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Abstract

We study sequential auctions in which bidders demand multiple units. We collect

a novel data set on sequential water auctions for the empirical study. Although water

units are identical, two features from the empirical setting create a trade-off whereby

units of water end up being complements or substitutes. First, there is a water loss

that is only incurred for the first unit, generating a sunk cost. Second, subsequent units

of water exhibit decreasing marginal returns. Units of water are complements or sub-

stitutes depending on the relative importance of the sunk cost and decreasing returns.

Weather seasonality provides us with the required variation (in sunk costs relative to de-

creasing returns) to perform the empirical investigation. When units are complements,

one bidder wins all units by paying a high price for the first unit, thus deterring others

from bidding on subsequent units. When units are substitutes, different bidders win the

units with positive probability and pay prices of similar magnitude, even when the same

bidder wins all units. We analyze this stark pattern of outcomes not investigated in the

literature before. We recover individual demand consistent with this pricing behavior

and confirm it is not collusive, but consistent with non-cooperative behavior. Demand

estimates are biased if one ignores these features.
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1 Introduction.

There are many instances in the real world where several units of the same or similar goods are

allocated sequentially or periodically using auctions. Examples include timber, procurement

of public goods, electromagnetic spectrum, and treasury bills. The nature of the goods at

auction and the firms bidding determine whether the goods are complements (increasing

marginal returns) or substitutes (decreasing marginal returns). In many cases, goods are

complements because firms incur fixed costs to realize the full value of purchased goods. This

is the case of the machinery and workers needed to fell trees or build highways. Firms also

experience decreasing marginal returns due to limited capacity to hire more workers or buy

more machinery. Decreasing marginal returns also arise as a consequence of the downward

sloping demand for the firms’ final products. Once a firm has a valid spectrum for a given

county, the value of another tranche of the spectrum decreases substantially. We expect firms

to have increasing marginal returns if the first effect dominates, decreasing marginal returns

if the second effect dominates, and hill shaped marginal returns if both effects are important.

By affecting the valuation of subsequent units, fixed costs and decreasing returns deter-

mine bidder behavior and price dynamics. Price dynamics are central to connect observed

bids to the underlying distributions that characterize individual demand, which is fundamen-

tal to discuss positive and normative questions. For instance, variation in prices caused by

a high sunk cost will affect even relatively simple tasks such as measuring the dispersion in

individuals’ private valuations. Moreover, in such a case, a competitive environment could

be incorrectly interpreted as collusive.

The existing literature on sequential auctions has provided little empirical evidence on

the effect that complementarities or substitutabilities in the valuation of subsequent units

has on price behavior. The main reason for this lack of evidence is the challenge of finding

sufficient variation in the degree of complementarity. Our aim is to address this empirical gap.

To that end, we examine a unique panel data set that exploits large changes in the degree

of complementarity across seasons: variation in the importance of sunk costs relative to

decreasing returns. We use this variation to analyze bidding behavior in sequential auctions in

which buyers’ preferences for multiple units exhibit both sunk costs and decreasing marginal

returns. We investigate its implications for price dynamics and price competition.

The data in this paper comes from sequential water auctions from a self-governed com-

munity of farmers in Mula, Spain. The data allows to exploit a unique scenario to analyze a

stark pattern of outcomes not previously documented in the literature. Sometimes, winning

prices exhibit a standard competitive pattern. In this scenario, winning prices are similar in

magnitude, regardless of whether the same or different bidders (farmers in our case) win the

sequential units.1 Other times, one farmer wins all the units, pays a high price for the first

unit, deters other farmers from entering subsequent auctions, and thus pays a very low price

1Declining prices for identical objects is an empirical regularity known as the declining price anomaly,
which was first documented by Ashenfelter (1989) in his seminal paper.
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for the remaining units. We call this the deterrence effect. We show that this pattern of out-

comes is consistent with a non-cooperative equilibrium, where the observed price dynamics

are competitive, not collusive.

The data for our analysis consist of individual winning bids and auction covariates. These

covariates include the amount of rainfall. The basic unit of sale is the right to use three hours

of water (432,000 liters) for irrigation. For each weekday, eight units are sold for each schedule:

four for daytime (7AM-7PM) and four for nighttime (7PM-7AM) irrigation. The auctioneer

sells first the twenty units corresponding to nighttime and then the twenty units corresponding

to daytime. This leaves ten four-unit sets of auctions that are sold in order. (The ten sets

of four-unit auctions are: Monday-nighttime, Tuesday-nighttime, and so on until Friday-

daytime.) Thus, the relevant unit of analysis for investigating individuals’ demand and

the pattern of outcomes is four-unit auctions. But units within each four-unit set are not

conditional-independent due to the presence of sunk costs. Observing the winner’s identity

allows us to estimate the model, as outlined in Section 6. Local weather conditions determine

the relevant agricultural irrigation technology and, hence, water demand. Additionally, as less

rain falls in summer than in winter in southern Spain, the presence of seasonalities provides

us with the variation in sunk costs relative to decreasing returns necessary to perform the

empirical investigation.

The interpretation of the data based on our economic model is fundamental to our ap-

proach. We model the environment as a sequential (ascending price) English auction along

the lines of Engelbrecht-Wiggans (1993) and von der Fehr (1994) in which bidders, by in-

curring a participation cost, decide whether to attend each sale. We focus on the symmetric

conditional-independent private values paradigm that has dominated the literature (Donald

and Paarsch 1996). We incorporate two features from our empirical setting. First, a sunk

cost is incurred for the first unit bought because water flows through a channel dug into the

ground. Some water is lost when the channel is dry (the first unit), but the loss is negligible

for subsequent units. Engineers have estimated that 20% of the water of the first unit that

travels through a dry channel was lost (González-Castaño and Llamas-Ruiz 1991). Second,

decreasing marginal returns are present for subsequent units because the amount of irrigated

land is fixed.

The relative importance of sunk costs and decreasing marginal returns generates a trade-

off, whereby buyers’ bidding behavior depend on whether different units are complements or

substitutes. When goods are complements, the same bidder wins all the objects paying a

high price for the first unit equal to the valuation for the whole bundle (four times the second

highest valuation for the first unit, adjusted for the complementarity effect and participation

cost). By doing this, the winner of the first unit deters others from bidding on the remaining

three units, allowing this bidder to pay very low prices (close to zero) for the remaining three

units. The resulting price pattern, along with the same bidder winning all the units, may

lead to an incorrect collusive interpretation. When goods are substitutes, different bidders
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win the objects with a positive probability and pay prices of similar magnitude, even when

the same bidder wins all the objects. We provide empirical evidence for the key features of

our model: participation and sunk costs. We argue that bidders are better informed than

the seller, whose mechanism ignores bidder preferences for multiple units. Nevertheless, a

sequential English auction achieves ex-ante efficiency, as we discuss in Subsection 7.2.

The price patterns that our model predicts provide us with a straightforward empirical

method to determine the regime being played (complements or substitutes). When goods

are complements, very low prices are paid by the same winner (the winner of the first unit)

for the second, third, and fourth units. This allows us to separate the data for each regime

using the procedure outlined in Section 5.

We estimate the distribution of private valuations by maximum likelihood using an ex-

ponential distribution and the English structure for the auction. To estimate sunk cost and

decreasing marginal returns, we form moment conditions based on the structural equations

of the model. We infer participation costs using data from auctions in which bidders were

present, but no one placed bids. This method gives us bounds on participation costs.

Our empirical work establishes three main results. First, we recover individual de-

mand—characterized by private valuations and the model’s structural parameters—that is

consistent with the described price patterns and the deterrence effect in particular. Second,

the equilibrium price dynamics are consistent with competitive behavior. Non-cooperative

behavior is not only consistent with the deterrence effect, but also predicts such price dif-

ferentials. Incentives to deviate from a collusive strategy are higher in spring and summer,

when water is more valuable. However, it is in spring and summer when we observe non-

cooperative behavior more often. Finally, we show that estimates that ignore the importance

of participation and sunk costs will be biased. We test whether price variations, conditional

on covariates, are better explained by our proposed model or a standard English auction

model without participation costs, using that the latter is encompassed by the former. The

approach of Haile and Tamer (2003), that relies on two basic behavioral assumptions, provides

a robust structural framework for inference. These minimal assumptions are not satisfied in

the present context. We discuss how Haile and Tamer’s structure can be interpreted in the

current setting.

In the next section, we describe the related literature. Section 3 discusses the auction

system, the empirical regularities, and the modeling assumptions required in our context.

Section 4 presents the model. Section 5 discusses regime determination. Section 6 examines

the estimation procedure. Section 7 presents the results, analyzes the importance of sunk

costs, and the interpretation of complementarities. Finally, Section 8 concludes. Additional

data description is provided in Section A in the online appendix. All proofs and extensions

of the model are in Section B in the online appendix.
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2 Contributions and Related Literature.

In this section we describe the related literature and highlight how our paper contributes to

the current body of work. This paper is most similar to the empirical literature investigating

the predictions of strategic bidding in sequential auctions with multi-unit demand. To best

of our knowledge, the price dynamics that we investigate (see Section 3) have not been

documented in the literature before. Most of the literature do not consider participation

costs in their analysis. We show that participation costs affect equilibrium outcomes. We

then use our model to partially identify participation costs and estimate informative bounds.

Numerous empirical studies have highlighted the importance of complementarities (Anton

and Yao 1987; Gandal 1997; Wolfram 1998; Pesendorfer 2000; Marshall, Raiff, Richard, and

Schulenberg 2006).2 Substitutabilities are a major component in several industries such as

sequential highway construction procurement auctions (Jofre-Bonet and Pesendorfer 2003),

sequential timber auctions (List, Millimet, and Price 2004), or sequential cattle auctions

(Zulehner 2009). Several authors have studied cases of either complements due to synergies

among auctioned goods, or substitutes due to decreasing marginal utility (Black and De Meza

1992; Branco 1997; Liu 2011). Selling goods in a bundle increases a seller’s revenue when

goods are complements (Palfrey 1983; Levin 1997, Armstrong 2000). Our setting differs from

these scenarios in that we consider sequential, instead of simultaneous, auctions.3

Prior investigations of the relationship between sequential auctions and the complementar-

ity or substitutability between identical units are more scarce (e.g. Jeitschko and Wolfstetter

2002; Jofre-Bonet and Pesendorfer 2012). Jeitschko and Wolfstetter 2002 analyze optimal

sequential auctions in a binary-valuations case. They find that English auctions extract

more rent than first-price auctions. Our model differs as we consider the class of continuous

valuation distributions. Jofre-Bonet and Pesendorfer 2012 allow for complementarities and

substitutabilities in a model of sequential auctions. They find that while first-price auctions

give greater revenue than second-price (English) auctions when the goods are substitutes,

the opposite is true for complements. Both mechanisms are efficient in their model. Their

predictions about price trends are consistent with previous findings. Contrary to our analysis

with participation costs, where buyers are better informed than the seller, Jofre-Bonet and

Pesendorfer 2012 examine the effect of capacity constraints on bidding behavior in procure-

ment auctions using a two-period auction game where sellers have private information about

their costs. Balat (2013) and Groeger (2014) analyze dynamic auctions in the highway pro-

curement market. Balat (2013) extends the model from Jofre-Bonet and Pesendorfer 2012 by

2Outside the auction literature, Gentzkow (2007) studies the value of new goods using a model encom-
passing the possibility of both complementarities and substitutabilities.

3See Milgrom (2000) and Ausubel (2004) for recent contributions to this literature. Edelman, Ostrovsky,
and Schwarz (2007) study the properties of a “generalized English auction” used to sell Internet advertisements
and show their proposed mechanism has a unique equilibrium. Kagel and Levin (2005) experimentally
investigate multi-unit demand auctions with synergies, and compare behavior in sealed-bid and ascending-
bid uniform-price auctions. See Kagel (1995) for a survey on laboratory experimental auction markets.
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allowing endogenous participation and unobserved heterogeneity. Groeger (2014) analyzes

bidder learning in the entry stage of an auction game.4 Finally, Hendricks and Porter (1988)

conducted an early and influential investigation on how interdependencies among auctioned

objects affect the auction’s outcome. They analyze auctions for drainage leases and show that

better informed firms (which hold tracts neighboring the drainage tracts that were auctioned)

earned higher rents than uninformed ones.

This paper makes a methodological contribution by developing an empirical model of

sequential English auctions with participation costs that allows units to complement and

substitute for the same bidder depending on seasonalities. The model produces distinguish-

able price pattern predictions in each regime. This feature allows us to determine the regime

under which the game is being played using end-digit preferences. This allows us to weaken

the behavioral assumptions, such as the specification of bidders’ beliefs, that would be nec-

essary to solve the whole game (see Sections 4 and 5). Similar to the work of Hendricks

and Porter (1988) and Haile (2001), we show evidence inconsistent with the equilibrium pre-

dictions of standard models and supportive of a model that captures sunk costs, decreasing

marginal returns, and participation costs. Not accounting for these features may lead to the

incorrect interpretation of a competitive market as collusive.

We build upon the existing literature on participation costs and entry fees (McAfee and

McMillan 1987; Engelbrecht-Wiggans 1993; von der Fehr 1994) by constructing a sequen-

tial English auction model similar to that of Von der Fehr. However, our set-up differs in

that bidders are allowed to buy more than one unit of the good. von der Fehr 1994 con-

siders the case when goods are independent and finds the same equilibrium as that of our

complementarities case.

While the auction literature has studied price dynamics and the relationship between

sequentially auctioned goods (for example, Weber 1983; McAfee and Vincent 1993; Benhardt

and Scoones 1994; Engelbrecht-Wiggans 1994), to the best of our knowledge, we analyze a

stark pattern of outcomes not investigated in the literature before. Sometimes, when goods

are substitutes, winning prices exhibit a standard competitive pattern: regardless of whether

the same or different bidders win the sequential units, winning prices are similar in magnitude.

Other times, when goods are complements, the same bidder wins all units by paying a high

price for the first unit, deterring others from bidding on subsequent units.5 We show that this

pattern of outcomes is consistent with a competitive market structure. We are not aware of

any study where identical units may complement and substitute within the same market and

for the same bidder.6 In addition to recovering the structural parameters that characterize

4In contrast, we investigate a stark price dynamics not documented before (see Section 3). In our empirical
setting, the same identical units sometimes complement and other times substitute for the same bidder. We
show that these price dynamics are not collusive, but consistent with non-cooperative behavior. In addition,
we infer participation based on two simple assumptions that provide us informative bounds.

5Declining or downward price trends in sequential auctions, the results we describe in Subsection 3.3,
have been broadly documented (for example, Ashenfelter 1989; Ashenfelter and Genesove 1992; McAfee and
Vincent 1993).

