Quantum microeconomics theory

Ledenyov, Dimitri O. and Ledenyov, Viktor O.

James Cook University, Townsville, Australia

29 September 2015

Online at https://mpra.ub.uni-muenchen.de/67010/
MPRA Paper No. 67010, posted 03 Oct 2015 05:39 UTC
Quantum microeconomics theory

Dimitri O. Ledenyov and Viktor O. Ledenyov

Abstract – The research article presents the highly innovative theoretical research results: 1) the new quantum microeconomics theory in the quantum econophysics science is formulated; the idea on the existence of the discrete-time induced quantum transitions of firm’s earnings (the firm’s value) in the quantum microeconomics theory in the quantum econophysics science is proposed; 2) the formulas (1, 2) to compute the firm’s discrete-time EBITDA (the firm’s value) changes at the different time moments in the quantum microeconomics theory in the quantum econophysics science is derived; 3) the formulas (3, 4) to calculate the distribution of a number of the firms’ excited business processes of certain value at the selected firm’s state in the economy of scale and scope in terms of the quantum microeconomics theory in the quantum econophysics science is presented; 4) the notion on the wave function in the quantum microeconomics theories in the quantum econophysics science is introduced; 5) the formulas (5, 6) to predict the firm’s discrete-time EBITDA (the firm’s value) state changes in the national/global economies at the certain time moment, using the wave functions in the quantum econophysical time-dependent/time independent wave equations in the quantum microeconomics theory in the quantum econophysics science, are derived; 6) the evolutionary shifts from the classic economic theories to the quantum economic theories, from the analogue economic signal processing to the digital economic signal processing, from the continuous-time signal filtering economic prediction techniques to the wave functions computing economic prediction techniques in application to the quantum econophysics science are described; 7) the perspectives of application of the quantum microeconomics theory in the quantum econophysics science with the aim to solve the various economic problems in the real- and speculative- sectors of economic markets are discussed.

JEL: C0, D0, G21, G24, G30, G32, G34, G38, G39, L1, L4, L11, L25, L60, M2, M16, D0, E32, E43, E44, E53, E58, E61, G18, G21, G28

PACS numbers: 89.65.Gh, 89.65.-s, 89.75.Fb

Keywords: theory of firm, quantum theory of firm, firm’s performance state prediction problem at the certain time moment, wave function in quantum econophysical wave equation in quantum microeconomics theory in quantum econophysics science, wave function in Schrödinger quantum mechanical wave equation in quantum mechanics science, quantum econophysics, econometrics, nonlinear dynamic economic system, economy of scale and scope, quantum microeconomics.
Introduction

The *modern human civilization* has been established on the basis of the poly-scientific poly-technical creative innovative discoveries in a number of natural and social sciences, including the *economics science*, which studies the production, distribution and consumption of commodities / products / services at the national and global scales in the time domain.

Going from the scale and scope of the considered scientific problems, the economics science can be conditionally divided on the *fundamental economics* and the *applied economics* in Joseph Penso de la Vega (1668, 1996), Mortimer (1765), Smith (1776, 2008), Menger (1871), Bagehot (1873, 1897), von Böhm-Bawerk (1884, 1889, 1921), Hirsch (1896), Bachelier (1900), Schumpeter (1906, 1911, 1933, 1939, 1961, 1939, 1947), Slutsky (1910, 1915 1923), von Mises (1912), Hayek (1931, 1935, 2008; 1948, 1980), Keynes (1936, 1992), Ellis, Metzler (1949), Friedman (1953), Baumol (1957), Debreu (1959), Krugman, Wells (2005), Stiglitz (2005):

1. **Fundamental economics** – a science on the fundamental scientific problems in the economics, including the *fundamental economic problems formulation, theories creation, laws writing, equations derivation, etc*;

2. **Applied economics** – a science on the applied scientific problems in the economics, including the *macroeconomic performance forecasts for the national/global economies, microeconomic performance forecasts for the firms and corporations, firm’s business indicators forecast, firm’s economic performance variables computing, financial indexes forecasts in the national / international money markets, etc*.

Going from the scale of researched scientific problems, the economics science can be conditionally separated into the *macroeconomics, microeconomics* and *nanoeconomics* in Joseph Penso de la Vega (1668, 1996), Mortimer (1765), Smith (1776, 2008), Menger (1871), Bagehot (1873, 1897), von Böhm-Bawerk (1884, 1889, 1921), Hirsch (1896), Bachelier (1900), Schumpeter (1906, 1911, 1933, 1939, 1961, 1939, 1947), Slutsky (1910, 1915 1923), von Mises (1912), Hayek (1931, 1935, 2008; 1948, 1980), Keynes (1936, 1992), Ellis, Metzler (1949), Friedman (1953), Baumol (1957), Debreu (1959), Krugman, Wells (2005), Stiglitz (2005):

1. **Macroeconomics** – a science on the *macro-economic processes in the national/global economies, which are characterized by the economic variables such as the national economic input/output, employment level, inflation level, interrelationships between various economic sectors, and macro-credits for the states, etc*;
2. **Microeconomics** – a science on the micro-economic processes in the national/global economies, which are characterized by the economic variables such as the firm’s earnings, taxes, investments, performance, and micro-credits for the firms, etc.

3. **Nanoeconomics** – a science on the nano-economic processes in the national/global economies, which are characterized by the economic variables such as the time of the ultra high frequency trading in the foreign exchange markets, volume of the ultra high frequency trading in the foreign exchange markets, and value of nano-credits for the firms, etc. The nanoeconomics term is introduced and defined by the authors for the first time in Ledenyov D O, Ledenyov V O (2015h, 2015i).

Taking to an account all the expressed historical scientific views and the existing scientific schools of thinking, the modern macroeconomics science can be conditionally divided on, but not limited to: the Hayek macroeconomics school of thinking, the Chicago macroeconomics school of thinking, the Keynes macroeconomics school of thinking, the George macroeconomics school of thinking and the Marx macroeconomics school of thinking in Joseph Penso de la Vega (1668, 1996), Mortimer (1765), Smith (1776, 2008), Menger (1871), Bagehot (1873, 1897), von Böhm-Bawerk (1884, 1889, 1921), Hirsch (1896), Bachelier (1900), Schumpeter (1906, 1911, 1933, 1939, 1961, 1939, 1947), Slutsky (1910, 1915 1923), von Mises (1912), Hayek (1931, 1935, 2008; 1948, 1980), Keynes (1936, 1992), Ellis, Metzler (1949), Friedman (1953), Baumol (1957), Debreu (1959), Krugman, Wells (2005), Stiglitz (2005):

1. **Hayek macroeconomics school of thinking** – a scientific school of thinking in the economics by Friedrich August von Hayek, Austrian born English economist, creating the monetary theory that the credit cycles drives the business cycle and stating his vision that the economic market is a self-regulating self-adjusting economic system in Hayek (1931, 1935, 2008; 1948, 1980);

3. **Keynes macroeconomics school of thinking** – a scientific school of thinking in the economics by John Maynard Keynes, English economist, expressing an opinion that the state must regulate the economic market by the different economic regulatory means (monetary and
financial policies) to a certain extent, because the economic market is a partly self-regulating self-adjusting economic system in Keynes (1936, 1992);

4. **George macroeconomics school of thinking** – a scientific school of thinking in the economics by Henry George, American philosopher and economist, proposing an idea that the state must regulate the economic market by the single tax on the land value to a certain extent, because the economic market is a partly self-regulating self-adjusting economic system in George (1879, 1881, 2009), Gerstein (May, 1996, 1999);

5. **Marx macroeconomics school of thinking** – a scientific school of thinking in the economics by Karl Marx, German political philosopher and economist, advocating a position that the progress is due to the class struggle, creating the labour theory of value, and promoting the basic idea that the state must regulate the economic market by means of the planned economy, because the economic market is not a self-regulating self-adjusting economic system in Marx (1867, 1885, 1894).

