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Abstract

This paper provides two Bayesian algorithms to efficiently estimate non-linear/non-Gaussian switch-

ing state space models by extending a standard Particle Markov chain Monte Carlo (PMCMC) method.

Instead of iteratively running separate PMCMC steps using conventional approaches, the proposed meth-

ods generate continuous-state and discrete-regime indicator variables together from their joint smoothing

distribution in one Gibbs block. The proposed Bayesian algorithms that are built upon the novel ideas

of ancestor sampling and particle rejuvenation are robust to small numbers of particles and degenerate

state transition equations. Moreover, the algorithms are applicable to any switching state space mod-

els, regardless of the Markovian property. The difficulty in conducting Bayesian model comparisons is

overcome by adopting the Deviance Information Criterion (DIC). For illustration, a regime-dependent

leverage effect in the U.S. stock market is investigated using the newly developed methods. A conven-

tional regime switching stochastic volatility model is generalized to encompass the regime-dependent

leverage effect and is applied to Standard and Poor’s 500 and NASDAQ daily return data. The resulting

Bayesian posterior estimates indicate that the stronger (weaker) financial leverage effect is associated

with a high (low) volatility regime.
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1 Introduction

The dynamics of many economic and financial time series often dramatically change, in association with

important economic events, such as economic policy changes, economic recessions, and financial crises. Since

the seminar article by Hamilton (1989), numerous studies have statistically handled such abrupt changes in

fundamental economic structures. In particular, linear/Gaussian switching state space models (LG-SSSMs)

have been of great use in the economic literature due to their flexibility in encompassing a broad range of

economic models1. However, though LG-SSSMs have been proved to be quite useful in the literature, they

have some drawbacks. Most importantly, they impose linearity and Gaussianity assumptions that are too

restrictive to handle fundamentally non-linear economic variables with non-Gaussian innovations2. On this

ground, it is important to develop an efficient method to estimate the novel class of non-linear/non-Gaussian

switching state space models (NLG-SSSMs), and this paper attempts to achieve this goal by extending the

standard Particle Markov Chain Monte Carlo method3 (PMCMC) by Andrieu et al. (2010).

One of main difficulties in estimating NLG-SSSMs is that latent continuous-state and discrete-regime

indicator variables that drive a dynamic system usually have high dimensions and complex patterns of

dependence. Consequently, posterior distributions of model parameters do not admit closed-form expressions

in most cases, which makes Bayesian inference very difficult, in practice. Conventional Bayesian methods

make use of Metropolis-Hastings and standard Gibbs sampling approaches to mitigate the complex inference

problem. For instance, Flury and Shephard (2011) develop a PMCMC algorithm using a Particle Marginal

Metropolis-Hastings (PMMH) approach and apply it to three popular economic models. Even though their

PMCMC method can be extended for Bayesian inference of NLG-SSSMs, convergence of their sampler will

extremely slow especially without a large number of particles4 . Of cause, one may achieve satisfactory

convergence by increasing the number of particles, which is computationally very demanding for complex

dynamic models. Moreover, since their PMMH algorithm employs random walk proposals in generating

model parameters, it requires to tune variances of the proposals, aiming for a certain acceptance probability.

This can be usually done through trial and error, which is extremely time consuming.

1See Fruhwirth-Schnatter (2006), Kim and Nelson (1999), and Giordani et al. (2007) and references therein.
2Dynamic stochastic general equilibrium (DSGE) models by Smets and Wouters (2007) and An and Schorfheide (2007) and

stochastic volatility (SV) models by Kim et al. (1998) are prominent examples of non-linear/non-Gaussian state space models,

among many others.
3In a PMCMC algorithm, a sequential Monte Carlo method, also known as a particle filter, is applied to numerically

approximate posterior distributions of interest using random samples called particles. The various particle trajectories of latent

state variables form the approximate distributions and are used to construct proposal kernels for an MCMC sampler.
4Pitt et al. (2012) provide detailed analysis of the trade-off between the convergence speed and computational cost of PMMH

algorithms.

1



Nonejad (2014) recently proposed a PMCMC method based on a Gibbs sampling approach to estimate

NLG-SSSMs. The proposed method is implemented by first drawing a continuous state variable, say xt,

given a regime indicator variable st and then drawing the regime indicator variable st without conditioning

on xt in the second step. The second step of the algorithm generates st simply by replacing the true

likelihood with the approximate likelihood using a sequential Monte Carlo (SMC) method to integrate out

xt. However, because the approximation errors generated by a SMC method are completely ignored, the

errors will introduce some bias by propagating through the resulting MCMC sampler.