6The literature in multi-unit auctions can be divided into sequential auctions, in which the auctioneer
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individual demand and confirming it is consistent with non-cooperative behavior, which are

of interest to the literature on empirical auctions, we collect a unique panel data set to

examine a market institution that was active and stable for eight centuries in a self-governed

community of farmers in southern Spain.7 Understanding this strategic non-cooperative

behavior of bidders in this stable market institution is of independent interest.

3 Background on the Market.

The data in this paper come from all water auctions in Mula, Spain, from January 1954

through August 1966, when the last auction was run.8 On August 1st, 1966, the allocation

system was modified from an auction to a two-sided bargaining system. In the bargain-

ing system, the Heredamiento de Aguas (water-owners holding) and Sindicato de Regantes

(land-owners association) arranged a fixed price for every cuarta of water (the smallest unit

auctioned). Gradually, the Sindicato de Regantes bought shares in the Heredamiento de

Aguas association until they finally merged in 1974. Thereafter, water was allocated to each

farmer following a fixed quota with each piece of land entitled to some proportion of the

water every year.

The reasons for focusing on the period from 1954 to 1966 are, first, that it represents the

final period of the auction allocating system in use for at least eight centuries in this region.

Second, the government conducted a special agricultural census in 1954/55, providing detailed

information about the farmers who bid in this period’s auctions

The study of these sequential auctions introduces a unique circumstance for analyzing a

stark pattern of outcomes not previously documented in the literature. Sometimes, winning

prices exhibit a standard competitive pattern where, regardless of whether the same or differ-

ent farmers win the sequential units, prices are similar in magnitude (Figure 1). Other times,

one farmer wins all sequential units: he pays a high price for the first unit, deterring other

farmers from entering subsequent auctions, thus paying a very low price for the remaining

units (Figure 2).9 This stark pattern of outcomes is consistent across the whole sample (see

sells the units following a series of sequential steps using a single-unit auction each time, and simultaneous
auctions, in which the auctioneer uses a complex mechanism to allocate all units simultaneously. For recent
contributions see Kastl (2011), who investigates bidders submitting step functions as their bids in multi-
unit treasury bills auctions, and Reguant (2013), who studies complementarity bidding mechanisms used in
wholesale electricity auctions. Implementing a simultaneous auction requires a strong commitment from the
auctioneer either to not renege in the promised mechanism, or to use the information elicited in the process
to demand a higher price for the good. This also imposes technical difficulties in the way bidders frame their
contingent bids (Cramton, Shoham, and Steinberg 2006). Neither of these conditions are satisfied in our
setting. Hortaçsu (2011) discusses recent progress in the empirical study of multi-units auctions. See Kagel
and Levin (2001) for an experimental investigation when bidders demand multiple units in sealed bid and
ascending auctions.

7In the lead article of the first issue of the American Economic Review, Coman (1911) provides an early
discussion of the same institution that is analyzed in detail in this paper. For an extensive study of self-
governed irrigation communities see Ostrom (1992).

8Data available in the historical archive of Mula go back to 1803.
9In terms of purchasing power, one peseta from 1950 is approximately equivalent to 0.43 U.S. dollars from
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Table 1 and Figure 5 that we describe in Subsection 3.3).

3.1 Water Auctions as Allocation System.

Although the process of allocating water in Mula has varied slightly over time, the basic

structure has essentially remained unchanged since the 15th century. Land in Mula is divided

into regadío (irrigated land) and secano (dry land). Irrigation is only permitted in the former.

A channel system directs water from the river to regadío lands.10 Regadío are fertile lands

close to rivers, and thus allow a more efficient use of the water in the region. Since it is

forbidden to irrigate lands categorized as secano, only the farmers that own a piece of regadío

land in Mula are allowed to buy water.

The mechanism to allocate water to those farmers was a sequential outcry ascending

price (or English) auction. The auctioneer sold by auction each of the units sequentially and

independently of each other. The auctioneer tracked the name of the buyer of every unit and

the price paid by the winner.11

The basic selling unit is a cuarta (quarter), which is the right to use water that flows

through the main channel for three hours. Water storage is done in the De La Cierva dam.

Water flows from the dam through the channels at approximately 40 liters per second. As a

result, one cuarta carries approximately 432,000 liters of water. Traditionally, auctions were

held every 21 days to complete a tanda (quota), the basic aggregate unit of irrigation time.

During our sample period, auctions were carried out every Friday.

During each session, 40 cuartas were auctioned: four cuartas for irrigation during the day

(from 7:00 AM to 7:00 PM) and four cuartas for irrigation during the night (from 7:00 PM

to 7:00 AM), for each weekday (Monday to Friday). The auctioneer first sold the 20 cuartas

corresponding to the night-time, and then the 20 cuartas corresponding to the day-time.

Within each day and night group, units were sold beginning with Monday’s four cuartas,

and finishing with Friday’s.

3.2 The Dataset.

We combine data from four sources. The first is auction data, that we collected from the

historical archive of Mula.12 Based on bidding behavior and water availability, auction data

2013 (for details see Section A in the online appendix).
10The channel system was expanded from the 13th to 15th century as a response to the greater demand for

land due to population increase. The regadío land structure has not changed since the 15th century.
11The farmers could not store water in their plots. Reselling water was forbidden. While a farmer could

steal water by opening the gate next to his own parcel, the technology for detection of this crime was effective
as irrigation was done by flood irrigation (more on this in Subsection 4.2). It was easy to determine who
stole water just by identifying a flooded parcel from a farmer who did not buy water in the auction for that
specific day-schedule (conditional on rainfall). The Tribunal de los Hombres Buenos (Council of Good Men),
composed by elected members among the farmer community, was responsible to adjudicate conflicts between
the farmers. Conflicts mostly arose over unpermitted irrigation. We investigate this behavior in Donna and
Espin-Sanchez (2013b).

12From the section Heredamiento de Aguas, boxes No.: HA 167, HA 168, HA 169, and HA 170.
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can be divided into three categories: (i) Regular periods, when the name of the winner, price

paid, date and time of the irrigation for each auction transaction was registered; (ii) No-supply

periods, when no auctions were conducted due to water shortage in the river or damage to

the dam or channels, usually due to intense rain; and finally (iii) No-demand periods, when

auctions were held but no one bid, leaving the registration auction sheet blank. The sample

for this study includes nearly 13 years of auction data spanning January 1954 to August

1966. Every week, 40 units (corresponding to 40 cuartas) were sold, with the exceptions

being when no auction was run (no-supply) or no bids were observed (no-demand). A total

of 17,195 auctions were run during the period under analysis. 13

We link auction data to the data that we collected from the 1954/55 agricultural census

from Spain, which provides information on individual characteristics of farmers’ land.14 The

census was conducted by the Spanish government to enumerate all cultivated soil, production

crops, and agricultural assets available in the country. Individual characteristics for the

farmers’ land (potential bidders which we link with the names in the auctions data) include

the type of land and location, area, number of trees, production, and the price at which this

production was sold in the census year. Figure 3 shows a sample card for one farmer from

the census data. During the 13-year period under analysis, there were approximately 500

different bidders in our sample. The number of bidders who won auctions during a specific

year was considerably lower—the mean for our sample is around 8 (see table 5, discussed in

Subsection 6.2)—and conditional on participation, each farmer won on average 22 units per

year. This is consistent with the census data, where mean land extension is 5.5 ha. with an

average of 33 trees per ha.15

We also link auction data to daily rainfall data for Mula and monthly price indices for

Spain, which we obtain from the Agencia Estatal de Metereología, AEMET (the National Me-

teorological Agency), and the Instituto Nacional de Estadística de España, INE (the National

Statistics Institute of Spain), respectively.

13Table A1 on page A-3 in the online appendix displays the frequency distribution of units in the auctions
disaggregated by the units bought sequentially by the same farmer.

14From the section Heredamiento de Aguas in the historical archive of Mula, box No. 1,210.
15Average annual rainfall during the period is 320 mm. Recent irrigation studies on young citrus plantings

have shown a water use of 2-5 megalitres per hectare annually (Chott and Bradley 1997). Water savings are
possible if irrigation can be allocated to similar units of production, such as young trees or reworked sections
of a property. In arid regions, like Murcia, water requirements are around 20% less and they are lower for
mature trees. Some farmers that are part of water-owner holding use their own water instead of selling it
through auctions. Although water stress during droughts affects the quality of production, trees would hardly
die as a result. During a normal year without drought, trees could survive the whole year from rainfall alone.
For further details see, for example, Chott and Bradley (1997), Wright (2000), and du Preez (2001). Finally,
note that although the average number of trees per farmer is 161 (see Table A2 in Subsection A in the online
appendix), the average number of trees per hectare in our sample is 33, a lower number compared to the
conventional agricultural standard spacing for citrus trees that is 100 trees per hectare.
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3.3 Summary Statistics.

Mediterranean climate rainfall occurs mainly in spring and autumn. Peak water requirements

for the products cultivated in the region are reached in spring and summer, between April and

August. Soaring demand is reflected by the frequency of auctions where the same farmer buys

all four consecutive units (4CU), which reaches its peak during these months (see Figure 14

and the discussion in Subsection 7.2). The frequency of 4CU is not homogenous over time,

but is related to seasonal rainfall, as can be seen in Figure 4. Overall, 42% of the units

were sold in 4CU.16 There are no observations where the same farmer buys more than four

consecutive units, nor observations where the same farmer buys consecutive units across days

(e.g. there are no observations where the same farmer buys the last units of a day-auction,

and the first units of the night-auction).

We only observe the transaction price (winning bid) and the identity of the winner (name).

(We do not observe all bids.) There is substantial price variation, both within and across

four-unit auctions. Winning prices range from 0.05 pesetas (ptas) to 4,830 ptas, with a mean

of 271.6 ptas. As expected, winning prices and the frequency distribution of 4CU are strongly

correlated with past rainfall (Figure 4). Table 1 exhibits the distribution of winning prices

by both the number of consecutive units bought by the same individual (1CU, 2CU, 3CU, or

4CU) and by sequential auction (1st, 2nd, 3rd, or 4th). The greater variation that we observe

for 4CU (with respect to non-4CU) has a well defined pattern. While mean prices for the

first auction in 4CU are considerably higher than for non-4CU (Table 1, Panel 2: 677.6 ptas

for 4CU against 211.1 ptas for 1CU, 305 ptas for 2CU, or 410 ptas for 3CU), mean prices

for fourth auctions in 4CU are the smallest (Table 1, Panel 5: 210.1 ptas for 4CU against

233.4 ptas for 1CU, 239.6 ptas for 2CU, or 311.6 ptas for 3CU). Median and maximum prices

display similar patterns.

Figure 5 presents price variation by number of consecutive auctions won by the same

individual (left panel) and by sequential auction (right panel). The figure shows that the

stark pattern of outcomes from Figures 1 and 2 is consistent across the whole sample. On

the one hand, in the top panel of Figure 5 we can see that price dispersion—as well as the

mean and median price—is higher when the same farmer wins all four consecutive units (in

the top panel, last vertical box labeled 4). On the other hand, in the bottom panel, where we

further disaggregate each box from the top panel by unit (first unit, second unit, third unit,

and fourth unit), we can see that the higher price dispersion for unit 4 in the top panel—as

well as the higher mean and median—is generated by the greater variation in prices for first

units in the lower panel (not by prices in second, third, and fourth units).

This particular pattern in prices is caused by the above mentioned deterrence effect

whereby farmers exhibit different behavior based on seasonality and rainfall, i.e., residual

demand for water. During high demand and low rainfall months, the same farmer buys

16Table A1 in Section A in the online appendix displays the frequency distribution of units sold by number
of units bought by the same farmer.
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all four sequential units, paying a high price for the first unit (with respect to the median

or average price conditional on rain) and very low prices for the remaining units. During

months when demand is not high due to farming seasonalities or when rainfall is high, win-

ning prices for all units are similar in magnitude, regardless of whether the same farmer wins

all sequential units (4CU) or different farmers win subsequent units (1CU, 2CU or 3CU).

Aggregate prices over time display consistent trends with the ones found in the empirical

literature on sequential auctions. Figure 6 shows that, on average, per unit prices decline by

sequential unit (being the first unit of each day higher than second to fourth units), and by

day of the week (prices decline from Monday to Friday). Figure 6 also shows that per unit

prices are slightly higher during the day than during the night. High water requirements for

citrus during summer causes prices to soar during those months (Figure 7). As expected,

prices are also higher during droughts, after conditioning on seasons (Figure 8).17

Table 2 shows that these correlations are robust after conditioning on past rain, unit,

weekday, schedule, week-of-the-year, month, and individual fixed effects. The table displays

the results obtained by regressing daily unit prices on a seven-day-rain moving average (Rain

MA7 ), the rain on auction day, and the mentioned fixed effects. The estimated coefficients

on Rain MA7 have the expected sign and are statistically significant at the 1% level. From

column 1, a 10 millimeter (mm) increase in average rain in the previous week is associated

with a decrease of 40.5 ptas in the equilibrium price paid in the auction. The regression in

column 2 adds unit, weekday, and schedule fixed effects. The estimated coefficient on Rain

MA7 increases in magnitude and also has the expected sign. This regression also shows that,

as noticed in previous figures, price declines within day and across units (both for day-time

and night-time auctions) and across schedules (price is on average 110 ptas lower for night-

time auctions than for day-time auctions). The estimated coefficients show that equilibrium

prices decline monotonically within the week (Figure 6). Columns 3 and 4 add, respectively,

month seasonal dummies and individual fixed effects (we have 537 different individuals in

our sample) to the specification in column 2. The estimated coefficient on Rain MA7 in

column 3, though smaller, again has the expected sign and is statistically different from zero.

Similar qualitative results are obtained in column 4; however, the estimated coefficient on

Rain MA7 has increased. Note that the goodness of the fit in the last regression is 36%,

indicating that average (or ex-ante) prices are explained relatively well by observables such

as rain in the previous week and time of the allocation. This evidence supports the idea the

observable (common knowledge) components of prices in drives four-unit auctions. Although

not reported, we performed an analogue analysis using average daily prices within schedule

as a robustness exercise and obtained similar results.

17See the online appendix for a discussion on droughts.

10



4 The Model.

As noted above, bidding behavior is a result of a complex decision process. There are three

main features from the empirical setting that need to be accounted by the model: (i) sunk

costs that farmers incur when they buy their first unit, (ii) decreasing marginal returns of

subsequent units of water, and (iii) participation costs of farmers in this market.

