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Abstract

This paper establishes the acyclicity of Cournot tâtonnement in a strategic game with aggrega-
tion and monotone best responses, under the broadest assumptions on aggregation rules allowing
the Huang–Dubey–Haimanko–Zapechelnyuk–Jensen trick to work and with minimal topological re-
strictions. MSC2010 Classification: 91A10. JEL Classification Number: C 72.
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1 Introduction

The importance of aggregation for the existence of Nash equilibrium was first noticed by Novshek
(1985), see also Kukushkin (1994). Kukushkin (2004) showed that monotonicity conditions in games
with additive aggregation ensure the acyclicity of Cournot tâtonnement rather than the mere existence
of an equilibrium. Dubey et al. (2006), having modified a trick invented by Huang (2002) for different
purposes, developed a tool applicable to a broader class of aggregation rules. Kukushkin (2005) and,
especially, Jensen (2010) extended its sphere of applicability much further. It looks plausible that the
latter paper describes the most general class of aggregation rules for which this approach can still work.

This paper strives to establish the acyclicity of Cournot tâtonnement under the same assumptions
on aggregation, but with minimal topological restrictions. The point is that the best response corre-
spondences in the main results of Jensen (2010) were assumed upper hemicontinuous. Although one
can plausibly argue that the upper hemiconinuity of the best responses holds in “most” of important
economic models, “most” cannot be replaced with “all.” Even more importantly, our main theorem
implies the existence of an equilibrium where each player uses an arbitrarily fixed monotone selection
from the best response correspondence; nothing like that could be derived from the previous literature.

There is an additional reason to look for the weakest possible topological conditions. When viewed
as a fixed point theorem, our result occupies a position intermediate between Brouwer’s and Tarski’s
theorems: the former is purely topological; the latter, order-theoretical. In our case, some combination
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of conditions of both kinds seems indispensable; so it is highly desirable to understand exactly what is
needed from either side.

In Section 2, the most basic definitions are given; in Section 3, our (i.e., mostly Jensen’s) assump-
tions, as well as the main theorem, are formulated. Section 4 contains a review of conditions ensuring
appropriate monotonicity in strategic games. In Section 5, we briefly discuss alternative aggregation
rules for which our main findings do, or do not, hold. Section 6 contains the proof of our main theorem
and an example of Cournot dynamics when the best responses are not upper hemicontinuous.

2 Preliminaries

In the main theorem, we consider exogenously given best response correspondences rather than games
as such. An abstract game is defined by a finite set of players N and, for each i ∈ N , a strategy set
Xi and the best response correspondence Ri : X−i → 2Xi \ {∅}, where X−i :=

∏

j∈N\{i}Xj . We also
denote XN :=

∏

i∈N Xi, the set of strategy profiles.

Remark. The definition of abstract games belongs to Vives (1990). Under his approach, however,
the collection of responses Ri was immediately replaced with a single correspondence R : XN → XN ,
R(xN ) :=

∏

i∈N Ri(x−i), to which Tarski’s fixed point theorem could be applied. In our case, the
structure of a Cartesian product plays a crucial role and is retained to the end.

An equilibrium of an abstract game is x0N ∈ XN such that x0i ∈ Ri(x
0
−i) for each i ∈ N . The first

basic question about a particular model is whether it admits an equilibrium. In the case of a positive
answer, the next question is whether iteration of the best responses leads to equilibria. In this paper,
we derive a positive answer to the first question from the same answer to the second one.

We introduce the best response improvement relation on XN (i ∈ N , yN , xN ∈ XN ):

yN ◃i xN ⇋ [y−i = x−i & xi /∈ Ri(x−i) ∋ yi]; (1a)

yN ◃ xN ⇋ ∃i ∈ N [yN ◃i xN ]. (1b)

Every equilibrium is a maximizer of ◃. Since Ri(x−i) ̸= ∅ for all i ∈ N and x−i ∈ X−i, every maximizer
of ◃ is an equilibrium.

A Cournot path is a finite or infinite sequence ⟨xkN ⟩k=0,1,... such that xk+1
N ◃ xkN whenever xk+1

N is
defined. A Cournot potential is an irreflexive and transitive binary relation ≻ on XN such that

∀xN , yN ∈ XN

[

yN ◃ xN ⇒ yN ≻ xN
]

. (2)

The existence of a Cournot potential is equivalent to the absence of Cournot cycles, i.e., Cournot paths
⟨x0N , x

1
N , . . . , x

m
N ⟩ such that m > 0 and x0N = xmN . If XN is finite, this fact implies that every Cournot

path, if continued whenever possible, reaches an equilibrium in a finite number of steps. Otherwise, the
acyclicity of the best responses does not imply very much by itself. However, if a topological structure
is assumed on the strategies and the notion of a Cournot potential is strengthened, conclusions can be
drawn, not dissimilar from those in the finite case.
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Let X be a metric space. A binary relation ≻ on X is ω-transitive if it is transitive and
[

xω = lim
k→∞

xk & ∀k ∈ N[xk+1 ≻ xk]
]

⇒ xω ≻ x0. (3)

It is essential that (3) implies xω ≻ xk for all k = 1, . . . as well.

Remark. The property seems to have been considered first by Gillies (1959), and then by Smith
(1974), for orderings. The term “ω-transitivity” first appeared in Kukushkin (2003).

