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Abstract

This paper considers the design of a stated choice experiment intended

to measure the marginal rate of substitution (MRS) between cost and an

attribute such as time using a conventional logit model. Focusing the exper-

imental design on some target MRS will bias estimates towards that value.

The paper shows why this happens. The resulting estimated MRS can then

be manipulated by adapting the target MRS in the experimental design.
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1 Introduction

This paper considers a stated choice experiment designed to measure the marginal

rate of substitution (MRS) between cost and another attribute of the choice alter-

natives. We present a case where the design is centered on some target MRS and

where the MRS is estimated by applying a conventional logit model. We demon-

strate that if the random individual response heterogeneity is mainly driven by

heterogeneity of the MRS rather than by response errors, then the estimated MRS

will tend to be biased towards the target. This bias hinges on misspecification of

the logit model, which has constant marginal utilities and additive random resid-

uals. Thus, this bias will tend to confirm the target MRS and may thus not be

informative about consumer preferences.

Seasoned choice experiment designers probably know this already. The ob-

jective of this paper is to make clear how the mechanism works and to make this

insight more widely accessible.

Stated choice experiments are used within a range of applied fields of eco-

nomics, including energy, transportation, health, tourism, agricultural and envi-

ronmental economics. They are also used by consultants in a variety of contexts

and in marketing. The mechanism explored in this paper may not only be present

in stated choice data, but also when the MRS is estimated on revealed preference

data.

The mechanism described in the present paper should not be confused with

other sources of bias on the MRS inferred from stated choice data. The choice

experiment can influence the output for a number of reasons. Many cognitive

processes are at play when people make decisions, typically simplified by various

decision rules, heuristics, implying that the experimental design can influence the

result (Hensher, 2014; Leong and Hensher, 2012). There are empirical (Bliemer

and Rose, 2011) and theoretical indications (Burgess and Street, 2005; Sandor

and Wedel, 2005) that attribute levels and the order of them within the experi-

ment influence output (see Rose and Bliemer, 2014, for a review). De Borger and

Fosgerau (2008) and Hess et al. (2008) show that preference asymmetries such as

different valuation of gains or losses, and reference effects influence respondent’s

stated choices, with De Borger and Fosgerau (2008) linking these phenomena to

prospect theory (Tversky and Kahneman, 1991). In particular, the value of time

from stated choice experiments has been found to depend on the size and sign of

the attribute differences between the alternatives. A commonly found sign effect

is that gains are valued less than losses; this is called loss aversion. Size effects

refer to cases where the estimated MRS is found to depend on the size of the at-

tribute difference between alternatives (e.g., Mackie et al., 2001; Hultkrantz and

Mortazavi, 2001; Bates and Whelan, 2001; Fosgerau, 2006). A commonly found

size effect is that small time savings are valued less per minute than large time
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savings.

Adaptive design techniques can introduce bias in the estimated MRS through

yet another mechanism, namely that attribute levels and unobserved heterogene-

ity in the respondents preferences become correlated (Bradley and Daly, 1993).

Adaptive designs then lead to a self-imposed endogeneity problem, violating the

statistical assumptions underlying standard models, and making subsequent sta-

tistical inference invalid.

There is evidence that stated choices are sometimes subject to hypothetical

bias (Harrison, 2014). In the context of risky choices, nonlinearities regard-

ing attitudes and perceptions of risks imply that the design of the experiment in

terms of risk levels and presentation of those influence the choices (Bates et al.,

2001; Liu and Polak, 2007; Borjesson and Eliasson, 2011; Loomes and Blackburn,

2014).These other potential sources of bias are not in focus in this paper.

The mechanism we discuss in the present paper relates to the boundary value

design approach (Fowkes and Wardman, 1988). The idea of this design approach

is to choose boundary or trade-off values within a range where the analyst think the

MRS distrubution is located. Fowkes and Wardman point out that the boundary

values should cover a reasonable range of potential variation in taste and uncer-

tainty, but that it is often desirable to have them closer together in the range where

the actual values are expected to be located. An implication of our results is that

the boundary value approach should be avoided, since it runs the risk of biasing

the estimated MRS toward the chosen boundary values. Moreover, it is not suited

to models that account for preference heterogeneity.

