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ABSTRACT

This paper proposes some novel Hausman tests to examine the error distribution in condition-

ally heteroskedastic models. Unlike the existing tests, all Hausman tests are easy-to-implement

with the limiting null distribution of χ2, and moreover, they are consistent and able to detect

the local alternative of order n−1/2. The scope of the Hausman test covers all Generalized error

distributions and Student’s t distributions. The performance of each Hausman test is assessed by

simulated and real data sets.

Some key words: Conditionally heteroskedastic model; Consistent test; GARCH model; Goodness-of-fit test; Haus-

man test; Nonlinear time series.

1. INTRODUCTION

Assume that {yt : t = 0,±1,±2, · · · } is generated by a conditionally heteroskedastic model:

yt = σtηt and σt = σ(yt−1, yt−2, · · · ; θ0), (1.1)

where ηt being independent of {yj ; j < t} is a sequence of i.i.d. random variables, the parameter

space Θ ∈ Rm is compact, the true value θ0 is an interior point in Θ, and σ : R∞ ×Θ → (0,∞).

Many existing models, such as (G)ARCH model in Engle (1982) and Bollerslev (1986), asym-
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metric power GARCH model in Ding, Granger, and Engle (1993), and asymmetric log-GARCH

model in Geweke (1986) to name but a few, are embedded into model (1.1); see, e.g., Bollerslev,

Chou, and Kroner (1992) and Francq and Zakoı̈an (2010). In many applications, the knowledge

of the distribution of ηt is crucial for determining the optimal prediction of yt [e.g., Christof-

fersen and Diebold (1997)], the value at risk of yt [e.g., Engle (2004)], and the pricing of finan-

cial derivatives written on yt [e.g., Zhu and Ling (2015)]. All of these are widely used to guide

our decisions in practice. Thus, it is necessary to testing the goodness-of-fit hypothesis:

H0 : ηt ∼ F0 v.s. H1 : ηt ̸∼ F0, (1.2)

where F0 is a known distribution function.

Goodness-of-fit testing for the distribution of observable or non-observable random variables

has attracted a considerable interest in the literature; see, e.g., D’Agostino and Stephens (1986)

and the references therein. The often used technique is based on the empirical process, and this

leads to the so-called Kolmogorov-Smirnov (KS) test statistic in general. For the observable i.i.d.

random variables, the limiting distribution of KS test statistic is asymptotically distribution free

(ADF); and for the unobservable i.i.d. errors in AR or MA models, Boldin (1982, 1989) and Koul

(2002) have shown that this ADF property still holds based on the residual sequence. However,

when the unobservable i.i.d. errors like {ηt} in model (1.1) are from a special non-linear model,

the ADF property of KS test statistic does not hold any more; see, e.g., Koul (1996) for threshold

AR models, Horváth, Kokoszka, and Teyssière (2001) for ARCH models, Berkes and Horváth

(2001) for GARCH models, and many others. Particularly, based on the bootstrap-assisted test,

this unsatisfactory phenomenon has been verified by Monte Carlo studies in Horváth, Kokoszka,

and Teyssière (2004) and Klar, Lindner, and Meintanis (2012) for (G)ARCH models. To retain

the property of ADF, Horváth and Zitikis (2006) have constructed a nonparametric Cramér-

von Mises type goodness-of-fit test for GARCH models; and meanwhile, Koul and Ling (2006)
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have proposed a weighted KS test statistic for a class of GARCH and ARMA-GARCH models;

however, the former method calls for a good choice of bandwidth used in the kernel-type density

estimator of the residual, and the latter method, loosely speaking, is not ADF, since its limiting

distribution still relies on F0.

In this paper, we propose some novel Hausman tests to detect H0 in spirit of Hausman (1978).

The idea to construct the Hausman test is as follows: first, we choose a quasi maximum likeli-

hood estimator (QMLE) θ̃n of model (1.1); second, we rescale (ηt, H0) to (η†t , H
†
0) such that the

structure of yt is unchanged and η†t satisfies the identification condition of θ̃n; third, we calculate

the MLE θ̂n of model (1.1) under H†
0 , and formulate the Hausman test by measuring the differ-

ence between θ̃n and θ̂n. In the aforementioned procedure, the choice of QMLE is flexible, and

we use the generalized QMLE (GQMLE) in Francq and Zakoı̈an (2013) and the least absolute

deviation estimator (LADE) in Peng and Yao (2003) to propose the so-called GQMLE-based and

LADE-based Hausman tests, respectively. Under suitable conditions, we show that each Haus-

man test is ADF with a limiting null distribution of χ2, and that it is consistent and able to detect

the local alternative of order n−1/2. Our Hausman testing procedure is easy-to-implement, and

its scope covers all Generalized error distributions and Student’s t distributions. The performance

of this testing procedure is assessed by simulated and real data sets.

This paper is organized as follows. Sections 2 and 3 propose and study the GQMLE-based and

LADE-based Hausman test statistics, respectively. Simulation results are reported in Section 4.

A real example on S&P 500 stock index is given in Section 5. Concluding remarks are offered

in Section 6. All of the proofs are given in Appendix. Throughout the paper, some symbols are

conventional. A′ is the transpose of matrix A, |A| = (tr(A′A))′ is the Euclidean norm of matrix

A, ∥A∥s = (E|A|s)1/s is the Ls-norm (s ≤ 1) of a random matrix A, op(1)(Op(1)) denotes a

sequence of random numbers converging to zero (bounded) in probability, →d denotes conver-
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gence in distribution, I(·) is the indicator function, and sgn(·) = I(· > 0)− I(· < 0) is the sign

function.

2. GQMLE-BASED HAUSMAN TESTS

This section proposes some Hausman tests to detect H0 in spirit of Hausman (1978). To ac-

complish it, we need two estimators: a quasi maximum likelihood estimator (QMLE) and a MLE,

which are introduced in the following subsection.