Theorem 1 from Kukushkin (2008) implies that an irreflexive and ω-transitive binary relation on a
compact set always admits a maximizer. Therefore, the existence of an ω-transitive Cournot potential
ensures the existence of an equilibrium. It also ensures the “transfinite convergence” (Kukushkin, 2003,
2010) of all iterations of the best responses to equilibria.

3 Main result

To derive the existence of an ω-transitive Cournot potential in a class of abstract games, we impose
a set of assumptions combining topological and order-theoretical requirements. Quite a number of
notations and definitions are needed.

A chain is a linearly ordered set. A partially ordered set (poset) X is chain-complete if every chain
∅ ̸= C ⊆ X admits both supC and inf C in X. A poset X is chain-complete downwards (upwards) if
only the existence of inf C (supC) is ensured for every nonempty chain in X. A well ordered set is a
chain ∆ such that every subset ∆′ ⊆ ∆ contains its minimum. Dually, a ∗-well ordered set is a chain
every subset of which contains its maximum.

Given a poset A and b ∈ B ⊆ A, we denote B→(b) := {a ∈ B | a > b} and B←(b) := {a ∈ B | a < b}.
Given a metric space A and B ⊆ A, clB denotes the topological closure of B in A while IntB denotes
its interior.

We assume throughout that a “universal” separable metric space A is given, which is simultaneously
a poset. The order on A is consistent with the topology in the sense that:

∀x ∈ A
[

{y ∈ A | y ≥ x} = cl(IntA→(x))
]

; (4a)

∀x ∈ A
[

{y ∈ A | y ≤ x} = cl(IntA←(x))
]

. (4b)

These conditions imply that all upper sets {y ∈ A | y ≥ x} and all lower sets {y ∈ A | y ≤ x} (x ∈ A)
are closed. A good example of such A is Rm; a more general example is the space of continuous
functions on a compact space C with point-wise order and the metric d(f, g) := maxx∈C |f(x)− g(x)|.
Both examples are also lattices, which fact comes in handy in Section 4.

Lemma 3.1. If xk → xω and xk+1 ≥ xk for all k ∈ N, then xω = supk x
k.

Proof. First, we denote Xk := {y ∈ A | y ≥ xk} for each k ∈ N; clearly, xh ∈ Xk whenever h ≥ k.
Since Xk is closed by (4a), we have xω ∈ Xk, i.e., xω ≥ xk for each k. Assuming y ≥ xk for each k, we
denote Y := {x ∈ A | y ≥ x}; Y is closed by (4b). Since xk ∈ Y for each k, we have xω ∈ Y as well;
hence xω ≤ y. Thus, xω = supk x

k indeed.
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Lemma 3.2. If xk → xω and xk+1 ≤ xk for all k ∈ N, then xω = infk x
k.

The proof is dual to that of Lemma 3.1.

Henceforth, we assume that each Xi is a compact subset of the universal set A, and endow XN

with, say, the maximum metric. By Lemmas 3.1 and 3.2, each Xi is also chain-complete.

Further, we assume that there are continuous mappings σi : X−i → R (i ∈ N), aggregation rules.
Denoting Si := σi(X−i) ⊂ R, s−i := minSi and s+i := maxSi, we assume the existence of corre-
spondences Ri : Si → 2Xi \ {∅} and continuous mappings g : XN → R, Fi : [s

−
i , s

+
i ] × Xi → R and

vi : X−i → R (i ∈ N) such that
Ri(x−i) = Ri(σi(x−i)) (5)

and
g(xN ) = Fi(σi(x−i), xi) + vi(x−i) (6)

for all i ∈ N , x−i ∈ X−i, and xN ∈ XN . Additionally, we assume that each Fi has a continuous
derivative w.r.t. its first argument,

Di(si, xi) :=
∂Fi

∂si
(si, xi), (7)

on [s−i , s
+
i ]×Xi.

Finally, we impose monotonicity assumptions:

∀i ∈ N ∀s′i, si ∈ Si
[

[s′i > si & x′i ∈ Ri(s
′
i) & xi ∈ Ri(si)] ⇒ x′i ≥ xi

]

; (8)

∀i ∈ N ∀si ∈ Si ∀x
′
i, xi ∈ Xi

[

x′i > xi ⇒ Di(si, x
′
i) > Di(si, xi)

]

. (9)

Theorem 1. An abstract game satisfying all the above assumptions admits an ω-transitive Cournot
potential (hence admits an equilibrium as well).

The proof is deferred to Section 6.

Our conditions (6), (7), and (9) are exactly the same as in Jensen (2010). There was no need for
explicit conditions like (4) there since all strategy sets were assumed to be subsets of Rm. As to (8),
Jensen preferred to consider decreasing best responses; the difference is of no significance since one can
always replace σi with −σi.

Thus, if we assumed that each Ri is upper hemicontinuous, the difference between our Theorem 1
and the main result of Jensen (2010) would be quite minor. However, we do not impose that assump-
tion.

