) has no value.

a. Solution:

g(x) =

0 If x is a perfect square.
No value Otherwise.

h(x) = (µz)[ISG(EQ(↑ (z, 2), x)) = 0]
g(x) = ∗(0, h(x))

If x is not a perfect square, then h(x) has no value.

b. Solution:

h(x) =

0 If x is not a perfect square.
No value Otherwise.

z2 < x < (z + 1)2. h1(x) = (µz)[ISG(GT (x, z2) ∗GT ((z + 1)2, x)) = 0]. h(x) = ISG(h1(x)) or z
2 > x

and h1(x) = (µz)[ISG(GT (z2, x)) = 0]. L. J. Randall’s comment: One idea is to look at (z− 1)2. Case
1: (z − 1)2 = x. Case 2: (z − 1)2 = x. h(x) = (µz)[EQ(P (h1(x))

2, x) = 0] for the case (z − 1)2 = x.

In each exercise, define the two functions described using mu recursion, possibly with the help of
explicit definition, but without using primitive recursion. The function you define in part (a) of each
exercise must not have a value precisely where the specification calls for it not to have a value. The
function you define in part (b) must be a total function.

80 CHAPTER 2. THEORY OF FORMAL LANGUAGES

5a.

f(x, y) =

x+ 2y If x = y.
Undefined Otherwise.

Solution: f(x, y) = (µz)[ISG(EQ(z, x + 2y)) + EQ(x, y) = 0].

5b.

g(x, y) =

x+ 2y If x = y.
0 If x = y.

Solution: g1(x, y) = (µz)[ISG(EQ(z, x+ 2y)) = 0]. g(x, y) = ISG(EQ(x, y)) ∗ g1(x, y).

7a.

f(x, y) =

Largest w ≤ x and h(w) = y
No value if no w exists.

Solution: The smallest z will produce the largest w. z = −̇(x,w) or w = −̇(x, z). f1(x, y) = (µz)[ISG(EQ(h(−̇(x, z), y))
ISG(GE(x, z)) = 0]. f(x, y) = −̇(x, f1(x, y)).

7b. Solution: f2(x, y) = (µz)[ISG(EQ(h(−̇(x, y)), y)) ∗ ISG(EQ(x, z)) = 0]. f(x, y) = −̇(x, f2(x, y)).

2.4.6 Formal Computations Summary

A formal computation is a derivation of an evaluation from a given set of evaluations.

Example: The following shows a formal computation of −̇(3, 1) for Φ.

Φ =

−̇(x, 0) = x
−̇(x, S(y)) = P (−̇(x, y))
P (0) = 0
P (S(x)) = x

• For the class of primitive-recursive functions, these are all functions which can be defined by a sequence
of explicit definitions and primitive recursions.

• Total functions — given the definition of a function in this class, we can write an algorithm to compute
the function. Every function in this class is computable by a DO-TIMES program. These programs
always halt.

• Not all primitive recursive functions are practically computable.

• All computable functions can be defined by a mu-recursive and an explicit definition. This is a major
result.

The following four definitions are equivalent:

1. A function is Turing computable if it possible to construct a Turing machine that computes it.

2. A function is program computable if it is possible to write a program (Goto, While) that computes it.

3. A function is mu-recursive if it can be defined in a sequence of steps from the successor function by
explicit definition, primitive recursion, and mu recursion.

4. A function is equationally definable if it can be equationally defined in the formalism of functional
expressions.

All classes of functions are equal. This is the class of computable functions.
Omit Section 4.7 in the textbook.

Skip Chapters 5 and 6 in the textbook.

2.5. CONTEXT FREE GRAMMARS 81

2.5 Context Free Grammars

A grammar is a formal description of the syntax of a formal language. A context free grammar consists of:

1. A set of characters called the terminal alphabet.

2. A set of characters called the non-terminal alphabet, disjoint from the set in (1).

3. The start symbol — a character from the non-terminal alphabet.

4. A set of productions of the form: non-terminal → character string, where the character string may
consist of both terminal and non-terminal characters.

Example: A simplified version of the language of functional expressions.

Assume that there are:

1. Two functional symbols: S and +.

2. Three variables x, y, and z.

3. Binary numbers only.

The terminal alphabet is: S,+, x, y, z, 0, 1, (,), comma, <,> . We can generate only binary numeral N with
the following productions:

N → 0
N → 1
N → 1R
R→ 0R
R→ 1R
R→ 0
R→ 1

To use a production, replace the non-terminal on the left of the arrow with the string on the right. A
derivation to show that 1100 is a numeral is as follow:

N start symbol
1R
11R
110R
1100

0110 is not possible using the above productions. A derivation to show that 1100 is a numeral is as follow:

N start symbol
1A
11A
110A
1100

We can generate any variable V with the following productions:

V → x
V → y
V → z

82 CHAPTER 2. THEORY OF FORMAL LANGUAGES

The functional expression E can be generated by:

E → N
E → V
E → +(E,E)
E → S(E)

An equation Q needs only one production: Q→ E = E. A derivation to show that +(+S(x)), 11), S(0) is a
functional expression is as follow:

E Start symbol
+(E,E)
+(+(E,E), E)
+(+(S(E), E), E)
+(+(S(V), E), E)
+(+(S(x), E), E)
+(+(S(x), N), E)
+(+(S(x), 1A), E)
+(+(S(x), 11), E)
+(+(S(x), 11), S(E))
+(+(S(x), 11), ...