Sunk Costs (SC). Water is allocated during the auction and is distributed on the specific

day and time of the irrigation accordingly. Water stored in the dam is delivered to the farmer’s

plot on this date using the channel system. Except the main canal, all channels are dug into

the ground (Figure 9). On the day of the irrigation, a guard opens the corresponding gates to

allow the water to flow to the appropriate farmer’s land. These channels are land-specific in

the sense that different areas and lands have their own system of channels which only carry

water when the corresponding gates are opened. A concern is that farmers whose lands lie

next to each other may be buying different sequential units for the same auction. In this case,

the SC would only be incurred by the first farmer for his first unit but not for the second

farmer for his first unit. We use data on the specific location of the farmers that we match

to auction winners to analyze these situations in Subsection 7.2. There is a water loss that

is incurred because water flows over a dry channel. Engineers have estimated this loss to be

between 15% and 40% (20% on average) of the water carried by one cuarta when the channel

is completely dry (see Vera Nicolás 2004). This is the SC incurred by the bidder for his first

unit. The SC is only incurred once, for the first unit, since water losses associated with a wet

channel are negligible. The channel dries out after approximately 12 hours without water

(González-Castaño and Llamas-Ruiz 1991). In 1974 the system of sub-canals was made of

concrete, instead of just dug in the ground, to prevent such losses (González-Castaño and

Llamas-Ruiz 1991).

Decreasing Marginal Returns (DMR). The second feature refers to the decreasing

marginal returns (DMR) effect. The classic textbook case for DMR is appropriate for our

empirical application. Given that the amount of land owned by each farmer is fixed, marginal

productivity of subsequent units of water is decreasing. When assessing the relative impor-

tance of DMR, the impact in summer would generally be greater than in autumn. More

generally, one would expect DMR to be affected by season and rain. When water require-

ments are high, the slope of the marginal productivity function will be relatively flat, as in

the left panel in Figure 10. This is likely to occur in spring and summer. On the other hand,

when water requirements are low, the slope of the marginal productivity function will be

steeper, as in the right panel in Figure 10. This is likely to happen in autumn or winter.

Participation Costs. There are several reasons why farmers face participation costs in

this market. The first component is opportunity cost. Farmers who value their time may
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prefer not to participate in the whole auction session. Auctions were run on Fridays during

work hours. Attending the auction entailed alternative use of working time for the farmer.

This type of cost affects the number of farmers that participate in the auction, which we do

not observe, but not the behavior of the farmer during the auction.

The second component of participation costs correspond to the hassle costs associated

with active bidding. Only a fraction of the individuals who attended a Friday auction were

actively engaged in the bidding for a particular sequential auction of water and not everyone

who was present participated in every auction (Botía, Francisco, personal interview, Murcia,

June 17, 2013).18 As von der Fehr (1994) points out, a reasonable assumption for why only

a portion of attendees participate may be that they consider it so unlikely to that they will

win at a price below what they will be willing to pay, that they are not willing to bother to

engage in bidding. We expect this type of costs to be very small but positive.19

Empirical evidence from our data is consistent with the assertion that farmers dislike

participation, facing positive entry costs as they do. We observe multiple weeks per year

when auctions were run, farmers showed up and bought the first units of water, but no one

bid for the last units. Since there was no reservation price and the minimum bid increment

was cents, they could have potentially won all the remaining units bidding one cent. To the

contrary, they decided not to bid and instead left the auction. For example, on January 22,

1954, units 1 to 16 were sold to seven different farmers but no one bid for units 17 to 20

(Figure 12). In 1954 we observe similar behavior for 14 weeks,20 and this is consistent along

the remaining years in our sample. To infer participation costs, we use 2, 423 auctions where

some bidders where present and no one bid for the last units, i.e., auctions similar to the

one in Figure 12. Our interpretation is that the utility for all bidders is smaller than the

participation cost, conditional on covariates. We use this information to partially identify

participation costs (see page 24).

4.1 Set Up.

We use the three main specific features from the empirical setting to build our model. A SC

is incurred only for the first unit bought while DMR are present for second to fourth units.

The relative importance of the SC and DMR generate a trade-off, whereby bidders coordinate

their behavior based on whether different units are complements or substitutes. A simple

way to show this intuition is by assuming that the initial SC is proportional to the value of

water, and DMR are linear in the number of units bought. We parametrize the SC effect

by (1� ρ1), whose interpretation is the percentage of water loss from the first unit because

water is flowing through a dry channel (hence, proportional to the valuation of the bidder for

18A summary is available online in the online appendix at http://www.jdonna.org/water-auctions-web.
19Note that the results would be the same if participation costs were zero. However, the equilibrium when

goods are complements would not be unique (see Subsection 4.2).
20Weeks of January 22, February 5, April 5, May 1, May 8, May 15, May 22, May 29, June 5, June 12,

July 3, July 10, November 26, and December 3.
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the unit of water). One would expect that, conditional on rain, water loss would be constant

within season with relatively more importance (lower ρ1) in summer.21 We parametrize the

DMR of unit k by ρk for k = 1, 2, . . . , K. Let ρ be the vector of parameters that characterizes

marginal utilities, i.e. ρ ⌘ (ρ1, ρ2, . . . , ρK). Then, the marginal utility for bidder i for each

unit k is:

MUki = ρk · vi,

where vi, only known by bidder i, is a scalar that captures the valuation that the bidder

assigns to their first (complete) unit of water, i.e., when ρ1 = 0 we have MU1i = vi.

We consider vi to be independent and identically distributed on the interval R+, according

to the cumulative distribution function F (vi), for all bidders i = 1, . . . , N . We assume

that F (vi) admits a continuous density f (vi) > 0 and has full support. It is assumed that

E[vi] < 1. The distribution F (vi) is fully characterized by the parameter µ. The assumption

that the support of F (vi) is bounded below by 0 is not restrictive, since bidders with negative

valuations will not enter the auction. The private valuation, vi, is only known by bidder i,

and it is learned before entering the first auction.22

The seller wants to allocate K identical units. These units are auctioned off sequentially

by the seller using an English (ascending price) auction for every unit. All participating

bidders observe the total number of individuals who take part of the auction, N . After

every auction, each participant observes both the price paid by the winner and the winner’s

identity. The seller continues to run subsequent auctions sequentially until all the units are

allocated. We assume that all bidders share the same utility function, U (·). The primitives

of the model, (K,N, µ, ρ), are common knowledge.

The strategy set for every bidder is the vector σ ⌘
�

yki , b
k
i

�k=1,...,K

i=1,...,N
, where yki 2 {0, 1},

yki = 1 indicates that bidder i participates in the auction for unit k (yki = 0 if bidder i does

not participate in the auction for unit k), and bki is the maximum amount that bidder i is

willing to pay for unit k. Bidders play sequentially, or stage by stage. This means that they

choose σk
i =

�

yki , b
k
i

�

after learning the outcome of the previous (k � 1) auctions. Bidders

participating in auction k observe the price at which each bidder is no longer active (bids are

observable) except for the winning bid. The information transmission is consistent with the

auction being an English (or ascending price) auction rather than a second price auction.23

21We discuss variation of SC across auctions (conditional on covariates) in page 21 in the paper.
22We do not consider the case where farmers might have different valuations for different units of water.

The reason for this is that the units are identical and we condition on observables that may affect the price of
water in the econometric specification (see Section 6.1). We obtained similar results by allowing the valuation
for subsequent units to be different draws from the same distribution. The exposition of the model, however,
becomes more cumbersome.

23We model the game as in a button auction. Each bidder holds a button while the price continuously
rises. A bid for bidder i is the value at which bidder i stops holding the button. When there are only two
bidders active (holding the button) and one of them releases the button, the auction ends. The active bidder
wins the object and pays the price at which the runner up stopped. See Cassady (1967) and Milgrom and
Weber (1982) for details.
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The seller allocates the unit to the highest bidder: xk
j 2 {0, 1} and xk

j = 1 when j =

argmax
�

bki
�

i

(and 0 otherwise), at a price equal to the second highest bid: pk = bkl , where

l = argmax
i 6=j

�

bki
�

. Let Xk
i ⌘

j=k
P

j=1

x
j
i .be the number of units that bidder i has won before

participating in auction k. If only one bidder participates in a specific auction this bidder

obtains the object for free. Each object is either allocated to one of the N bidders, or it is

lost if none of the bidders decide to participate in the auction.

Participation decisions in each auction are done simultaneously by all bidders. To take

part in every auction each bidder incurs a participation cost, c > 0, at the beginning of

the period. We assume that participation in the first auction is free.24 If only one bidder

participates, this bidder obtains the object for free but he bears the participation cost, c,

nonetheless. The process is then repeated in every period.25

As discussed in previous subsection, the assumption of positive entry costs is consistent

with the data in our empirical setting, where we observe no demand for some of the units,

even though the reservation price is zero. The interpretation is that, in those situations

where no-demand is observed, the value that bidders assign to that unit is smaller than the

participation cost, c.26

The utility for a bidder who buys l units and participates in m auctions is:

Ui (l,m, vi; ρ, c) =
l
X

k=1

ρk · vi �

K
X

k=2

yki · c =
l
X

k=1

ρk · vi � (m� 1) · c.

In the remainder of the paper we refer to vN :N as the highest realization of the random

variables v1, . . . , vn drawn independently from CDFs F1, . . . , FN (one draw from each distri-

bution), and vN�1:N , as the second highest realization. More generally, vj:N is the jth order

statistic for a sample of size N from the distribution F (vi).

4.2 Four-Unit Auctions.

The most comprehensive independent unit of analysis that could be considered is the weekly

auctions, encompassing all 40 units sold per week. This would be the relevant definition

to answer questions related to demand fluctuations generated by supply shocks, such as no

auctions due to drought or excessive rain, on an aggregate level. Alternatively, the narrowest

24Allowing for a positive cost in the first auction will not affect the results qualitatively. However, the
estimated distribution then will not be the original distribution of valuations F (vi) but the distribution of
valuations conditional on vi being greater than some minimum threshold for entering the first auction v⇤, i.e.,
F ⇤ (vi) ⌘ F (vi|vi > v⇤). Alternatively, we could impose some restrictions on the distribution of valuations
to ensure that all bidders enter the first auction as in von der Fehr (1994).

25Bidders enter the auction if, and only if, the expected utility they obtain from the game is positive. See
von der Fehr (1994) for a discussion of entry when the goods are complements or the conditions needed for
entry when the entry cost in the first auction is positive.

26We later use this information to partially identify participation costs (see page 24). See above in this
section for justification of this assumption in our specific empirical setting.
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possible unit purchased is a cuarta (1 of the 40 weekly units). As discussed above in this

section, the presence of SC and DMR indicate that cuartas within a day-schedule are not

conditional-independent. Moreover, they are not the relevant unit of analysis to investigate

individual farmers’ demand, nor the price pattern described above.

Our original question is motivated by the price behavior caused by the deterrence effect.

This particular behavior is observed within four-unit auctions and is the relevant unit of

analysis in the model. This is an implication of the way the auction is structured: twelve

hours of water (subdivided into four cuartas of three hours each) during day-time and twelve

hours of water during night-time, each weekday. The logic behind this structure is related to

water requirements in the area. First, water scarcity in the region made water accountability

crucial. The standard unit used to measure surface area in Mula is called tahúlla. One

tahúlla is, by definition, the surface area which can be irrigated in such a way that water

level rises 1-foot high in 1 minute.27 The surface area from one-tahúlla varies from one

town to another, depending on soil conditions.28 A four-consecutive units auction—half day,

twelve hours of irrigation—is, in that sense, the amount of water that absorbed by a regular

parcela (individual piece of land). Water requirements could and actually do differ (a) across

farmers depending on farming trees and land extension, and (b) for the same farmer over

time depending on past rainfall.

Second, the irrigation technique used in Mula is flood irrigation. The farmer builds small

embankments in his parcela and water is delivered to the land by the channel system that

simply flows over the ground through the crop. Flood irrigation requires a minimum of water

delivery that, for a regular parcela, is captured by one tahúlla.

Finally, a supply-side consideration also plays a role. The reason to supply water for 12

hours (during day-time and during night-time) is to guarantee a particular and homogenous

quantity for each cuarta (which depends on water pressure since water units are defined in

hours). Given that the De La Cierva dam is continuously filled with water from the river,

spreading the supply provision across weekdays ensures the homogeneity of water units.

Our data confirm these three points, validating the relevant unit of analysis for individual

demand as four-consecutive units. The most frequent quantity purchased by farmers is

twelve hours of water (42% of sold units are 4CU). There are no observations where the same

farmer buys more than four consecutive units, nor observations where the same farmer buys

consecutive units across days (e.g. there are no observations where the same farmer buys the

last units of a day-auction, and the first units of the night-auction).

The next two assumptions allow us to determine the regime under which the game is

being played.

27Although close in magnitude, the traditional Murcian measure of foot is not exactly the same as the foot
measure used in the U.K. and the U.S. (Valiente 2001).

28The surface area of 1-tahúlla is 1,118 square meters in Murcia and 1,185 square meters in the old Kingdom

of Aragón, except the region of Pías Fundaciones. The tahúlla has been used in regadío lands since the reign
of Charles IV (king of Spain from 14 December 1788 until his abdication on 19 March 1808). In secano lands
the surface area measure used is the fanega and the celemín. For further details see Vera Nicolás (2004).
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Assumption 1 [A1]: ρ1  ρ4.

Assumption 2 [A2]: ρ1 + ρ2  ρ3 + ρ4.

When K = 4, we call it a strict complements regime when A1 and A2 holds. We call

a weak substitutes regime when neither A1 nor A2 holds. The following results summarize

equilibrium winning price behavior as a function of the model’s primitives (valuations, SC,

DMR, and participation costs). We later use these results for the estimation. We only

consider pure strategy symmetric Perfect Bayesian Equilibrium (PBE).29 All proofs and

extensions are in Section B in the online appendix.

Proposition 1. In a strict complements regime (i.e., when A1 and A2 hold) the pure strategy

symmetric PBE is:

• First auction:

- Participation: bidder i will always participate in the first auction, i.e. y1i = 1.

- Bidding Strategy: b1i (vi) =
4
P

k=1

ρk · vi � 3c.

• Second, third, and fourth auctions:

- Participation: bidder i participates in each auction if, and only if, she won the

first auction, i.e. yki = 1 if, and only if, x1
i = 1.

- Bidding Strategy: If bidder i participates in each auction (yki = 1 for k = 2, 3, 4),

she will continue bidding until the price reaches its own valuation for that individ-

ual unit, bli(vi) =
4
P

k=1

ρk · vi � (4� l) c.

