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Abstract

Peters and Severinov (2006) (PS henceforth) characterize a perfect Bayesian equilibrium

(PBE) in a competing auctions environment, where all buyers are linked to all the sellers. PS

characterize a PBE using a simple bidding rule, whereby buyers select in which auction to bid.

In this note we show that when buyers are linked with a subset of the sellers (i.e. when there

are search frictions), the PS bidding rule is no longer guaranteed to be efficient nor a PBE of

the competing auctions game of PS. Our results indicate that researchers should be cautious

when using the PS bidding rule to make inference about the behavior of buyers and sellers in a

market where frictions are present such as eBay.
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1 Introduction

In a seminal paper, Peters and Severinov (2006) (PS henceforth) characterize a perfect Bayesian
equilibrium (PBE) in a competing auctions game similar to buyer-seller trading platforms such as
eBay, Amazon, or Taobao. In their setting, sellers offer a homogeneous good, differ in their valuation,
and hold second-price auctions. Buyers differ in their valuation (which is private information) and
have single unit demand. Bids increase in discrete amounts. Their environment is frictionless in the
sense that any buyer may participate in any auction.

In their paper, PS characterize a PBE in the competing auctions game. The PBE bidding
strategies specify that buyers bid in the auction with the lowest standing price, using a simple
tie breaking rule when relevant. Having identified the auction they will bid on, bidders bid the
standing price plus the minimum bid increment. (See subsection 2.2 for a full description of the
game and the bidding rule.) This rule is appealing because it is based on observable market data.
The only information that a bidder needs are the standing bid and whether the standing bid has
changed since the last change of the winning bidder. This information is typically observable in
buyer-seller trading platforms. In addition, their proposed bidding rule “constitutes a PBE in
the bidding process independently of buyers’ beliefs about other buyers’ valuations, and even the
number of other buyers. The outcome of this equilibrium is efficient provided that sellers set their
reserve prices equal to their true costs. [...] The remarkable part [...] is that the outcome of the
bidding process is efficient and sequentially rational (i.e. optimal at every information set given the
traders’ beliefs and their strategies), yet looks very much like a simple algorithmic price adjustment
procedure.” (PS p. 223).

Because the PS strategies are simple and based on easily observed data, a branch of the em-
pirical auctions literature has used some of the theoretical predictions of the bidding rule from PS
to investigate bidder behavior in online competing auctions environments such as eBay. For ex-
ample, Anwar, McMillan, and Zheng (2006), empirically investigate whether bidders’ behavior in
eBay corresponds to the equilibrium bidding rule in PS. Bapna, Chang, Goes, and Gupta (2009),
empirically investigate the prediction of the bidding rule in PS that bidders bid in multiple auctions
and the resulting law of one price (i.e. no price price dispersion). Hasker and Sickles (2010) use
the incremental bidding prediction of the bidding rule in PS as a simple explanation for sniping
in eBay. Zeithammer and Adams (2010) use data on eBay auctions to reject the hypothesis that
these auctions resemble second-price sealed-bid auctions and use PS bidding rule as potential model
consistent with some of their findings. Backus, Podwol, and Schneider (2014) consider the case of
two auctions with frictions using the framework of PS to investigate price dispersion using eBay
data. A detailed discussion of the empirical evidence supporting the equilibrium bidding rule in PS
can be found in the survey of online auctions by Ockenfels, Reiley, and Sadrieh (2006).

However, in internet platforms such as eBay it is costly for buyers to interact with all the sellers.
Due to search costs, frictions in eBay are important.1 Thus, it is unclear that the PS assumption
of a frictionless market is appropriate when working with such data. In eBay, search frictions arise
for two main reasons. First, two bidders that perform the exact same search query at a given time
observe the same, say, 25 listings in the first page of results.2 So certain sellers will rarely show up
in the first page of results for most buyers. Second, buyers seldom perform the exact same search
query. So the 25 products displayed in the first page will typically differ among buyers, depending

1This is documented for the case of internet auctions by Bajari and Hortacsu 2004, p. 483 and for eBay by Backus,
Podwol, and Schneider 2014, p. 181.

2Twenty five is the default number of listings displayed by eBay in the first page.
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on their search query and on the sellers’ title for the product listing.3 In this paper we show that
when search frictions are present—so that buyers do not participate in all the auctions—the PS
bidding rule is no longer guaranteed to be efficient nor a PBE of the competing auctions game of
PS. Our results indicate that researchers should be cautious when using the PS bidding rule to make
inference about the behavior of buyers and sellers in a market where frictions are present such as
eBay.