2·1. Preliminary

Let Θ be a compact space and σt(θ) = σ(yt−1, yt−2, · · · ; θ). First, we choose the QMLE as

the generalized QMLE (GQMLE) in Francq and Zakoı̈an (2013) given by

θ̃n,r =





argminθ∈Θ
∑n

t=1

[
log {σ̃r

t (θ)}+ |yt|r

σ̃r
t (θ)

]
, if r > 0,

argminθ∈Θ
∑n

t=1 [log |yt| − log σ̃t(θ)]
2 , if r = 0,

(2.1)

where σ̃t(θ) := σ(yt−1, yt−2, · · · , y1, ỹ0, ỹ−1, · · · ; θ) is calculated based on the observations

{ys}ns=1 and the arbitrary initial values {ỹs}s≤0. Here, the objective function in (2.1) is writ-

ten on the assumption that ηt has the density function

h(x) =





c|x|λ−1 exp (−λ|x|r/r) , if r > 0,

√
λ/π|2x|−1 exp(−λ log |x|2), if r = 0,

where λ and c are two positive normalization constants; see Francq and Zakoı̈an (2013, p.349).

Particularly, when r = 2, c = 1/2, and λ = 1, θ̃n,r reduces to the Gaussian QMLE; and when

r = 1, c = 1/2, and λ = 1, θ̃n,r reduces to the Laplacian QMLE.

As shown in Francq and Zakoı̈an (2013), the identifiability condition for θ̃n,r is as follows:

Assumption 2.1. E|ηt|r = 1 when r > 0, and E log |ηt| = 0 when r = 0.

We now assume that model (1.1) holds under Assumption 2.1, and θ0,r is the corresponding true

parameter, where the subscript r in θ0,r is involved to indicate the chosen GQMLE method. Note
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that under H0, ηt does not satisfy Assumption 2.1 in general. Hence, we have to consider an

equivalent rescaling version of H0, under which the corresponding rescaling innovation satisfies

Assumption 2.1. In order to accomplish it, we denote ηt as η
(0)
t if ηt ∼ F0, and let η†t,r := η

(0)
t /κr

be the rescaling form of η
(0)
t , where κr is the rescaling parameter defined by

κr =





[
E|η(0)t |r

]1/r
, if r > 0,

exp
(
E log |η(0)t |

)
, if r = 0.

The following Assumption guarantees that model (1.1) can be re-parametrized so that the struc-

ture of yt is unchanged after this rescaling transformation.

Assumption 2.2. There is a function Π such that, for any θ ∈ Θ, K > 0, and real sequence

{xs}s≥1, Kσ(x1, x2, · · · ; θ) = σ(x1, x2, · · · ; θ†) with θ† = Π(θ,K).

Assumption 2.2 is quite mild, and it holds for the standard GARCH model and most of its exten-

sions; see, e.g., Francq and Zakoı̈an (2013, p.353) for a specific illustration. By Assumption 2.2,

we know that under H0,

yt = η
(0)
t σ(yt−1, yt−2, · · · ; θ0) = η†t,r [σ(yt−1, yt−2, · · · ; θ0,r)] ,

where θ0,r = Π(θ0, κr); and so H0 in (1.2) is equivalent to its rescaling version:

H†
0,r : ηt ∼ F0(κrx), (2.2)

where F0(κrx) is the distribution of η†t,r. We will consider the rescaling null hypothesis H†
0,r

instead of H0 subsequently, since the identifiability condition of the GQMLE in Assumption 2.1

holds under H†
0,r.

Next, we consider the MLE under H†
0,r in (2.2). In this case, the density of ηt is f †

0,r(x) =

κrf0(κrx) with f0(x) = F ′
0(x), and hence the MLE is

θ̂n,r := argmin
θ∈Θ

1

n

n∑

t=1

[
log σ̃t(θ)− log f †

0,r

(
yt

σ̃t(θ)

)]
. (2.3)
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We are now ready to give three subsections below to study θ̃n,r, θ̂n,r, and the related Hausman

test based on θ̃n,r and θ̂n,r, respectively.

2·2. Technical conditions for the GQMLE

Assume that θ0,r is an interior point in Θ. We give four assumptions for the strong consistency

and asymptotic normality of θ̃n,r.

Assumption 2.3. yt is strictly stationary and ergodic.

Assumption 2.4. (i) Almost surely (a.s.), σt(θ) ∈ (ω,∞] for some ω > 0 and any θ ∈ Θ; (ii)

σt(θ0,r)/σt(θ) = 1 a.s. if and only if θ = θ0,r; (iii) σt(θ) has continuous second-order derivatives

with respective to θ (a.s.); (iv) if x′(∂σ2
t (θ)/∂θi)i=1,··· ,m = 0 (a.s.) for any x ∈ Rm, then x = 0.

Assumption 2.5. There exist constants C0 > 0 and ρ ∈ (0, 1), and a neighborhood V (θ0,r) of

θ0,r such that

sup
θ∈Θ

|∆t(θ)| ≤ C0ρ
t and sup

θ∈V (θ0,r)

∥∥∥∥
∂∆t(θ)

∂θ

∥∥∥∥ ≤ C0ρ
t (a.s.),

where ∆t(θ) = σ̃t(θ)− σt(θ).

Assumption 2.6. (i) E|ηt|2r < ∞; (ii) E|yt|2δ0 < ∞ for some δ0 > 0; (iii) the following vari-

ables have finite expectation:

sup
θ∈V (θ0,r)

∥∥∥∥
1

σt(θ)

∂σt(θ)

∂θ

∥∥∥∥
4

, sup
θ∈V (θ0,r)

∥∥∥∥
1

σt(θ)

∂2σt(θ)

∂θ∂θ′

∥∥∥∥
2

, sup
θ∈V (θ0,r)

∣∣∣∣
σt(θ0,r)

σt(θ)

∣∣∣∣
2r

.

Assumptions 2.3-2.6 are taken from Francq and Zakoı̈an (2013). Assumption 2.3 is a basic set-

up for time series models. Assumption 2.4 exhibits some conditions for the volatility function

σt(θ), among which conditions (i) and (iii) hold for most of heteroskedastic models, condition

(ii) is to prove the strong consistency of θ̃n,r, and condition (iv) is to guarantee the invertibility

of the asymptotic variance of θ̃n,r. Assumption 2.5 provides the sufficient condition to make
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the initial values {ỹs}s≤0 ignorable. Assumption 2.6 lists some sufficient technical conditions

for the proofs. Particularly, Assumptions 2.4, 2.5 and 2.6(iii) have been verified for standard

GARCH model and many extensions; see, e.g., Ling (2007), Hamadeh, and Zakoı̈an (2011), and

Francq, Wintenberger, and Zakoı̈an (2013). Under Assumptions 2.1 and 2.3-2.6, Theorem 1 and

Proposition 2 in Francq and Zakoı̈an (2013) have shown that θ̃n,r is strongly consistent to θ0,r

and asymptotically normal.