Corollary 1. In a strict complements regime (i.e., when A1 and A2 hold) the total utility

of the winner satisfies:

4
X

k=1

pk =
4
X

k=1

ρk · vN�1:N � 3c. (1)

Lemma 1. In a weak substitutes regime (i.e., when neither A1 nor A2 holds) the probability

that a bidder different from the winner enters the last auction is decreasing in the participation

cost, c. Moreover, this probability goes to 1 when c goes to zero, i.e.:

Lim
c!0

�

Pr
�

yKi = 1 | x1
j = 1, i 6= j

� 

= 1.

29When K = 2, cases where ρ2  0 and ρ1 = ρ2 are equivalent to von der Fehr (1994), in Subsections 3.2
and 3.4, respectively. Uniqueness, however, is not proved by von der Fehr in any of those cases.
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Corollary 2. In a weak substitutes regime (i.e., when neither A1 nor A2 holds) the marginal

utility of the winner in the last auction, depending on how many units the winner won,

satisfies:

If the winner won all four units:

p4 = ρ1 · vN�1:N � c. (2)

If the winner won three units, two out of the first three, and the last one:

p4 = ρ2 · vN�1:N � c. (3)

5 Regime Determination and End-Digit Preferences.

When goods are strict complements, very low prices—or, according to the auctioneer who

ran the auctions, symbolic prices (Botía, Francisco, personal interview, Murcia, June 17,

2013)30— are paid for the second, third, and fourth units by the winner of the first unit

(Figure 2 and Table 1). This feature allows us to determine the regime (strict complements

or weak substitutes) under which the game is being played using end-digit preferences and

without specifying further assumptions on the model’s primitives. When goods are strict

complements a key prediction from proposition 1 is that the same bidder will win all units,

pay his valuation for the whole bundle in the first auction, and pay a price of zero for the

second, third, and fourth units. We do not observe zero prices (for second, third, and four

units in the data), but very low prices (relative to the first price). These are symbolic prices.

Although there is no reserve price in the actual auctions, we interpret the minimum price

as a general agreement to bid a symbolic price in subsequent auctions. A common effect in

our data is that farmers bid certain preferred end-digits prices substantially more often than

others. We use this information to determine both regimes.

Studies of digit distribution go back to Benford (1938) who documented that in large

data sets, leading digits are not distributed evenly (1 is the most common and 9 the rarest),

and proposed a distribution for first digits of numbers in naturally occurring data. Abrantes-

Metz, Villas-Boas, and Judge (2011) use Benford’s second digit reference distribution to

track the daily London Interbank Offered Rate (Libor) from 2005 to 2008 and find that in

two periods, Libor rates depart significantly from the expected Benford reference distribution;

collusion or rate manipulation appear as likely outcomes to this behavior, the authors suggest.

Cramton and Schwartz (2000) also use end (trailing) digits to investigate collusive bidding

in the spectrum auctions. Rauch, Goettsche, Braehler, and Engel (2011) use a Benford test

to investigate the quality of macroeconomic data relevant to the deficit criteria reported to

Eurostat by the European Union member states; they find that the data reported by Greece

shows the greatest deviation from Benford’s law among all euro states.

30A summary is available online in the online appendix at http://www.jdonna.org/water-auctions-web.
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In regards to end-digit preferences, Kandel, Sarig, and Wohl (2001) use Israeli IPO auc-

tions to present evidence that investors have end-digit preference for round numbers (prices

that end with 0 or 5), and that prices that end with 0 are used more often than those ending

with 5.31 End-digit preferences and systematic age misreporting are important and broadly

studied issues in demography, particularly in survey and census data when respondents in-

accurately report ages or dates of birth (Myers 1940; Das Gupta 1975; Coale and Li 1991;

and Siegel, Shryock, and Swanson 2003). The concern in these cases is, typically, heaping on

particular ages such as those ending in 0 or 5. Crayen and Baten (2009) use some of these

techniques to investigate the phenomenon of age heaping, and to test the hypothesis that

an unequal distribution of human capital reduces welfare growth. Baker (1992) focuses on

digit preferences in CPS unemployment duration data, where he raises the question of what

can be said without making any specific assumptions concerning the true nature of end-digit

preference in the CPS, and shows that employment duration is sensitive to the choice of a

corrective for end-digit preference. Finally, end-digit preference has also been studied in the

medical literature pertaining to individuals reporting body weight and height, blood pressure,

and cigarette consumption (Bopp and Faeh 2008).

Table 3 shows in column 2 the frequency distribution by the last digit of price for first-unit

prices.32 We observe strong preferences for 0 and 1, and somewhat weaker preferences for

5. In 32.1% of the cases we see a multiple of 10, in 32.2% we see a price ending in 1, while

8.4% report a multiple of 5. The frequencies also show some preference for 2 and 6, but not

a marked one. After taking into account these effects, we find that 48% of the first-unit price

observations are inconsistent with a uniform distribution in each digit.33 That is, we would

need to reclassify 48% of the cases to obtain a uniform distribution by digit. This is clearly

not the case for our underlying distribution. We interpret these results as strong end-digit

preference for 0 and weak end-digit preference for 5.

Strong preference for digit 1 is not, in general, an indication of a preference for this digit

per se but, instead, a sign of competition. According to our model, first-unit prices are always

competitive (in the sense that all N bidders will enter the auction when no information has

yet been revealed), regardless of the regime. Nevertheless, second to fourth-unit prices are

not competitive in the strict complements regime (competition in this regime takes part in

the first unit where they bid for the whole bundle, and then pay a symbolic price for the

second to fourth units since it is optimal for the remaining N � 1 bidders not to enter in

these sequential auctions). Hence, end-digit preference for 1 in second to fourth-unit prices,

as a sign of competition, are indicative of a weak substitutes regime. Alternatively, end-digit

preference for 0 for second to fourth-unit prices are indicative of a strict complement regime.

31See Backus, Blake, and Tadelis (2013) for a recent application to negotiation in eBay auctions.
32We obtain similar patterns if we restrict the sample by month or schedule (day-time or night-time) or

both.
33This number corresponds to the value of the Whipple’s concentration index (Siegel, Shryock, and Swanson

2003). In the absence of digit preference one would expect 10% in each terminal digit.

18



Moreover, in the strict complement regime the model predicts that all second, third, and

fourth consecutive prices will simultaneously behave in this fashion. Column 3 in Table 3

display the frequency distribution by the last digit of price for the second to fourth units.

Prices exhibit a pattern consistent with this description.

This behavior provides us with a natural lower bound for the strict complements regime,

namely, second, third, and fourth unit prices within the same four-unit auction show a strong

end-digit preference for 0. We use this behavior, along with the model, to identify the two

regimes.34

Figure 11 displays the histogram of the percentage change of first price against the median

of second to fourth price, by regime.35 It can be seen in the figure that end-digit preference

behavior (as defined above) also captures, in general, the other empirical prediction from

the model, namely, that prices are competitive in the weak substitutes regime but exhibit

the deterrence effect in the strict complements one (the way to see this in the figure is that

percentage change from the first to the second, third or fourth prices is high when goods are

strict complements). This is remarkable as the end-digit preference behavior used to identify

the regime is unrelated a priori to this second empirical prediction. This provides further

evidence in favor of the model.36 Regime identification is done by using the strongest version

of the empirical prediction to identify the strict complements case, i.e., the case in the left

panel in Figure 11.

A final robustness check further shows that the approach in this section consistently

identifies both regimes in terms of our model. Columns 1 and 2 (first unit) in Table 4 display,

by regime, the frequency distribution in terms of end-digit prices for first-unit, among each

four-unit auction. As emphasized above, both regimes should exhibit competition for first-

unit prices according to our model. This competition is captured by the same distribution

among ending digits in both regimes. This is what we observe in columns 1 and 2 (first unit).

Columns 3 and 4 in Table 4 (fourth unit) show that, as predicted by the model, fourth-unit

prices for weak substitutes are also competitive: 29.5% of preference for 0 vs. 39.7% for 1.

34We could also use weaker or stronger definition of end-digit or round-number preferences to obtain
different bounds for the empirical distributions of prices in each regime. We could, for example, assume that
in the strict complements regime second, third, and fourth unit prices within the same four-unit auction show
simultaneously a strong end-digit preference for 0 or 5. Our results are robust to include end-digit preference
for 5 as well.

Note that the strongest version of the empirical prediction is be that all second, third, and fourth prices
display an end-digit preference for 0 in any given four-unit auction for the same individual. A weaker version
would be that two out of the three (among second to fourth) prices show an end-digit preference for 0. The
weakest version is that just one of these three prices exhibit an end-digit preference for 0. The last (weakest)
specification only provides us an upper bound for strict complements regime identification since, as shown
in Table 3, the underlying distribution displays an end-digit preference for 0 even in the weak substitutes
regime.

35The figure looks similar if we use the second, or the third, or the fourth, or the average of second to
fourth prices.

36Using a modified version of this assumption that differentiates end-digit preference for prices ending in 0
that exhibit more frequency (for example, prices like 100 are more frequent than 150) yields almost identical
results.
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Note that, in column 3 (strict complements), the percentage of observations with last digit

0 is 100% by construction.

6 Estimation.

6.1 Econometric Specification.

We estimate the model via maximum likelihood using an exponential distribution for the

individual valuations. In this subsection we describe how the likelihood is formed and how

we account for rain expectations and auction heterogeneity.

Regime Determination. When goods are strict complements, very low prices—or, ac-

cording to the auctioneer who ran the auctions, symbolic prices (Botía, interview)— are

paid, by the winner of the first unit, for the second, third, and fourth units (Figure 2). The

predicted price pattern by our model for each each regime (strict complements and weak

substitutes) provides us with a straightforward empirical method to determine them (see

Section 5). This allows us to separate data into four categories:

a) Same bidder wins all four units and goods are in a strict complements regime (i.e.

when A1 and A2 hold),

b) Same bidder wins all four units and goods are in a weak substitutes regime (i.e. when

neither A1 nor A2 holds),

c) Last winner also bought two out of the first three units, three units in total, and goods

are in a weak substitutes regime (i.e., when neither A1 nor A2 holds),

d) Otherwise.

Categories a, b, and c define the three mutually exclusive regions of the likelihood. In

region a, winning prices are determined by equation 1. In region b, winning prices are

determined by equation 2. In region c, winning prices are determined by equation 3. Let Da

be an indicator variable that equals 1 if the winning price is in region a, and 0 otherwise.

Define analogously Db, Dc for regions b, and c, respectively (so Da + Db + Dc = 1). See

subsection 6.2 for a discussion about the regions of the likelihood and the covariates.

Identification. For the case of an English auction, the conditional distribution of private

valuations is non-parametrically identified when the transaction price and the number of

bidders are observable (Athey and Haile 2002). This result is immediately useful in our

sequential English auction model where bids are conditional-independent draws from a dis-

tribution FV (.) and the equilibrium (observed) transaction price is a function of the second

highest valuation, vN�1:N . Consider the strict complements regime. Winning prices are de-

termined by equation 1. The distribution of valuations is identified up to the multiplying

constant,
4
P

k=1

ρk, using equation 1 and the result from Athey and Haile 2002. Identification
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of the remaining parameters, ρk, would require four additional independent restrictions (in

addition to equation 1). Two additional restrictions are provided by the model from corollary

2 (equations 2 and 3). But we only observe winning bids in the data. Then, two of the ρk,

k = 1, . . . , 4, are not identified without further structure. So we use a specification with

linear decreasing marginal returns due to the mentioned data limitation. Linear decreas-

ing marginal returns impose two additional restrictions. First, we define ρ1 = 1 � α and

ρ2 = 1� β. (Note that these are not restrictions on the parameter space.) We then restrict

the parameter space by assuming that ρ3 = 1 � 2β and ρ4 = 1 � 3β (i.e. linear decreasing

marginal returns). Hence, we have three independent restrictions (equations 1, 2, and 3) and

three parameters to estimate (µ,α, β), where µ is a parameter that fully characterizes the

distribution of valuations.37 With observability of all bids (not just the winning bids as in

our empirical setting), ρ3 and ρ4 would be identified and we would not need to impose the

linearity assumption on marginal returns.38

Farmers’ Expectations of Future Rain. For our estimation we allow DMR, βt, to vary

across auctions holding fixed SC, α (more about this below). We allow βt to vary with

farmers’ expectations of rain in each auction t = 1, . . . , T . We proxy these expectations by

actual (i.e. observed) future rain, so βt = β0+β1R
F
t , where RF

t is a dummy variable (defined

next) that is linked to expectations about future rain in t, and β0 and β1 are parameters.

RF
t = 1 if farmers expect that rain is going to be positive (for the day for which they are

buying water) and zero otherwise. We further let βt have different intercepts in each regime:

βS
t = βS

0 + βS
1 R

F
t

βC
t = βC

0 + βC
1 R

F
t

. (4)

Table 6 provides an heuristic argument to understand the reasons behind this equation.

The table presents probit regressions of a dummy variable identifying the regime (strict

complements vs. weak substitutes) on future rain and other covariates. We interpret future

rain in these regressions as a proxy for aggregate expected future rain for the farmers. Table 6

shows that low expected rain and high demand months (May to August) significantly increase

the likelihood of being in a strict complements regime. The interpretation is that farmers

have some information (expectations) about future rain. While the idiosyncratic component

of this information is captured by their type, vi, the common component is captured by βt.

When farmers expect, on aggregate, no rain in a given day, they will coordinate to play in

the strict complements regime. Seasonality also affects the demand for water and affects the

position of a farmer in the production curve (Figure 10). The results in Table 6 show that it

is the slope on the marginal return effect that drives the change of regime, holding fixed SC.

In our parametrization we fix α across auctions and season but we allow βt to vary. We

37Note, however, that the distribution of private valuations is non-parametrically identified from the result
from Athey and Haile 2002.

38Note that assumptions A1 and A2 are equivalent to assume that α � 4β.
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expect α to vary across auctions and seasons as well. But this variation is not separately

identified from the variation on βt because it is the relative magnitude of the effects that

matters. The rationale for why we let βt vary (instead of α) is that a regime switch is driven

by the (residual) demand for water by the farmers, as determined by rain and seasonal effects.

Therefore, the estimated changes in βt should be interpreted relative to changes with respect

to α.39

The Likelihood. The econometric problem consists of finding the parameter that char-

acterizes the common distribution of valuations F and the structural parameters that best

rationalize the bidding data. As discussed in the previous section, the bid levels at which

bidders drop out of the auctions are not observed, except the bidder with the second-highest

valuation. We estimate the model via maximum likelihood assuming that farmers draw in-

dependent and private valuations from an exponential distribution at each four-unit auction,

conditional on observed auction-specific covariates. (We discuss the assumptions below in

Subsection 6.2.)