A remedy to avoid the bias arising from the misspecification of the logit model

is to explore the error structure of the data, using non-parametric techniques,

before defining a parametric model. If such analysis indicates heterogeneity in

the MRS, the parametric model should allow for heterogeneity in the MRS. The

choice of parametric distribution for the MRS is crucial and should be tested (Fos-

gerau and Bierlaire, 2007; Fosgerau and Mabit, 2013).

To estimate the distribution of the MRS, a key condition is that the full dis-

tribution of the MRS is uncovered by the data. If this condition is not met, then

the estimates of the mean and other moments of the MRS distribution have to rely

on assumptions about the shape of the distribution in the range where it cannot

be identified by the data. Such assumptions are hard to verify. Fosgerau (2006)

shows that when the tail of the MRS distribution is not revealed, then sthe choice

of parametric distributions can result in arbitrarily high estimates of the mean

MRS. The resulting estimated of the mean MRS will depend on the parts of the

distribution that are extrapolated outside the range of data.

The paper is organized as follows. Section 2 describes the experimental con-

text and choice generating process assumed when applying the standard logit

model. Section 3 describes a different choice generating process, governed by
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the random MRS model, and describes the mechanism that tends to bias the esti-

mated MRS. Section 4 describes the experimental design used in the simulation

exercise in section 5. Section 6 uses part of the Danish value of time data to

empirically validate the theoretical predictions of section 3. Section 7 concludes.

2 Choice setup and the model to estimate

The context of a trip is used for concreteness. The alternatives can be different

routes by some mode of transportation, for example; section 6 uses data concern-

ing rail trips. Each subject is asked to choose between two alternatives for a trip

and each route is characterized by an associated monetary cost and a travel time.

This setting can be used to reveal the subjects’ rate of substitution between

travel time and cost. By design, one route will be faster but also more expensive

than the other. With everything else being equal, subjects reveal through their

choices whether their willingness to pay for the time saving associated with the

faster route is greater or smaller than the cost difference between the two routes.

The canonical model for this situation is the logit model with the founda-

tion in the theory of consumer demand developed by McFadden (1974). The

conventional and widely used specification of the binary logit model in this set-

ting uses indirect utilities for the two alternatives that are linear indices vij =
αcij+βtij+γ1{j=2}+εij , where subscript i indexes individuals, j = 1, 2 indexes

choice alternatives, cij is the travel cost for individual i in alternative j with cor-

responding marginal utility α, tij is the travel time with corresponding marginal

utility β, γ is a constant specific to alternative 2 and εij are i.i.d. extreme value

type 1 random residuals. The marginal utilities α, β are expected to be negative.

Each individual chooses the alternative yielding the highest indirect utility. Then

the probability that alternative 1 is chosen is

pi1 =
eαci1+βti1

eαci1+βti1 + eαci2+βti2+γ

=
1

1 + eα∆ci+β∆ti+γ
, (1)

where ∆ci = ci2 − ci1 and ∆ti = ti2 − ti1. The marginal rate of substitution

between time and cost in this model is β/α.

This model can be extended in various ways. The most common are to interact

parameters with individual characteristics, to apply nonlinear transformations to

the cost and time variables or to use random parameter specifications (McFadden

and Train, 2000). Here we shall stick with the most basic specification in order to

gain maximal intuition.
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Figure 1 shows the shape of the logit probability p1 as a function of (∆c,∆t).
In the quadrant shown, alternative 1 has a lower travel cost but a longer travel

time than alternative 2 (∆ci is positive and ∆ti is negative). In the light gray

area in the upper left corner the probability of choosing the cheaper alternative

1 is high (ranging from 0.8 to 1). In the darker area in lower right corner the

probability is low (ranging from 0 to 0.2). The point of the figure is to show that

the probability is constant on parallel straight lines in the (∆c,∆t)-plane. From

the logit probability (1) we see that constant p1 implies that α∆c+β∆t+ γ = C,

where C is a constant given by probability p1. This implies ∆c = C − γ − β

α
∆t,

which shows that the equiprobability lines have the constant slope −β/α.