1. **Babbage microeconomics school of thinking** – a scientific school of thinking in the microeconomics by Babbage, economist, who created the theory of firm in Babbage (1832);

2. **Ueda microeconomics school of thinking** – a scientific school of thinking in the microeconomics by Ueda, economist, who contributed to the creation of the theory of firm in Ueda (1904, 1937);

4. **Fama microeconomics school of thinking** – a scientific school of thinking in the microeconomics by Fama, economist, who significantly contributed to the modern theory of firm in Fama (1980), Fama, Jensen (1983, 1985);

Going from the existing approaches to research the scientific problems, the economics science can be conditionally treated as the **classic economics** and the **quantum economics** in Joseph Penso de la Vega (1668, 1996), Mortimer (1765), Smith (1776, 2008), Menger (1871), Bagehot (1873, 1897), von Böhm-Bawerk (1884, 1889, 1921), Hirsch (1896), Bachelier (1900), Schumpeter (1906, 1911, 1933, 1939, 1961, 1939, 1947), Slutsky (1910, 1915 1923), von Mises (1912), Hayek (1931, 1935, 2008; 1948, 1980), Keynes (1936, 1992), Ellis, Metzler (1949), Friedman (1953), Baumol (1957), Debreu (1959), Krugman, Wells (2005), Stiglitz (2005):

1. **Classic economics** – a science, which uses a big number of the classic macroeconomics, microeconomics and nanoeconomics theories, based on the continuous-time
wave representations, attempting to explain and predict the observed economic phenomena in the real- and speculative- sectors of economic markets in the national and global economies of the scales and scopes in Joseph Penso de la Vega (1668, 1996), Mortimer (1765), Smith (1776, 2008), Menger (1871);

2. **Quantum economics** – a science, which uses the quantum macroeconomics, quantum microeconomics and quantum nanoeconomics theories, based on the discrete-time wave representations, with the purpose to explain and predict the observed economic phenomena essence in the real- and speculative- sectors of economic markets in the national and global economies of the scales and scopes in Ledenyov D O, Ledenyov V O (2015h, 2015i).

Moving forward with our scientific discussion, let us explain that there is a scientific opinion that the classic scientific representations within the classic economic theories proved to be outdated, illogical, incomplete and inaccurate from the scientific point of view, resulting in the frequent forecasting errors as far as the economic variables change dynamics in the macroeconomics, microeconomics and nanoeconomics is concerned. Speaking clearly, the classic economic theories have the derived mathematical equations, which cannot be used to accurately model the economic variables change dynamics in the macroeconomics, microeconomics and nanoeconomics in the time, frequency and scale domains.

Therefore, thinking about the quantum economics, it is logically to assume that the foundational principles of quantum economics will help to achieve the following research goals:

1. to create the new innovative quantum economics theories to logically describe the macroeconomics, microeconomics and nanoeconomics processes in the real- and speculative- sectors of economic markets;

2. to generate the new innovative quantum economics theoretical approaches to solve the economic forecasting problems in the real- and speculative- sectors of economic markets; and

3. to accurately model the macroeconomics, microeconomics and nanoeconomics processes in the real- and speculative- sectors of economic markets.

Let us emphasis again that, aiming to achieve the outlined research goals, we will use the quantum econophysics science, mainly based on the quantum physics science, with the purpose to formulate the theoretical postulates of the quantum microeconomics theory in the beginning, then we will create the theory of the Ledenyov wave function and derive the Ledenyov quantum mechanical wave equation in the quantum microeconomics theories in the quantum econophysics science with the ultimate goal to attempt to create the new theoretical modeling.
approaches and to accurately predict the firm systemic state changes in the national/global economies at the specific time moment or over the certain time period.

Speaking clearly about the foundations of the quantum physics science, it is necessary to explain that it was shown in quantum physics science that the discrete nature of microscopic physical world manifests in the quantization of energy spectrum of electronic excitations, which can be mathematically described by the quantum mechanics science in Planck (1900a, b, c, d, 1901, 1903, 1906, 1914, 1915, 1943), Einstein (1905, 1917, 1924, 1935), Einstein, Podolsky, Rosen (1935), Bohr (1922, 1924), de Broglie L (1924, 1925, 1926, 1927, 1928), Compton (1926), Compton A, Allison S K (1935), Schrödinger (1926), Schiff (1949), Akhiezer, Berestetsky (1953, 1964, 1980), Berestetsky, Lifshits, Pitaevsky (1980), Dirac (1958),

Discussing the numerous applications of the quantum physics, it is necessary to say that the nuclear reactors at the nuclear power plants as well as the quantum electronic devices have been developed due to the ongoing considerable progress in the quantum physics:

1. The nuclear energy generation with the various types of nuclear reactors is achieved in Fermi (1934), Fermi, Amaldi, d'Agostino, Rasetti, Segre (1934), Blokhintsev (1954);

2. The new quantum electronics devices are successfully developed:

 c) the various types of semiconductor / superconductor / metal heterostructures transistors, including the single electron transistor, single electron quantum dot transistor, in which the discrete charge carriers quantum tunneling effects are present in Bardeen (1956), Fulton, Dolan (1987), Grabert, Devoret (1992), Mygind (1997);

 d) the Josephson junctions in Josephson (1962, 1964, 1965) and the dc/rf superconducting quantum interference devices (SQUIDs) in Tesche, Clarke (1977), Clarke (1989), Muck (1998), Bardeen (1972, 1990);

Moving ahead to the discussion on the main scientific problems of our interest, the authors would like to say that we intend to consider the following five research problems in this research article in details:

1. The quantum microeconomics theory formulation in the quantum econophysics science;

2. The formula derivation to describe the discrete-time EBITDA changes during the firm’s economic performance variations in terms of the quantum microeconomics theory in the quantum econophysics science;

3. The formula derivation to explain the distribution of a number of excited firms’ business processes of certain value at the selected level (state) in the economy of scale and scope in terms of the quantum microeconomics theory in the quantum econophysics science;

4. The formula derivation to predict the firm’s possible economic performance state changes in the national/global economies at the certain time moment, using the wave function in the quantum econophysical wave equation in the quantum microeconomic theory in the quantum econophysics science;
5. The concluding remarks summary on the perspectives of application of the quantum microeconomics theory in the quantum econophysics science with the aim to solve the various economic challenges in the real- and speculative- sectors of economic markets.