2·3. Technical conditions for the MLE

We need the following assumption to guarantee the weak convergence of θ̂n,r:

Assumption 2.7. There exists a unique interior point θ∗,r ∈ Θ such that θ̂n,r − θ∗,r = op(1).

In general, θ∗,r ̸= θ0,r; but we can have θ∗,r = θ0,r under H†
0,r, if Assumption 2.8 below holds.

Assumption 2.8. (i) f †
0,r(x) is twice differentiable with |ki,r(x)| ≤ C1(1 + |x|δ1)(i = 1, 2) for

all x ∈ R∗ and some constants C1 > 0, δ1 ∈ R, where R∗ = R \ {0},

k1,r(x) =
x

f †
0,r(x)

∂f †
0,r(x)

∂x
and k2,r(x) = x2

∂

∂x

[
1

f †
0,r(x)

∂f †
0,r(x)

∂x

]
;

(ii) E|ηt|2δ1 < ∞.

Assumption 2.8(i) is a mild condition, and it holds when f0(x) is the density of Generalized error

distribution, Student tν distribution, or more generally any distribution having the density

h(x) = K1|x|λ0 exp(K2|x|λ1) for any λ0, λ1 ∈ R, (2.4)

where K1 and K2 are two normalizing constants. Particularly, Assumption 2.8(ii) holds with

δ1 = λ1 under (2.4).

Based on Assumptions 2.3-2.6, 2.8 and Assumption 2.9 below, Francq and Zakoı̈an (2013)

have showed that θ̂n,r is consistent to θ0,r (i.e., θ∗,r = θ0,r) and asymptotically normal.
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Assumption 2.9. E[gr(ηt, σ)] < E[gr(ηt, 1)], ∀σ > 0 and σ ̸= 1, where gr(x, σ) =

log{ 1
σf

†
0,r(

x
σ )}.

Under H†
0,r, the true density of ηt is exactly f †

0,r(·). In this case, Assumption 2.9 holds directly

by Jansen’s inequality, and hence θ∗,r = θ0,r. In general, Assumption 2.9 entails a moment con-

dition on ηt, which shall be different from the moment condition E|ηt|r = 1 in Assumption 2.1;

and then this implies that θ∗,r ̸= θ0,r. To see it clearly, we give two illustrating examples below,

and for more discussions on Assumption 2.9, we refer to Berkes and Horváth (2004) and Francq

and Zakoı̈an (2013).

Example 2.1. Suppose that

H0 : ηt ∼ Generalized error distribution, i.e.,

f0(x) =
w

2uΓ(1/w)
exp

[
−
( |x|

u

)w]
for u,w > 0,

where Γ(·) is the gamma function. In this case, we can easily show that if κr ∈ (0,∞), Assump-

tion 2.9 is equivalent to the moment condition

E|ηt|w =
uw

wκwr
, (2.5)

which is the identification condition for θ̂n,r. For instance, consider two important special cases

of H0:

Case 1: ηt ∼ N(0, 1) [i.e., u =
√
2 and w = 2];

Case 2: ηt ∼ Laplace(0, 1) [i.e., u = 1 and w = 1].

In Case 1, condition (2.5) becomes E|ηt|2 = (E|η(0)t |r)−2/r, where η
(0)
t ∼ N(0, 1); moreover,

if r = 2, condition (2.5) and Assumption 2.1 coincide, and hence θ∗,2 = θ0,2. In Case 2, con-

dition (2.5) becomes E|ηt| = (E|η(0)t |r)−1/r, where η
(0)
t ∼ Laplace(0, 1); moreover, if r = 1,

condition (2.5) and Assumption 2.1 coincide, and hence θ∗,1 = θ0,1.
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Example 2.2. Suppose that

H0 : ηt ∼ Student’s t distribution, i.e.,

f0(x) =
Γ((ν + 1)/2)√

νπΓ(ν/2)

(
1 +

x2

ν

)−(1+ν)/2

for ν > 0.

In this case, we can easily show that if κr ∈ (0,∞), Assumption 2.9 is equivalent to the moment

condition

E

[
1

κ2rη
2
t + ν

]
=

1

1 + ν
, (2.6)

which is the identification condition for θ̂n,r. Particularly, when κr = 1, condition (2.6) is the

identification condition for θ̂n,r based on ηt ∼ tv.

2·4. Asymptotic theory of the Hausman test

In this subsection, we propose the GQMLE-based Hausman test by measuring the difference

between θ̃n,r and θ̂n,r. To accomplish it, we need the following theorem:

THEOREM 2.1. Suppose that (i) Assumptions 2.1, 2.3-2.6, and 2.8 hold; and (ii) τr ̸= 0 and

E[k2,r(ηt)] ̸= 1. Then, under H†
0,r, we have

√
n
(
θ̃n,r − θ̂n,r

)
→d N(0, τrJ −1

r ) as n → ∞,

where

τr =





E
[
|ηt|r−1

r +
1+k1,r(ηt)

1−E[k2,r(ηt)]

]2
, if r > 0,

E
[
log |ηt|+ 1+k1,r(ηt)

1−E[k2,r(ηt)]

]2
, if r = 0,

and Jr = E

[
1

σ2
t (θ0,r)

∂σt(θ0,r)

∂θ

∂σt(θ0,r)

∂θ′

]
.

Remark 2.1. For the null hypothesis H0 in Example 2.1, we have

k1,r(x) = −w|κrx|w
uw

and k2,r(x) = (w − 1)k1,r(x).
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For the null hypothesis H0 in Example 2.2, we have

k1,r(x) = −(1 + ν)κ2rx
2

κ2rx
2 + ν

and k2,r(x) = k1,r(x) +
2(1 + ν)κ4rx

4

(κ2rx
2 + ν)2

.

The value of κr involved in k1,r(x) and k2,r(x) depends on F0(·) in H0 and r, and it can be easily

calculated via a numerical integration for a specific pair of (F0(·), r); see Table 1 in Section 3

below.