Keeping the ratio −β/α fixed, the distance between equiprobability lines de-

creases as α and β increase in absolute value. This is easily seen on the vertical

∆c-axis in the figure, along which ∆t = 0. The distance between the equiproba-

bility lines equals ∆C
α

, where∆C is a function of the difference in probability be-

tween the lines (∆p1) which is 0.2 in the figure. Hence, a larger α, implies a larger

distance between the lines. On the ∆t-axis the distance between the equiproba-

bility lines equals ∆C
β

.

The equiprobability lines can be shifted perpendicularly by changing γ. The

probability traces out a logistic distribution in the direction perpendicular to the

equiprobability lines.

Fitting the logit model to responses to (∆c,∆t) by estimating (α, β, γ) amounts

to determining the best slope−β/α of equiprobability lines, determining the scale

of (α, β) to match the distance between equiprobability lines and determining γ
to match the location of the equiprobability lines.

3 A more realistic data generating process

When fitting the standard logit model described in the previous section to data,

the modeler makes the assumption that all the response heterogeneity in the data

arises from response error and none from variation in the MRS. To illustrate how

the logit model may bias the result if this assumption does not hold, we continue

by making the assumption in the other extreme: that all the response heterogeneity

in the data arises from variation in MRS and none of it arises from response error.

We assume that this data is the result of the choice generation process ruled by the

random MRS model proposed by Cameron and James (1987).

In the random MRS model, individuals each have a MRS wi, which has some

absolutely continuous population distribution Φ. Individual i evaluates alterna-

tives with the generalized cost cij + witij and chooses the alternative with the

least generalized cost. Assuming ∆ti 6= 0, the probability that alternative 1 is
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Figure 1: Probabilities in the logit model
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chosen by individual i is

p̂i1 = P (ci1 + witi1 < ci2 + witi2)

= P (−wi∆ti < ∆ci)

=





Φ
(
−∆ci
∆ti

)
∆ti < 0

1− Φ
(
−∆ci
∆ti

)
∆ti > 0

(2)

The difference between this model and (1) is that all response heterogeneity

here is captured by wi, while there is no ε added to capture random error.

This model is similar to the transfer price model of Hensher Hensher (1976)

, which assumes that cu + TP − ca = a0 + a1(tu − ta), where c is travel, t
is travel time, u indicates the usual mode, a indicates alternative mode, and the

transfer price TP is defined as ’the amount of cost change that would have to

occur in the usual mode journey for the individual to consider an alternative mode

of transport’.

Figure 2 shows the probability that alternative 1 is chosen against (∆c,∆t),
using as example a lognormal distribution for Φ. From (2), we have that ∆ci =
−C∆ti, where C is constant for a given probability. Hence, the probability is

constant on rays from the origin in (∆c,∆t)-space as illustrated in the figure.

From (2) we also see that the slope of the equiprobability lines increases in p1
in the quadrant shown in the figure (where ∆ti < 0). The equiprobability lines

have a large slope in the light area in the upper left corner where the probability

of choosing the alternative 1 is high (ranging from 0.8 to 1). In the dark gray area

in the lower right corner, where the probability is low (ranging from 0 to 0.2), the

equiprobability lines have smaller slope.

Previous studies suggest that the random MRS model is a better description

of the true data generating process than the logit model (1): Fosgerau (2007) and

Borjesson et al. (2012) use nonparametric techniques to distinguish between the

logit and the random MRS choice generating processes, with data from the Danish

and the Swedish national value of time studies, respectively. Both studies find

clear evidence in favor of the random MRS model. A part of the Danish dataset is

used in section 6.

4 A bad experimental design

The objective of the present paper is not to explore the pros and cons of the many

different SP design techniques that exist. It is merely to show what happens if

the trade-offs in the data are centered around a target MRS and the standard logit

model is estimated even if the random MRS model describes the data better. So we
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Figure 2: Probabilities in the random MRS model
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shall see what happens when a data generating process that really is the random

MRS model of Section 3 meets a modeler who has the logit model of Section 2 in

mind. This is the core insight of this paper.

Say that the experimental designer assumes a constant MRS across the popu-

lation and has a target MRS in mind, denoted ŵ. He1 may first select time differ-

ences ∆ti from some range. The range would be chosen to yield time differences

that are noticeable and that subjects can accept as being realistic. Next, he may

select corresponding values of cost differences∆ci that are near −ŵ∆ti, but with

an equal mix of values that are larger and smaller such that the design has points

(∆ci,∆ti) that are centered on the ray with slope −ŵ. A common rationale for

such a design strategy is that it should ensure that the MRS −β/α (assumed con-

stant by the designer) is estimated with high precision provided it is close to ŵ.