The implications of Theorem 1 for the existence of equilibria in strategic games are considered in
the next section. We follow the same logic as in Kukushkin (2005) and Jensen (2010): each Ri may
be perceived either as the total best response correspondence or as an increasing selection from it.
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4 Monotonicity conditions in strategic games

The difference between a strategic game and an abstract game is that the best responses in the former
model are not exogenous, but generated by the maximization of (ordinal) utility functions ui : XN → R,

Ri(x−i) := Argmax
xi∈Xi

ui(xi, x−i) (10)

for each player i ∈ N and every x−i ∈ X−i.

Our Theorem 1 can be applied directly to the best response correspondences in a strategic game if
each Xi is a compact subset of an appropriate universal set A, while Ri’s defined by (10) satisfy all
those assumptions. Let there be continuous aggregation rules σi : X−i → R (i ∈ N) such that

ui(xN ) = Ui(σi(x−i), xi) (11)

for all i ∈ N and xN ∈ XN . For each i ∈ N , we denote Si := σi(X−i) ⊂ R, and redefine the best
response correspondence:

Ri(si) := Argmax
xi∈Xi

Ui(si, xi).

Our assumption Ri(x−i) ̸= ∅ is equivalent to Ri(si) ̸= ∅ for each si ∈ Si.

Remark. In principle, equality (5) may hold for all i ∈ N and x−i ∈ X−i without (11) holding for all
i ∈ N and xN ∈ XN . However, no natural class of strategic games where this happens is known.

Our assumptions on σi, i.e., (6), (7), and (9), do not depend on whether it is about an abstract
game or a strategic game. Jensen (2010) provides quite a list of game models where the assumptions
imposed on aggregation rules in Section 3 are satisfied.

As to assumption (8), the well-known studies of monotone comparative statics (Topkis, 1978; Vives,
1990; Veinott, 1992; Milgrom and Shannon, 1994) allow us to derive it from assumptions imposed
directly on utility functions. We have to start with definitions.

A utility function exhibits the single crossing property (Milgrom and Shannon, 1994) if these
conditions hold for all i ∈ N , yi, xi ∈ Xi, and s

′
i, si ∈ Si:

[yi > xi & s′i > si & Ui(si, yi) > Ui(si, xi)] ⇒ Ui(s
′
i, yi) > Ui(s

′
i, xi); (12a)

[yi > xi & s′i > si & Ui(si, yi) ≥ Ui(si, xi)] ⇒ Ui(s
′
i, yi) ≥ Ui(s

′
i, xi). (12b)

Also important are the strict single crossing property (Milgrom and Shannon, 1994):

[yi > xi & s′i > si & Ui(si, yi) ≥ Ui(si, xi)] ⇒ Ui(s
′
i, yi) > Ui(s

′
i, xi); (13)

and the weak single crossing property (Shannon, 1995):

[yi > xi & s′i > si & Ui(si, yi) > Ui(si, xi)] ⇒ Ui(s
′
i, yi) ≥ Ui(s

′
i, xi). (14)
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When strategies are scalar, conditions like (12), (13) or (14) are sufficient for monotone comparative
statics results. When Xi’s are lattices, some versions of quasisupermodularity (Milgrom and Shannon,
1994; see also LiCalzi and Veinott, 1992) are needed too. We reproduce a few of them here.

First, four “quarters” of quasisupermodularity proper:

Ui(si, xi) ≥ Ui(si, yi ∧ xi) ⇒ [Ui(si, yi ∨ xi) ≥ Ui(si, xi) or Ui(si, yi ∨ xi) ≥ Ui(si, yi)]; (15a)

Ui(si, yi) ≥ Ui(si, yi ∨ xi) ⇒ [Ui(si, yi ∧ xi) ≥ Ui(si, xi) or Ui(si, yi ∧ xi) ≥ Ui(si, yi)]; (15b)

Ui(si, xi) > Ui(si, yi ∧ xi) ⇒ [Ui(si, yi ∨ xi) > Ui(si, xi) or Ui(si, yi ∨ xi) > Ui(si, yi)]; (15c)

Ui(si, yi) > Ui(si, yi ∨ xi) ⇒ [Ui(si, yi ∧ xi) > Ui(si, xi) or Ui(si, yi ∧ xi) > Ui(si, yi)]. (15d)

Then, two “halves” of weak quasisupermodularity :

Ui(si, xi) > Ui(si, yi ∧ xi) ⇒ [Ui(si, yi ∨ xi) ≥ Ui(si, xi) or Ui(si, yi ∨ xi) ≥ Ui(si, yi)]; (16a)

Ui(si, yi) > Ui(si, yi ∨ xi) ⇒ [Ui(si, yi ∧ xi) ≥ Ui(si, xi) or Ui(si, yi ∧ xi) ≥ Ui(si, yi)]. (16b)

Remark. Each of conditions (15) and (16) holds trivially when xi ≥ yi or xi ≤ yi.

Proposition 22 from Kukushkin (2013b) immediately implies this result:

Proposition 1. Let, in a strategic game satisfying (11), Xi be a lattice and the utility function Ui(si, xi)
satisfy these assumptions: the strict single crossing condition (13) holds for every xi, yi ∈ Xi and
si, s

′
i ∈ Si; there is s∗i ∈ Si such that (15a) holds for all xi, yi ∈ Xi and si < s∗i while (15b) holds for

all xi, yi ∈ Xi and si > s∗i . Then the best response correspondence Ri is increasing in the sense of (8).