Quantum microeconomics theory and its applications

“Microeconomics is a branch of economics that studies the behaviour of individuals and firms in making decisions regarding the allocation of limited resources,” as it is explained in Wikipedia (2015k).

1) Barriers to entry creation,
2) Strategic boundaries definition,
3) Limits to growth evaluation.”

The theory of firm studies the firm’s organizational structure, the firm’s functional performance, and the firm’s economic variables change forecast. A number of the possible theories of the firm, including the information theory of the firm in Ledenyov D O, Ledenyov V

1. The neo-classical theory of the firm describes the various market structures, regulation issues, strategic pricing, barriers to entry, economies of scale and scope and even optimum portfolio selection of risky assets, and establishes the principle of profit maximisation, according to which profit is maximised, when marginal revenue is equal to marginal cost in the conditions of complete information. The theory does not allow for firm evolution in Berle, Means (1932a, b), Kantarelis (2007).

2. The transaction cost theory of the firm states that the people begin to organise their production in the firms, when the transaction cost of coordinating production through the market exchange in the conditions of the imperfect information, is greater than within the firm in Coase (1937). It does not take into consideration agency costs or firm evolution, neither does it explain how vertical integration should take place in the face of investments in human assets, with unobservable value, that cannot be transferred in Kantarelis (2007).

3. The managerial theory of the firm suggests that the managers would seek to maximise their own utility and consider the implications of this for firm behaviour in contrast to the profit-maximising case in Baumol (1959, 1962), Marris (1964) and Williamson (1966).

4. The principal–agent theory of the firm extends the neo-classical theory of the firm and managerial theory of the firm by adding agents to the firm, and it considers the friction due to asymmetric information between owners of firms and their stakeholders or managers and employees; the friction between agent and principal requires precise measurement of agent performance and the engineering of incentive mechanisms. The weaknesses of the theory are
many: it is difficult to engineer incentive mechanisms, it relies on complicated incomplete contracts (borderline unenforceable), it ignores transaction costs (both external and internal), and it does not allow for firm evolution in Spence and Zeckhauser (1971), Ross (1973), Kantarelis (2007).

5. The **behavioural theory of the firm** assumes that the groups of people participate in setting goals and making decisions on the production; inventory; market share; sales and profits in the firm, potentially creating conflicts. The theory proposes that the real firms aim to satisfy rather than maximize their results in agreement with the bounded rationality concept in Simon (1950), Cyert, March (1963).

6. The **evolutionary theory of the firm** states that the firm possesses unique resources (the resource based view of the firm): financial, physical, human and organizational. It sees the firm as a reactor to change and a creator of change for competitive advantage. The firm, as a creator of change, may cause creative destruction, which in turn may give birth to new industries and enable sectors of, or entire, economies to grow. The theory does not take to the account that the creative innovation process cannot be easily programmed within a firm or a nation in Penrose (1959), Wernerfelt (1984), Barney (1991), Kantarelis (2007).

8. The **information theory of firm** describes the firm in terms of the information computing and processing processes Ledenyov D O, Ledenyov VO (2015c). The main distinction of the information theory of firm from the knowledge theory of firm is in the fact that the information theory of firm characterizes the firm by means of the dynamic information flow and processing processes. In other words, the information theory of firm is a truly dynamic theory of the firm, but not a static theory of the firm as in the case of all other theories.

Discussing the firm’s earnings forecast problem, it makes sense to highlight an interesting fact that the firm’s value (the firm’s earnings: EBITDA) is usually computed and forecasted, using the continuous-time wave models in the classic microeconomics theory in the classic economics science. However, there is a scientific opinion that the functional nature of the
modern firm is discrete, because the main parameters of the firm tend to change discretely in the time domain. Therefore, the authors proposed that the firm can be better characterized by the discrete-time wave models in the quantum microeconomics in the quantum economics science in Ledenyov D O, Ledenyov V O (2015i).

As we know the quantum microeconomics theory has been formulated in Ledenyov D O, Ledenyov V O (2015i) for the first time: “Let us formulate the quantum microeconomics theory for the first time: The quantum microeconomics theory postulates that the discrete-time transitions from one level of the firm’s economic performance to another level of the firm’s economic performance will occur in the nonlinear dynamic economic systems at the time moment, when:

1. The land, labour and capital resources are (added and absorbed) / (released and radiated) in the form of quanta, decreasing or increasing the general energy entropy in the nonlinear dynamic economic system (the nonlinear medium);

2. The disruptive scientific/technological/financial/social/political innovation(s) is/are introduced into or withdrawn from the nonlinear dynamic economic system (the nonlinear medium), creating the resonance conditions to amplify/attenuate the value of firm’s economic performance, during the evolution process of the economy of scale and scope in the time domain (Note: the resonance can result in the increase/decrease of the energy of the electromagnetic wave in the electrodynamics science);

3. The derived formula to describe the discrete-time EBITDA changes during the firm’s economic performance variations in terms of the quantum microeconomics theory is

 \[l_{\text{micro}} \omega_{m,n} = \Delta EBITDA(t) = EBITDA(t)_m - EBITDA(t)_n \]

 \[l_{\text{micro}} \omega_{m,n} = \Delta \text{firm's value}(t) = \text{firm's value}(t)_m - \text{firm's value}(t)_n \]

where: \(l_{\text{micro}} \) – Ledenyov constant,
\(\omega \) – cyclic velocity,
\(t \) – time,
EBITDA – the Earnings Before Interest Tax Depreciation Amortization,
Firm’s value – the firm’s market capitalization minus the firm’s long term investments and debt.

4. The Ledenyov distribution of a number of excited firms’ business processes of certain value at the selected level (state) in the economy of scale and scope in terms of the quantum microeconomics theory is
\[
\frac{N_m}{N_n} = \exp^{-\left(EBIDTA(t)_m - EBIDTA(t)_n\right) / \lambda_{\text{micro}} T}, \\
\frac{N_m}{N_n} = \exp^{-\left(firm's\ value(t)_m - firm's\ value(t)_n\right) / \lambda_{\text{micro}} T},
\]

where: \(\lambda_{\text{micro}}\) – Ledenyov constant,

\(N_m\) – number of firms’ processes of certain value at the state (m),

\(N_n\) – number of firms’ business processes of certain value at the state (n),

\(N = N_m + N_n\) – general number of firms’ processes of certain value in the economy of scale and scope,

\(t\) – time,

\(T\) – temperature of the economy of scale and scope, which corresponds to the level of entropy of the economy of scale and scope (the level of information/business activities by the firms),

\(EBITDA\) – the Earnings Before Interest Tax Depreciation and Amortization,

\(Firm's\ value\) – the firm’s market capitalization minus the firm’s long term investments and debt.