Our model and the context of the market under analysis provide insight on how the

characteristics of farmers and auctions should affect private values, but it offers little guidance

on the functional form of this distribution. We assume that farmers’ valuations, vi, follow

an an exponential distribution for each four-unit auction.40 In Subsection 7 we report the

results from a Kolmogorov-Smirnov test where the null hypothesis that the distribution of

private valuations are draws from an exponential distribution cannot be rejected.

Let vi ⇠ F (v;µ), where F (v;µ) = (1� e�µv) 1 {v � 0} is the CDF of an exponential

distribution that is characterized by the scalar µ > 0. Equations 1, 2, 3, and 4 jointly

identify the parameter vector
�

µ,α, βC
0 , β

S
0 , β

C
1 , β

S
1

�

, conditional on the regime (see Section

5) and exogenous covariates, RF
t . The full system of equations is given by:41

39We obtained similar results to the ones on Tables 7 and 8 fixing β and allowing αt to vary in each auction
t = 1, . . . , T .

40In our earlier working paper Donna and Espin-Sanchez 2012 we used an Exponentiated Gamma (EG)
distribution The EG distribution gives us a closed-form solution for the PDF of the jth order statistic and is
characterized by a single parameter. Additionally, the PDF of the jth order statistic of a EG is a weighted
average of several PDF of EG. This implies that the PDF of any order statistic of an EG distribution also
has a closed-form solution.

41The third equation in the system is, actually, p4b = Max {(1� α)vN�1:N , (1� β) vN�2:N}, since we do
not know whether the runner-up in the last auction was the bidder who already won one unit or a bidder
without previous purchases. However, when N is large, (1 � α)vN�1:N < (1� β) vN�2:N if β ' α. But, in
the case that β ' α, the same bidder will not win three out of four units. That is, in an auction where N

is large and the same bidder wins three out of four units, we expect β to be significantly greater than α.
Therefore, the equation can be simplified to p4b = (1� α)vN�1:N .
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4
P

k=1

pka =
⇥

4� α� 6βC
t

⇤

vN�1:N � 3c

p4b = (1� α)vN�1:N � c

p4c = (1� βS
t )vN�1:N � c

βS
t = βS

0 + βS
1 R

F
t

βC
t = βC

0 + βC
1 R

F
t .

(5)

Let θ ⌘ (α, βC
0 , β

S
0 , β

C
1 , β

S
1 ) and let vi be a conditional-independent draw from F (·;µ|θ, RF

t ).

Then, the likelihood function is given by:

L(·;µ | θ, RF
t ) =

T
Y

t=1

fN�1:N

 

P4
k=1 p

k
t

4� α� 6(βC
0 + βC

1 RF
t )

;µ | θ, RF
t

!Da
t

⇥

fN�1:N

 

p4t
1� α

;µ | θ, RF
t

!Db
t

⇥ fN�1:N

 

p4t
1� βS

0 + βC
S RF

t

;µ | θ, RF
t

!Dc
t

,
(6)

where fN�1:N(v;µ) is the probability density function (PDF) of the (N � 1)th order statis-

tic from a sample of N from the exponential distribution of valuations F , Da
t +Db

t +Dc
t = 1

8t, and Da
t , D

b
t , D

c
t are, respectively, indicator variables for cases a, b, and c, as defined above

at the beginning of this subsection .

Auction Heterogeneity. We allow the mean of the distribution of valuations to depend

on various characteristics that are drawn from the data. We assume that observed prices

follow a linear function of the following exogenous variables and estimate all parameters

using the likelihood function:42

E
�

vit
�

= Z 0
tγ = γ0 + γ1R

P
t + γ2

�

RP
t

�2
+ γ3Nightt +

5
X

k=2

γ2+kDaykt +
12
X

k=2

γ6+kMonthk
t . (7)

The first exogenous variable, RP
t , refers to Past Rain, a moving average of the daily rain

beginning seven days prior to the date of the auction; we include a quadratic term to allow

for non linearities in past rain. The second variable is a dummy variable that equals one if the

water was bought for night use. The next four variables are a set of dummy variables for each

weekday. Finally, the last eleven variables are a complete set of monthly dummy variables to

condition on seasonality. Water prices soar in this market during the dry summer and drop in

42Laffont, Ossard, and Vuong (1995) assume that private values follow a log-normal distribution and let
the mean of the logarithm of the valuations be a linear function of exogenous characteristics. Haile and
Tamer (2003) condition on covariates by constructing the conditional empirical distribution functions using
Gaussian kernels. See Hickman, Hubbard, and Saglam (2011) for a recent guide to the literature on structural
econometric methods in auctions.
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winter. We accommodate these shocks to demand with seasonal monthly dummy variables.

See Sections D and E in the online appendix for details about the estimation procedure.

Identification and Estimation of Participation Costs. Although, throughout the pre-

vious estimation procedure, participation costs, c, have been fixed at an arbitrary small mag-

nitude, we recover them from our data. We use our model and data where auctions were run,

no bids observed and farmers were present, along with the structural estimates. Participation

costs are identified by the necessary condition for a bidder to bid in the first auction that is

given by:

(1� α)vN :N < c.

More generally, a condition that additionally involves second, third, and fourth marginal

utilities for the case where the bidder also enters the individual auctions for two, three or

four units should be considered. In these cases, participation costs are also greater than the

average marginal utility for second, third, and fourth units. Formally:

Max

⇢

(1� α),
(2� α� βt)

2
,
(3� α� 2βt)

3
,
(4� α� 3βt)

4

�

vN :N < c. (8)

Note that, when α < βt, the former condition is sufficient, implying the latter. In our

econometric specification the structural parameter α is fixed while the parameter βt varies

according to the farmers’ expectations of (exogenous) future rain. One would expect to

observe auctions without bids when farmers’ expectations for rain, as captured by actual

future rain, are high (which in the model is represented by a relatively high βt). Therefore,

absence of bids will only occur when α < βt, thus, the former identification restriction is

sufficient.

Analogously, using the model and the remaining data not used in the structural estima-

tion, we obtain an upper bound using that participation cost are lower than the minimum

registered price (conditional on covariates, sunk cost, and decreasing marginal returns).

6.2 Discussion.

Conditional Independent Private Valuations (CIPV). For the estimation we assume

that farmers have independent and private valuations at each four-unit auction, conditional

on observed auction-specific covariates. The first justification for CIPV is that each bidding

farmer (who may or may not be a water-owner) has his own land extension, and his own

mixture of trees and crops. This eliminates a strict common value scenario. In addition, in

the econometric specification we account for observables that affect all farmers in a similar

way such as (past and future) rainfall, schedule of the auction, day of the week, weather

seasonality, etc. (see subsection 6.1 for details). Second, the products sold are units of water.

Assuming that farmers have private information from other farmers about the characteristics

24



of this product is not in line with the homogeneous nature of water units. Finally, the

conditional-independence assumption is the most credible in our context, given the varying

nature of farming products and soil conditions across farmers. To understand why, recall that

sellers in the water market are a holding formed by the water owners and buyers are farmers

that own fertile land. Around 500 different farmers are observed to win auctions in our

sample. Not all of these farmers show up at every auction or decide to participate if they are

present. Farming products cultivated in the area are mainly fruit and citrus trees (lemon,

orange, peach, mandarin, and apricot), and vegetables (tomato, lettuce, and onion). The

amount of water required by the trees depends on the time of the year and type of crop (citrus

trees should not be irrigated daily). Moreover, and given that we condition on seasonality,

water requirements vary across products. For example, water needs for grapefruit and lemons

are about 20% higher than those for oranges, while water requirements for mandarins are

about 10% less. Ground conditions (which also vary across areas where different farmers have

their land) also affect water necessity.43 The variations across farmers generated by these

factors provide support for the fact that the conditional-independence assumption seems

satisfied, given that each day the market is quite specific and since we work with data for

four-consecutive auctions as a unit of analysis (sequential auctions).44

Auction Heterogeneity. Observed heterogeneity across auctions arises due to seasonal

effects, rain, and the day and time of the week when the auction occurs. This means that

the distribution of private values for the tth auction, Ft(·) is not constant across auctions.

In our estimation, we recover the family of distributions F (·|Zt, γ). That is, we assume for

every four-unit auction that Ft(·) = F (·|Zt, γ), where γ 2 Rk is a parameter vector and Zt is

a vector of fully observed characteristics describing the environment of the tth auction. We

described the inclusion of these covariates above.

Number of Potential Bidders. The number of potential bidders in each auction, Nt,

is not observed. Moreover, it is not identified (Athey and Haile 2002). We assume that it

is constant for every four-unit auction, Nt = N . Table 5 displays the timing structure for

different bidders in our sample. For our estimation, we let the number of potential bidders

in each auction be the yearly average of different farmers who won auctions in our sample.45

43Table A3 in the online appendix displays appropriate intervals for watering citrus.
44Our justification of the CIPV paradigm is in line with the literature on empirical auctions. For first price

descending auctions see, for example, Laffont, Ossard, and Vuong (1995) in an application to agricultural
products (greenhouse eggplants in Marmande, France) where the number of bidders vary between 11 and
18. For English auctions, Haile and Tamer (2003) apply their limited structure model to U.S. Forest Service
timber auctions, where the number of bidders vary from 2 to 12.

45The agricultural products that are cultivated in the area are mainly citrus trees, which are harvested
once per year. The number of different bidders who bought at least one unit during a specific year constitutes
a good approximation of the number of farmers who were actively bidding in each four-unit auction during
that year. The monthly average of different bidders who bought water in the sample (years 1954 to 1966) is
8.31 (Table 5).
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We estimate the model using different values of N for robustness.46

Unobserved Heterogeneity. Throughout, we have assumed that the vector Zt of covari-

ates is fully observed by the econometrician. In our environment, unobserved heterogeneity

implies that the distribution of bids may not be conditional-independent across t. All farmers

may, for example, observe some factor unobservable by the researcher that shifts the location

of the distribution values. This unobserved heterogeneity could lead to correlation among

bidders’ valuations, causing an identification problem and inconsistent estimates to arise.47

Modeling unobserved heterogeneity may require additional assumptions on the behavior of

unobservables, such as independence, separability, strict monotonicity, and is beyond the

scope of this paper.48

Dynamic Strategic Considerations. The way in which the auction system is carried

out every week raises the question of the importance of dynamic strategic considerations

between four-unit auctions both among days (Monday to Friday for a specific schedule) and

between schedules (day-time vs night-time for a specific day). Tables 1 and 2 show that

winning prices decline across days (for a given schedule) and at night (for a given day),

which is consistent with the literature on empirical sequential auctions. These dynamic

strategic considerations are outside the scope of the present investigation, and we abstract

from them in the model.49 However, it is important to note that, even if present, dynamic

behavior considerations do not invalidate the model’s assumptions. As emphasized above,

the conditional-independent units of analysis are four-unit auctions (not day-auctions of

eight units or week-auctions of 40 units) which, conditional on covariates, are homogeneous

goods. As can be seen from the correlations presented in Table 2, previous patterns are

consistent along the whole sample and robust to the inclusion of a whole set of fixed effects

and covariates. The principal difference between prices in these four-unit auctions is related

to the uncertainty of future rain. As it is explained above, we include covariates for schedule,

day-of-the-week, and past rain in our structural estimation that capture technological or

strategic effects. Future rain, on the other hand, is also included as a proxy for farmers’

46In Table 7 we present the results for N 2 {8, 10}. We have performed a sensitivity analysis to different
values of Nt that are consistent with the pattern observed in Table 5 and the evidence described in Section
3. In addition, we broke the sample into four periods and performed the estimation independently in each
period allowing the mean value of Nt to vary by period. We obtained similar results to the ones reported in
Table 7.

47From the agricultural census data we observe individual characteristics of the farmers which we are able
to link to the winning bids. Given the structure of the agricultural water market we are modeling, it does not
appear to be an important concern once we consider the homogeneity of the selling good and the observed
characteristics we introduce in our estimations (seasonality, past and future rain, among others).

48For a discussion on this issue see, among others, Athey, Levin, and Seira (2011) for an application to tim-
ber auctions, and Krasnokutskaya (2011) for a semi-parametric approach to Michigan highway procurement
contracts. Roberts (2009) uses information contained in reserve prices to allow bidders’ private signals to
depend on the realization of the unobserved heterogeneity. Balat (2013) allows for unobserved heterogeneity
using dynamic auctions in the highway procurement market.

49For a broader discussion see Donna and Espin-Sanchez 2013a.
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beliefs to account for these possible strategic behaviors unaccounted by previous covariates.

In that sense, our estimates should be interpreted as four-unit day-schedule specific auctions,

conditional on past rain and seasonality. It seems implausible that after accounting for these

observables and unobservables,50 and given that the relevant unit of analysis is the four-unit

auction, dynamic behavior would affect our results concerning individual demand.51

Regions of the Likelihood and Covariates. Another concern may be selection in the

regions of the likelihood. As emphasized in subsection 6.1, categories a, b, and c define the

three mutually exclusive regions of the likelihood. (In region a, winning prices are determined

by equation 1. In region b, winning prices are determined by equation 2. In region c, winning

prices are determined by equation 3.) Table A4 in the online appendix displays a comparison

of the covariates in the three regions of the likelihood. As expected, prices are higher in

the strict complements regime (region a) relative to the weak substitutes regime (regions b

and c). This is because the amount of rainfall is lower under the strict complements regime

(region a) relative to the weak substitutes regime (regions b and c). Rainfall is lower in region

a) (relative to regions b and c) due to weather seasonalities: the percentage of observations in

Apr-May (when the agricultural products need the water the most) is substantially higher in

region a) (strict complements) relative to regions b) and c) (weak substitutes). The opposite

is true during the low demand season (Jan-Mar and Oct-Dec). Finally, note that there is no

substantial variation (between the strict complement and weak substitutes regimes) in terms

of the percentage of observations by Schedule (day or night) and Weekday (Mo, Tu, We, Th,

and Fr).

7 Results.

7.1 Maximum Likelihood Estimates.

In this section we present the estimation results under various econometric specifications.

We present the structural estimates obtained using a tolerance level of 1.0e � 12. We let

private valuations for each four-unit auction follow an exponential distribution, and follow the

described estimation procedure. As discussed above, the number of bidders, N , is determined

by the monthly average of different bidders who bought water in the sample (years 1954 to

1966). In this 13-year sample, the average is slightly above 8. Each of these farmers regularly

won auctions. It is reasonable to assume that they attended the auctions. Tables 7 and 8

present our estimation results. Columns 1, 3, and 5 present the estimates for N = 8, while

50While farmers use their reasonable good predictions in their decisions, we use actual future rainfall in
our estimation.