If Xi is a semilattice, i.e., only the meet yi ∧ xi is guaranteed to exist for every xi, yi ∈ Xi (e.g.,
a budget set), then conditions (15) and (16) make no sense. However, a similar role is played by a
condition that could be called semiquasisupermodularity :

Ui(si, yi) > Ui(si, yi ∧ xi) ⇒ Ui(si, yi ∧ xi) ≥ Ui(si, xi). (17)

Proposition 2. Let, in a strategic game satisfying (11), Xi be a semilattice, the strict single crossing
condition (13) hold for every xi, yi ∈ Xi and si, s

′
i ∈ Si, and (17) hold for every xi, yi ∈ Xi and si ∈ Si.

Then the best response correspondence Ri is increasing in the sense of (8).

Proof. Let s′i > si, xi ∈ Ri(si) and yi ∈ Ri(s
′
i); we have to show yi ≥ xi. Otherwise, we would

have xi > yi ∧ xi. Since Ui(si, xi) ≥ Ui(si, yi ∧ xi), we have Ui(s
′
i, xi) > Ui(s

′
i, yi ∧ xi) by (13); hence

Ui(s
′
i, yi ∧ xi) ≥ Ui(s

′
i, yi) by (17). Thus, Ui(s

′
i, xi) > Ui(s

′
i, yi), which contradicts yi ∈ Ri(s

′
i).

Remark. Undoubtedly, condition (17) is much more demanding than (15) or (16); however, it may
hold in a non-trivial way. Essentially, it shows that Ui may increase in xi only along a “fixed path.”

When the best response correspondences in a strategic game with appropriate aggregation do not
satisfy (8), our Theorem 1 may still be applicable in a more sophisticated way. If there are increasing
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selections from the best response correspondences, we may consider the abstract game defined by
those selections rather than total best responses. We cannot obtain any statement about all Cournot
dynamics in this way, but the existence of an equilibrium, at least, will be ensured. In the case when
those selections are “natural” in one sense or another, the acyclicity of the corresponding dynamics
may also be of interest. Finally, the existence of an equilibrium where each player uses a fixed selection
from the best response correspondence may be important in some contexts.

Combining Proposition 26 from Kukushkin (2013b) and Theorem 2.2 from Kukushkin (2013a), we
obtain this result.

Proposition 3. Let, in a strategic game satisfying (11), Xi be a lattice and the utility function Ui(si, xi)
satisfy these conditions: the weak single crossing condition (14) holds for every xi, yi ∈ Xi and si, s

′
i ∈

Si; there is s∗i ∈ Si such that (15c) holds for all xi, yi ∈ Xi and si < s∗i while (15d) holds for all
xi, yi ∈ Xi and si > s∗i ; every Ri(si) is nonempty and chain-complete. Then there exists an increasing
selection ri from the best response correspondence Ri.

Invoking Proposition 28 from Kukushkin (2013b) and the same Theorem 2.2 from Kukushkin
(2013a), we obtain this result.

Proposition 4. Let, in a strategic game satisfying (11), Xi be a lattice and the utility function Ui(si, xi)
satisfy these conditions: the single crossing conditions (12) hold for every xi, yi ∈ Xi and si, s

′
i ∈ Si;

there is s∗i ∈ Si such that (16a) holds for all xi, yi ∈ Xi and si < s∗i while (16b) holds for all xi, yi ∈ Xi

and si > s∗i ; every Ri(si) is nonempty and chain-complete. Then there exists an increasing selection
ri from the best response correspondence Ri.

A similar statement is valid for semilattices too.

Proposition 5. Let, in a strategic game satisfying (11), Xi be a semilattice and the utility function
Ui(si, xi) satisfy conditions (12a) and (17) for every xi, yi ∈ Xi and si, s

′
i ∈ Si, while every Ri(si) be

nonempty and chain-complete downwards. Then there exists an increasing selection ri from the best
response correspondence Ri.

Proof. For every si ∈ Si, we denote R−
i (si) the “lower frontier” of Ri(si), i.e., R

−
i (si) ⇋ {xi ∈ Ri(si) |

∄yi ∈ Ri(si) [yi < xi]}. Since Ri(si) is nonempty and chain-complete downwards, Zorn’s Lemma implies
that R−

i (si) ̸= ∅. Let us show that an arbitrary selection ri : Si → Xi from R−
i (si) is increasing.

Let s′i > si, xi = ri(si) and yi = ri(s
′
i); we have to show yi ≥ xi. Otherwise, we would have

xi > yi∧xi; hence Ui(si, xi) > Ui(si, yi∧xi) because xi ∈ R−
i (si). Now we have Ui(s

′
i, xi) > Ui(s

′
i, yi∧xi)

by (12a); hence Ui(s
′
i, yi ∧ xi) ≥ Ui(s

′
i, yi) by (17). Thus, Ui(s

′
i, xi) > Ui(s

′
i, yi), which contradicts

yi ∈ Ri(s
′
i).