This is in the textbook.

In a grammar, one type of production is chosen as being the most important. In our example, we will choose
the set of Equations Q. Q will be the start symbol of the grammar and henceforth all derivations in the
derivation will start with Q. The language of a context-free grammar is the set of strings over the terminal
alphabet that are derivable from the start symbol. If G is a context-free grammar, then we denote the
language of G by L(G). The grammar defines the language. Summary:

1. Terminal alphabet S,+, x, y, z, 0, 1, (,), comma.

2. Non-terminal alphabet N,A, V,E,Q.

3. Start symbol Q.

4. Productions:

Q→ E = E
N → 0|1|1A
A→ 0A|1A|0|1
V → x|y|z
E → +(E,E)|S(E)|N |V

Page 197 in the textbook gives the full formalism of functional expressions. The more grammars, the more
productions. {1−3} are numerals. {4} are variables. {5−12} are functional expressions. {13} are a sequence
of functional expressions. {14} is equations. Page 198 in the textbook gives a context free grammar for the
GOTO language. {1 − 3} is names. {4 − 5} is unlabeled commands. {6} is labeled commands. {7} is
programs. {8− 10} is numerals.

δ → ...
γ → ...
α→ ...

are the same as numerals in the previous expressions.

Example: A context-free grammar, G-IN, for propositional calculus that uses parenthesis. Assumptions:

2.5. CONTEXT FREE GRAMMARS 83

1. Only operators are δ,∨, and ≈ .

2. Only variables are p, q, r, p, q, r, p, q, r,

3. The terminals are δ,∨,≈, p, q, r, , (,).

4. The non-terminals are s, A.

5. The start symbol is s.

6. Productions — see page 199 in the textbook. s→ and A→ .

Example: p∨ ≈ q is not possible. But (p) ∨ (≈ (q)) is possible.

s
(s) ∨ (s)
(A) ∨ (A)
(p) ∨ (q)

Example: A grammar, G-PRE, for parenthesis free propositional calculus. See page 202, bottom in the
textbook. p ∨ q ≈ ∨pq.

Example: A grammar, G-Suf, for parenthesis free propositional calculus in sux form. See page 203 in the
textbook.

Example: Describe the language of the grammar. Given: S → cS|bD|c. D → cD|bS|b. Start symbol is S.
Terminals c, b. Generate strings:

S S
c cS

ccS
cccS

...
ccc · · ·c

S S S
bD bD bb

bccD bccD
bcccb bcccD
bcccb bcccbS

bcccbc

All strings in this language have an even number of bs.

Example: A grammar for the set of palindromes over the alphabet {b, c}. S → bSb|cSc|bb|cc|b|c. Derive
bbcbcbcbb.

S
bSb
bbSbb
bbcScbb
bbcbSbcbb
bbcbcbcbb

84 CHAPTER 2. THEORY OF FORMAL LANGUAGES

Example: A grammar for {bmcndnem|m,n ≥ 1}. S → bSe|bJe. J → cJd|cd. Note that b3 = bbb. Derive
b3c2d2e3.

S
bSe
bbSee
bbbJeee
bbbcJdeee
bbbccddeee

Example: A grammar for {bmcndnemfp(gh∗)p|m ≥ 2, n ≥ 0, p ≥ 1}.

S → JK
J → bJe|bbee|bbLee
L→ cLd|cd
K → fKQ|fQ
Q→ Qh|g

Note that h∗ represents hn ≥ 0. Derive b3c2d2e3f4(gh∗)4.

S
JK
bJeK
bbbLeeeK
bbbcLdeeeK
bbbccddeeeK
bbbccddeeeKfKQ
bbbccddeeeKffKQQ
bbbccddeeeKfffKQQQ
bbbccddeeeKffffQQQQ
bbbccddeeeKffffQhQQQ
bbbccddeeeKffffghQQQ

2.5.1 Exam 2 and Answers

All functions on this exam are defined over the non-negative integers.

1. Define function g by explicit definition where

g(x, y) =

x+ y, If x is even.
yx, If x is odd.

Solution: ISG(REM (x, 2)) ∗ (x+ y) +REM (x, 2) ∗ (↑ (y, x)).

2. Define function h by primitive recursion where h(0) = 3 and h(x + 1) = 2 ∗ h(x) if 0 < x < 10, and
h(x+ 1) = 3 ∗ h(x) if x ≥ 10. Solution:

h(x+ 1) =

h(0) = 3
h(S(x)) = GT (x, 0) ∗GT (10, x) ∗ 2 ∗ h(x) +GE(x, 10) ∗ 3 ∗ h(x)

3. Assume that f1 and f2 are known total functions. Define h such that:

h(x) =

1, If f1(x) = 1 or f2(x) = 1 or both.
0, Otherwise.

4. Give a mu-recursive definition of function f such that f(x, y) is the smallest z ≤ x such that h(z) = y.
f(x, y) has no value if there is no such z. Assume that h is some known total function of one argument.
Solution: f(x, y) = (µz)[ISG(EQ(h(z), y)) + ISG(GE((x, z)) = 0].