In other words, let us emphasis that the quantum microeconomics theory states that there may be the discrete-time induced transition(s) between the different levels of the firm’s EBITDAs (the firm’s values) in the nonlinear dynamic economic system at the time, when the following things are present:

1. the land, labour and capital, which can be added and absorbed / released and radiated in the form of quanta in the nonlinear dynamic economic system (the nonlinear medium);

2. the discrete-time fluctuational processes, which can appear in the form of the disruptive scientific/technological/financial/social/political innovation(s) that absorb or release the available land, labour and capital resources, creating the resonance, in the nonlinear dynamic economic system (the nonlinear medium) during the evolution process of the firm in the economy of scale and scope in the time domain;

3. the firms’ business processes population inversion mechanism, which occurs at the following condition: \(N_2/N_1 > 1.\)”

The authors would like to add that there are many possible disruptive scientific/technological/financial/social/political innovations in Ledenyov D O, Ledenyov V O
“Let us give the possible examples of the above discussed disruptive scientific/technological/financial/social/political innovation(s):

1. **Scientific innovation**: the discovery of new scientific phenomena and laws such as the relativity law in the physics in Landes (1998);

2. **Technological innovation**: the creation of new materials/devices such as the new metals/steam engines, new metals/combustion engines, semiconductors/transistors, semiconductors/lasers, superconductors/electric motors, superconductors/single electron transistors, superconductors/Josephson junctions, superconductors/quantum random number generators, superconductors/quantum processors in Ledenyov D O, Ledenyov V O (2015a);

3. **Financial innovation**: the creation of new financial products and services such as the derivatives and mobile banking;

4. **Social innovation**: the introduction of new socioeconomic models, for instance: the shared-value initiative, which can be defined as: “the policies and operating practices that enhance the competitiveness of a company while simultaneously advancing the economic and social conditions in the communities in which it operates” in Porter, Kramer (2006, 2011);

5. **Political innovation**: the establishment of the new effective governmental system.”

The quantum microeconomics theory opens a number of new opportunities to tackle the economic and financial forecasts problems, hence the formula to predict the firm’s economic performance state changes in the national/global economies at the certain time moment can be derived, using the wave function in the quantum econophysical wave equation in the quantum microeconomic theory in the quantum econophysics science as it was shown in Ledenyov D O, Ledenyov V O (2015i).

Therefore, let us derive a set of the complete formulas to predict the firm’s economic performance state changes in the national/global economies at the certain time moment, using the wave function in the quantum econophysical wave equation in the quantum microeconomic theory in the quantum econophysics science as in Ledenyov D O, Ledenyov V O (2015i), making some additional clarifications:

“Let us write the time dependent Ledenyov quantum econophysical wave equation in the quantum microeconomics theory in the quantum econophysics science

\[i \hbar \frac{\partial}{\partial t} \psi_{\text{micro}} = \hat{L}_{\text{micro}} \psi_{\text{micro}}, \]

where: \(i \) – the imaginary unit,

\(\psi_{\text{micro}} \) – the wave function of a quantum system, which is a mathematical function in the quantum mechanics to accurately characterize a specified state of a quantum system. The
square of the amplitude of the wave function at a given point being representative of the probability of the system being found in that state at that point.

\(I_{\text{micro}} \) – the Ledenyov constant,

\(t \) – the time,

\(\frac{\partial}{\partial t} \) – the partial derivative with respect to the time,

\(\hat{L}_{\text{micro}} \) – the Ledenyov operator to characterize the total energy of the wave function.

The time independent Ledenyov quantum econophysical wave equation in the quantum microeconomics theory in the quantum econophysics science is

\[
E_{\text{micro}} w_{\text{micro}} = \hat{L}_{\text{micro}} w_{\text{micro}},
\]

where: \(w_{\text{micro}} \) – the wave function of a quantum system, which is a mathematical function in the quantum mechanics to accurately characterize a specified state of a quantum system. The square of the amplitude of the wave function at a given point being representative of the probability of the system being found in that state at that point,

\(\hat{L}_{\text{micro}} \) – the Ledenyov operator to characterize the total energy of the wave function,

\(E_{\text{micro}} \) – the energy of the state \(w_{\text{micro}} \).

Continuing the scientific discussion, the authors would like to comment that we know that: “the wave function is considered as a natural attribute of quantum mechanics” in Rylov (2015).

In general, the authors believe that the Ledenyov wave function in the Ledenyov quantum econophysical wave equation represents a most complete accurate characterization that can be given to the firm’s economic performance state in the microeconomic system in agreement with the quantum microeconomic theory in the quantum econophysics science.

Conclusion

This research article presents a number of the highly innovative theoretical research results:

1. the new quantum microeconomics theory in the quantum econophysics science is formulated;
2. the idea on the existence of the discrete-time induced quantum transitions of firm’s earnings (the firm’s value) in the quantum microeconomics theory in the quantum econophysics science is proposed;
3. the formulas (1, 2) to compute the firm’s discrete-time EBITDA (the firm’s value) changes at the different time moments in the quantum microeconomics theory in the quantum econophysics science is derived;
4. the formula, (3, 4) to calculate the distribution of a number of the firms’ excited business processes of certain value at the selected firm’s state in the economy of scale and scope in terms of the quantum microeconomics theory in the quantum econophysics science is presented;
5. the notion on the wave function in the quantum microeconomics theories in the quantum econophysics science is introduced;
6. the formulas (5) and (6) to predict the firm’s discrete-time EBITDA (the firm’s value) state changes in the national/global economies at the certain time moment, using the wave functions in the quantum econophysical time-dependent/time independent wave equations in the quantum microeconomic theory in the quantum econophysics science, are derived;
7. the evolutionary shifts from the classic economic theories to the quantum economic theories, from the analogue economic signal processing to the digital economic signal processing, from the continuous-time signal filtering economic prediction techniques to the wave
functions computing economic prediction techniques in application to the quantum econophysics science are established;

8. the perspectives of software program development to solve the various economic problems in the real- and speculative- sectors of economic markets, using the new quantum microeconomics theory in the quantum econophysics science, are discussed.

Acknowledgement

The first author started his scientific work on the information processing in Kharkiv, Ukraine, researching the microwave filters, making the discovery that the quantum knot of the magnetic vortex is in an extreme quantum limit, focusing on the research and development toward the ultra dense memory on the quantum knots of the magnetic vortices, and presenting his innovative research results at the international conferences, including the Marconi seminar at Birmingham University in the UK in 1999.

The advanced research on the analog and digital signals processing in the electronics and physics has been conducted by the first author under Prof. Janina E. Mazierska at James Cook University in Townsville in Australia in 2000 – 2015.

The idea to perform the econophysical research on the discrete time digital signals and the continuous-time signals toward the oscillating economic variables spectrum analysis in the macroeconomics attracted the first author’s research interest in recent years.

The first author would like to tell an interesting story that he decided to fly from James Cook University in the City of Townsville in the State of Australia to University of Czernowitz in the City of Czernowitz in the State of Ukraine to pay his respect to Prof. Joseph Alois Schumpeter’s scientific achievements in March, 2015, because Prof. Joseph Alois Schumpeter started to think on the business cycles and economic development in the economics science at University of Czernowitz in the City of Czernowitz in the State of Ukraine in 1909 – 1911, completing the writing of his well known book on the business cycles in Schumpeter (1939).