5 On other aggregation rules

It is important to note that Theorem 1, i.e., the Huang–Dubey–Haimanko–Zapechelnyuk–Jensen trick,
does not cover all nice aggregation rules. For instance, abstract games satisfying (5) and (8) with
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Xi ⊂ R and σi(x−i) = minj ̸=i xj for all i ∈ N or σi(x−i) = −minj ̸=i xj for all i ∈ N also admit
ω-transitive Cournot potentials. Moreover, given a subset I(i) ⊆ N \ {i} for each i ∈ N such that
j ∈ I(i) ⇐⇒ i ∈ I(j), the aggregation rules σi(x−i) = minj∈I(i) xj or σi(x−i) = −minj∈I(i) xj are
also acceptable (Kukushkin, 2003, Theorems 7 and 8). It goes without saying that the minimum can
be replaced with the maximum. Apparently, functions g and Fi satisfying (6) and (9) cannot exist in
this case.

Aggregation rules mapping X−i into chains “longer” than R (lexicographies) may also be nice
although there are very few established facts so far. On the other hand, partially ordered aggregates
seem hopeless. For instance, additive aggregation makes sense for Xi ⊂ Rm with m > 1 as well, in
which case Si ⊂ Rm too. Moreover, in the case of σi(x−i) =

∑

j ̸=i xj , condition (8) implies that the best
responses are increasing, and hence the existence of equilibria is looked after by the Tarski Theorem
(provided the strategy sets remain lattices). Nonetheless, there may be Cournot cycles in such games.
When σi(x−i) = −

∑

j ̸=i xj , even the mere existence of an equilibrium is not guaranteed.

Example 1. Let us consider an abstract game where N := {1, 2, 3}, X1 := {(0, 0, 0), (1, 0, 0)}, X2 :=
{(0, 0, 0), (0, 1, 0)}, X3 := {(0, 0, 0), (0, 0, 1)}, σi(x−i) := −

∑

j ̸=i xj , and

R1(s1) :=

{

{(0, 0, 0)} if s1 ≤ (0,−1, 0);

{(1, 0, 0)} otherwise;
R2(s2) :=

{

{(0, 0, 0)} if s2 ≤ (0, 0,−1);

{(0, 1, 0)} otherwise;

R3(s3) :=

{

{(0, 0, 0)} if s3 ≤ (−1, 0, 0);

{(0, 0, 1)} otherwise.

Condition (8) is obvious; nonetheless, there is no equilibrium.

6 Proof

For every si ∈ Si, we define R̄i(si) := {xi ∈ Xi | (si, xi) ∈ cl(graphRi)}; clearly, (8) holds for
R̄i as well. For each i ∈ N , we define X0

i :=
∪

si∈Si
R̄i(si). The compactness of Si and upper

hemicontinuity of R̄i imply that X0
i is closed in Xi; hence it is compact too. For every xN ∈ XN , we

set N0(xN ) := {i ∈ N | xi ∈ X0
i }.

For each i ∈ N , we pick an arbitrary selection ri : Si → Xi from Ri; by (8), ri is increasing in
the sense of s′i ≥ si ⇒ ri(s

′
i) ≥ ri(si). For every si ∈ Si, we denote S→i (si) := {s′i ∈ Si | s′i > si}

and S←i (si) := {s′i ∈ Si | s
′
i < si}, and then S→i := {si ∈ Si | si = inf S→i (si)} and S←i := {si ∈ Si |

si = supS←i (si)}. For si ∈ S→i , we set r+i (si) := inf ri(S
→

i (si)); for si ∈ S←i , r−i (si) := sup ri(S
←

i (si)).
Assumption (8) immediately implies that

∀si ∈ S→i ∩ S←i [r+i (si) ≥ r−i (si)];

∀si ∈ S→i ∀s′i > si ∀xi ∈ R̄i(s
′
i) [xi ≥ r+i (si)];

∀si ∈ S←i ∀s′i < si ∀xi ∈ R̄i(s
′
i) [xi ≤ r−i (si)];
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in the following equality, if r+i (si) and/or r
−
i (si) are not defined, the corresponding term(s) should be

ignored:

∀si ∈ Si [R̄i(si) = cl(Ri(si)) ∪ {r−i (si)} ∪ {r+i (si)}];

∀si ∈ S→i ∩ S←i [r+i (si) = r−i (si) ⇒ R̄i(si) = Ri(si) = {ri(si)}].

Step 6.1. If si ∈ S←i and ri(si) = r−i (si), then ri is left continuous at si.

Proof. Let ⟨ski ⟩k be a strictly increasing sequence such that ski → si; then si = supk s
k
i , and hence

ri(si) = r−i (si) = supk ri(s
k
i ). Since Xi is compact, we may assume ri(s

k
i ) → x∗i ∈ Xi; by Lemma 3.1,

we have x∗i = supk ri(s
k
i ) = ri(si); hence ri(s

k
i ) → ri(si).

Step 6.2. If si ∈ S→i and ri(si) = r+i (si), then ri is right continuous at si.

The proof is dual to that of Step 6.1.

Now we extend ri to the whole [s−i , s
+
i ] with the following construction. For every si ∈ [s−i , s

+
i ]

we define ξ+i (si) = min{ξi ∈ Si | ξi ≥ si} and ξ−i (si) = max{ξi ∈ Si | ξi ≤ si}. Obviously, ξ+i (si) =
ξ−i (si) = si if and only if si ∈ Si; otherwise, ξ

−
i (si) < si < ξ+i (si). Now for every si ∈ [s−i , s

+
i ] \ Si we

define ri(si) = ri(ξ
−
i (si)) if si − ξ−i (si) ≤ ξ+i (si)− si, and ri(si) = ri(ξ

+
i (si)) otherwise.