The problem can be solved by properly combining Particle Marginal Metropolis-Hastings (PMMH) and

Particle Gibbs (PG) methods according to a general PMCMC scheme suggested by Mendes et al. (2014).

More specifically, a PG step is employed to generate xt conditional on st, and then, a separate PMMH step

is performed for posterior simulation on st. One critical shortcoming of this remedy, however, is that the

PMMH step is based on a single-move sampler. Liu et al. (1994) and Scott (2002) theoretically showed

that a single-move sampler produces significantly high autocorrelations among successive posterior draws of

the regime indicator variable and other model parameters in regime switching models. Moreover, Kim and

Kim (2014) empirically showed that a correct stationary distribution is almost never achieved if the regime

indicator variable is generated based on a single-move sampler when the regime indicator variable is very

persistent or has absorbing states.

Song (2014) developed a PMCMC algorithm by exploiting the partially linear structure of a switching

state space model and incorporating Kim’s (1994) approximate filtering and smoothing algorithms. An

efficient PMCMC algorithm is proposed by Whiteley et al. (2010) to estimate linear/Gaussian SSSM.

Note that the empirical models of U.S. stock returns in Section 4 involve fully non-linear transition and

measurement equations. Moreover, the posterior estimates of the transition probabilities for regime changes

indicate that the regime indicator variables are indeed highly persistent. Hence, all the aforementioned

PMCMC schemes are not directly applicable in this article.

One of the main contributions of this paper is developing efficient Bayesian algorithms to estimate NLG-

SSSMs to address the practical problems. For this purpose, I adopt a PG sampling approach for the latent

variables. Because PG sampling does not require an unnecessary accept/reject step, it produces mixing

superior to that obtained using PMMH samplers. The PG algorithms proposed by this article sequentially

generate all the latent variables together from the joint smoothing distribution of xt and st, in contrast to the

conventional approaches, which iteratively run separate PMCMC steps. The joint sampling can be effectively

done in one Gibbs block by exploiting the hierarchical structure of NLG-SSSMs. Properly designed MCMC

kernels in the new approach target the joint posterior distribution. Therefore, the dependence between the
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continuous-state and the discrete-regime indicator variables does not affect the mixing properties of the re-

sulting sampler. Furthermore, the proposed methods can be easily applied to general NLG-SSSMs regardless

of the Markovian property. All necessary MCMC kernels associated with the proposed PG algorithms are

derived for theoretical justification.

The standard PG sampler by Andrieu et al. (2010) is extended to accommodate regime changes in

a non-linear dynamic system. This basic algorithm is treated as a benchmark PG algorithm throughout

this paper. A modified sequence Monte Carlo (SMC) method is derived to incorporate a regime indicator

variable, which targets the joint smoothing distribution of the whole sequence of latent states xt and st.

However, the benchmark PG sampler seriously suffers from poor mixing when it is applied to NLG-SSSM,

as demonstrated in Section 3. This phenomenon is mainly caused by path degeneracy5 . The approximate

joint smoothing distribution obtained with an SMC method is often unreliable, which produces MCMC

output that mixes poorly. In particular, when a dynamic system depends on dramatic regime changes, path

degeneracy becomes a serious issue, as shown by Andrieu et al. (2003) and Driessen and Boers (2005). While

increasing the number of particles can mitigate path degeneracy, it induces huge computation costs because

the modified SMC is to be performed at every MCMC iteration.

Building on the idea of Whiteley (2010), I introduce an alternative PG sampler that is robust to path

degeneracy. In the proposed sampler, I implicitly incorporate additional backward recursion to the modified

SMC method by employing ancestor sampling as described by Lindsten and Schon (2012) and Lindsten et

al. (2014). The ancestor sampling step is designed to increase the number of unique particles by re-shuffling

the previous particle trajectories in an existing particle swarm. The PG with ancestor sampling therefore

significantly improves the approximation of the joint smoothing distribution of xt and st by preventing

path degeneracy. The proposed PG sampler achieves satisfactory mixing with a reasonably small number of

particles.

A main limitation of the proposed PG method is that the values of the continuous-state and discrete-

regime indicator variables are always restricted to the output of the modified SMC method with ancestor

sampling. This restrictive feature eliminates the substantial advantage of the ancestor sampling approach

when a degenerate transition equation6 comprises an NLG-SSSM. Note that the only previous particle

trajectory that consists with a particular future particle is that from which the future particle was originally

generated if an NLG-SSSM contains a degenerate transition equation. This means that re-sampling previous

particle trajectories in the ancestor sampling step is essentially useless because the probability of updating

5Path degeneracy refers to a phenomenon whereby particle genealogies coalesce, or degenerate, to a single path.
6If a transition density associated with a transition equation describes the probability mass function for a low-dimensional

manifold, the transition equation is said to be degenerate.
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the particle trajectories is exactly zero at every time period. In this case, the proposed PG sampler with

ancestor sampling becomes equivalent to the benchmark PG sampler.