It may worth to note that the first and second authors were graduated from V. N. Karazin Kharkiv National University in the City of Kharkiv in the State of Ukraine in 1999 and 1993, hence we would like to comment that our research interest in the economic cycles in the economics science is quite natural, because Prof. Simon Kuznets conducted his scientific work on the cyclical fluctuations in the economic systems in the City of Kharkiv in the State of Ukraine in 1915 - 1922, being influenced by the Prof. Joseph Alois Schumpeter research ideas and coming up with the remarkable research results in Kuznets (1930, 1973).
It is a notable historical fact that the first and second authors were strongly influenced by the remarkable scientific papers and books by Lev Davydovich Landau, who had a considerable interest in the physics and, at the later stage of his life, in the econophysics, working in the City of Kharkiv in the State of Ukraine in 1930s.

The second author began his research work on the information processing, specifically focusing on the information processing and coding by various electronic computing devices in Ukraine in the later 1980s and early 1990s. The second author made his significant research contributions to establish the scientific field on the information processing by the quantum computing devices, researching and developing the 1024 Quantum Random Number Generator on the Magnetic Flux Qubits, based on the Superconducting Quantum Interference Device (SQUID) arrays, for the space applications at a number of leading research institutions and elite universities in Europe and in North America since mid 1990s. The second author is frequently regarded and commonly recognized as a founder of the research field on the information processing by the superconducting quantum computing devices, which was established in Europe almost 30 years ago.

The second author’s scientific views were mainly influenced by Prof. Lev Landau research papers on the quantum physics, which have been absorbed during his research work in the City of Kharkiv in the State of Ukraine in 1990s; and by Prof. Niels Bohr research articles on the quantum physics, which have been studied during his scientific work at Technical University of Denmark in the City of Lyngby near the City of Copenhagen in the State of Denmark in Scandinavia in 1995, 1997-1998.

Discussing the scientific problems on the signal generation, it is necessary to comment that the second author completed his research on the Gunn diode microwave generators in 1991-1992 at V. N. Karazin Kharkiv National University in Kharkiv, Ukraine, and then continued his innovative scientific work on the various scientific programs towards the continuous-time waves generators such as the Yttrium Iron Garnet (YIG) microwave generators, tuned by the magnetic field, as well as the discrete-time digital signal generators such as the 1024 Quantum Random Number Generator on the Magnetic Flux Qubits, based on the Superconducting Quantum Interference Device (SQUID) arrays, the superconducting microwave resonators, among other research programs during the last three decades. In addition, the second author has developed a plenty of experience in the discrete-time digital signal generators, using the digital modulation techniques such as the Pulse Amplitude Modulation (PAM), Quadrature Amplitude Modulation (QAM), Phase Shift Keying (BPSK, QPSK, MPSK), Frequency Shift Keying (FSK), Gaussian Minimum Shift Keying (GMSK), etc.
The second author has been greatly influenced by the Henry George’s scientific ideas, articles and books in the economics since the beginning of 1990s. The second author has had the numerous opportunities to discuss a wide range of research problems in the economics during his frequent visits to the international conferences and his intensive research work at leading universities in Europe and North America during last four decades.

Let us repeat that this innovative research uses the knowledge on the analogue and digital signals processing in the physics and the electronics engineering, which is described in our scientific book on the nonlinearities in the microwave superconductivity in Ledenyov D O, Ledenyov V O (2015a).

The final writing, editing and reading of our research article have been made by the authors during our travel to the Prof. Viktor Yakovlevich Bunyakovsky motherland in the Town of Bar in Vinnytsia Region in the State of Ukraine in the beginning of May, 2015 and August, 2015.

The additional research changes have been added by the authors during the visits to the City of Kharkiv in the State of Ukraine in June / July / September, 2015. The obtained research results have been extensively discussed with a number of prominent scientists at the VII International Economic Forum: Innovations, Investments, Kharkiv initiatives at Kharkiv Palace hotel in Kharkiv, Ukraine on September 4, 2015.

Let us make a final comment by saying that, in the case of the unlimited presence of the information, knowledge and creative integrative thinking around the Globe, we do believe that the new innovative discoveries in the science and technology could be generated by the talented scientists and inventors at any place in our global multi-polar World at any time.

*E-mails: dimitri.ledenyov@my.jcu.edu.au,
ledenyov@univer.kharkov.ua.
References:

Economics Science, Finance Science, Economic History Science:

8. Bagehot W 1873, 1897 Lombard Street: A description of the money market Charles Scribner's Sons New York USA.

13. Schumpeter J A 1906 Über die mathematische methode der theoretischen ökonomie ZfVSV Austria.

19. Slutsky E E 1915 Sulla teoria del bilancio del consumatore *Giornale degli economisti e rivista di statistica* 51 no 1 pp 1 – 26 Italy.
21. von Mises L 1912 The theory of money and credit *Ludwig von Mises Institute* Auburn Alabama USA
24. Keynes J M 1936 The general theory of employment, interest and money *Macmillan Cambridge University Press* Cambridge UK.
26. Ellis H, Metzler L (editors) 1949 Readings in the theory of international trade *Blakston* Philadelphia USA.
27. Friedman M (editor) 1953 Essays in positive economics *Chicago University Press* Chicago USA.

Juglar Economic Cycle in Macroeconomics:

Kondratiev Economic Cycle in Macroeconomics:

52. Kondratieff N D 1922 The world economy and its trends during and after war Regional branch of state publishing house Vologda Russian Federation.

53. Kondratieff N D 1925 The big cycles of conjuncture The problems of conjuncture 1 (1) pp 28 – 79.

70. Van Duijn J J 1983 The long wave in economic life Allen and Unwin Boston MA USA.

74. Tinbergen J 1981 Kondratiev cycles and so-called long waves: The early research Futures 13 (4) pp 258 – 263.

79. Wallerstein I 1984 Economic cycles and socialist policies Futures 16 (6) pp 579 – 585.

83. Freeman C, Louçã F 2001 As time goes by: From the industrial revolutions to the information revolution Oxford University Press Oxford UK.

84. Goldstein J 1988 Long cycles: Prosperity and war in the modern age Yale University Press New Haven CT USA.

86. Berry B J L 1991 Long wave rhythms in economic development and political behavior Johns Hopkins University Press Baltimore MD USA.

90. Tylecote A 1992 The long wave in the world economy Routledge London UK.

95. Perez C 2002 Technological revolutions and financial capital – The dynamics of bubbles and golden ages Edward Elgar Cheltenhem UK.

Kitchin Economic Cycle in Macroeconomics:

Kuznets Economic Cycle in Macroeconomics:

105. Kuznets S 1924 Economic system of Dr. Schumpeter *M. Sc. Thesis under Prof. Wesley Clair Mitchell* Columbia University NY USA.

106. Kuznets S 1930 Secular movements in production and prices *Ph. D. Thesis under Prof. Wesley Clair Mitchell* Columbia University NY USA.

107. Kuznets S 1930 Secular movements in production and prices. Their nature and their bearing upon cyclical fluctuations *Houghton Mifflin* Boston USA.

112. Kuznets S 1966 Modern economic growth: Rate, structure, and spread.
113. Kuznets S 1968 Toward a theory of economic growth, with reflections on the economic growth of modern nations.

114. Kuznets S 1971 Economic growth of nations: Total output and production structure.

Accurate Characterization of Properties of Economic Cycles in Macroeconomics:
133. Samuelson P A 1947 Foundations of economic analysis Harvard University Press Cambridge MA USA.