2.5. CONTEXT FREE GRAMMARS 85

5. Consider the following definition of function g. Find g(15).

f(x) = (µz)[ISG(GT (x, ∗(2, −̇(x, z))))) = 0]
g(x) = −̇(x, f(x))

Solution:

g(15) = −̇(15, f(15) = −̇(15, 8) = 7
f(15) = (µz)[ISG(GT (15, ∗(2, −̇(15, z)))) = 0]
z = 1 ISG(GT (15, 2 ∗ 14))

GT (15, 28)
z = 2 ISG(GT (15, 2 ∗ 13))

GT (15, 26)
z = 3 ISG(GT (15, 2 ∗ 12))

GT (15, 24)
z = 4 ISG(GT (15, 2 ∗ 11))

GT (15, 22)
z = 5 ISG(GT (15, 2 ∗ 10))

GT (15, 20)
z = 6 ISG(GT (15, 2 ∗ 9))

GT (15, 18)
z = 7 ISG(GT (15, 2 ∗ 8))

GT (15, 16)
z = 8 ISG(GT (15, 2 ∗ 7))

GT (15, 14)
ISG(1) = 0

6. Define the class of primitive recursive functions. Given an argument to show that this class contains
infinitely many functions.

7. Describe (by giving a formula) the language of the following grammar.

S → bSc|H
H → aHd|add

8. Give a context-free grammar for the following set of strings. {xnb2n−1c|n ≥ 1}.

9. Give a context-free grammar which uses λ productions for {(d∗c)n(ab∗)2n|n ≥ 0}.

2.5.2 Lambda Productions

Let λ denote the null string. If we concentrate λ with any s, we obtain s. λs = sλ = s. Consider a context
free grammar for {bmcn|m ≥ 0, n ≥ 1}. To generate bm,m ≥ 0 we can use B → λ|bB. To generate cn, n ≥ 1
we use H → c|cH. Now to get bmcn, we use S → BH. This grammar can be written without a lambda
production.

S → c|bS|bH|cH
H → c|cH

Example: Write a context free grammar for {bmcmhdnenhfpgp|m,n, p ≥ 0}.

S → BhDhF
B → bBc|λ
D → dDe|λ
F → fFg|λ

This grammar can be written without lambda productions.

86 CHAPTER 2. THEORY OF FORMAL LANGUAGES

It is always possible to convert a context free grammar with λ productions into a context free grammar with
out lambda productions. If λ is in the first language, it will not be in the second language. There are three
steps to convert G0 to a grammar without lambda productions.

Step 1: Identify all non-terminals which can yield λ, either directly or indirectly. For example,

S → eSe
S → CD
C → fCg
C → λ
D → λ
B → hB
B → f

Step 2: Construct G1 from G0 as follows:

1. Identify each production of G0 which has at least one λ-yielding non-terminal on the right side.

2. Suppose the production identified in (1) has the formB → · · ·G1 · · ·G2 · · ·Gp · · · where G1, G2, ..., Gp

are λ-yielding productions.

3. Add to the list of productions all those that can be formed by deleting a non-empty subset of
{G0, G1, ..., Gp} from the right side.

Step 3: Construct G0 from G1 by deleting. For example, for G1,

S → eSe|ee
S → CD|D|C|λ
C → fCg|fg
C → λ

gets converted into:

D → BDh|Bh
D → λ
B → hB
B → f

Another example, G2 :

S → eSe|ee
S → CD|D|C
C → fCg|fg

gets converted into:

D → BDh|Bh
B → hB
B → f

Do problems 1, 3, 5, 6, 7, 11 on page 212 in the text book.

2.5. CONTEXT FREE GRAMMARS 87

2.5.3 Homework and Answers

Page 212 in the textbook.

Give a formula for the language of each of the following grammars.

1.

S → bbSc|H
H → cHdd|cd

Solution: {b2ncmd2m−1en|n ≥ 0,m ≥ 1}.

3.

S → HSKK|HK
H → bH|c
K → Kc|d

Solution: {(b∗c)n(de∗)2n−1|n ≥ 1}.

S → (H)n(K)2n−1

H → b∗c
K → de∗

5. S → bSc|bScc|bSccc|bc. Solution: {bncm|n ≥ 1, n ≤ m ≤ 3n− 2}.

S
bSccc
bScccccc
bbbccccccc

In each exercise, give a context-free grammar for the set of strings described. Exclude the null string
from consideration.

6. {bm+ncmdn|m ≥ 0, n ≥ 1}. Solution:

S → bSd|bTd|bd
T → bT c|bc

7. {bm+ncmdn|m ≥ 1, n ≥ 0}. Solution:

S → bSd|T
T → bT c|bc

11. {(d∗c)m(c∗d)m|m ≥ 2}. Solution:

S → HSK|HHKK
H → dH|c
K → cK|d

2.5.4 Homework and Answers

Page 228 in the text book.

88 CHAPTER 2. THEORY OF FORMAL LANGUAGES

1. Construct G1 and G2 where G0 is

S → bEf
E → bEc|GGc
G→ b|KL
K → cKd|λ
L→ dLe|λ

Solution: G, K,L can produce λ. G0 is in the text book. G1 is:

S → bEf
E → bEc|GGc|Gc|c
G→ b|KL|L|K|λ
K → cKd|cd|λ
L→ dLe|de|λ

G2 is

S → bEf
E → bEc|GGc|Gc|c
G→ b|KL|L|K
K → cKd|cd
L→ dLe|de

Note that λ = L(G0) and that λ = L(G2).