Based on Theorem 2.1, our GQMLE-based Hausman test is proposed as follows:

Hn,r = n
(
θ̃n,r − θ̂n,r

)′
[τ̃−1
n,r J̃n,r]

(
θ̃n,r − θ̂n,r

)
, (2.7)

where τ̃n,r and J̃n,r are the sample counterparts of τr and Jr, respectively, given by

τ̃n,r =





1
n

∑n
t=1

[
|η̃t,r|r−1

r +
1+k1,r(η̃t,r)

1−k̃n,r

]2
, if r > 0,

1
n

∑n
t=1

[
log |η̃t,r|+ 1+k1,r(η̃t,r)

1−k̃n,r

]2
, if r = 0,

and J̃n,r =
1

n

n∑

t=1

[
1

σ̃2
t (θ̃n,r)

∂σ̃t(θ̃n,r)

∂θ

∂σ̃t(θ̃n,r)

∂θ′

]

with η̃t,r = yt/σ̃t(θ̃n,r) and k̃n,r = n−1
∑n

t=1 k2,r(η̃t,r). It is not hard to see that τ̃n,r and J̃n,r

are consistent estimators of τr and Jr, respectively. Note that H0 and H†
0,r are equivalent under

Assumption 2.2. Hence, by Theorem 2.1, the following corollary is straightforward:

COROLLARY 2.1. Suppose that Assumption 2.2 and the conditions in Theorem 2.1 hold. Then,

under H0, we have

Hn,r →d χ2
m as n → ∞,

where m is the dimension of θ0 in model (1.1), and χ2
s is a chi-square distribution with degree s.

Remark 2.2. Besides the GQMLE, our Hausman tests could use many other QMLEs of model

(1.1); see, e.g., Fan, Qi, and Xiu (2014), Zhu and Li (2015), and references therein. For instance,

we will use the least absolute deviation estimator (LADE) as the QMLE to construct the Haus-

man test in Section 3. The reason that we use the GQMLE or LADE as the QMLE, since we can
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easily find the re-scaling parameter κr in both cases such that the rescaling version of η
(0)
t satis-

fies the identification condition of the chosen QMLE method. This is key for our Hausman test,

which requires that both QMLE and MLE converge to the same parameter under the rescaling

null hypothesis.

To carry out the GQMLE-based Hausman testing procedure, one computes (2.7) and compares

it to the upper critical value cm,α for the χ2
m distribution at a given significance level α, where

cm,α is chosen by P (χ2
m > cm,α) = α. If Hn,r > cm,α, then we reject H0; otherwise, we can

not reject H0.

Furthermore, we study the asymptotic power of Hn,r by considering the alternative hypothesis

H1,r : θ0,r − θ∗,r ̸= 0,

and the local alternative hypothesis

H1n,r : θ0,r − θ∗,r =
∆√
n

for some constant vector ∆ ∈ Rm.

Although there are other ways to construct alternatives in terms of the distribution function F0(·)

directly (see, e.g., Koul and Ling (2006)), the proceeding two alternatives are meaningful, be-

cause H0 and H†
0,r are equivalent under Assumption 2.2; and when H†

0,r fails, f †
0,r(·) is not the

true density of ηt, and then θ∗,r tends to deviate from θ0,r in general.

Below, we make one more technical assumption, which is stronger than Assumption 2.7.

Assumption 2.10. As n → ∞,
√
n[(θ̃n,r − θ0,r)− (θ̂n,r − θ∗,r)] →d ξr (a distribution).

COROLLARY 2.2. Suppose that (i) Assumptions 2.1, 2.3-2.6 and 2.10 hold; and (ii) τr ̸= 0

and E[k2,r(ηt)] ̸= 1. Then, under H1,r, we have limn→∞Hn,r = ∞; and under H1n,r, we have

Hn,r →d (ξr +∆)′(τ−1
r Jr)(ξr +∆) as n → ∞,

and consequently, lim|∆|→∞ limn→∞Hn,r = ∞.
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The proof of Corollary 2.2 is directly from continuous mapping theorem. From this corollary, we

know that Hn,r can consistently detect H1,r, and has the nontrivial local power to detect H1n,r.

Since Hn,r gains the power under alternatives as long as θ0,r ̸= θ∗,r, we are of interest to unveil

the condition that θ0,r = θ∗,r for those two illustrating examples in subsection 2.3.

Example 2.1 (con’t). For each u,w > 0, define

Ar = {ηt : ηt satisfies Assumption 2.1 and the moment condition (2.5)} .

Clearly, if ηt ∈ Ar, we have θ0,r = θ∗,r. Under H†
0,r, ηt ∈ Ar for all r, and this guarantees that

Hn,r has a desirable size performance. Under alternatives, we should choose a suitable r to avoid

ηt ∈ Ar so that Hn,r is not lack of power. For instance, if we are testing the null hypothesis that

ηt ∼ N(0, 1) (or Laplace(0, 1)), we should not choose r = 2 (or 1). In general, for a well chosen

r, the probability that ηt ∈ Ar under alternatives shall be very low.

Example 2.2 (con’t). For each ν > 0, define

Br = {ηt : ηt satisfies Assumption 2.1 and the moment condition (2.6)} .

Clearly, if ηt ∈ Br, we have θ0,r = θ∗,r. As the discussion for Example 2.1, we should choose a

suitable r to avoid ηt ∈ Br under alternatives so that Hn,r is not lack of power.

From Examples 2.1-2.2, we know that for most of the choices of r, we do not face the dilemma

that θ0,r = θ∗,r under the alternative. To further relieve the concern that θ0,r = θ∗,r for a single

chosen r, one can implement Hn,r for different choices of r. Needless to say, the finite perfor-

mance of Hn,r depends on the choice of r. Simulation studies in Section 4 imply that we should

choose a smaller (or larger) r when the tail of ηt is heavier (or lighter).
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3. LADE-BASED HAUSMAN TESTS

In this section, we choose the LADE in Peng and Yao (2003) as the QMLE to construct our

Hausman test, where the LADE is given by

θ̃n,l = argmin
θ∈Θ

n∑

t=1

∣∣log y2t − log[σ̃t(θ)]
2
∣∣ , (3.1)

and σ̃t(θ) is defined as in (2.1). Here, the subscript l in θ̃n,l is involved to indicate the chosen

LADE method. Compared with the GQMLE θ̃n,r in (2.1), the LADE θ̃n,l in (3.1) only needs a

finite fractional moment of ηt for its asymptotic normality, and hence it applies for very heavy-

tailed ηt; see, e.g., Linton, Pan, and Wang (2010), Francq and Zakoı̈an (2013), and Chen and Zhu

(2015) for more discussions on the LADE.

As shown in Peng and Yao (2003), the identifiability condition for θ̃n,l is as follows:

Assumption 3.1. median(η2t ) = 1.