159. Jourdon Ph 2008 La monnaie unique Europeenne et son lien au developpement economique et social coordonne: une analyse cliometrique *Thèse Universite Montpellier* France.

Uechi L, Akutsu T 2012 Conservation laws and symmetries in competitive systems Progress of Theoretical Physics Supplement no 194 pp 210 – 222.

 http://research.stlouisfed.org/fred

173. Desai M, King St, Goodhart Ch 2015 Hubris: why economists failed to predict the crisis and how to avoid the next one *Public Lecture on 27.05.2015* London School of Economics and Political Science London UK

174. Desai M 2015 Do we need a new macroeconomics? *Public Lecture on 09.07.2015* London School of Economics and Political Science London UK (the presentation was made after the publication of an initial version of our research article at the MPRA and SSRN)

175. Wall Street Journal 2015a Economic forecasting survey US GDP (quarterly) for 5 years (28.06.2015) Wall Street Journal New York USA
 http://projects.wsj.com/econforecast/#ind=gdp&r=20

 http://projects.wsj.com/econforecast/#ind=gdp&r=28

177. Wikipedia (English) 2015c Business cycle *Wikipedia* California USA

Theory of Firm in Microeconomics:

178. Babbage Ch 1832 On the economy of machinery and manufacturers *Charles Knight* 13 Pall Mall East London UK.

185. Ohlin B 1933 Interregional and international trade *Harvard University Press* Cambridge Massachusetts USA.

189. Barnard C I 1938 The functions of the executive *Harvard University Press* Cambridge MA USA pp 241 – 244.

190. Barnard C I 1948 Organization and management: Selected papers *Harvard University Press* Cambridge MA USA.

191. Barnard C I 1949 The entrepreneur and formal organization *Change and the Entrepreneur* *Harvard University Press* Cambridge MA USA.

206. Fogel R 1964 Railroads and American economic growth: Essays in econometric history *Johns Hopkins Press* Baltimore USA.

207. Williamson O E 1964 The economics of discretionary behavior: Managerial objectives in a theory of the firm *Prentice-Hall* Englewood Cliffs NJ USA.

212. Williamson O E 1996 The mechanisms of governance *Oxford University Press* New York USA.

217. Stigler G 1968 The organization of industry *Richard Irwin Inc* Homewood USA.

228. Hirschman A O 1970 Exit, voice, and loyalty: Responses to decline in firms, organizations, and states Harvard University Press Cambridge MA USA.

237. Merton R C 1974 On the pricing of corporate debt: The risk structure of interest rates
 pp 1 – 182.
 application to labor managed firms and codetermination *Journal of Business* 52 no 4 pp 469
 – 506.
243. Jensen M C 1986 Agency costs of free cash flow, corporate finance and takeovers
 American Economic Review Papers and Proceedings of the 98th Annual Meeting of the
244. Jensen M C September-October 1989 The eclipse of the public corporation *Harvard
 Business Review* 67 (5) pp 61 – 74
 labor market *Journal of Accounting and Economics* 7 no 1-3 pp 3 – 9.
246. Jensen M C, Murphy K J 1990 Performance pay and top management incentives *Journal
 of Political Economy* 98 (2) pp 225 – 264.
247. Jensen M C 1993 The modern industrial revolution: Exit and the failure of internal
 Research Paper* no 07-02.
249. Simon Y, Tezenas Du Montcel H Mai 1977 Théorie de la firme et réforme de l’entreprise
250. Pfeffer J, Salancik G R 1978 The external control of organizations: A resource-
 dependency perspective *Harper & Row* New York USA.
252. Pfeffer J 1982 Organizations and organization theory *Ballinger Publishing Company*
 USA.

269. Perrow C 1986 Complex organizations Random House New York USA.

274. Tirole J 2006 The theory of corporate finance *Princeton University Press* Princeton USA.

277. Hart O 2011 Thinking about the firm: A review of Daniel Spulber’s the theory of the firm *Journal of Economic Literature* 49 (1) pp 101 – 113

Disruptive Innovation in Terms of Economics Science in Macroeconomics and Microeconomics:

328. Christensen C M 1999a Innovation and the general manager *Irwin McGraw-Hill* Homewood IL USA.

329. Christensen C M 1999b Impact of disruptive technologies in telecommunications in Bringing PC economies to the telecommunications industry *PulsePoint Communications*.

41

346. Shah Ch D, Brennan T A, Christensen C M April 2003 Interventional radiology: Disrupting invasive medicine.

347. Christensen C M March April 2003 Beyond the innovator's dilemma Strategy & Innovation 1 no 1.

365. Dobbs R, Woetzel J, Flanders St 2015 Public Lecture on 08.06.2015 London School of Economics and Political Science London UK

Probability Theory, Statistics Theory, Spectrum Analysis Theory, Brownian Movement

Theory, Diffusion Theory, Chaos Theory, Information Communication Theory in Econometrics and Econophysics Sciences:

367. Bernoulli J 1713 Ars conjectandi (The art of guessing).

369. De Moivre 1730 Miscellanea analytica supplementum (The analytic method).

373. Bunyakovskiy V Ya 1825 Rotary motion in a resistant medium of a set of plates of constant thickness and defined contour around an axis inclined with respect to the horizon Ph D Thesis no 1 under Prof. Augustin - Louis Cauchy supervision École Polytechnique Paris France.

Bunyakovsky V Ya 1846 Foundations of the mathematical theory of probability *St. Petersburg* Russian Federation.

Connor J J, Robertson E F (July) 2000 Viktor Yakovlevich Bunyakovsky (December 16, 1804 - December 12, 1889) *School of Mathematics and Statistics* University of St Andrews Scotland UK

http://www-history.mcs.st-andrews.ac.uk/Biographies/Bunyakovsky.html.

V Ya Bunyakovsky *International Conference* (August 20 - 21) 2004 Private communications with conference participants on V Ya Bunyakovsky’s mathematical theory of probability and its applications in econophysics and econometrics during a tour to Town of Bar Vinnytsia Region Ukraine *V Ya Bunyakovsky International Conference Institute of Mathematics of National Academy of Sciences of Ukraine (NASU)* Kyiv Ukraine

www.imath.kiev.ua/~syta/bunyak.

Chebyshev P L 1846 An experience in the elementary analysis of the probability theory *Crelle’s Journal fur die Reine und Angewandte Mathematik*.

Markov A A 1900, 1912, 1913 Calculation of probabilities *St Petersburg* Russian Federation; Wahrscheinlichkeits-Rechnung *Teubner* Leipzig-Berlin Germany; 3rd edition *St Petersburg* Russian Federation.

Markov A A 1906 Extension of law of big numbers on variables, depending from each other *Izvestiya Fiziko-Matematicheskogo Obschestva pri Kazanskom Universitete* 2nd series vol 15 (94) pp 135 – 156 Russian Federation.

399. Slutsky E E 1913 On the criterion of goodness of fit of the regression lines and the best method of fitting them to the data *Journal Royal Statistics Society* vol 77 part I pp 8 – 84.

400. Slutsky E E 1914 Sir William Petty: Short overview of his economic visions with attachment of his several important research works *Kiev Commerce Institute Bulletin* 18 pp 5 – 48 Kiev Ukraine.