51Once we condition on these covariates, the concern that a bidder’s outside option would vary according
to the day of the week (or schedule) is addressed by redefining the idiosyncratic individual valuation in such
a way that the new one be the original valuation net of the outside option. By normalizing the outside option
of Friday-night to zero the model’s assumptions remain valid.
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columns 2, 4, and 6 do it for N = 10.52 For each specification, we present the estimates of

the model’s structural parameters in Table 7 and the estimates of the covariates in Table 8.

Table 8 is the continuation of Table 7. That is, for each specification (column) in Table 7,

Table 8 displays the estimates of the covariates in that specification.

All parameters have the expected signs. We use the estimate of the parameter γ (that

characterizes the distribution of private valuations), to compute the mean valuation of the

first complete unit of water. In the case of column 3, the value of the first complete unit of

water is 152.93 ptas. As expected, in the specification in column 4 (with 10 different bidders),

the mean value of the first complete unit of water is slightly lower, 138.9 ptas.

The parameter βR
1 , R 2 {C, S} captures the effect of future rain. As farmers’ expectations

of future rain increase, DMR are more severe (βR
1 > 0, R 2 {C, S}). This increases farmers’

likelihood of coordinating in a not-strict complements regime (see Table 6) and thus reduces

their valuation of subsequent units of water (
∂pi

t

∂RF
t

< 0). Predicted DMR are obtained by

adding the estimates of intercepts, β̂R
0 , R 2 {C, S}, to the estimates of the slope, β̂R

1 , R 2

{C, S}, conditional on the rain on the day of the auction. When evaluated at the average

future rain from each regime, the following null hypothesis (joint test) that overall DMR are

lower in the strict complements regime (as predicted by the model) cannot be rejected (p-

value above 10%). H0 : β̂S
0 + β̂S

1 Ês(R
F
t ) > β̂C

0 + β̂C
1 Êc(R

F
t ), where Ês(R

F
t ) =

1
Ts

P

t:Da
t
=0 R

F
t ,

Êc(R
F
t ) =

1
Tc

P

t:Da
t
=1 R

F
t , Ts, and Tc are the number of auctions in not-strict complements

and strict complements regimes, respectively.

The estimates of the SC parameter, α, are statistically significant in all specifications.

Given the choice of parametrization for sunk costs, the parameter estimates can be interpreted

as the percentage loss in terms of a complete unit of water (Section 4). For our estimate in

column 3 this represents a loss of 4.6 ptas (using the mean value of 152.9 ptas for a complete

unit).

The estimated coefficients for covariates have the expected sign. For specification 3,

for instance, prices in August (February) are significantly 234 ptas higher (11 ptas lower)

than on January. This is consistent with the conventional wisdom that water is more (less)

valuable during these months because of high (low) water demand. Also as expected, past

rain decreases observed prices in the data. For specification in column 3, an increase in the

average rainfall by 1 mm from the previous week (with respect to the day of irrigation),

decreases average conditional price of a unit of water by 1.7 ptas.

52In their simulated Non Linear Least Squares (NLLS) estimation, Laffont, Ossard, and Vuong (1995)
search for the best value of N by minimizing a lack-of-fit criterion (proposition 4). Note that, as discussed in
Subsection 6.1, identification of the distribution of valuations and structural parameters of our model requires
observation of the total number of bidders. The rationale for this is straightforward: whether second highest
realization of the random variable vi is from a sample of size N = 10, or from a sample of size N = 100, it is
crucial to interpret the second highest bid (observable in our data). Although observation of an additional
order statistic can eliminate this requirement (Song 2004), this would require imposing further structure on
the distribution of beliefs in our model (to interpret auctions where, for example, three different farmers win
auctions), which is outside the scope of this investigation. Moreover, we only observe winning bids in the
data (see Section 3).
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Participation cost are recovered using data where auctions were run with farmers present,

but no bids were placed, along with the identifying restriction that holds in such cases.53

Out of the 3, 203 auctions where no bids were placed, we use the 2, 423 where some bidders

where present (auctions similar to the one in Figure 12). We obtain the following interval

estimate using specification 3: 0.0082 < ĉ < 0.1431. That is, participation costs are positive

but small (less than 14 cents of a peseta). This is in line with the intuition from the model:

hassle or opportunity costs because farmers value their time.

7.2 Discussion.

Robustness and Goodness of the Fit. In comparing columns 1-2 and 3-4, it is clear

that the model with covariates outperforms the model without, as shown by the significance

of past rain and seasonal dummy estimates, the increase in the likelihood function, and the

improvement in the goodness of the fit. The main reason is the dependence of prices on sea-

sonal factors, which we capture in our specification with seasonal dummy variables. From the

residual analysis we find no evidence that the increase in the log likelihood function is due to

the parametric misspecification of the value distribution itself. Our specification survives the

Kolmogorov-Smirnov test, so that the exponential distribution of private valuations cannot

be rejected (for the specification in column 3 the p-value of the test is 39%).54

As regards the goodness-of-fit, our specification in column 3 performs quite well. The

pseudo�R2 = 53% is obtained by computing predicted prices by our model: pseudo�R2 =

1 �
P

T

t=1
(pt�p̂t)

2

P
T

t=1
(pt�p̄)2

, where p̂t are prices predicted by the model and p̄ is the mean of prices.

These results are in line with the R2 obtained in the reduced-form regressions. Although

not directly comparable given the distribution assumptions in the structural approach, the

R2 = 23% in the reduced-form specification with all covariates (column 3 in Table 2) can be

heuristically interpreted as the proportion of variability in the data set that is accounted for

by the covariates. The proportion accounted for by the model without covariates displayed

in column 1 in Table 7 is R2 = 28%.55 As can be seen in Figure 13, our model allows

us to follow winning prices accurately.56 The figure displays real prices against predicted

prices using three different models: (i) our structural model (specification 3 in Table 7), (ii)

a standard English auction model (specification 5 in Table 7, that we discuss in the next

subsection), and (iii) a reduced-form model (specification 4 from Table 2 that includes as

regressors Past Rain and multiple fixed effects, including individual fixed effects).

53See page 24.
54We perform the nonparametric test to evaluate the equality of two distributions of valuations: our sample

of private values with a reference from an exponential distribution.
55If we additionally add individual fixed effects to the reduced-form specification, the R2 just increases

from 23% to 36% (column 4 in Table 2).
56We describe how we compute the predicted prices in section C in the online appendix. See also section

C in the online appendix for a high definition version of this figure.
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Understanding the Importance of the Model. We proceed now to analyze our model’s

implications with respect to the importance of SC and DMR. Suppose that the researcher

neglects the dynamics that arise from the model and, instead, estimates a standard English

auction model. Suppose, for instance, that we are in the strict complements regime and

that valuations follow a distribution with mean, µv, and standard deviation, σv. Then, the

estimated mean of the distribution of valuations using the standard model will be underesti-

mated: ˆE (vi)
SM

< E (vi) = µv, where SM stands for standard model. Similarly, the estima-

tion of the standard deviation of valuations will be overestimated: ˆV (vi)
SM

> V (vi) = σv.
57

The same is true in the weak substitutes case.

Overestimation of the variance of the distribution is caused by attributing the variation

in prices (among different units) to a relatively more dispersed underlying distribution. The

farmer actually pays for the whole bundle in the first unit, thus deterring the entrance of other

bidders in the remaining three auctions. The mean is underestimated when the common SC

and DMR are not accounted for in the estimation. In the case of the exponential distribution

used in our specifications, this failure translates into an underestimation of the parameter µ.

Columns 5 and 6 in Table 7 present the estimates from a standard English (button)

auction. Aside from the mentioned bias in the parameter that characterizes the distribution,

the results in these columns indicate that taking SC and DMR into account significantly

contributes to the model’s explanatory power. Figure 13 shows predicted prices from the

standard (button) English auction model (specification 5 in Table 7), and compares them

with actual prices and with those from our structural model (specification 3 in Table 7).58

Consistent with these results, the p-value for the null hypothesis that α̂ = β̂C
0 = β̂S

0 = β̂C
1 =

β̂S
1 = ĉ = 0 is less than 10�4.

An alternative approach is to ask how the incomplete model from Haile and Tamer (2003)

can be adapted to the present case.59 This alternative approach relies on two basic assump-

tions with intuitive appeal: (i) bidders do not bid more than they are willing to pay for a

unit, and (ii) bidders do not allow an opponent to win at a price they are willing to beat.

In our case, with SC and DMR, these two simple assumptions are violated. In the strict

complements regime, bidders bid according to b1i (vi) = [4� α� 6β] vi � 4c > vi, violating

(i), and no bidder (except the highest type) participates in the second to fourth unit auc-

tions, violating (ii). In the non weak substitutes regime, both assumptions are also violated,

though the intuition is different. In this case, the equilibrium is only partially revealing:

bidders’ strategies are step functions, so the equilibrium is semi-pooling. When α is greater

but close to β, bidders bid above their valuations to intimidate other bidders and deter entry

57In the strict complements case, and given a fixed number of potential bidders N , the (true) mean and
variance of the N � 1 order statistic will be greater than the estimated using the standard model because
the (true) price paid will be [4� α� 6βt,c] vN�1:N � 4c and not 4vN�1:N (predicted by the standard model).

58See footnote 56.
59Larsen (2013) uses a similar approach to Haile and Tamer to obtain bounds about the primitives in an

auction model followed by dynamic bargaining with two-sided incomplete information without solving for
the equilibrium of the game.
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in the second auction, thus (i) is violated. Additionally, the same argument as in Black and

De Meza (1992) and Liu (2011) applies when goods are substitutes. The winner of the first

auction imposes a negative externality on himself. His willingness to pay for the second unit

is lower than it was for the first unit, making him a weaker bidder in such situations. Given

that all bidders will internalize this effect, some will bid below their marginal utility for the

object in the first auction. The greater are DMR, β, the greater this underbidding effect will

be.

Applying these assumptions to the four-units bundle would not to produce informative

bounds because marginal valuations of the units differ according to the regime and the

number of different winners per four-unit auction. Bundling the four-unit or even applying

Haile and Tamer’s approach separately for each regime, requires the model in Section 4 as

an interpretation of the underlying behavior.60

Complementarities are not Collusion. An alternative hypothesis of farmers’ behav-

ior in the strict complements regime is that bidders might be playing some collusive (non-

competitive) strategy. As emphasized in Section 3, the demand side of this market for water

is composed of as many as hundreds of farmers (Table 5). Even when farmers attend the

auction and do not bid, the observed number of different winners is relatively high (Figure

12). (Note that all auctions were run in weeks similar to the one in Figure 12, so water for

units 17-20 was available in the dam to sell.) Farmers compete for water that will ultimately

determine the quality and quantity of their crop, and in some cases, even the survival of

their trees (for example, drought years). It is unlikely that farmers can make credible col-

lusive commitments in such a situation. Contemporaries emphasized the opposite situation:

farmers competed aggressively for water,especially during droughts, while water owners were

reluctant to lower the price of the water to meet the needs of the poorest farmers.61

The high number of non-collusive auctions provides evidence farmers did not collude.

Farmers met every week, hence the discount rate from one week to the next one was close

to 1. If we focus on two consecutive 4-unit auctions, the discount rate is virtually 1. Thus,

any collusive agreement would be easy to sustain and we would observe no “price-wars”, or

deviations from collusive strategies. If the collusion hypothesis were true, all auctions would

look collusive except, perhaps, during certain periods where we would observe price-wars.

We observe in many cases, however, that both regimes are present during the same week.

Unlike Baldwin, Marshall, and Richard (1997) this is not a formal test.62

Nevertheless, taking the analysis one step further, if the collusion hypothesis were true, we

would expect more collusion in autumn-winter and less collusion in spring-summer. Incentives

60Note also that failure to consider the effect of the structural parameters (SC and DMR) explicitly intro-
duces difficulties.

61These opinions, along with a qualitative analysis can be found in Vera Nicolás (2004).
62Collusion in repeated auctions has been analyzed conditional (Hopenhayn and Skrzypacz 2004) and

unconditional (Porter and Zona 1999 and Pesendorfer 2000) on the history of the game. A discussion on how
to detect collusion can be found in Porter (2005).
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to deviate from the collusion strategy are higher in spring-summer because the value of

the water is higher due to seasonalities (Figures 4 and 7). Punishment is about the same

in any season. The maximum punishment would be to play the competitive equilibrium

forever. Future discounted earnings in this case are similar in summer and in winter. Hence,

deviating from the collusive strategy is more profitable in summer than in winter. However,

the data show the opposite pattern. Figure 14 displays the distribution of auctions in the

complementarities regime by month. Complementarities are more likely to be observed in

summer than in winter, when water requirements (and hence equilibrium prices) soar. This

is in line with our interpretation according to the model with sunk and entry costs.

A “competitive” collusion? We have implicitly assumed that farmers’ plots were spaced

sufficiently far apart from each other. Specifically, we assumed that no other farmer could

use the same sub-channel just used by his neighbor. In reality, this assumption is not true for

all cases. Because the cost of watering the sub-channel is sunk, if the plots of two farmers are

located next to each other and they share the same sub-channel, then one farmer could free-

ride and outbid the first winner in the second auction. Knowing this, the first winner would

bid lower in the first auction. This situation would reduce the revenue of the auction and

create inefficiencies. Since farmers might not internalize this free-riding effect, they would

take into account the equilibrium outcome for the remaining auctions, and lower their bid in

the first auction. They would then will try to outbid their neighbors in later auctions.

In a situation such as this, it would be relatively easy to sustain a collusive agreement

among neighboring farmers. The number of members of the coalition would be small (say,

three or four farmers), and because they are neighbors, they would know each other well

and might even share animals or machinery for agricultural purposes. Each farmer in the

coalition would compete in the auction for the first unit, but would not enter the remaining

auctions if one member of the coalition won the first unit. With this agreement they would

achieve efficiency by solving the free riding problem. With the resulting increase in efficiency,

the revenue of the auction would also increase, and the auctioneer would not be opposed to

the “collusion”. This situation would not affect our results unless farmers coordinated bidding

rings to not outbid neighboring farmers in the first auction.63 64

63It will only affect the outcome when both the bidder with the highest valuation and the bidder with the
second highest valuation belong to the same ring, but the bidder with the third highest valuation belongs
to a different ring. In this case, our model predicts that the observed price is the valuation of the second
highest bidder, but it actually corresponds to the valuation of the third highest bidder. This is unlikely in
our empirical setting because the nearly 500 farmers would form around 150 rings (based on the geographical
locations that we obtained from the census data). The probability that the two bidders with the highest
valuation belong to the same ring is virtually zero. Moreover, the difference between the second highest and
the third highest valuation will be small in any case.