2.5.5 Parsing

To parse a string means to determine the structural meaning of the string. For example, strings of a high-level
programming language must be parsed to be translated into machine code. We wish to study ambiguities in
formal languages. There are two types of ambiguity:

1. Lexical ambiguity — here a symbol or expression has more than one meaning.

2. Structural ambiguity — a string can be parsed into more than one way, giving it diÿerent meanings.

Formal languages should be free of structural ambiguities. If a context-free grammar is used to describe
the syntax of a language, then a derivation tree can be used to parse a string of the same language. If a
string has more than one derivation tree, then it has more than one structural meaning and is structurally
ambiguous. A context-free grammar is ambiguous if there is a string in the language of the grammar that
has at least two non-isomorphic derivation trees.

Example: S → bS|Sb|c is an ambiguous grammar. See Figure 2.4. Change to

S → bS|A
A→ Ab|c

which is isomorphic.

How can we change an ambiguous grammar into an unambiguous one? One possible solution is to modify
the language. This might be done by adding parenthesis or by changing to prefix notation. Suppose we do
not want to modify the language to remove ambiguities. Then we must try to change the grammar for the
language.

Example: S → bS|cS|bbS|λ is ambiguous. See Figure 2.5. The solution is S → bS|cS|λ.

2.5. CONTEXT FREE GRAMMARS 89

Figure 2.4: This figure shows the ambiguous grammar example

Figure 2.5: This figure shows the ambiguous grammar example

90 CHAPTER 2. THEORY OF FORMAL LANGUAGES

Figure 2.6: This figure shows the ambiguous grammar example

Example: The following is ambiguous

S → B|D
B → bBc|λ
D → dDe|λ

See Figure 2.6. The solution is

S → B|D|λ
B → bBc|bc
D → dDe|de

Result: Some ambiguities in a context-free grammar may not have an unambiguous equivalent. The corre-
sponding language is said to be inherently ambiguous. Some more results:

1. There is no decision procedure to tell whether or not a grammar is ambiguous.

2. There is no decision procedure to tell whether or not a grammar is inherently ambiguous.

3. There is no algorithm for converting an ambiguous context free grammar into an unambiguous one.

For homework, do problems 7, 9, 11, 13, 15 on page 247 in the textbook.

2.6 Regular Languages and Finite Automata

A regular grammar is a context-free grammar in which every production has as its right side either

1. A terminal followed by a non-terminal.

2. A single terminal.

3. λ.

A language is regular if there is a regular grammar for it.

Example: G :

S → cS|bD|λ
D → cD|bS

2.6. REGULAR LANGUAGES AND FINITE AUTOMATA 91

Figure 2.7: This figure shows a directed graph

Figure 2.8: This figure shows a one-to-one correspondence

Regular grammars generate strings left to right. A reverse regular grammar is a context-free grammar which
generates strings right to left.

Example: G :

S → Sc|Db|λ
D → Dc|Sb

Notice that L(G) = L(G).

Every regular grammar can be represented by a directed graph in which nodes correspond to non-terminals
and arcs correspond to productions. See Figure 2.7.

Example: G1 :

S → cS|bD|c
D → cD|bS|b

See Figure 2.8. There is a one-to-one correspondence between the walks in the graph and the strings in the
grammar.

A transition graph is a directed graph whose arcs are labelled by characters from an alphabet. One node is
the start node. One or more nodes are accepting nodes indicated by the double circles. The language of a

92 CHAPTER 2. THEORY OF FORMAL LANGUAGES

Figure 2.9: This figure shows the transition graph for the regular grammar

transition graph is the set of all strings generated by all walks from the start node to the accepting nodes.
Every regular grammar has an equivalent transition graph and every transition graph has an equivalent
regular grammar.

Example: Consider the regular grammar:

S → bS|cS|cD
D → cE
E → cF
F → bF |cF |λ

See Figure 2.9 for the transition graph.

We wish to consider a finite automata which is a language recognition device. A finite automata has a finite
amount of memory. It has as input a string written on an input tape. Its goal is to determine whether the
string is ”acceptable.” A deterministic finite automata consists of:

1. The machine alphabet G. These are the characters which it can read.

2. A finite set of states, K.

3. One element of K called the start state.

4. A subset of K called the accepting states.

5. A transition function t : K × G → K where × is the Cartesian product and t maps T : (state, char)
→ state.

The automata begins in the start state. It reads the leftmost non-blank square on the input tape and pro-
ceeds according to the transition function. Then it goes one square to the right on the input tape. If the
automata halts in an accepting state, the string is accepted; otherwise it is rejected. The language of the
automata is the set of all strings over the machine alphabet that it accepts.

Example: The following defines an automata:

1. Machine alphabet {c, d}.

2. States S,Q,R.

3. Start state S.

4. Accepting state Q.

5. Transition function t :

t(S, L) = t(Q, c) = S
t(S, c) = Q
t(Q, b) = t(R, b) = t(R, c) = R

2.6. REGULAR LANGUAGES AND FINITE AUTOMATA 93

2.6.1 Regular Expressions

We will define a general regular expression. Each general regular expression denotes a set of strings. We will
see that every general regular expression corresponds to a regular language. Let α and β be sets of strings.
The concatenation of αβ is given by αβ = {xy|x ∈ α, y ∈ β}.

Example: α = {b, bc, bcb}. β = {c, bb}. αβ = {bc, bbb, bcc, bcbb, bcbc, bcbbb}.