Step 6.3. ri is continuous at every si ∈ [s−i , s
+
i ] except for a countable subset.

Proof. Si being compact, its complement, [s−i , s
+
i ] \Si, consists of a countable number of disjoint open

intervals. Si \ (S
→

i ∩ S←i ) consists of the end points of those same intervals. The way we extended ri
beyond Si ensures continuity everywhere with the possible exception of the end points and the middle
of each interval. By Steps 6.1 and 6.2, ri is continuous wherever r

−
i (si) = r+i (si).

Therefore, we only have to prove that the set {si ∈ S→i ∩ S←i | r+i (si) > r−i (si)} is countable. We
pick a countable and dense subset of A and denote it Z. Given si ∈ S→i ∩S←i such that r+i (si) > r−i (si),
we denote U ′ := IntA←(r−i (si)) and U ′′ := IntA←(r+i (si)). By (4b), we have r+i (si) /∈ clU ′; hence
there is an open set U ⊂ A such that r+i (si) ∈ U and U ∩ clU ′ = ∅. Since r+i (si) ∈ clU ′′, we have
U ∩ U ′′ ̸= ∅. Now we pick z(si) ∈ Z ∩ U ∩ U ′′ arbitrarily; this is possible since Z is dense in A. Since
z(si) /∈ clU ′, we have r−i (si) ̸≥ z(si); since z(si) ∈ U ′′, we have r+i (si) > z(si). Finally, z(s′i) ̸= z(si)
whenever s′i > si, because r

−
i (s

′
i) ≥ r+i (si) > z(si) while r

−
i (s

′
i) ̸≥ z(s′i).

For every xN ∈ XN , we define a function

H(xN ) := g(xN ) +
∑

i∈N

[

−Fi(s
+
i , xi) +

∫ s+
i

s−
i

min{Di(si, xi), Di(si, ri(si))} dsi
]

. (18)

In light of Step 6.3, the integral in (18) exists even in the Riemann sense. Let i ∈ N , xN ∈ XN , and
xi ∈ R̄i(s

∗
i ) for s∗i ∈ Si. The key role in the Huang–Dubey–Haimanko–Zapechelnyuk–Jensen trick is

played by this equality, easily following from (6) and the monotonicity (9) of Di(si, xi):

H(xN ) = Fi(σi(x−i), xi)− Fi(s
∗
i , xi) +

∫ s∗
i

s−
i

Di(si, ri(si)) dsi + C(x−i). (19)
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It will be easily derived from (19) that H(yN ) = H(xN ) whenever x−i = y−i and xi ∈ R̄i(σi(x−i)) ∋ yi.
Not so easy, but also straightforward is the derivation from (19) that H(yN ) > H(xN ) whenever
x−i = y−i and xi /∈ R̄i(σi(x−i)) ∋ yi. The most cumbersome part of the whole construction is the
definition of the order in the sense of which the current strategy profile goes upwards when xi ∈
R̄i(σi(x−i))\Ri(σi(x−i)) is replaced with yi ∈ Ri(σi(x−i)). We generally follow Kukushkin (2005), but
additional subtleties are needed becauseXi’s are no longer chains. This whole part becomes superfluous
if every Ri is upper hemicontinuous, so Ri = R̄i.

For every i ∈ N , we define binary relations on Xi:

yi ◃◃i xi ⇋ ∃s̄i ∈ Si [yi ∈ Ri(s̄i) & xi ∈ R̄i(s̄i) \Ri(s̄i)] (20)

(in the following, we say “yi ◃◃i xi holds at s̄i”);

yi ◃◃
+
i xi ⇋ [yi ◃◃i xi & yi > xi];

yi ◃◃
−
i xi ⇋ [yi ◃◃i xi & yi < xi].

An i-singular upward chain is a countable well ordered subset ∆ ⊆ Xi such that (i) yi ◃◃
+
i xi

whenever yi ∈ ∆ and xi = max∆←(yi) [in which case yi = min∆→(xi)], and (ii) yi = sup∆←(yi)
whenever yi ∈ ∆ and max∆←(yi) does not exist. We set yi ≻≻

+
i xi iff yi > xi and there is an i-singular

upward chain ∆ ⊆ Xi such that yi = max∆ and xi = min∆.

An i-singular downward chain is defined dually as a countable ∗-well ordered subset ∆ ⊆ Xi such
that (i) yi ◃◃

−
i xi whenever yi ∈ ∆ and xi = min∆→(yi) [in which case yi = max∆←(xi)], and (ii)

yi = inf ∆→(yi) whenever yi ∈ ∆ and min∆→(yi) does not exist. We set yi ≻≻
−
i xi iff yi < xi and there

is an i-singular downward chain ∆ ⊆ Xi such that yi = min∆ and xi = max∆.

Then, we define
yi ≻≻i xi ⇋ [yi ◃◃i xi or yi ≻≻

+
i xi or yi ≻≻

−
i xi]. (21)

Remark. Obviously, yi ≻≻
+
i xi if yi ◃◃

+
i xi, while yi ≻≻

−
i xi if yi ◃◃

−
i xi. However, yi ◃◃i xi may hold

when yi and xi are incomparable in the order on Xi.