64There is an extensive literature on the theory of bidding cartels (for example, Graham and Marshall
1987; Hendricks, Porter, and Guofu (2008); Hopenhayn and Skrzypacz (2004); and McAfee and McMillan
1992). For English auctions, Asker (2010) empirically investigates a bidding cartel of collectable stamps. See
Harrington (2008) for a survey.
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Efficiency. The model displayed in Section 4 assumes that it is costly for the bidders to

enter the auction. In order to compare the sequential ascending price auction with other

mechanisms, this entry cost has to be taken into account. In this context, and following

Stegeman (1996), we interpret entry cost as the cost farmers incur when they send a message

to the auctioneer, or to some other farmers. Here, the notions of ex-ante and ex-post efficiency

are no longer equivalent. Although it may be ex-ante efficient that more than one player

sends a message, it is always ex-post efficient that at most one player sends a message.

For this case where it is costly to send messages to the coordinator, Stegeman shows

that the ascending price auction has an equilibrium that is ex-ante efficient. In contrast,

the first-price auction may have no efficient equilibrium, and the author only considers the

single-unit case. In our sequential unit case, we have shown that when goods are strict

complements the analysis is identical to the single unit case. Hence, the result applies here

as well. However, when goods are weak substitutes, the result only applies to the last auction.

Although outside the scope of this paper, further work to investigate whether a sequential

ascending price auction is ex-post efficient when the coordinator has to allocate several objects

to players that face SC, DMR, and costly messages, would be a useful extension.

8 Conclusions.

By affecting bidders’ behavior in sequential auctions, sunk costs and decreasing marginal

returns in the presence of participation costs generate very different price dynamics within

the same market. This difference in price dynamics is attributable to the varying extent

to which the value of sequential goods complements or falls relative to previous units. The

deterrence effect, whereby the same bidder pays a high price for the first unit (deterring others

from entering subsequent auctions), and a low price for the remaining units, arises when

sunk costs are relatively high compared to the decreasing marginal returns, thus creating

complementarities among the goods. Substitutability arises due to decreasing returns when

sunk costs are relatively small. In this case, equilibrium prices are similar in magnitude,

regardless of whether the same or different bidders win the objects. Careful consideration

of these features is fundamental to demand characterization, a cornerstone of many positive

and normative questions in economics.

Using a novel data set from a decentralized market institution that operated privately for

eight centuries in southern Spain, we document these price dynamics and develop a model

to recover the underlying structural parameters and distribution of valuations. Although

the bidders are better informed than the sellers in our model, the latter know that the se-

quential English auction allocates water (ex-ante) efficiently. Not requiring farmers to reveal

their marginal valuations is an advantage of the mechanism, whose simplicity reduces costs

associated with its implementation and helps explain its stability. We address three main

questions. Are water units complements or substitutes, and why? Is the deterrence effect
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consistent with a competitive market structure or a consequence of collusive behavior among

farmers? What would happen to the estimates in this setting if the researcher, by ignoring

the importance of participation and sunk costs, failed to account for the complementarity

feature of the sequential goods?

First we document that during the period under study both complementarities and sub-

stitutabilities are observed in the data, generating different price dynamics. Seasonality,

related to the water requirements of the crops and the expected rainfall, affects the relative

importance of sunk costs and decreasing returns, causing bidders to coordinate their actions

in these regimes. Second, the apparent collusive behavior, when the same bidder wins all

the goods, paying very low prices for all the units following the first unit, is actually com-

petitive (or non-cooperative). Contrary to the collusion hypothesis, this behavior is caused

by complementarities, and is observed when the value of water (as well as the average price

paid per unit and, thus, the incentive to deviate from a collusion strategy) increases relative

to the standard competitive pattern registered in the weak substitutes regime. This shows

the importance of interpreting the data through the economic model. Finally, by estimating

our model, we confirm the relevance of participation and sunk costs in our empirical environ-

ment. By testing the performance of our model relative to a standard English auction model

without participation costs, we confirm that estimations using the latter are not accurate.

Aside from the bias generated by ignoring sunk costs and decreasing returns, price dynamics

play an important role, as it is not appropriate to attribute the variation in prices among

sequential units (when the goods are complements) to a relatively more disperse underlying

distribution of valuations.
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Figure 1: Auction Sample: Goods Are Substitutes

Auction # Name Price Day
1 Pedro Fernández 123

Mo
2 Pedro Fernández 111
3 Pedro Fernández 111
4 Pedro Fernández 109
5 Pedro Blaya 115

Tu
6 Jose Ruiz 116
7 Mauricio Gutiérrez 117
8 Mauricio Gutiérrez 106
9 Ambrosio Ortíz 116

We
10 Ambrosio Ortíz 100
11 Ambrosio Ortíz 100
12 Carlota Pomares 116
13 Eliseo Gutiérrez 120

Th
14 Antonio Muñoz 112
15 Antonio Navarro 110
16 Vicente Ledesma 106
17 Jose Gálvez 103

Fr
18 Juan Martínez 91
19 Juan Martínez 90
20 Jesus Gutiérrez 100

Sample from original data obtained from the historical archive: Goods Are Substitutes (Winter - February 18, 1955, Day). Units
1 to 4 are the units bought on Monday (Mo) during day (unit 1 corresponds to right to irrigate from 7AM to 10AM, unit 2
from 10AM to 1PM, unit 3 from 1PM to 4PM, and unit 4 from 4PM to 7PM). Similarly, units 5 to 8 are the units bought on
Tuesday (Tu) during day; units 9 to 12 are the units on Wednesday (We) during day; units 13 to 16 are the units on Thursday
(Th) during day; and units 17 to 20 are the units on Friday (Fr) during day.

Figure 2: Auction Sample: Goods Are Complements

Auction # Name Price Day
1 Juana Fernández 1580

Mo
2 Juana Fernández 50
3 Juana Fernández 50
4 Juana Fernández 50
5 Francisco Gabarrón 1401

Tu
6 Francisco Gabarrón 50
7 Francisco Gabarrón 50
8 Francisco Gabarrón 50
9 Jose Fernández 1401

We
10 Jose Fernández 25
11 Jose Fernández 25
12 Jose Fernández 25
13 Antonio Belijar Boluda 1401

Th
14 Antonio Belijar Boluda 25
15 Antonio Belijar Boluda 25
16 Antonio Belijar Boluda 25
17 Manuel Gutiérrez 1406

Fr
18 Manuel Gutiérrez 50
19 Manuel Gutiérrez 50
20 Manuel Gutiérrez 50

Sample from original data obtained from the historical archive: Goods Are Complements (Summer - July 22, 1966, Day). See
notes in Figure 1.
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Figure 3: Sample of Individual Data Obtained from the Agricultural Census

Sample Card from a Farmer Obtained from the Agricultural Census. Individual characteristics include:
farmers’ name (that we match to the names in the auctions), type of land and location, area, number of
trees, production and the price at which this production was sold in the census year.

Figure 4: Rain and Frequency Distribution of 4CU Over the Sample Period

The figure displays for each month: i) the number of auctions where the same farmer wins all four consecutive
units, and ii) total rain using a Nadaraya-Watson kernel regression (of ’total rain’ on ’month of the year’)
with an Epanechnikov kernel with bandwidth selected by cross validation.
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Figure 5: Winning Prices: by Number of Consecutive Units Bought by the Same Farmer and
by Unit

The figure displays price variation from the raw data (for the whole sample) disaggregated by:
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Figure 6: Winning Prices: by Weekday, Hour and Schedule

The figure displays the distribution of winning prices by: i) Unit (First Unit in Blue, Second Unit in Red,
Third Unit in Green, and Fourth Unit in Orange); Weekday (Mo=Monday, Tu=Tuesday, We=Wednesday,
Th=Thursday, and Fr=Friday); and Schedule (Day=Day-Time and Night=Night-Time). Thus, the figure
displays the distribution of prices of each of the 40 units auctioned per week for the whole sample (disag-
gregated by Unit, Weekday, and Schedule). Each vertical box (unit) displays the maximum price (upper
adjacent value), 75th percentile (upper hinge), median (black circle marker), 25th percentile (lower hinge),
and minimum price (lower adjacent value).
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Figure 7: Price and Seasonality

The figure displays the distribution of winning prices by season. Each vertical box displays the maximum
price (upper adjacent value), 75th percentile (upper hinge), median (black circle marker), 25th percentile
(lower hinge), and minimum price (lower adjacent value).

Figure 8: Winning Prices: by Season and Drought

The figure displays the distribution of winning prices by: i) Season and Drought Indicator. Each vertical box
displays the maximum price (upper adjacent value), 75th percentile (upper hinge), median, 25th percentile
(lower hinge), and minimum price (lower adjacent value). We define a drought as an indicator that equals one
when average monthly rain during the specific year is below a consensus threshold defined in the literature
in terms of the historic annual average (following Gil Olcina 1994 we use a threshold of 40%). The numbers
below each box correspond to the percentage (in terms of the whole sample) of observations in each box (i.e.
al these numbers sum up to 100% ).
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Figure 9: The Channel System in Mula and the Sunk Cost of Initiating the Irrigation

The main canal (left panel) was made of concrete. The individual sub-channels (right panel) were dug into
the ground. Thus, in these sub-channels, a water loss is incurred because water flows over a dry sub-channel
(some water is absorbed by the ground).

Figure 10: Marginal Returns of Irrigation Water

Marginal returns of water in summer (left) and autumn (right).
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Figure 11: Within Price Distribution by Regime: First Price vs. Median Second to Fourth
prices

Both figures display, for instances when the same farmer won all four units in a 4-unit auction, the normalized
percentage change, ∆, of the first winning price against the median of the second to fourth winning prices:
∆ = p1�m

(p1+m)/2 , with m = median (p2, p3, p4). Note that ∆ < 2 and that ∆ ! 2 if, and only if, p1 ! 1, or

m ! 0, or both; i.e. when the percentage change goes to infinity. In the figure on the left, Lower Bound
is computed by assuming that all second, third, and fourth unit prices paid by the (same) farmer within
the same four-unit auction display end-price preference for 0. In the figure on the right, Upper Bound is
computed by assuming that only one among second, third, or fourth unit prices paid by the (same) farmer
within the same four-unit auction display end-price preference for 0.

Figure 12: Auction Sample: Auction where Farmers Are Present and No Bids Are Placed

Auction # Name Price Day
1 Sebastian Aguilar 48

Mo
2 Felipe Amaro 42
3 Felipe Amaro 48
4 Diego Guirao 50
5 Felipe Amaro 54

Tu
6 Antonio Llamas 51
7 Cristóbal Romero 47
8 Cristóbal Romero 50
9 Cristóbal Gutiérrez 2

We
10 Cristóbal Gutiérrez 5
11 Cristóbal Gutiérrez 1
12 Cristóbal Gutiérrez 1
13 Luis Moya 2.75

Th
14 Luis Moya 1
15 Luis Moya 1
16 Luis Moya 1
17

Fr
18
19
20

Sample from original data obtained from the historical archive: Auction where farmers are present and no
bids are placed (Winter - January 22, 1954, Day).
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Figure 13: Winning and Estimated Prices

The figure displays real prices against predicted prices using three different models: (i) our structural model (specification 3 in
Table 7), (ii) a standard (button) English auction model (specification 5 in Table 7), and (iii) a reduced-form model for the
sample using as regressors: Past Rain, unit (3 dummy variables), weekday (4 dummy variables), schedule (1 dummy variable),
month (11 dummy variables), year (12 dummy variables), and individual fixed effects, in addition to a constant (for details
about the reduced-form specification see Table 2 discussed in Subsection 3.3). The graph shows the mean monthly averages of
the prices. Similar results are obtained using a spline (available in our earlier working paper Donna and Espin-Sanchez 2012).
See Section C in the online appendix for a high definition version of this figure.

Figure 14: Regime Frequency Disaggregation by Month

The figure depicts the frequency of auctions where the same farmer buys all four consecutive units (4CU), by regime (see Section
3) and month. (Note that the sum of 4CU over months and regimes—the vertical lines in the graph—is equal to 1470 = 5880/4.
See Table 1 in the paper and Table A1 in the online appendix.) It can be seen that complementarities are more likely to
be observed in summer than in winter, where water requirements (and, hence, equilibrium prices) soar. We interpret this as
evidence in favor of the competition hypothesis (according to our model with entry and sunk costs) and against the collusion
hypothesis.
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Table 1: Distribution of Winning Prices: by Number of CU and Sequential Auction

Panel 1: Price distribution by number of consecutive bids: All Auctions
Median Mean SD Max Min Obs

1CU 101 218.2 327.9 3000 0.05 3530
2CU 123 256.7 364.6 2700 0.05 2866
3CU 190 320.0 415.5 4050 0.05 1716
4CU 182 339.9 470.2 4830 0.05 5880

Panel 2: Price distribution by number of consecutive bids: First Auction
Median Mean SD Max Min Obs

1CU 100 211.1 304.1 2921 0.05 977
2CU 150 305.0 427.8 2700 0.05 673
3CU 220.5 410.0 512.5 4050 0.05 382
4CU 451 677.6 689.5 4830 0.05 1470

Panel 3: Price distribution by number of consecutive bids: Second Auction
Median Mean SD Max Min Obs

1CU 93.25 219.8 373.0 3000 0.10 624
2CU 103.5 230.2 328.0 2685 0.05 867
3CU 181 294.9 364.7 2850 0.05 539
4CU 101 242.7 309.3 2605 0.05 1470

Panel 4: Price distribution by number of consecutive bids: Third Auction
Median Mean SD Max Min Obs

1CU 94 200.8 312.3 2357 0.10 715
2CU 126.5 256.5 353.9 2601 0.10 778
3CU 151.5 285.55 379.0 2801 0.05 536
4CU 100 229.2 294.2 2701 0.05 1470

Panel 5: Price distribution by number of consecutive bids: Fourth Auction
Median Mean SD Max Min Obs

1CU 114.5 233.4 330.2 2601 0.05 1214
2CU 113.5 239.6 344.8 2601 0.10 548
3CU 167 311.6 411.6 2630 0.05 259
4CU 100 210.1 272.6 2935 0.05 1470

Panel 6: Price distribution for 4CU
Auction Median Mean SD Max Min Obs
1st to 4th 182 339.9 470.2 4830 0.05 5880
1st 451 677.6 689.5 4830 0.05 1470
2nd 101 242.7 309.3 2605 0.05 1470
3rd 100 229.2 294.2 2701 0.05 1470
4th 100 210.1 272.6 2935 0.05 1470
1st and 2nd 253 460.2 576.9 4830 0.05 2940
2nd and 3rd 101.0 235.9 301.9 3001 0.05 2940
3rd and 4th 100.0 219.7 283.7 2935 0.05 2940
1st to 3rd 200.0 383.2 512.4 4830 0.05 4410
2nd to 4th 100.0 227.3 292.7 3001 0.05 4410