We proceed as follows. In section 2, we describe the game and the bidding rule of PS. In section
3, we present a simple example where the bidding rule of PS produces an outcome that is no longer
guaranteed to be efficient nor a PBE of the competing auctions game. Finally, in section 4 we
conclude.

2 The Model

2.1 Setup

Consider a set of buyers and a set of sellers. Sellers differ in their valuation and offer one unit of an
homogeneous good. Assume that sellers have no idiosyncratic preferences over the buyer they sell
to. Buyers differ in their valuation and have single unit demand. A buyer with valuation ν that
buys from a seller at price p has utility ν − p and 0 otherwise. The seller’s utility is the price, p, if
they sell the good, and their valuation, b, if they do not.

To model search frictions in buyer-seller markets we find it useful to use the formalism of bipartite
networks. We think of buyer-seller markets as a bipartite network that consists of a set of sellers, a
set of buyers, and a set of links connecting buyers with sellers. A buyer can obtain a good from the
seller only if the two are linked. The interpretation is that when a buyer is linked with a seller, the
buyer may participate in the seller’s auction. When the network is fully connected (i.e. when all
buyers are linked with all sellers) we say that the market is frictionless. In that case, the bidding
strategies in PS are a PBE of the sequential auctions game. In this paper we assume that the
network is common knowledge, and focus on the case where the network is not (necessarily) fully
connected (i.e. when search frictions are present in the market).

2.2 Peters and Severinov (2006)

PS Sequential Game

The PS sequential game is as follows. Consider the setup from subsection 2.1. Sellers hold second-
price auctions. Buyers (i.e. bidders) are ordered randomly in a queue and they arrive sequentially.
When a new bidder arrives, the bidder can submit bids to one or more of the sellers to whom it is
linked. After all bidders submit their bids (or decide not to bid), the bidding queue restarts. That
is, bidders may sequentially update their bids (either in the same auction they bid before, or by
bidding in different auctions), or decide not to. The process ends when all bidders in the queue
decide not to place further bids. The buyers’ valuations and sellers’ valuations are distributed on
the grid D ≡ {p, p+∆, p+2∆, ..., p} that has a step size ∆ > 0. The minimum bid increment is ∆.

For each seller, the standing bid is the second highest bid received (or the valuation if the seller
received less than two bids). The standing bid is publicly observed for each seller at each moment.
The highest bid is not publicly observed nor is the identity of the winner. If more than one bidder

3Bidders use these results to decide in which of the listed auctions to participate. Most users are reluctant to
use other than the default settings in a search (Chau, Fang, and Liu Sheng 2005; Cone, Franklin, Ryan, and Stalker
2005).
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submits the same bid, the winner is the bidder who submitted the bid first. In this case, the standing
bid coincides with the highest bid. Because sellers hold second-price auctions, the winner in each
auction is the holder of the highest bid, but this bidder only pays the standing bid.

PS Bidding Rule

Now we focus on the bidding rule proposed by PS. Because these are second-price auctions, if bidder
j bids the standing bid plus ∆ (the minimum bid increment), two things could happen. First, it
could be that the new bid exceeds the current highest bid. In this case, bidder j becomes the highest
bidder (or winning bidder) displacing the previous highest bidder. But the standing bid does not
change: the second highest bid is still the original standing bid. Second, the new bid may tie with
the current highest bid. In this case, bidder j does not displace the previous highest bidder. But
now the highest and second highest bid coincide. That is, the winning bid and highest bidder do
not change, but the standing bid increases and matches the winning bid.

To identify which sellers have the lowest winning bid (recall that due to the second-price struc-
ture, winning bids are unobservable), it is convenient to identify auctions such as the ones in the
second case: auctions where the standing bid has changed since the last change in the highest
bidder. These are preferable auctions.4

Definition (preferable auctions). Preferable auctions are auctions that satisfy one of the two
following conditions: (i) the standing bids have changed after the last change of the highest bidder
or (ii) auctions that have not yet received any bids.

Definition (PS bidding rule). This is the PS bidding rule for bidder j. We have five cases:
When it is the bidder’s turn to bid, the bidder places no bid:

(i) If the bidder is the highest bidder at any auction, or

(ii) If the lowest standing bid (in linked auctions) is above the bidder’s valuation.

Otherwise, j selects an auction to bid in as follows:

(iii) If there is a unique lowest standing bid (amongst those sellers j is linked to), the bidder submits
a bid in that auction, or

(iv) If there is more than one lowest standing bid (amongst those sellers j is linked to), the bidder
randomly chooses one auction among the preferable auctions, or

(v) If there is more than one lowest standing bid and no preferable auctions (amongst those sellers j
is linked to), the bidder randomly chooses one auction among the ones with the lowest standing
bid.