Now, we are ready to define our potential, a binary relation on XN :

yN ≻ xN ⇋

[

N0(yN ) ⊃ N0(xN ) or [N0(yN ) = N0(xN ) & H(yN ) > H(xN )] or
(

N0(yN ) = N0(xN ) & H(yN ) = H(xN ) &

∀i ∈ N [yi = xi or yi ≻≻i xi] & ∃i ∈ N [yi ≻≻i xi]
)]

. (22)

Obviously, ≻ is irreflexive. Checking its ω-transitivity and (2) needs quite some effort.

Step 6.4. Both relations ≻≻+
i and ≻≻−

i are ω-transitive.

Proof. It is sufficient to consider one of the relations, say, ≻≻+
i . Let zi ≻≻

+
i yi ≻≻

+
i xi. By definition,

there are two i-singular upward chains, ∆′ and ∆′′, such that min∆′ = xi, max∆′ = yi = min∆′′, and
max∆′′ = zi. Defining ∆ = ∆′∪∆′′, we see that ∆ is an i-singular upward chain – when checking each

10



condition in the definition, we will find ourselves either totally inside ∆′ or totally inside ∆′′. Since
xi = min∆ and zi = max∆, we have zi ≻≻

+
i xi.

The proof of (3) is quite similar. Let xki → xωi and xk+1
i ≻≻+

i xki for all k; let ∆k (k = 0, 1, . . . ) be an
i-singular upward chain such that xki = min∆k and xk+1

i = max∆k. Denoting ∆ = {xωi } ∪
∪

k∈N∆k,
we again obtain that ∆ is an i-singular upward chain (the condition xωi = supk∈N x

k
i is essential here),

x0i = min∆ and xωi = max∆.

Step 6.5. If zi ◃◃i yi ◃◃i xi, then either zi ◃◃
+
i yi ◃◃

+
i xi or zi ◃◃

−
i yi ◃◃

−
i xi.

Proof. Let yi ◃◃i xi at s
′
i ∈ Si and zi ◃◃i yi at s

′′
i ∈ Si. Since yi ∈ Ri(s

′
i) \Ri(s

′′
i ), s

′′
i ̸= s′i.

Suppose that s′′i > s′i. If yi < xi or yi and xi are incomparable in the order on Xi, then y′i > yi
for every y′i ∈ R̄i(s

′′
i ); hence yi ∈ R̄i(s

′′
i ) is impossible, and hence zi ◃◃i yi at s

′′
i is impossible too. If

yi > xi, then yi ◃◃
+
i xi. Since y

′
i ≥ yi for every y

′
i ∈ Ri(s

′′
i ), zi ◃◃

+
i yi too.

The case of s′′i < s′i is treated dually.

Step 6.6. If zi ≻≻i yi ≻≻i xi, then either zi ≻≻
+
i yi ≻≻

+
i xi or zi ≻≻

−
i yi ≻≻

−
i xi.

Proof. First, if we suppose that zi ◃◃i yi does not hold, then either zi ≻≻+
i yi or zi ≻≻−

i yi. In the
first case, there is an i-singular upward chain ∆ such that zi = max∆ and yi = min∆. Setting
z′i := min(∆ \ {yi}), we obtain z′i ◃◃

+
i yi. Dually, if zi ≻≻

−
i yi, we pick an i-singular downward chain ∆

such that zi = min∆ and yi = max∆. Setting z′i := max(∆ \ {yi}), we obtain z′i ◃◃
−
i yi. Obviously, if

zi ◃◃i yi does hold, then we may set z′i := zi and have z′i ◃◃i yi again. Let z
′
i ◃◃i yi at s̄i ∈ Si.

Turning to the second relation, we see that Step 6.5 applies if yi ◃◃i xi; hence either z
′
i ◃◃

+
i yi ◃◃

+
i xi

or z′i ◃◃
−
i yi ◃◃

−
i xi; hence either zi ≻≻

+
i yi ≻≻

+
i xi or zi ≻≻

−
i yi ≻≻

−
i xi indeed.

Let yi ≻≻
+
i xi while yi ̸◃◃i xi. Then there is an i-singular upward chain ∆ such that xi = min∆ and

yi = sup(∆ \ {yi}). By definition, for every x′i ∈ ∆ \ {yi}, there is y′i ∈ ∆ \ {yi} such that y′i ◃◃
+
i x′i;

hence y′i, x
′
i ∈ R̄(si) for some si ∈ Si. Since y

′
i, x

′
i < yi, we must have si < s̄i; hence y

′
i, x

′
i ≤ z′i. Clearly,

yi = sup(∆ \ {yi}) is only possible if z′i ≥ yi; hence z
′
i ◃◃

+
i yi, and hence zi ≻≻

+
i yi ≻≻

+
i xi.

The case of yi ≻≻
−
i xi is treated dually.

Step 6.7. The relation ≻≻i is ω-transitive.

Proof. The statement immediately follows from Steps 6.6 and 6.4.

Step 6.8. The relation ≻ is irreflexive and ω-transitive.