401. Slutsky E E 1915 Sulla teoria sel bilancio del consumatore *Giornale degli economisti e rivista di statistica* 51 no 1 pp 1 – 26 Italy.

403. Slutsky E E 1922b To the question of logical foundations of probability calculation *Statistics Bulletin* 9 - 12 pp 13 – 21.

408. Slutsky E E 1925b Ueber stochastische Asymptoten und Grenzwerte *Metron* Padova Italy vol 5 no 3 pp 3 – 89.

410. Slutsky E E 1927a The summation of random causes as sources of cyclic processes *Problems of Conjuncture (Voprosy Kon’yunktury)* vol 3 issue 1 pp 34 – 64 Moscow Russian Federation.

415. Slutsky E E 1937b The summation of random causes as the source of cyclical processes *Econometrica* 5 pp 105 – 146.

421. Kolmogorov A N 1947 The contribution of Russian science to the development of probability theory *Uchenye Zapiski Moskovskogo Universiteta* no 91.

441. Mandelbrot B B 1967a The variation of some other speculative prices *Journal of Business* vol **40** pp 393 – 413.

451. Mandelbrot B B 1977 Fractals: Form, chance and dimension *W H Freeman* San Francisco USA.

452. Mandelbrot B B 1982 The fractal geometry of nature *W H Freeman* San Francisco USA.

454. Gnedenko B V, Khinchin A Ya 1961 An elementary introduction to the theory of probability *Freeman* San Francisco USA.

466. Shiryaev A N 1988 Probability *Springer-Verlag* Berlin Heidelberg Germany.

51

496. Lamperti J 1966 Probability *Benjamin* New York USA.

502. Breiman L 1968 Probability *Addison-Wesley* Reading MA USA.

509. Box G E P, Jenkins G M 1970 Time series analysis: Forecasting and control Holden Day San Francisco California USA.
530. Taylor S 1986 Modeling financial time series *John Willey and Sons Inc* New York USA.
531. Tong H 1986 Nonlinear time series *Oxford University Press* Oxford UK.
538. Lancaster T 1990 The econometric analysis of transition data *Cambridge University Press* Cambridge UK.
542. Cleveland W S 1993 Visualizing data *Hobart Press* Summit New Jersey USA.
543. Pesaran M H, Potter S M (editors) 1993 Nonlinear dynamics, chaos and econometrics *John Willey and Sons Inc* New York USA.
545. Peters E E 1994 Fractal market analysis: Applying chaos theory to investment and economics *John Wiley and Sons Inc* New York USA.

550. Moore G E 2003 No exponential is forever – but we can delay forever *ISSCC*.

554. Campbell J, Lo A, MacKinlay C 1997 The econometrics of financial markets *Princeton University Press* Princeton NJ USA.

556. Hasem P M, Pesaran B 1997 Working with Microfit 4.0: Interactive econometric analysis *Oxford University Press* Oxford UK.

559. Hubbard B B 1998 The world according to wavelets *A K Peters* Wellesley MA USA.

560. Mallat S A 1998 Wavelet tour of signal processing * Academic Press* San Diego CA USA.

561. Teolis A 1998 Computational signal processing with wavelets *Birkhauser* Switzerland.

568. Hayashi F 2000 Econometrics *Princeton University Press* Princeton NJ USA.

574. Tufte E R 2001 The visual display of quantitative information 2nd edition *Graphics Press* Cheshire CT USA.

577. Woolridge J M 2002 Econometric analysis of cross section and panel data *MIT Press* Cambridge MA USA.
578. Koop G 2003 Bayesian econometrics *John Wiley and Sons Inc* New York USA.
582. Protter P E 2005 Stochastic integration and differential equations *Springer* Germany.

Selected Research Papers in Macroeconomics, Microeconomics & Nanoeconomics Sciences:

http://mpra.ub.uni-muenchen.de/51176/,

http://mpra.ub.uni-muenchen.de/51903/,

http://mpra.ub.uni-muenchen.de/61946/,

http://mpra.ub.uni-muenchen.de/53780/,

http://mpra.ub.uni-muenchen.de/61863/,

607. Ledenyov D O, Ledenyov V O 2014f MicroLBO software program with the embedded optimized near-real-time artificial intelligence algorithm to create winning virtuous strategies toward leveraged buyout transactions implementation and to compute direct/reverse leverage buyout transaction default probability number for selected public/private companies during private equity investment in conditions of resonant absorption of discrete information in diffusion - type financial system with induced nonlinearities ECE James Cook University Townsville Australia, Kharkov Ukraine.

611. Ledenyov D O, Ledenyov V O 2015d Information money fields of cyclic oscillations in nonlinear dynamic economic system MPRA Paper no 63565 Munich University Munich

617. Ledenyov D O, Ledenyov V O 2015i MicroID software program with the embedded optimized near-real-time artificial intelligence algorithm to create the winning virtuous business strategies and to predict the director’s election / appointment in the boards of directors in the firms, taking to the consideration both the director’s technical characteristics and the interconnecting interlocking director’s network parameters in conditions of the
resonant absorption of discrete information in diffusion-type financial economic system with induced nonlinearities ECE James Cook University Townsville Australia, Kharkov Ukraine.

618. Ledenyov D O, Ledenyov V O 2015j MicroITF operation system and software programs:
1) the operation system to control the firm operation by means of the information resources near-real-time processing in the modern firms in the case of the diffusion-type financial economic system with the induced nonlinearities; 2) the software program to accurately characterize the director’s performance by means of a) the filtering of the generated/transmitted/received information by the director into the separate virtual channels, depending on the information content, and b) the measurement of the levels of signals in every virtual channel with the generated/transmitted/received information by the director, in the overlapping interconnecting interlocking directors networks in the boards of directors in the firms during the Quality of Service (QoS) measurements process; and 3) the software program to create the winning virtuous business strategies by the interlocking interconnecting directors in the boards of directors in the modern firms in the case of the diffusion-type financial economic system with the induced nonlinearities, using the patented recursive artificial intelligence algorithm ECE James Cook University Townsville Australia, Kharkov Ukraine.

619. Ledenyov D O, Ledenyov V O 2015k MicroIMF software program: the MicroIMF software program to make the computer modeling of 1) the interactions between the information money fields of one cyclic oscillation and the information money fields of other cyclic oscillation(s) in the nonlinear dynamic economic system, 2) the interactions between the information money fields of cyclic oscillation and the nonlinear dynamic economic system itself, and 3) the density distributions of the information money fields by different cyclic oscillations (the economic continuous waves) in the nonlinear dynamic economic system ECE James Cook University Townsville Australia, Kharkov Ukraine.