In general, αβ = βα, is not commutative. If α = {λ}, then αβ = β. If α = ∅, then αβ = ∅. If α is a set of
strings, then

1. α0 = {λ}.

2. αn+1 = ααn.

Example: α = {a, b}. α0 = {λ}. α1 = αα0 = {a, b}. α2 = αα1 = {aa, ab, ba, bb}. α3 = αα2 =
{aaa, aab, aba, abb, baa, bab, bba, bbb}.

Let α be a set of strings. The star closure of α is denoted by α∗ and is given by α∗ =

∞

n=0 α
n =

α0 ∪α1 ∪ α2 · · · . α∗ = G∗ equals to all strings over G.

Example: α = {b, bc}. α∗ = {λ, b, bc, bb, bbc, bc, bb, bbc, bcb, bcbc, ...}.

Definition: Let G be a string alphabet. Then,

1. ∅, {λ}, and {w}w∈G are general regular expressions.

2. If α and β are general regular expressions, then so are:

(a) (α) ∪ (β).

(b) (α) ∩ (β).

(c) (α)− (β).

(d) (α)n.

(e) (α)∗.

Notation: we will write b instead of {b}, c∗ instead of {c}∗ and bc∗d instead of {b}{c}∗{d}. The precedence
of operations is in this order:

1. Star, exponents.

2. Concatenation

3. Union, intersection, and diÿerence.

Rule: parenthesis may be omitted only when operators are in diÿerent classes. For example, α∗β ∩ γ means
(α)∗(β) ∩ γ.

Example: b∗ = {λ, b, bb, bbb, ...} is the set of all strings over {b}.

Example: (b ∪ c)∗ = {λ, b, c, bb, bc, cb, cc, ...}

Example: (a ∪ b)∗a = {a, b}∗{a} is the set of all strings over {a, b} which end in ”a.”

Example: (b ∪ c)∗bbb(b ∪ c)∗ is the set of all strings over {b, c} having ”bbb” as a substring.

94 CHAPTER 2. THEORY OF FORMAL LANGUAGES

Example: (b ∪ c)∗bbb(b ∪ c)∗ ∩ (b ∪ c)∗ccc(b ∪ c)∗ is the set of all strings over {b, c} containing a substring
”bbb” and a substring ”ccc.”

Example: a∗b∗ is the set of all strings in which all as come before bs.

Example: (aa)∗ = {λ, aa, aaaa, aaaaaa, ...}.

Example: (a ∪ c)b∗ = {a, c, abbb, ..., cbbb, ...}.

Example: Give a regular expression for the set of all strings of as and bs of length exactly three.
(a ∪ b)(a ∪ b)(a ∪ b) = (a ∪ b)3.

Example: (a ∪ b)∗a(a ∪ b)∗a(a ∪ b)∗.

Example: b∗ab∗a(a ∪ b)∗.

Example: (a ∪ b)∗ab∗ab∗.

Theorem: For a formal language L, the following are equivalent:

1. L is regular.

2. L is denoted by a restricted regular expression.

3. L is denoted by a general regular expression.

Some languages are not regular. Take the next three examples.

Example: {anbn|n ≥ 0}.

Example: Any language in which parentheses are used in the usual way.

Example: {wwR|w ∈ G∗} where wR is the reverse of w.

2.6.2 Pushdown Automata

This section describes ”pushdown store” or a stack. There are languages which are not context-free. For
example, {anbncn|n ≥ 0}. The languages can be recognized by Turing machines.

The following are equivalent:

1. Regular grammar.

2. Reverse regular grammar.

3. Transition graph.

4. State graph.

5. Finite automata (deterministic).

Corollary: If L is a language, the following are equivalent:

1. L is regular.

2. L is the language of a transition graph.

2.6. REGULAR LANGUAGES AND FINITE AUTOMATA 95

3. L is the language of a state graph.

4. L is the language of a finite automata.

If L1 and L2 are regular languages, then so are L1∪L2 and L1∩L2. Note that G∗−L is the set of all strings
over G which are not in L. This is called the complement of L. A two-way finite automata is an automaton
which can move left and right on the input tape. Result: Every two way automaton has an equivalent
one-way automaton. A two-way automation is not more powerful than a one-way finite automaton.

The test will cover ambiguous grammars (2 or more); grammars: what is regular. Draw transition and state
graphs. Sets. Basic results in Chapter 9 in the textbook.

A transition graph is a state graph iÿ for every node and character in the alphabet, there is exactly one arc
leaving that node labeled with that character. For example, for the input table,

b c
↑ ↑ ↑
S S Q

R is called the dead or trapped state.

c c b c
↑ ↑ ↑ ↑
S Q Q R

The last b is rejected because it is deterministic.

State graphs correspond to finite automaton. There is exactly one arc per character. See Figure 9.2.1
in the textbook. In a non-deterministic finite automata, t is not a function. (Q, b) may have more than
one value or no value at all. If the input string is not accepted, we can not say it should be rejected. A
diÿerent execution with the input string could lead to acceptance. Every transition graph can be seen as
a non-deterministic finite automata. Every non-deterministic finite automata is equivalent to deterministic
finite automata. Every transition graph can be converted to a state graph. The following is an algorithm to
convert a transition graph into a state graph (version 2 only).