Proof. The irreflexivity of ≻ is obvious; checking transitivity is very easy. Let us check (3). The
situation N0(xk+1

N ) ⊃ N0(xkN ) can only happen for a finite number of k; without restricting generality,

N0(xk+1
N ) = N0(xkN ) for all k, and hence N0(xωN ) ⊇ N0(x0N ) since each X0

i is closed. If H(xk+1
N ) >

H(xkN ) for a single k, then H(xωN ) > H(x0N ) since H is continuous, and we are home. Finally, let
N0(xk+1

N ) = N0
N (xk) and H(xk+1

N ) = H(xkN ) for all k. Then, for each i ∈ N , either xk+1
i ≻≻i x

k
i for

some k, or xk+1
i = xki for all k. In the first case, Step 6.7 applies, producing xωi ≻≻i x

0
i ; in the second,

xωi = x0i . In either case, we have xωN ≻ x0N .
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Step 6.9. If yN ◃ xN , then yN ≻ xN .

Proof. Let yN ◃i xN and s̄i := σi(x−i). We have yi ∈ Ri(s̄i) by definition; hence yi ∈ X0
i and

N0(yN ) ⊇ N0(xN ). If the inclusion is strict, we are home.

Let us assume N0(yN ) = N0(xN ), i.e., xi ∈ R̄i(s
∗
i ) for s

∗
i ∈ Si. Invoking (19) separately for xN and

yN , we obtain

H(yN )−H(xN ) =
∫ s̄i

s−
i

Di(si, ri(si)) dsi − Fi(s̄i, xi) + Fi(s
∗
i , xi)−

∫ s∗
i

s−
i

Di(si, ri(si)) dsi =

∫ s∗
i

s̄i

[Di(si, xi)−Di(si, ri(si))] dsi. (23)

If s∗i = s̄i, i.e., xi ∈ R̄i(s̄i), then H(yN ) = H(xN ). Since xi ∈ R̄i(s̄i) \ Ri(s̄i) and yi ∈ Ri(s̄i), we
have yi ◃◃i xi by (20) and hence yi ≻≻i xi by (21). Therefore, yN ≻ xN by the third term in (22).

Finally, let xi /∈ R̄i(s̄i); hence s
∗
i ̸= s̄i. If s∗i > s̄i, then the integrand in (23) is nonnegative on

the whole interval because xi ≥ ri(si); since xi /∈ R̄i(s̄i) and the graph of R̄i is closed, xi > ri(si) in
an open neighborhood of s̄i and hence the integrand is strictly positive by (9). If s∗i < s̄i, then the
integrand is nonpositive on the whole interval and strictly negative in an open neighborhood of s̄i,
but dsi < 0 (the lower limit is greater than the upper one). In either case, H(yN ) > H(xN ), hence
yN ≻ xN by the second term in (22).

Thus, ≻ is an ω-transitive Cournot potential and Theorem 1 is proved.

Example 2. Let us consider a game where N := {1, 2}, Xi := [0, 2], and the utility functions are
“isomorphic”:

ui(xN ) :=

{

min{4xi + 4x−i, 7x−i − 2xi + 6}, ∀j ∈ N [xj ≥ 1];

min{4xi + 4x−i, 7x−i − 2xi + 3}, otherwise.

Obviously, both ui are upper semicontinuous, but not continuous. The unique best responses are easy
to compute:

Ri(x−i) =

{

{x−i/2 + 1}, x−i ≥ 1;

{x−i/2 + 1/2}, x−i < 1.

There is a unique Nash equilibrium, (2, 2).

The monotonicity condition (8) being obvious, this game belongs to the class covered by Theorem 1
with σi(x−i) := x−i. The function H(xN ) defined by (18) looks as follows:

H(xN ) = x1x2 + ψ(x1) + ψ(x2),
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where

ψ(x) :=























2x− x2 − 3/2, 3/2 ≤ x ≤ 2;

3/4− x, 1 ≤ x ≤ 3/2;

x− x2 − 1/4, 1/2 ≤ x ≤ 1;

0, x ≤ 1/2.

Every Cournot path started from x0N with x0i < 1 for both i converges to xωN = (1, 1), which is
not an equilibrium; H(xkN ) strictly increases at each step. When, say, player 1 makes a best response
improvement by replacing xω1 = 1 with xω+1

1 = 3/2, H remains the same, but 3/2 ≻≻+
1 1; hence the

strategy profile goes upwards in the sense of ≻ defined by (22). After that, a unique Cournot path
converges to (2, 2), which is an equilibrium; H(xω+k

N ) again strictly increases at each step k > 1.

This example demonstrates why Jensen’s construction (18) alone is insufficient when the best
responses need not be upper hemiconinuous.

Actually, this game admits a simpler Cournot potential, represented by an upper semicontinuous
real-valued function

P (xN ) := min
i
ui(xN ).

It is easy to check that P (yN ) > P (xN ) whenever yN ◃ xN . On the other hand, this simpler potential
hinges on specifics of this particular example, whereas (18) and (22) work for every game from the
class.

Remark. Kukushkin (2005) contains a more elaborate example where the function H remains con-
stant along a “double infinite” Cournot path (i.e., up to the second limit). Similarly, an example can
be produced where all assumptions of Theorem 1 are satisfied, while an arbitrary (countable) trans-
finite number of best response improvements may be needed to reach an equilibrium, with H being
constant all the way. Thus, the behavior of Cournot dynamics when the best responses are not upper
hemiconinuous may be much more complicated than in Theorem 2 of Jensen (2010).
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