620. Ledenyov D O, Ledenyov V O 2015l MicroSA software program 1) to perform the spectrum analysis of the cyclic oscillations of the economic variables in the nonlinear dynamic economic system, including the discrete-time signals and the continuous-time signals; 2) to make the computer modeling and to forecast the business cycles for a) the central banks with the purpose to make the strategic decisions on the monetary policies, financial stability policies, and b) the commercial/investment banks with the aim to make the business decisions on the minimum capital allocation, countercyclical capital buffer creation, and capital investments ECE James Cook University Townsville Australia, Kharkov Ukraine.
Quantum Physics, Quantum Electronics, Quantum Computing:

621. Planck M 1900a Über eine Verbesserung der Wienschen Spektralgleichung On an improvement of Wien's equation for the spectrum *Verhandlungen der Deutschen Physikalischen Gesellschaft* 2 pp 202 – 204
 http://archive.org/stream/verhandlungende01goog#page/n212/mode/2up .

 http://archive.org/stream/verhandlungende01goog#page/n246/mode/2up .

 http://adsabs.harvard.edu/abs/1900AnP...306..719P ,
 https://dx.doi.org/10.1002%2Fandp.19003060410 .

 http://adsabs.harvard.edu/abs/1900AnP...306...69P ,
 https://dx.doi.org/10.1002%2Fandp.19003060105 .

 http://adsabs.harvard.edu/abs/1901AnP...309..553P ,
 https://dx.doi.org/10.1002%2Fandp.19013090310 ,

626. Planck M 1903 Treatise on thermodynamics *Longmans, Green & Co* London UK
 http://archive.org/stream/treatiseonthermo00planuoft#page/n7/mode/2up ,
 http://openlibrary.org/books/OL7246691M .

627. Planck M 1906 Vorlesungen über die Theorie der Wärmestrahlung *JA Barth* Leipzig Germany
 http://lccn.loc.gov/07004527 .

628. Planck M 1914 The theory of heat radiation 2nd edition *P Blakiston’s Son & Co*
 http://openlibrary.org/books/OL7154661M .

 http://adsabs.harvard.edu/abs/1943NW.....31..153P ,

64
http://onlinelibrary.wiley.com/doi/10.1002/andp.19053221004/pdf,
http://adsabs.harvard.edu/abs/1905AnP...322..891E,
http://dx.doi.org/10.1002%2Fandp.19053221004.

632. Einstein A 1917 Zur Quantentheorie der Strahlung On the quantum mechanics of radiation Physikalische Zeitschrift (in German) 18 pp 121 – 128
http://adsabs.harvard.edu/abs/1917PhyZ...18..121E.

http://echo.mpiwg-berlin.mpg.de/MPIWG:DRQK5WYB.

http://journals.aps.org/pr/pdf/10.1103/PhysRev.47.777,
http://adsabs.harvard.edu/abs/1935PhRv...47..777E,
https://dx.doi.org/10.1103%2FPhysRev.47.777.

http://www.cond-mat.physik.uni-mainz.de/~oettel/ws10/bks_PhilMag_47_785_1924.pdf,
https://dx.doi.org/10.1080%2F14786442408565262.

638. de Broglie L 1926 Ondes et mouvements Waves and motions Gauthier-Villars Paris France.

639. de Broglie L 1927 Rapport au 5e Conseil de Physique Solvay Brussels Belgium.

640. de Broglie L 1928 La mécanique ondulatoire Wave mechanics Gauthier-Villars Paris France.
 https://www.worldcat.org/oclc/1871779.

642. Compton A; Allison S K 1935 X-Rays in theory and experiment *D Van Nostrand Company Inc* New York USA
 https://www.worldcat.org/oclc/853654.

643. Schrödinger E 1926 Quantisierung als Eigenwertproblem *Annalen der Phys* 384 (4) pp 273 – 376
 http://onlinelibrary.wiley.com/doi/10.1002/andp.192638440404/pdf,
 http://adsabs.harvard.edu/abs/1926AnP...384..361S,
 https://dx.doi.org/10.1002%2Fandp.1926384404.

644. Fermi E 1934 Radioattività indotta da bombardamento di neutroni *La Ricerca scientifica* 1 (5) p 283 (in Italian)

 http://adsabs.harvard.edu/abs/1934RSPSA.146..483F,
 https://dx.doi.org/10.1098%2Frspa.1934.0168.

646. Townes Ch 1939 Concentration of the heavy isotope of carbon and measurement of its nuclear spin *PhD thesis* Caltech California USA
 http://thesis.library.caltech.edu/4202/.

 http://adsabs.harvard.edu/abs/1955PhRv...99.1264G,
 https://dx.doi.org/10.1103%2FPhysRev.99.1264.

 http://adsabs.harvard.edu/abs/1956PhRv..102.1308S,
 https://dx.doi.org/10.1103%2FPhysRev.102.1308.

650. Townes Ch H 1964 Nobel Prize in Physics Stockholm Sweden
651. Townes Ch H 1966 Obtaining of coherent radiation with help of atoms and molecules *Uspekhi Fizitcheskikh Nauk (UFN)* vol 88 no 3.

652. Townes Ch H 1969 Quantum electronics and technical progress *Uspekhi Fizitcheskikh Nauk (UFN)* vol 98 no 5.

668. Schawlow A, Townes Ch 1958 Infrared and optical masers *Physical Review* 112 (6) p 1940

670. Schawlow A 1964 Nobel Prize in Physics Stockholm Sweden

676. Basov N G 1964 Nobel Prize in Physics Stockholm Sweden

686. Mygind J 1997 Private communications on the new sources of noise in the single electron transistors *Department of Physics* Technical University of Denmark Lyngby Denmark.

Wave Function in Schrödinger Quantum Mechanical Wave Equation in Quantum Mechanics:

726. Laloe F 2012 Do we really understand quantum mechanics *Cambridge University Press*

727. Rylov Y A 2015 What is the wave function and why is it used in quantum mechanics?
pp 1 – 18

728. Wikipedia 2015i Erwin Schrödinger *Wikipedia* USA

729. Wikipedia 2015j Schrödinger equation *Wikipedia* USA

Continuous Time Signal, Analog Signals, Discrete Time Signal, Digital Signals, Spectrum of Signals, Electromagnetic Field, Gravitation Field, Calibrating Field, Information Field Theories in Physics and Engineering Sciences:

730. Maxwell J C 1890 Introductory lecture on experimental physics in *Scientific papers of J C Maxwell* Niven W D (editor) vols 1, 2 Cambridge UK.

731. Walsh J L 1923a A closed set of normal orthogonal functions *American J Math* 45
pp 5 – 24.

732. Walsh J L 1923b A property of Haar’s system of orthogonal functions *Math Ann* 90
p 3845.

733. Wikipedia 2015d Joseph L Walsh *Wikipedia* USA

734. Gabor D 1946 Theory of communication Part 1 The analysis of information *J Inst Elect Eng* 93
pp 429 – 441.

735. Shannon C E 1948 A mathematical theory of communication *Bell System Technical Journal* vol 27
pp 379 – 423, 623 – 656
http://cm.bell-labs.com/cm/ms/what/shannonday/paper.html.

736. Bose R C, Shrikhande S S 1959 A note on a result in the theory of code construction
Information and Control 2 (2) pp 183 – 194 doi:10.1016/S0019-9958(59)90376-6
CiteSeerX: 10.1.1.154.2879
http://dx.doi.org/10.1016%2FS0019-9958%2859%2990376-6

http://dx.doi.org/10.1109%2FT-C.1972.223524 .

760. Koren I 2001 Computer arithmetic algorithms *A K Peters Ltd* Natick MA USA.