Step 1: Begin with state Q1, which corresponds to the start node N1. For each character of G, find the set
of nodes to which there is an arc from N1 labeled with that character. If this set consists of N1 only,
draw an arc from Q1 to Q1 labeled with the character, else add a new state Qi and draw an arc from
Q1 to Qi.

Step i : Check if there is an arc leaving each state node labeled with each character ofG. If so, we are done. Else,
if Qi is a state node with no arc labeled ”w” (w ∈ G) find the set of all nodes to which there is an arc
labeled ”w” from a node of Qi. If there is already a state corresponding to this set, draw an arc from Qi

to that state node and label it ”w” else add a new state node and draw an arc labeled ”w” from Qi to it.

Make a state an accepting state iÿ it corresponds to at least one accepting node in the transition graph.

Example: See Figure 2.10 for the transition graph. See Figure 2.11 for step 1. Many times state graphs
can be simplified by collapsing several states into a single state. See Figure 2.12 for the collapsed graph.

Example: The following push down automata accepts the language {wwr|w ∈ {a, b}∗}. G = {a, b}.
R = {a, b}. K = {S,E}. F = {E}.

t(S, a, b) = (S, a) = push ”a”
t(S, b, λ) = (S, b) = push ”b”
t(S, λ, λ) = (E, λ) = no read
t(E, a, a) = (E, λ) = pop ”a”
t(E, b, b) = (E, λ) = pop ”b”

96 CHAPTER 2. THEORY OF FORMAL LANGUAGES

This machine must guess when it has reached the middle of the input string and change from state S to
state E in a non-deterministic way. Whenever the machine is in state S, it can choose to either push the
next symbol onto the graph or to switch to state E.

a b b a
↑ ↑ ↑ ↑
S S S S

Decision: can not accept the string, but not the same as reject.

a b b a
↑ ↑ ↑ ↑
S S E E

Changes states only.

For homework, on page 247 in the textbook do problems 7, 9, 11, 13, 15. On page 320, do problems 1 thru
9.

The test will cover ambiguous grammars (2 or more); grammars: what is regular. Draw transition and state
graphs. Sets. Basic results in Chapter 9 in the textbook.

A transition graph is a state graph iÿ for every node and character in the alphabet, there is exactly one arc
leaving that node labeled with that character. For example, for the input table,

b c
↑ ↑ ↑
S S Q

R is called the dead or trapped state.

c c b c
↑ ↑ ↑ ↑
S Q Q R

The last b is rejected because it is deterministic. State graphs correspond to finite automaton. There is
exactly one arc per character. See Figure 9.2.1 in the textbook. In a non-deterministic finite automata, t is
not a function. (Q, b) may have more than one value or no value at all. If the input string is not accepted,
we cannot say it should be rejected. A diÿerent execution with the input string could lead to acceptance.

Theorem: The class of languages accepted by push down automata is exactly the class of context-free
languages.

There are languages that are not context-free. For example, {anbncn|n ≥ 0}. These languages can be
recognized by Turing machines. Final results:

• Finite automata recognize regular languages.

• Push down automata recognize context-free languages.

• Turing machines can recognize all mu-recursive functions and recognize non-context free languages.

For homework, in Chapter 8 on page 247, do problems 7, 9, 11, 13, 15. In chapter 9 on page 308, do problems
11, 12, 13, 15. In Chapter 9 on page 320, do problems 1 thru 9. The final exam will be during Final Exam
week.

2.7. HOMEWORK AND ANSWERS 97

2.7 Homework and Answers

Page 247 in the textbook.

Show that the grammar is ambiguous with two non-isomorphic derivation trees for the same string.
Find an equivalent unambiguous grammar.

7.

S → bSE|λ
E → bE|λ

Solution: {bn|n = 1}. S → bE|λ. E → bE|λ.

S
bSE
bbSEE
bbλEEbbλbE
bbλbb
b4

S
bSE
bλE
bλbE
bλbbE
bλbbbb
b4

9. S → bSc|bSd|bS|λ. Solution: Either S → bSc|bSd|H|λ, H → bH|b or S → bSc|bSd|H, H → bH|λ.

S
bSc
bbSdS
bbbλdc
b3dc

S
bS
bbSc
bbbSdc
bbbλdc
b3dc

11.

S → cS|cSb|Q
Q→ cQc|c

Solution: {cnbm|m ≥ 0, n ≥ 1, n ≤ m}. S → cSb|Q. Q→ cQ|c.

S
cS
ccS
ccQ
ccc
c3

98 CHAPTER 2. THEORY OF FORMAL LANGUAGES

S
Q
cQc
ccc
c3

13.

S → bSE|λ
E → cE|c

Solution: S → bSc|bHc|λ. H → cH|c.

S
bSE
bbSEE
bbλEE
bbλcEE
bbλccE
bbλccc
b2c3

S
bSE
bbSEE
bbλEE
bbλcE
bbλccE
bbλccc
b2c3

15.

S → bS|bE
E → Ed|Fd
F → bFd|bddd

Solution: {bndm|n ≥ 2,m ≥ 4}. S → bS|bE. E → Ed|Fd. F → bddd.

S
bE
bEd
bEdd
bEddd
bbFdddd
bbbddddddd
b3d7

S
bS
bbE
bbEd
bbEdd
bbEddd
bbFdddd
bbbddddddd
b3d7

2.8. HOMEWORK AND ANSWERS 99

The final exam is on Thursday afternoon from 12:30 to 2:30pm.