The table displays the Distribution of Winning Prices. Panels 1 to 5 presents the Distribution of Prices disaggregated by cases
where the same farmer buys one, two, three, or four consecutive units (1CU, 2CU, 3CU, or 4CU, respectively). Panel 1 presents
the Distribution of Prices for All Auctions (i.e. First, Second, Third, and Fourth Auctions). Panel 2 presents the Distribution of
Prices for First Auctions. Panel 3 presents the Distribution of Prices for Second Auctions. Panel 4 presents the Distribution of
Prices for Third Auctions. Panel 5 presents the Distribution of Prices for Fourth Auctions. Finally, Panel 6 presents Distribution
of Prices just for 4CU (i.e. for the subsample of 5880 auctions where the same farmer won all four consecutive units). Note
that the first line in Panel 6 (1st to 4th) displays the same information as the last line in Panel 1 (4CU). The second line in
Panel 6 (1st) displays the same information as the last line in Panel 2 (4CU). The third line in Panel 6 (2nd) displays the same
information as the last line in Panel 3 (4CU). The fourth line in Panel 6 (3rd) displays the same information as the last line in
Panel 4 (4CU). The fifth line in Panel 6 (4th) displays the same information as the last line in Panel 5 (4CU).
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Table 2: Correlation Between Winning Prices and Covariates

Variables (1) (2) (3) (4)

Rain MA7 -4.0543*** -4.1117*** -2.9911*** -3.1741***
(0.6742) (0.6894) (0.5580) (0.6227)

Rain Day Bought -0.2346 -0.1853 0.0519 0.1779
(0.1434) (0.1416) (0.1558) (0.1531)

Unit 2 Day -167.9547*** -167.8286*** -180.6172***
(19.4659) (19.4542) (21.8896)

Unit 3 Day -173.0328*** -172.9066*** -188.0507***
(19.9287) (19.9165) (22.7544)

Unit 4 Day -176.5446*** -176.5451*** -190.8276***
(20.4404) (20.4387) (23.0968)

Unit 2 Night -237.5795*** -237.8597*** -249.3275***
(24.9031) (24.9367) (27.3493)

Unit 3 Night -243.3244*** -243.5220*** -257.6533***
(25.4507) (25.4838) (28.3077)

Unit 4 Night -254.8376*** -255.1867*** -266.4109***
(25.7254) (25.7817) (28.9070)

Tuesday 26.0232*** 32.1906*** 10.0596
(7.4927) (8.2359) (12.4758)

Wednesday -34.5756*** -29.3838** -31.7270**
(10.6269) (11.9714) (15.4702)

Thursday -59.6530*** -55.4057*** -42.9164***
(10.7704) (12.3518) (15.0439)

Friday -94.9538*** -95.5421*** -76.3654***
(12.7055) (14.4995) (17.2939)

Night -110.0908*** -111.0406*** -102.6780***
(11.3642) (10.9544) (13.4322)

Unit FE No Yes Yes Yes
Weekday FE No Yes Yes Yes
Schedule FE No Yes Yes Yes
Month FE No No Yes Yes
Individual FE No No No Yes
R2 0.016 0.083 0.230 0.359
Observations 13,801 13,801 13,801 13,801

All columns are OLS regressions. Dependent variable is the winning price in each auction (one cuarta).
Robust standard errors in parentheses. FE stands for Fixed Effects. Individual FE refers to a set of dummy
variables identifying different winners (names) in our sample. We obtain similar results including Week FE

(a set of dummy variables identifying 52 or 53 weeks of the corresponding year). *** p<0.01, ** p<0.05, *
p<0.1. Sample restricted to auctions with positive bids during the period January 1954 to August 1966.
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Table 3: End-Price Preferences

All units First Unit Non First Unit Second Unit Third Unit Fourth Unit
(1) (2) (3) (4) (5) (6)

Last Digit Freq % Freq % Freq % Freq % Freq % Freq %
0 2,905 49.9 468 32.1 2,437 55.8 809 55.5 811 55.7 817 56.1
1 1,541 26.4 469 32.2 1,072 24.5 370 25.4 369 25.3 333 22.9
2 201 3.5 116 8.0 85 1.9 32 2.2 24 1.7 29 2.0
3 138 2.4 59 4.0 79 1.8 29 2.0 23 1.6 27 1.9
4 68 1.2 40 2.7 28 0.6 10 0.7 9 0.6 9 0.6
5 531 9.1 123 8.4 408 9.3 114 7.8 144 9.9 150 10.3
6 218 3.7 91 6.2 127 2.9 43 3.0 37 2.5 47 3.2
7 71 1.2 33 2.3 38 0.9 19 1.3 12 0.8 7 0.5
8 61 1.0 24 1.6 37 0.9 8 0.6 12 0.8 17 1.2
9 48 0.8 24 1.6 24 0.6 12 0.8 5 0.3 7 0.5

Total 5,828 100 1,457 100 4,371 100 1,457 100 1,457 100 1,457 100

Sample restricted to 4CU auctions (i.e. instances when the same farmer won all four units in a 4-unit
auction). Last Digit refers to the end-digit winning price. Non integer winning prices are excluded.

Table 4: End-Price Preferences by Regime

First Unit Fourth Unit
Strict Compl Weak Substitutes Strict Compl Weak Substitutes

(1) (2) (3) (4)
Last Digit Freq % Freq % Freq % Freq %

0 220 38.3 236 29.0 575 100 240 29.5
1 185 32.2 264 32.5 0 0 323 39.7
2 42 7.3 69 8.5 0 0 24 2.9
3 17 3.0 41 5.0 0 0 26 3.2
4 16 2.8 22 2.7 0 0 6 0.7
5 45 7.8 76 9.4 0 0 125 15.4
6 34 5.9 50 6.2 0 0 43 5.3
7 8 1.4 22 2.7 0 0 6 0.7
8 6 1.0 14 1.7 0 0 13 1.6
9 2 0.4 19 2.3 0 0 7 0.9

Total 575 100 813 100 575 100 813 100

Sample restricted to 4CU auctions. Last Digit refers to the end-digit winning price. Non integer winning
prices are excluded. Regime is determined by assuming all second, third, and four unit prices paid by the
same winner within the same four-unit auction display end-price preference for 0.
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Table 5: Timing Structure of Different Winners: Estimation Sample

Month 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 Total
1 4 6 0 3 1 11 3 0 0 0 28 0 11 61
2 4 4 0 2 4 2 3 0 0 0 19 0 21 57
3 5 3 0 9 0 1 2 0 0 10 29 8 23 79
4 0 2 0 6 2 5 4 6 0 17 28 38 28 121
5 5 7 0 6 1 13 9 6 9 4 32 30 31 130
6 3 7 0 7 0 8 10 7 10 14 23 25 29 119
7 2 3 0 6 9 26 8 5 13 15 17 21 23 117
8 9 3 0 3 4 10 7 14 18 15 21 16 3 102
9 8 8 0 3 8 10 5 13 0 8 35 19 0 97
10 8 7 3 2 11 2 0 9 0 10 16 19 0 78
11 7 2 3 0 8 2 0 4 0 21 29 23 0 82
12 1 0 2 2 3 1 0 0 0 36 18 12 0 69

Total 48 43 8 43 48 80 47 54 44 106 179 147 128 537

Total, in the last row, refers to the total number of different winners for the specific year (column). Given
that, within a year, the same bidders win multiple units in several months, this number is below the sum
over months, by year. Similarly for the last column, where Total is the number of different bidders for the
specific month (row) during the 13-year sample. Finally, 537, refers to the total number of different bidders
in the whole sample. The monthly average of different bidders who bought water in the sample (years 1954
to 1966) is 8.31.

Table 6: Rain Expectations and Regime Coordination

Variables (1) (2) (3)

Future Rain -0.0030*** -0.0030*** -0.0034***
(0.0013) (0.0013) (0.0013)

Weekday FE NO YES YES
Schedule FE NO YES YES
Month FE NO NO YES

Sample restricted to the one used in the structural estimation in Table 7. Almost identical results are
obtained using the whole sample. All specifications are probit regressions. Marginal effects are reported.
Robust standard errors in parenthesis. Dependent variable is a dummy variable equal to one if the regime
is strict complements (see Section 5). Future Rain is a moving average of rain in Mula for seven days after
the corresponding date of the auction (Future Rain is a proxy variable for farmers’ rain expectations for the
day where they are buying water). Past Rain (a moving average of rain in Mula for seven days before the
corresponding date of the auction) and Actual Rain (the amount of rain in Mula in the day of the auction)
are not statistically significant in any of the above regressions. *** p<0.01, ** p<0.05, * p<0.1.
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Table 7: Structural Estimation

Structural parameters
Specifications

Sequential Auction Model Standard Model
(1) (2) (3) (4) (5) (6)

Mean Valuation [ ˆE(V )]
148.25 127.11 152.93 138.94 166.99 142.73

(10.129) (8.153) (70.832) (61.847) (87.373) (81.648)

Sunk Cost (α̂)
0.0301 0.0300 0.0301 0.0303

(8.2e-04) (9.7e-04) (3.0e-03) (9.1e-03)

β̂c
0

0.0101 0.0103 0.0102 0.0105
(1.2e-05) (1.3e-04) (4.9e-03) (1.3e-03)

β̂s
0 0.0100 0.0110 0.0101 0.0112

(0.0024) (0.0020) (4.9e-03) (1.3e-03)
Future Rain

β̂c
1 5.99e-10 1.54e-10 5.29e-10 5.94e-10

(1.6e-04) (1.5e-04) (1.1e-10) (3.2e-10)

β̂s
1 0.21279 0.18280 0.21278 0.18282

(0.0059) (0.0037) (0.0267) (0.0775)

Mean ρ̂

- Strict Complements 0.3801 0.2456 0.6811 0.4239
- Weak Substitutes -0.3056 -0.2655 -0.3085 -0.2637

N 8 10 8 10 8 10
Past Rain Polynomial No No Yes Yes Yes Yes
Schedule Dummy No No Yes Yes Yes Yes
Weekday Dummy Variables No No Yes Yes Yes Yes
Month Dummy Variables No No Yes Yes Yes Yes
Pseudo R2 0.2832 0.2751 0.5303 0.4842 0.1414 0.1333
Log likelihood -12,870 -13,940 -11,423 -12,375 -50,930 -54,956
# of Auctions 5,951 5,951 5,951 5,951 5,951 5,951

Bootstrapped standard errors (B = 1, 000) are reported in parenthesis (for the Mean Valuation it corresponds
to the bootstrapped standard error corresponding to Z 0

tγ). Estimates in columns 1 to 4 (sequential auction
model) are obtained using the estimation procedure described in Subsection 6.1 using KNITRO, a solver
for nonlinear optimization, with tolerance level of 1.0e-12 (see Sections D and E in the online appendix for
details). For the distribution of private values and inclusion of covariates, we use an exponential distribu-
tion. Estimates in specifications 5 and 6 (standard model) are MLE obtained by maximizing the likelihood
function from a standard English auction model allowing the mean of the distribution of valuations depend
on the same characteristics as in the other specifications as indicated in equation 7, without fixed costs nor
decreasing marginal returns (the sample is the same as the one in columns 1 to 4, including in this case
all sequential prices in the estimation). Number of years in the sample is 13. Number of months in the
sample is 119. The number of different winners (across all 13 years) is 537. The complementarity param-
eter, ρ, is computed as detailed in the in Section 4. When the goods are strict complements is given by
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Table 8: Structural Estimation (continued)

Structural parameters
Specifications

Sequential Auction Model Standard Model
(1) (2) (3) (4) (5) (6)

Covariates

Past Rain (γ̂1)
-1.668 -2.076 -1.416 -1.2422
(0.301) (0.547) (0.379) (0.664)

(Past Rain)2 (γ̂2)
0.0076 0.0126 0.0034 0.0032

(0.0448) (0.0958) (0.1496) (0.1520)

Night (γ̂3)
-27.230 -23.56 -30.003 -25.916
(7.556) (9.649) (5.039) (3.629)

Tuesday (γ̂4)
-0.2873 -10.985 -2.7134 -2.4331
(0.6449) (9.7063) (7.1630) (2.6197)

Wednesday (γ̂5)
-2.4616 -2.1883 -5.8751 -5.0944
(0.5406) (0.9572) (2.5602) (6.0395)

Thursday (γ̂6)
-8.8423 -8.366 -15.755 -13.502
(0.6169) (0.8544) (4.7014) (2.5863)

Friday (γ̂7)
-17.805 -9.795 -28.154 -24.271
(5.016) (3.418) (12.903) (2.118)

Feb. (γ̂8)
-11.373 -41.023 -4.8293 -5.0584
(23.299) (35.705) (2.330) (4.949)

Mar. (γ̂9)
27.356 18.067 34.954 30.126

(12.386) (8.491) (5.218) (1.676)

Apr. (γ̂8)
82.481 53.902 78.799 67.396

(23.456) (17.127) (3.426) (11.579)

May. (γ̂10)
115.140 81.751 114.483 96.142
(24.822) (30.187) (4.366) (15.015)

Jun. (γ̂11)
49.771 40.248 57.478 48.341

(23.112) (18.698) (8.429) (15.16)

Jul. (γ̂12)
195.980 115.752 225.337 191.341
(26.035) (48.982) (216.025) (102.962)

Aug. (γ̂13)
233.750 183.06 247.57 210.08
(28.562) (27.608) (195.347) (87.953)

Sep. (γ̂14)
74.494 160.78 88.173 74.259

(23.684) (34.040) (39.318) (12.133)

Oct. (γ̂15)
77.623 62.664 81.093 69.953

(14.532) (22.385) (30.165) (10.558)

Nov. (γ̂16)
3.3622 -13.302 13.2099 10.6131

(2.3941) (7.513) (16.725) (9.6974)

Dec. (γ̂17)
7.4696 -0.9495 2.8462 2.2106

(2.2226) (2.5513) (3.6735) (4.0308)

Intercept (γ̂0)
148.253 127.117 90.885 96.131 101.717 87.978
(10.121) (8.153) (32.274) (25.754) (179.285) (74.073)

N 8 10 8 10 8 10
Pseudo R2 0.2832 0.2751 0.5303 0.4842 0.1414 0.1333
Log likelihood -12,870 -13,940 -11,423 -12,375 -50,930 -54,956
# of Auctions 5,951 5,951 5,951 5,951 5,951 5,951

See notes in Table 7.
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