Having collected responses to this design, the final point in this methodology is to

fit a logit model as in (1) to these data.

Under the maintained and plausible assumption that the main source of het-

erogeneity is actually random MRS with some distribution, the expected response

will be similar to Figure 2. By design, there will be only data near the target ray

and the expected response will be roughly constant.

If the sample is sufficiently large, then the estimated logit model (or a similar

model) will approximate this shape. Therefore the estimated logit model will have

constant probability on lines that have slope close to the target MRS and thus the

estimated MRS will be close to the target. This is, of course, extremely prob-

lematic, since the point of the exercise is to estimate the MRS of experimental

subjects and not the target MRS of the experimental designer. The scale of the

coefficients α, β is determined by the slope of the response surface in the perpen-

dicular direction while the constant γ adjusts to match the estimated probability

to the observed.

5 Simulation exercise

The theoretical predictions made in section 2 and section 3 are now validated

in a small simulation exercise. In the simulation exercise we adopt the choice

generation process described in section 3, the random MRS model. We generate

five datasets by applying an experimental design as discussed in section 4. In the

simulation of each of the five data sets we assume a different target MRS ŵ when

generating the experimental design. The standard logit model (1) is then estimated

on the five simulated datasets, such that one MRS estimate is achieved for each

dataset and target MRS.

1We determined the gender of this representative person by flipping a Swedish krona.
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Table 1: Estimation results, simulation data, standard errors in parentheses

Target MRS α β γ Estimated MRS

0.5 -0.246 (0.062) -0.162 (0.037) -0.613 (0.28) 0.662

1 -0.149 (0.026) -0.159 (0.030) 0.174 (0.24) 1.064

2 -0.080 (0.015) -0.175 (0.035) 1.426 (0.28) 2.205

3 -0.068 (0.013) -0.224 (0.043) 2.248 (0.36) 3.292

4 -0.056 (0.012) -0.259 (0.054) 3.022 (0.45) 4.598

More specifically, a choice experiment was designed by first fixing a target

MRS. Time differences ∆ti were sampled from a uniform distribution on [10, 20]
and the cost differences were set to a the target MRS times a random noise term

sampled from a uniform distribution on [0.8, 1.2].
A dataset was then generated where 2000 individuals make one choice each

with an MRS drawn from a standard lognormal distribution. Applying the binary

logit model (1) the MRS is then estimated from the generated dataset. The whole

procedure is then repeated four times assuming different target MRS in the design

of the choice experiment.

Table 1 reports the logit estimation results, including the estimated MRS α/β
corresponding to each of the five target MRS. Evidently, it is possible to generate

estimated MRS that are quite close to the target over a wide range. The parameters

of interest α and β are estimated with good precision, which would not lead one

to suspect problems. This happens even though the model, by construction, is

misspecified.

6 Empirical test

The empirical test uses data from a Danish value of time study (Fosgerau et al.,

2007). The dataset concerns binary choices between train trips differentiated by

travel time and cost. The design was created pivoting around the travel time and

cost of actual train trips undertaken by subjects. Eight choice situations were gen-

erated for each subject by first drawing two absolute travel time differences from

a set. Second, eight MRS were drawn from the interval [3:200] Danish Kroner

(DKK) per hour2, using stratification to ensure that all subjects were presented

with both low and high values. The absolute cost difference was then found for

21 EUR ' 7.5 DKK. The maximum value corresponds to about twice the average after tax

hourly wage in Denmark.
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Table 2: Estimation results, rail data, standard errors in parentheses

MRS Est MRS #obs α β γ LL

[0, 19.5] 24.212 1728 -0.652 (0.044) -15.8 (0.65) -0.0881 (0.029) -935.575

[19.5, 36] 41.726 1689 -0.147 (0.020) -6.14 (0.56) -0.0463 (0.025) -1112.29

[36, 60] 43.293 2122 -0.138 (0.017) -5.98 (0.80) -0.0752 (0.025) -1456.54

[60,∞] 49.536 1868 -0.105 (0.006) -5.18 (0.52) -0.0516 (0.027) -1092.77

each choice situation by multiplying the absolute time difference by the MRS.