To solve this problem, a further advancement to the proposed PG sampler is made by accommodating

particle rejuvenation, as proposed by Lindsten et al. (2014), Carter et al. (2014), and Bunch et al. (2015).

The additional particle rejuvenation step generates new values of the latent variables targeting the joint

smoothing distribution, which allows for more flexibility for the resulting PG sampler. This novel approach

increases the probability of substituting previous particle histories with newly generated values and thus

improving the mixing of the resulting Markov chain, even an NLG-SSSM, with a degenerate transition

equation. It is shown in Section 3 that the PG sampler with particle rejuvenation vastly outperforms the

benchmark PG sampler.

Another goal of this paper is to properly investigate the relationship between volatility and return in the

U.S. stock markets in the presence of regime switching by employing the econometric tool developed. Black

(1976) and Christie (1982) found empirical evidence that volatility tends to rise in response to bad news on

returns but falls in response to good news on returns. This phenomenon is usually explained by the financial

leverage effect7 . Omori et al. (2007) empirically showed that the leverage effect is an important feature

of the U.S. stock market by using stochastic volatility models with leverage. In the stochastic volatility

literature, the leverage effect is often assumed to be constant, including as described in Omori et al. (2007).

Following Bandi and Renò (2012), I allow for a regime-dependent leverage effect in the context of a discrete

time stochastic volatility model. In the proposed stochastic volatility model, the correlation parameter that

captures the leverage effect is specified by a function of the regime specific means of log volatility and regime

changes that are endogenously estimated within a Bayesian framework. Bandi and Renò (2012), in contrast,

arbitrarily chose some deterministic threshold values of the spot volatility to distinguish different regimes in

their parametric models. The empirical model is applied to daily S&P 500 and NASDAQ returns from the

first week of January 1975 to the first week of August 2015. The Bayesian posterior means of the correlation

parameters turn out to be significantly different across high- and low-volatility regimes. In particular, the

Bayesian estimates indicate that the stronger (weaker) leverage effect is associated with a high (low)-volatility

regime. Based on the Deviance Information Criterion (DIC) by Spiegelhalter et al. (2002), it is shown that

the models with the regime-dependent leverage effect are always preferred to those with the constant leverage

effect, regardless of the number of regimes. This empirical result confirms the time-varying leverage effect

in the U.S. stock market described by Bandi and Renò (2012) within the parametric stochastic volatility

models.

7Christie (1982) provides a theoretical justification of leverage effect using a Modigliani/Miller economy.
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The rest of the paper is organized as follows. In Section 2, I introduce model specification and derive

modified sequential Monte Carlo and backward simulation algorithms for a general NLG-SSSM. Section 3

provides details of the proposed PG sampler and illustrates its performance using a simulation study. In

Section 4, I demonstrate the proposed technique on data from the U.S. stock market. Concluding remarks

are provided in Section 5.

2 Model Specification and Particle Filtering-Smoothing

Non-linear/non-Gaussian Switching State-Space Models (NLG-SSSM) are a class of models in which the

structure and the parameters of a non-linear state-space model switch according to discrete latent processes8 .

A state space model consists of the measurement equation F (.) and the transition equation H(.):

yt = Fs0:t(x0:t, ǫt) (1)

xt = Hs0:t(x0:t−1, ut)

where the dynamic system is observed over a time interval t = 1, 2, ..., T ; xt ∈ X is the unobserved state

vector; Yt ∈ Y is the observation vector; x0:t = {x0, x1, ..., xt}, and s0:t = {s0, s1, ..., st}; and ut and ǫt are

identically distributed random variables with zero means and are not serially correlated9 . The properties of

the state space model such as dimensions, functional forms, and model parameters shift over time according

to a set of discrete latent variables s0:t = {s0, s1, ..., st}. The NLG-SSSM is parameterized by unknown

parameters βst
, subject to the discrete latent variable st. The latent variable st follows a K-state first-order

Markov switching process with the following transition probabilities:

p(st = j|st−1 = k) = πkj,

K
∑

j=1

πkj = 1, i, k = 1, 2, ..., K. (2)

The model parameters under K-regimes and the transition probabilities are denoted by θ = {β1, β2, ..., βK, π} ∈

Θ. The hierarchical structure of the non-linear/non-Gaussian SSSM specified by equations (1) and (2) is the

main difference from that of a conventional non-linear/non-Gaussian state-space model with discrete states.