Following the same idea as in Section 2, we assume that model (1.1) holds under Assumption

3.1, and θ0,l is the corresponding true parameter. Let

κl :=

√
median([η

(0)
t ]2)

be the rescaling parameter, and η†t,l := η
(0)
t /κl be the rescaling form of η

(0)
t . As for H†

0,r in (2.2),

under Assumption 2.2, H0 in (1.2) is equivalent to its rescaling version:

H†
0,l : ηt ∼ F0(κlx), (3.2)

where F0(κlx) is the distribution of η†t,l, and Assumption 3.1 holds under H†
0,l.

Next, we consider the MLE under H†
0,l in (3.2). In this case, the density of ηt is f †

0,l(x) =

κlf0(κlx), and hence the MLE is

θ̂n,l := argmin
θ∈Θ

1

n

n∑

t=1

[
log σ̃t(θ)− log f †

0,l

(
yt

σ̃t(θ)

)]
. (3.3)
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For i = 1, 2, let ki,l(·) be defined in the same way as ki,r(·) in Assumption 2.8, with f †
0,r(·) being

replaced by f †
0,l(·). The following theorem measures the difference between θ̃n,l and θ̂n,l.

THEOREM 3.1. Suppose that (i) Assumptions 2.3-2.5, 2.6(ii)-(iii) and 3.1 hold; (ii) E|ηt|2δ2 <

∞ for some δ2 > 0; (iii) Assumption 2.8 holds with f †
0,r(·), k1,r(·) and k2,r(·) being replaced

by f †
0,l(·), k1,l(·) and k2,l(·), respectively; (iv) the probability density function g(·) of log η2t

satisfying g(0) > 0 and supx∈R g(x) < ∞, is continuous at zero; (v) τl ̸= 0 and E[k2,l(ηt)] ̸= 1.

Then, under H†
0,l, we have

√
n
(
θ̃n,l − θ̂n,l

)
→d N(0, τlJ −1

l ) as n → ∞,

where

τl = E

[
sgn(η2t − 1)

4g(0)
+

1 + k1,l(ηt)

1− E[k2,l(ηt)]

]2
and Jl = E

[
1

σ2
t (θ0,l)

∂σt(θ0,l)

∂θ

∂σt(θ0,l)

∂θ′

]
.

Based on Theorem 3.1, our LADE-based Hausman test is proposed as follows:

Hn,l = n
(
θ̃n,l − θ̂n,l

)′
[τ̃−1
n,l J̃n,l]

(
θ̃n,l − θ̂n,l

)
, (3.4)

where τ̃n,l and J̃n,l are the sample counterparts of τl and Jl, respectively, given by

τ̃n,l =
1

n

n∑

t=1

[
sgn(η̃2t,l − 1)

4g̃n(0)
+

1 + k1,l(η̃t,l)

1− k̃n,l

]2

and J̃n,l =
1

n

n∑

t=1

[
1

σ̃2
t (θ̃n,l)

∂σ̃t(θ̃n,l)

∂θ

∂σ̃t(θ̃n,l)

∂θ′

]

with η̃t,l = yt/σ̃t(θ̃n,l), k̃n,l = n−1
∑n

t=1 k2,l(η̃t,l), and

g̃n(0) =
1

nbn

n∑

t=1

K

(
log η̃2t,l
bn

)
.

Here K(x), with
∫∞
−∞K(x)dx = 1 and

∫∞
−∞ |x|K(x) < ∞, is a kernel function and bn(> 0)

is the bandwidth with order O(n−1/5). It is not hard to see that τ̃n,l and J̃n,l are consistent
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estimators of τl and Jl, respectively. Note that H0 and H†
0,l are equivalent under Assumption

2.2. Hence, by Theorem 3.1, the following corollary is straightforward:

COROLLARY 3.1. Suppose that Assumption 2.2 and the conditions in Theorem 3.1 hold. Then,

under H0, we have

Hn,l →d χ2
m as n → ∞,

Remark 3.1. For the null hypothesis H0 in Examples 2.1 and 2.2, the expressions of k1,l(x)

and k2,l(x) are the same as k1,r(x) and k2,r(x) in Remark 2.1, respectively, except that κr is

replaced by κl. Also, the moment conditions in (2.5) and (2.6) remain valid for Hn,l, except that

κr is replaced by κl.

Remark 3.2. In order to calculate Hn,r and Hn,l, the values of κr and κl are involved, respec-

tively. For the often used F0(·) in applications, the values of κr and κl are reported in Table 1

below, and they are easily calculated via a numerical integration. For other cases of F0(·), we

can obtain the values of κr and κl in a similar way.

Remark 3.3. Unlike Hn,r, Hn,l relies on the choice of bandwidth bn. Hereafter, we choose bn

as in Fan and Yao (2003, p.201). Simulation studies in Section 4 imply that this choice of bn has

a good finite sample performance.

To carry out the LADE-based Hausman testing procedure, one computes (3.4) and compares

it to the upper critical value cm,α at a given significance level α. If Hn,l > cm,α, then we reject

H0; otherwise, we can not reject H0.

In the end, we make the following assumption:
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Table 1. The values of κr and κl for the often used distribution function F0(·)
Distribution function F0(·) under H0

r N(0, 1) Laplace(0, 1) t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t15 t20

κr 0.0 0.5301 0.5618 1.0000 0.7074 0.6374 0.6068 0.5897 0.5788 0.5712 0.5657 0.5615 0.5582 0.5484 0.5437

0.2 0.5922 0.6527 1.2836 0.8253 0.7296 0.6892 0.6671 0.6532 0.6436 0.6366 0.6313 0.6271 0.6150 0.6091

0.4 0.6492 0.7416 1.6889 0.9494 0.8205 0.7686 0.7407 0.7234 0.7115 0.7029 0.6964 0.6913 0.6765 0.6694

0.6 0.7020 0.8290 1.0843 0.9120 0.8462 0.8117 0.7905 0.7761 0.7658 0.7580 0.7519 0.7342 0.7258

0.8 0.7514 0.9150 1.2360 1.0055 0.9231 0.8809 0.8554 0.8382 0.8259 0.8167 0.8095 0.7888 0.7790

1.0 0.7979 1.0000 1.1027 1.0000 0.9491 0.9186 0.8984 0.8839 0.8731 0.8647 0.8408 0.8295