Third, the sign of the cost and time differences relative to the reference were de-

termined such that they were opposite and such that each of the four possible

permutations was used twice. The differences were added to the reference to get

the numbers that were presented to subjects on screen. The sequence of choice

situations was randomly scrambled. Travel costs were rounded to the nearest 0.5

DKK. The data have been trimmed prior to analysis by removing the 5% of ob-

servations having the largest journey times and time and cost differences.3

The choice situations in these data have a wide range of implicit MRS. They

can therefore be used to simulate the effect of using a narrower range of MRS

centered on different target MRS. The data are thus split according to quartiles of

the MRS implicit in choice situations and a model is estimated for each quartile.

This simulates designs that are based on different intervals of MRS. The following

table shows the results of estimating binary logit models on these data. The data

in each split are pooled and standard errors are not corrected for repeated obser-

vations. Our interest is just to see how the estimated MRS can be manipulated.

The results in Table 2 show that the estimated MRS does change in the appro-

priate direction as the MRS design interval is changed and that there is a factor

two difference between the highest and the lowest estimated MRS. This shows

that the approach outlined above leads to estimation results that are strongly in-

fluenced by the target MRS. As in the simulation exercise, the precision of the

estimates is good, which does not reveal that the model is misspecified.

The relationship between estimated and target MRS is not as tight as in the

simulation. This is unsurprising since the simulation model was created to pre-

cisely deliver the desired effect.The simulation model, however, is not a perfect

representation of the choice behavior of real subjects, and we do expect that some

response heterogeneity arises from other sources than variation in MRS in real

data.

3This is done to avoid outliers and obtain more robust estimates.
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7 Concluding remarks

There is empirical evidence indicating that a substantial part of the response het-

erogeneity in stated choice experiments arises from variation of the MRS in the

population. That, in combination with an SP design based on a target MRS and

in combination with a misspecified model, will lead to bias. This can be a severe

problem.

We have illustrated the problem in a very simple setting with just two alter-

natives and two attributes and a naive SP design. While this is very simple, it

is close to what is sometimes done, in research and in consultancy projects. Of

course current state-of-the-art design techniques are much more sophisticated, see

Rose and Bliemer (2009) for an overview. We do, however, hope that the intuition

one may gain from the examples we have presented in this paper will be useful

when working with more advanced design methods. It seems to be an open ques-

tion to which extent various types of designs and consequent model estimation are

robust against misspecification.

Extrapolating from our results, it is possible to offer some guidance. One gen-

eral point is that it is a very good idea to perform specification testing of estimated

models. We have seen that it is not sufficient to examine the precision of parame-

ter estimates. It is possible to have quite precise estimates from a model that is

completely misspecified.

In order to be able to do specification testing, it is important that there is suffi-

cient variation in the data that allows potential misspecification to detected. This

provides an argument for SP designs with wide attribute ranges. Wide attribute

ranges are also useful for identification of parameter distributions, where the dis-

tribution of willingness-to-pay parameters is of particular interest. Where the dis-

tribution of a random MRS is of interest, then experimental design should allow

nonparametric identification of that distribution. Our results illustrate the impor-

tance of using SP designs that are robust in the sense that they will allow the

identification of a range of models.

Analysis of SP data often uses the plain logit model similar to (1) as a start-

ing point and elaborates from that. In principle, this model can be generalised

into any other model, for example adding (many) random parameters (McFadden

and Train, 2000). In practice, however, this is never possible since datasets are

always finite and mostly not that large. It is then a better idea to begin from a

parsimonious model that describes the main features of the data. Depending on

the circumstances, this could be a model where the basic source of randomness is

random MRS rather than random noise. Non-parametric tools exist that can assist

in choosing a base model.

Finally, we note that the misspecification issue that we have discussed is not

exclusive to SP but may arise also with revealed preference (RP) data. It is the
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structure of the data that matters, not how they were generated. We note also that

it is not essential that the sign of the random MRS is known, the results in section

3 can be extended to cases where the sign of the random MRS is negative or where

it may attain both positive and negative values.

We hope that these results will inspire further research on SP design and analy-

sis.
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