In this case, j bids the current standing bid plus ∆.

3 Two Examples

In this section we present two simple examples with two sellers and two buyers: (1) a network
without frictions (fully connected) and (2) a network with frictions (not fully connected). We
implement the bidding rule of PS in these two examples. In both examples the bidding order in the
queue is (A,B).

4In this setting it is not a dominant strategy for bidders to bid their valuations in the first stage (see pp. 225-6 in
PS for an example).
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Example 1. Network without Frictions. Assume that buyers A and B are ordered
in their valuations (νA > νB = ∆ > 0) and sellers 1 and 2 have the same valuation
(normalized to 0). The minimum bid increment is ∆ = νB. Consider the following
network without frictions (i.e. fully connected network):

1

2

A

B

BuyersSellers

Round
Standing Bid Winning Bid Winner

Seller 1 Seller 2 Seller 1 Seller 2 Seller 1 Seller 2

1 - 0 - ∆ - A
2 0 0 ∆ ∆ B A

Assume the bidding order for the buyers is (A,B). In round 1 buyer A must select
which auction, if any, to bid in. At the beginning of round 1 none of the sellers have
received any bid, so buyer A selects randomly. For concreteness, assume that A bids for
2. In this case buyer A bids ∆ and becomes the winning bidder. At the beginning of
round 2 buyer B observes that the auction of seller 1 has not yet received a bid. Buyer
B also observes that the winning bidder in the auction of seller 2 has changed, but the
standing bid has not. Thus, the auction of seller 1 is the unique most preferred auction
for buyer B, so buyer B bids in this auction. Since after round 2 no further bids are
placed, then the bidding ends. Each buyer wins an auction, and both pay zero. Not
only do these strategies constitute a PBE, but they also yield an efficient outcome.

Example 2. Network with Frictions. As in the previous example, assume that
buyers A and B are ordered in their valuations (νA > νB = ∆ > 0) and sellers 1 and
2 have the same valuation (normalized to 0). The minimum bid increment is ∆ = νB.
Now consider the following network that is not fully connected:

1

2

A

B

BuyersSellers

Round
Standing Bid Winning Bid Winner (Last Bidder)

Seller 1 Seller 2 Seller 1 Seller 2 Seller 1 Seller 2

1 - 0 - ∆ - A
2 - ∆ - ∆ - A(B)
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The above table shows an outcome that occurs with positive probability under the PS bidding
strategies. Indeed, in round 1 both auctions are most preferred auctions for buyer A. If buyer A bids
for seller 2 in round 1, the final outcome is that buyer A wins the auction and pays ∆. Had buyer
A bid for seller 1, the outcome would be the same as in example 1: both buyers win an auction, and
both pay 0. This implies that buyer A has a profitable deviation from the PS strategy: always bid
for seller 1.5 Moreover, this example shows that with positive probability the PS strategies yields
an inefficient outcome. The key element in this example is that a losing bidder (in this example,
bidder B) might place a bid whose only role is to raise the price that the winning bidder (in this
example, bidder A) has to pay. For this reason the winning bidder (bidder A) no longer wants to
win the auction at the current standing bid. But since bids cannot be reneged, the winning bidder
is “stuck” with that auction.

4 Concluding Remarks

In this paper we showed that the bidding rule proposed by Peters and Severinov (2006) for their
frictionless competing auctions environment is not a PBE when frictions are present.6 Moreover,
the outcome from the PS strategies need not be efficient. While the counterexample might seem
stylized, it shows a general feature why the PS bidding rule is no longer guaranteed to be efficient
nor a PBE of the competing auctions game when frictions are present. When the standing bid is
below the winning bid in a given auction, a new bid increases the (second) price in that auction.
A bidder that is winning before the increase in the price may prefer to release that auction and
bid in an auction that has a lower standing bid. However, this is not possible since bids cannot
be reneged on. Because the PS strategies are simple and based on easily observed data, a branch
of the empirical auctions literature has used some of the theoretical predictions of the bidding rule
from PS to investigate bidder behavior in online competing auctions environments such as eBay.
However, it is well known that eBay is not a frictionless environment. Therefore in environments
such as eBay, the PS strategies need not be equilibrium strategies, nor have any sort of efficiency
property. Our results indicate that researchers should be cautious when using the PS bidding rule
to make inference about the behavior of buyers and sellers in a market where frictions are present
such as eBay, Amazon, or Taobao.
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