1.2 0.8421 1.0842 1.2053 1.0779 1.0166 0.9807 0.9570 0.9402 0.9277 0.9181 0.8906 0.8778

1.4 0.8841 1.1676 1.3157 1.1573 1.0842 1.0420 1.0145 0.9952 0.9809 0.9698 0.9387 0.9241

1.6 0.9243 1.2503 1.2392 1.1521 1.1029 1.0712 1.0491 1.0328 1.0202 0.9851 0.9688

1.8 0.9629 1.3325 1.3245 1.2209 1.1637 1.1274 1.1022 1.0837 1.0696 1.0302 1.0121

2.0 1.0000 1.4142 1.2910 1.2248 1.1832 1.1547 1.1339 1.1181 1.0742 1.0541

2.2 1.0359 1.4955 1.3629 1.2863 1.2390 1.2068 1.1835 1.1658 1.1171 1.0950

2.4 1.0706 1.5764 1.4371 1.3486 1.2949 1.2587 1.2326 1.2129 1.1592 1.1349

2.6 1.1042 1.6569 1.4119 1.3510 1.3104 1.2814 1.2595 1.2004 1.1739

2.8 1.1368 1.7372 1.4767 1.4077 1.3622 1.3300 1.3058 1.2410 1.2122

3.0 1.1686 1.8171 1.4650 1.4142 1.3785 1.3519 1.2810 1.2497

κl 0.6745 0.6931 1.0000 0.8165 0.7649 0.7407 0.7267 0.7176 0.7111 0.7064 0.7027 0.6998 0.6912 0.6870

† For the distribution of tν , the values of κr are absent when r ≥ ν/2, according to Assumption 2.6(i).

Assumption 3.2. There exists a unique interior point θ∗,l ∈ Θ such that
√
n[(θ̃n,l − θ0,l)−

(θ̂n,l − θ∗,l)] →d ξl (a distribution) as n → ∞.

Note that the proceeding assumption implies that θ̂n,l − θ∗,l = op(1). We now study the asymp-

totic power of Hn,l by considering the alternative hypothesis

H1,l : θ0,l − θ∗,l ̸= 0,

and the local alternative hypothesis

H1n,l : θ0,l − θ∗,l =
∆√
n

for some constant vector ∆ ∈ Rm.

COROLLARY 3.2. Suppose that Assumption 3.2 and conditions (i)-(ii) and (iv)-(v) in Theorem

3.1 hold. Then, under H1,l, we have limn→∞Hn,l = ∞; and under H1n,l, we have

Hn,l →d (ξl +∆)′(τ−1
l Jl)(ξl +∆) as n → ∞,

and consequently, lim|∆|→∞ limn→∞Hn,l = ∞.
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The proof of Corollary 3.2 is directly from continuous mapping theorem. From this corollary, we

know that Hn,l can consistently detect H1,l, and has the nontrivial local power to detect H1n,l.

Again, as for Hn,r, Hn,l is lack of power when θ0,l = θ∗,l under alternatives, and this situation

shall happen with a small chance in applications. Simulation studies in Section 4 imply that Hn,l

has a good finite performance especially when ηt is heavy-tailed.

4. SIMULATION STUDY

In this section, we examine the performance of the test statistics Hn,r and Hn,l in finite sam-

ples through Monte Carlo experiments. We generate 5000 replications of sample size n = 1000

and 2000 from the following GARCH(1, 1) model:

yt = ηtσt and σ2
t = ω0 + α0y

2
t−1 + β0σ

2
t−1, (4.1)

where (ω0, α0, β0) = (0.025, 0.25, 0.5) as in Koul and Ling (2006), and ηt is i.i.d. and generated,

respectively, as follows:

Case 1 : ηt ∼ standardized [N(0, 1) + λt5] such that Eη2t = 1;

Case 2 : ηt ∼ standardized [N(0, 1) + λt3] such that Eη2t = 1;

Case 3 : ηt ∼ standardized [Laplace(0, 1) + λt5] such that E|ηt| = 1;

Case 4 : ηt ∼ standardized [Laplace(0, 1) + λt3] such that E|ηt| = 1;

Case 5 : ηt ∼ t8+5λ;

Case 6 : ηt ∼ t8−5λ.

Here, λ is chosen to be 0.0, 0.2, 0.4, 0.6, 0.8 or 1.0. For each case, the null hypothesis H0 cor-

responds to the scenario that λ = 0, and its alternatives are the scenarios that λ > 0. In view of

Assumption 2.6(i), we choose Hn,r with r = 0.0, 0.6 and 1.2 for all cases, and also r = 1.8 and
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Fig. 1. The power and size plot in each case for Hn,0 (dashed square line), Hn,0.6 (dashed diamond line), Hn,1.2 (dashed star line), Hn,1.8 (dashed

plus line), Hn,2.4 (dashed cross line), Hn,l (dashed circle line), and Kn (solid pentangle line). Here, the horizontal solid line is the significance level

α = 5%.
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2.4 for Cases 1, 3 and 5. As a comparison, we also consider the weighted KS test statistic Kn in

Koul and Ling (2006). In all calculations, we set the significance level α = 5%.

Figure 1 reports the result of all test statistics, and our findings from this figure are as follows:

(i) all test statistics have a precise size performance especially when the sample size n is large,

and our Hausman tests may be slightly over-sized when n is small.

(ii) the power of all test statistics becomes large when the value of λ (or n) increases.

(iii) Hn,l has a comparable power performance to Hn,r with small r in Cases 1 and 2, and it is

the worse one among all Hausman tests in Cases 3 and 4. However, when the tail of ηt becomes

much heavier as in Case 6, Hn,l is the most powerful one among all test statistics.

(iv) Hn,r with large (or small) r exhibits a power advantage over others when the tail of ηt

becomes lighter (or heavier) as shown in Case 5 (or 6). In Cases 1 and 3, Hn,r with large r has a

comparable power performance with the one with small r.

(v) Except Case 2 in which Kn has a comparable power performance with Hn,r and Hn,l, Kn

in general has the worse power performance among all test statistics, especially in Case 5. It is

also worth noting that the power advantage of Hn,r or Hn,l over Kn is remarkably significant

when the value of λ is greater than 0.2 or 0.4.

Overall, our simulation studies reveal that Hn,r with large (or small) r has a good performance

when the tail of ηt is light (or heavy), and Hn,l has a desirable performance when the tail of ηt is

heavy, while Kn is generally less powerful than Hn,r and Hn,l in all examined alternatives.