2.8 Homework and Answers

Problems on page 308 in the textbook. Do # 11, 12, 13, 15.

In Exercises 1 to 22, draw a transition graph for each set.

11. The set of strings over {b, c} whose length is no greater than 5. Solution: See Figure 2.13.

12. The set of strings over {b, c} whose length is at least 5. Solution: See Figure 2.14.

13. The set of all strings over {b, c} with length at least two, having an even number (possibly zero) of bs.
Solution: See Figure 2.15.

2.9 Homework and Answers

Problems on page 320 in the textbook.

1. Convert Figures 9.1.1, 9.1.3 to 9.1.7 and 9.1.9 to 9.1.11, respectively, into equivalent state graphs.
Solution: Figure 2.16 gives the state graph for Figure 9.1.1. Figure 2.17 gives the state graph for
Figure 9.1.3. Figure 2.18 gives the state graph for Figure 9.1.7 in the textbook. Figure 2.19 gives the
state graph for Figure 9.1.9 in the textbook.

2.10 Handout and Answers

1. Give a regular expression for each of the following languages over the alphabet {a, b}.

a. All strings which at some point contain a double letter (aa or bb). Solution: G = {a, b}. (a ∪
b)∗(aa ∪ bb)(a ∪ b)∗.

b. All strings which do not contain a double letter. Solution: (a ∪ b)∗ − (a ∪ b)∗(aa ∪ bb)(a ∪ b)∗.
Alternatively, (ab)∗ = {λ, ab, abab, ababab, ...}. (Λ ∪ b)(ab)∗(a ∪ Λ).

c. All strings containing exactly three bs. Solution: a∗ba∗ba∗ba∗.

d. All strings that contain the substring aaa or the substring bbb but not both. Solution: (a∪b)∗(aa∪
bb).

2. Describe the languages of the following regular expressions.

a. (a∗b∗)∗.

b. b∗(abb∗)(Λ ∪ a). Solution: Two as not adjacent. Has ab.

c. (ab)∗a. Solution: It has to end in a. λ is not in the set.

d. a(aa)∗(Λ ∪ a)b ∪ b. Solution: a∗b.

e. (a ∪ b)∗a(Λ ∪ bbbb). Solution: It has at least one a. Can end in a or bbbb. Can only be a.

100 CHAPTER 2. THEORY OF FORMAL LANGUAGES

Figure 2.10: This figure shows the transition graph that needs to be simplified

Figure 2.11: This figure shows step 1 of the simplified transition graph

Figure 2.12: This figure shows the final step of the simplified transition graph

Figure 2.13: This figure shows the solution to problem 11 on page 308 in the textbook

Figure 2.14: This figure shows the solution to problem 12 on page 308 in the textbook

Figure 2.15: This figure shows the solution to problem 13 on page 308 in the textbook

2.10. HANDOUT AND ANSWERS 101

Figure 2.16: This figure shows the state graph for Figure 9.1.1 to problem 1 on page 320 in the textbook

Figure 2.17: This figure shows the state graph for Figure 9.1.3 to problem 1 on page 320 in the textbook

Figure 2.18: This figure shows the state graph for Figure 9.1.7 to problem 1 on page 320 in the textbook

Figure 2.19: This figure shows the state graph for Figure 9.1.9 to problem 1 on page 320 in the textbook

102 CHAPTER 2. THEORY OF FORMAL LANGUAGES

Appendix A

Index

103

Index

Λ, 36
, 41
n-tuple, 41

absolute diÿerence function, 74
accepting node, 91
Ackerman function, 77
addition, 15, 73, 76
adjacency list, 41
Alan Turing, 57
algorithm, 56
alphabet, 36
ambiguous, 88
and, 3
antisymmetric, 44
arcs, 41
ASCII characters, 38
assertion, 7, 15, 21
assertion, sequence of, 15
associative, 26
automata, 56
axiom, 15

basis clause, 35
binary relation, 41, 42
binary tree, 37
bound variable, 8
builder notation, 23

Cartesian product, 41
change state, 57
class of primitive recursion functions, 78
command, 63
commutative, 26
complement of sets, 29
complete over, 42
complex arguments, 16
composite relation, 46
computability, 56
computable function, 64, 72, 79
compute, 72
concatenation, 36, 93
conjunction, 3, 10, 16
connected, 42, 57
constructive delimma, 16
constructive existence proof, 21

context-free grammar, 88
contigency, 5
contra-positive, 4
contradiction, 21
contridiction, 5
converse, 4
cordless path, 42
correspondence, 3

De’Morgan’s laws, 32
decidable, 56
decision, 64
decision procedure, 56
definition by cases, 74
definitions for functions, 72
derivation, 81
derivation tree, 88
destructive delimma, 16
deterministic finite state automaton, 57
digraph, 41, 42
directed graph, 41, 63, 91
disconnected, 42
disjoint, 26
disjoint sets, 26
disjunction, 4
disjunctive syllogism, 15
distinct verticies, 42
distributive, 26
distributive property, 4
DO-TIMES program, 72, 78

edge, 41, 56
edges, 41
empty relation, 41
empty set, 23
empty string, 36
equal function, 74
equation, 72
equational definition, 72
equationally definable, 79, 80
equationally defined, 77
equivalence, 4
erase, 57
evaluation, 77
evaluation replacement, 77