5. APPLICATION

This section studies the daily S&P 500 index in U.S. stock market. The data sets we considered

are divided into two groups by the 1987’s crash. The first group is collected from January 3, 1979

to December 31, 1986, and the second group is collected from January 2, 1987 to December 30,

1994. Since the log-return (×100) of the data set in the first group exhibits some correlations
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in its conditional mean, it is filtered by an ARMA(2, 1) model with the least square estimation

method. Likewise, the log-return (×100) of the data set in the second group is filtered by an

ARMA(1, 4) model. Consequently, we denote the residuals from each fitted ARMA model by

{yt}nt=1, where n is the sample size. Table 2 gives the summary statistics for each yt, from which

we find that the p-values of the Li-Mak portmanteau tests are close to zero. Hence, it implies that

yt has the ARCH effect in each group.

Table 2. The summary of yt in each group.

yt n mean sd skewness kurtosis Qlb(6)
† Qlb(18) Qlm(6)‡ Qlm(18)

ex-1987 2012 0.0000 0.8765 0.0560 4.7662 0.8934 0.8750 0.0000 0.0000

post-1987 2019 0.0004 1.0657 -5.2596 111.81 0.8102 0.2405 0.0000 0.0000

† The p-value of Ljung-Box portmanteau test Qlb(M) in Ljung and Box (1978).
‡ The p-value of Li-Mak portmanteau test Qlm(M) in Li and Mak (1994).

Next, we fit each {yt}nt=1 by a GARCH(1, 1) model in (4.1) with the Gaussian QMLE method,

and find that the p-values of the Li-Mak portmanteau tests Qlm(6) and Qlm(18) are 0.7026 and

0.6293 for the ex-1987 data set, and 0.9876 and 0.9996 for the post-1987 data set. Hence, we can

conclude that the GARCH(1, 1) model is adequate to fit both data sets. Furthermore, we are of

interest to test the distribution of ηt in model (4.1). We consider four different null hypotheses,

respectively, as follows:

H
(1)
0 : ηt ∼ N(0, 1); H

(2)
0 : ηt ∼ Laplace(0, 1);

H
(3)
0 : ηt ∼ t5; H

(4)
0 : ηt ∼ t8.

We apply Hn,r with r = 0, 0.6, 1.2, 1.8 or 2.4, Hn,l, and Kn to detect each null hypothesis above.

The corresponding results are given in Table 3. From this table, we can find that (i) for the ex-

1987 data set, only H
(4)
0 is accepted by all test statistics, while the other hypotheses are strongly

rejected by the Hausman test, especially the GQMLE-based one with large r; (ii) for the post-

1987 data set, none of hypotheses is accepted by the Hausman test, especially the LADE-based

one and GQMLE-based one with small r. It is worth noting that (i) for the ex-1987 data set, Kn
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can reject H
(1)
0 only at 10% level and can not reject H

(3)
0 and H

(4)
0 at that level; (ii) for the post-

1987 data set, Kn only has the marginal ability to reject H
(4)
0 at 10% level, and has no ability to

reject H
(2)
0 and H

(3)
0 at that level.

Table 3. The values of test statistics for null hypotheses H
(i)
0 (i = 1, 2, 3, 4).

ex-1987 post-1987

Tests† Tests

Hn,0 Hn,0.6 Hn,1.2 Hn,1.8 Hn,2.4 Hn,l K‡
n Hn,0 Hn,0.6 Hn,1.2 Hn,1.8 Hn,2.4 Hn,l Kn

H
(1)
0 14.215 23.012 25.567 19.189 16.208 22.487 2.6980 212.17 92.716 44.359 20.327 8.0543 197.50 11.125

[0.0026] [0.0000] [0.0000] [0.0002] [0.0010] [0.0001] [0.0000] [0.0000] [0.0000] [0.0001] [0.0449] [0.0000]

H
(2)
0 54.463 90.940 98.181 91.792 64.000 56.538 2.9095 27.460 19.243 10.522 6.4201 4.1448 3.1184 1.9454

[0.0000] [0.0000] [0.0000] [0.0000] [0.0000] [0.0000] [0.0000] [0.0002] [0.0146] [0.0929] [0.2462] [0.3737]

H
(3)
0 2.2091 0.0984 20.559 19.746 20.965 1.1025 0.9077 21.321 5.3959 3.2087 4.4935 3.4764 17.393 1.5854

[0.5302] [0.9920] [0.0001] [0.0002] [0.0001] [0.7765] [0.0001] [0.1450] [0.3606] [0.2129] [0.3238] [0.0006]

H
(4)
0 0.1281 0.2755 1.3522 0.3121 0.2116 0.8880 0.9354 46.286 17.338 3.7204 5.7531 3.9882 42.493 2.4896

[0.9883] [0.9646] [0.7168] [0.9577] [0.9757] [0.8283] [0.0000] [0.0006] [0.2933] [0.1243] [0.2627] [0.0000]

† The p-value of the Hausman test is in the square bracket, and its value less than 1% is in bold face.
‡ The 10%, 5% and 1% upper percentiles of Kn are 2.382, 2.804 and 3.737 for ηt ∼ N(0, 1), 2.344, 2.781 and 3.149

for ηt ∼ Laplace(0, 1), 2.428, 2.852 and 3.691 for ηt ∼ t5, and 2.464, 2.897 and 3.793 for ηt ∼ t8, respectively.

In view of these facts, we shall fit the ex-1987 data set by a GARCH(1, 1) model with ηt ∼ t8.

Table 4 reports the related results for this fitted model, from which we can see that the sample

skewness and kurtosis of residuals are −0.0006 and 4.3151, which are close to 0 and 4.5 (the

skewness and kurtosis of t8 distribution), respectively. To gain more evidence, we apply the

three-step estimation method in Fan, Qi, and Xiu (2014) to the ex-1987 data set with the auxiliary

innovation being t8, and find that the estimate of ηf (see, eqn (6) in that paper) is 1.0008. This

suggests that the true distribution of ηt has the same tail thickness as t8, and so it is consistent to

our findings. By using the same method, we also find that the true distribution of ηt has the same

tail thickness as t4.48 for the post-1987 data set. Thus, it motivates us to consider one more null

hypothesis for the post-1987 data set:

H
(5)
0 : ηt ∼ t4.48.
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However, some additional results (not reported here but available upon requirement) show that

H
(5)
0 is rejected by both Hn,0 and Hn,l with p-values less than 1%. Nevertheless, we try to fit the

post-1987 data set by a GARCH(1, 1) model with ηt ∼ t4.48, and the corresponding results are

given in Table 4. Clearly, the sample kurtosis of residuals is slightly larger than 15.5 (the kurtosis

of t4.48 distribution), while the sample skewness of residuals is much less than 0 (the skewness

of t4.48 distribution). Thus, the failure of t4.48 in fitting ηt for the post-1987 data set may be due

to its inability to fit asymmetric data set.

Table 4. The summary of the fitted GARCH(1, 1) model for each yt.

MLE† Residuals

yt ηt ω̂n α̂n β̂n IC‡ mean sd skewness kurtosis

ex-1987 t8 0.0143 0.0281 0.9384 0.0001 -0.0057 1.3136 -0.0006 4.3151

(0.0048) (0.0078) (0.0159)

post-1987 t4.48 0.0076 0.0347 0.9241 0.0000 0.0087 1.8466 -1.3243 16.275

(0.0022) (0.0069) (0.0128)

† The standard deviation of the MLE is in the open bracket.
‡ According to (2.6), the identification condition of the MLE with ηt ∼ tν is E[1/(η2

t + ν)] = 1/(1 + ν). IC stands

for the sample value of {E[1/(η2

t + ν)]− 1/(1 + ν)} based on residuals.

In summary, we find that the error distribution is t8 in fitted GARCH(1, 1) model for the ex-

1987 data set, and we also expect that the error distribution in fitted GARCH(1, 1) model for the

post-1987 data set may be a skewed one with the tail thickness as t4.48.

6. CONCLUDING REMARKS

In this paper, we propose the novel GQMLE-based Hausman test statistic Hn,r and LADE-

based Hausman test statistic Hn,l for checking the error distribution in conditionally het-

eroskedastic models. Both test statistics are shown to have the limiting null distribution χ2, and

so they are ADF. Moreover, both test statistics are consistent and able to detect the local alter-

native of order n−1/2. Simulation studies reveal that our Hausman test statistics have a power

advantage over the weighted KS test statistic Kn under most of the examined alternatives. By

studying the S&P 500 stock index from 1979 to 1994, our Hausman test statistics find that based
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on the fitted GARCH(1, 1) model, the error distribution is t8 for the ex-1987 data set, and it may

be a skewed distribution with the tail thickness as t4.48 for the post-1987 data set.

It is worth noting that both simulation study and real application imply that Hn,l has a better

performance when the error is more heavy-tailed, while Hn,r with a large (or small) r has a better

performance when the error is less (or more) heavy-tailed. It means that practitioners may select

the range of r by looking at errors’ tail index (e.g., Hill’s estimators of the robust LADE-based

errors). Needless to say, it is always better to try different choices of r in real applications, and

this can give us more information on the distribution of the error term.

As one natural extension, we may consider our Hausman testing procedure for the error distri-

bution in other time series models, such as the heteroskedastic model with a conditional mean, the

heteroskedastic model without intercept (e.g., Hafner and Preminger (2015)), the non-stationary

heteroskedastic model (e.g, Francq and Zakoı̈an (2012)), and the multivariate heteroskedastic

model. This extension is interesting and left for future research.

APPENDIX: PROOFS

Proof of Theorem 2.1. Under Assumptions 2.1 and 2.3-2.6, Theorem 1 in Francq and Zakoı̈an (2013)

showed that

√
n
(
θ̃n,r − θ0,r

)
=





−Σ−1
0,r

1√
n

∑n
t=1

1
σt(θ0,r)

∂σt(θ0,r)
∂θ

[1− |ηt|r] + op(1), if r > 0,

J−1
r

1√
n

∑n
t=1

1
σt(θ0,r)

∂σt(θ0,r)
∂θ

log |ηt|+ op(1), if r = 0,
(A1)

where Σ0,r = rJr > 0. Moreover, by Assumptions 2.3-2.6 and 2.8, and the same arguments as for Theo-

rem 1 in Francq and Zakoian (2013), we have under H†
0,r, E[k1,r(ηt)] = −1 and

√
n
(
θ̂n,r − θ0,r

)
= −Σ−1

1,r

1√
n

n∑

t=1

1

σt(θ0,r)

∂σt(θ0,r)

∂θ
[1 + k1,r(ηt)] + op(1), (A2)

where Σ1,r = {1− E[k2,r(ηt)]}Jr > 0.

Furthermore, by (A1)-(A2) and the central limit theorem for martingale difference sequence, we have

√
n
(
θ̃n,r − θ̂n,r

)
→d N(0, E {WrJrWr}) (A3)
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as n → ∞, where E {WrJrWr} > 0 and

Wr =





[|ηt|r − 1]Σ−1
0,r + [1 + k1(ηt)]Σ

−1
1,r, if r > 0,

log |ηt|J−1
r + [1 + k1(ηt)]Σ

−1
1,r, if r = 0.

Now, the conclusion holds from (A3) and the direct calculation.

Proof of Theorem 3.1. Under Assumptions 2.1 and 2.3-2.6, Lemma A.1 in Chen and Zhu (2015)

showed that

√
n
(
θ̃n,l − θ0,l

)
= −Σ−1

0,l

1√
n

n∑

t=1

1

σt(θ0,l)

∂σt(θ0,l)

∂θ
sgn(1− η2t ) + op(1), (A4)

where Σ0,l = 4g(0)Jl > 0. Moreover, as for (A2), we have under H†
0,l, E[k1,l(ηt)] = −1 and

√
n
(
θ̂n,l − θ0,l

)
= −Σ−1

1,l

1√
n

n∑

t=1

1

σt(θ0,l)

∂σt(θ0,l)

∂θ
[1 + k1,l(ηt)] + op(1), (A5)

where Σ1,l = {1− E[k2,l(ηt)]}Jl > 0.

Furthermore, by (A4)-(A5) and the central limit theorem for martingale difference sequence, we have

√
n
(
θ̃n,l − θ̂n,l

)
→d N(0, E {WlJlWl}) (A6)

as n → ∞, where E {WlJlWl} > 0 and Wl = sgn(η2t − 1)Σ−1
0,l + [1 + k1,l(ηt)]Σ

−1
1,l . Now, the conclu-

sion holds from (A6) and the direct calculation.
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