104

INDEX 105

exclusive or, 4
existential quantifier, 8
explicit, 78
explicit definition, 72, 73, 77
exponentiation, 73, 76
extremal clause, 35

factorial, 73
fallacious argument, 16
False, 3
finite automata, 92, 95, 96
finite automata, deterministic, 92
finite length string, 36
finite set, 23
first principle of mathematical induction, 37
floored subtraction, 73
flowchart, 63
formal computation, 80
formal language, 56
formal string language, 58
function symbol, 72
functional expression, 72

Goto language, 58
Goto, semantics, 59
graph, 56
graph, representation, 41
greater-than function, 74
greater-than or equal-to function, 74
greatest element, 48

halt, 64, 78
halting problem, 56, 78
hypotheses, 15
hypothetical syllogism, 16

if and only if, 7, 20
if-then, 4
iÿ, 7
implication, 4
incidence matrix, 41
inductive clause, 35
inductive definition, 35
inductively defined sets, 35
infinite set, 23
initial vertex, 42
INORDER, 38
input, 56
instant, question, 56
integers, set of, 8
intersection, 26, 35
inverse, 4
irreflexive, 42
is less than, 8

labyrinth, 56
labyrinth problem, 57
lambda production, 85
language, 82, 91
language over Σ, 38
largest non-negative integer, 78
leading edge, 57
least common multiple, 78
least element, 48
lexical ambiguity, 88
linear order, 47
lines, 41

math structure, 3
mathematical induction, first principle, 37
mathematical induction, second principle, 38
mathematical modeling, 3
maximum function, 74
minimum function, 74
model, reason for using, 3
modus ponens, 15
modus tollens, 15
move one position, 57
mu expression, 77
mu recursion, 72, 78
mu recursion definition, 77
mu-recursive, 79, 80
multiplication, 73, 76

natural numbers, set of, 8
negation, 3, 10
negation, properties, 10
node, 56
non empty set, 8
non-constructive existence proof, 21
non-deterministic procedure, 56
non-isomorphic, 88
non-negative integers, 57, 71, 72
non-solvable, 56
non-string formal language, 64
non-terminal alphabet, 81
null set, 23
null string, 36
numeral, 72

operation on proposition, 3
or, 4
ordered pair, 41
ordered triple, 41

pairwise disjoint sets, 26
palindrome, 83
parse, 88
partial function, 72, 78
partial order, 47

106 INDEX

partial positive least common multiple function,
78

partial square root function, 78
partially ordered set, 47
path, 57, 63
path, length of, 42
phenomena, 3
pointer, 37
poset, 47, 48
position function, 3
power set, 35
precedence of operations, 93
predecessor function, 73
predicate, 7, 11
prediction, 3
premise, 17
primitive recursion, 72, 73
primitive recursive function, 75, 77
primitive-recursion function, 77
primitive-recursive function, 80
principle, 3
print, 57
problem, definition, 56
procedure, 56
productions, 81
program computable, 80
program, level i, 63
programming language, 56, 58
proof, 15
proof by cases, 20
proof by contradiction, 20
proof of equivalence, 20
proper program, 59
proposition, 3, 8
proposition, operations on, 3
propositional calculus, 82
push down automata, 95, 96
pushdown store, 94

quantified variable, 8
quantifier, 8, 11
quantifier, bound, 11
quantifier, existential, 8
quantifier, scope, 11
quantifier, unique existential, 8
quasi order, 47
quotient function, 75, 78

reasoning problem, 2
reflexive, 42, 46
reflexive closure, 46
regular expression, 93
regular expression, general, 94
regular expression, restricted, 94

regular grammar, 90, 94
regular grammar, reverse, 91, 94
remainder function, 74
repeated applications of explicit definitions, 78
repeated applications of mu recursion, 78
repeated applications of primitive recursions, 78
rules of inference, 15
run history, 59

scope of quantifier, 11
second principle of induction, 38
set, 23
set diÿerence, 26
set of integers, 8
set of natural numbers, 8
set product, 38
set, elements, 23
sets, complement, 29
signum function, 73
signum function, inverse of, 74
simplification, 15
singleton, 24
smallest relation, 46
stack, 94
start node, 91
start symbol, 81, 82
state graph, 95
statement, 7
string, 36
string, empty, 36
string, finite length, 36
string, null, 36
strongly connected, 42
structural ambiguity, 88
subset, 24
subset, number of, 24
super-set, 46
symbolic logic, 56
symmetric, 44
syntactic categories, 58

table, 57
tautology, 5, 15
terminal alphabet, 81
terminal vertex, 42
terminate, 41
theory of computability, 56
there exists, 8
time cycle, 57, 59
total function, 72, 78, 80
transition graph, 91, 94–96
transitive, 44
transitive closure, 36
True, 3

INDEX 107

truth table, 3
Turing computable, 80
Turing machine, 57, 58, 96

un-decidable, 56
unary number system, 57
unary relation, 41
undirected path, 41, 42
uniform substitution, 77
union, 26, 35
unique existential quantifier, 8
universal quantifier, 8
universal relation, 41
universe, 8

variable, 72
variable, bound, 8
variable, quantified, 8
Venn diagram, 32
vertex, initial, 42
vertex, terminal, 42
verticies, distinct, 42

walk, 56, 63
well order, 48
While language, 58, 72, 78
While language, syntactic categories, 63
Whlie language, 63
word, 36