The distributions of the initial states are associated with the prior densities gθ(x0, s0) = gθ(x0|s0)gθ(s0).

The above NLG-SSSM does not possess the Markovian property. Although the measurement and transition

equations often depend on just a few latent states in practice, I adhere to the general model specification

throughout this paper for generality of exposition.

8The class of Switching State-Space Models is also referred to as Jump Markov Systems in the literature.
9The functions F (.) and H(.) can contain additional exogenous variables, but potential exogenous variables are omitted for

notational simplicity.
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Our primary concern is to perform Bayesian inference in an NLG-SSSM. The two sets of latent variables

x0:T = {x0, x1, ..., xT}, s0:T = {s0, s1, ..., sT} and the model parameters θ are treated as unknowns and

jointly estimated based on the posterior density given as:

p(θ, x0:T , s0:T |Y1:T ) ∝

[ T
∏

t=1

fθ(yt|x0:t, s0:t)gθ(xt|x0:t−1, s0:t)gθ(st|st−1)

]

gθ(x0|s0)gθ(s0)π(θ) (3)

where fθ(.) and gθ(.) denote probability densities associated with equations (1) and (2), given θ; π(θ) is the

prior density of θ. Because the posterior is not available in closed form, Bayesian inference is often infeasible

without simulation-based methods.

2.1 Particle Filtering for a Non-linear/Non-Gaussian SSSM

To develop an efficient PMCMC algorithm, it is crucial to sample from the joint smoothing density of

the latent state variables pθ(x0:T , s0:T |y1:T ), where y1:T = {y1, y2, ..., yT}. To obtain the joint smoothing

density, consider the following decomposition of the joint filtering density pθ(x0:t, s0:t|y1:t):

pθ(x0:t, s0:t|y1:t) = pθ(xt, x0:t−1, st, s0:t−1|yt, y1:t−1)

=
pθ(yt, xt, x0:t−1, st, s0:t−1|y1:t−1)

pθ(yt|y1:t−1)

=
fθ(yt|x0:t, s0:t)gθ(xt|x1:t−1, s0:t)gθ(st|st−1)

pθ(yt|y1:t−1)
pθ(x0:t−1, s0:t−1|y1:t−1).

(4)

Equation (4) shows that the joint filtering density can be defined recursively. Except for a few cases

such as linear/Gaussian state space models, the exact joint filtering density cannot be obtained because

pθ(x0:t−1, s0:t−1|y1:t−1) and fθ(yt|y1:t−1) are not analytically tractable.

A sequential importance sampling (SIS) algorithm is developed to recursively approximate pθ(x0:t, s0:t|y1:t)

using random samples called ‘particles’. A set of particles is denoted by {X0:t, S0:t} = {x
(i)
0:t, s

(i)
0:t}

N
i=1, in which

N represents the total number of particles. The N particles are generated from the following importance

distribution in an SIS algorithm:

q(x0:t, s0:t) = q(xt|x0:t−1, s0:t)q(st|x0:t−1, s0:t−1)q(x0:t−1, s0:t−1) (5)

where q(.)’s denote importance densities possibly depending upon the observation sequence y1:t. Usu-

ally, q(x0:t−1, s0:t−1) is numerically approximated by a Dirac measure δ
{x

(i)
0:t−1,s

(i)
0:t−1}

(x0:t−1, s0:t−1) in a

SIS algorithm. The Dirac measure places a unit probability mass on each path in {X0:t−1, S0:t−1} =

{x
(i)
0:t−1, s

(i)
0:t−1}

N
i=1 that has been already generated up to time t − 1. New states {Xt, St} = {x

(i)
t , s

(i)
t }N

i=1

are sequentially generated from q(st|x0:t−1, s0:t−1) and q(xt|x0:t−1, s0:t) conditional on the corresponding
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past sequence {X0:t−1, S0:t−1} = {x
(i)
0:t−1, s

(i)
0:t−1}

N
i=1. By combining the new particles at time t with the old

particle trajectories at time t − 1, we obtain a new set of particle paths {X
(i)
0:t , S

(i)
0:t} = {x

(i)
0:t, s

(i)
0:t}

N
i=1. A

candidate distribution to generate new particles at time t is called an incremental importance distribution.

In practice, the incremental importance distributions q(xt|x0:t−1, s0:t) and q(st|x0:t−1, s0:t−1) in equation

(5) should be well designed to closely approximate the target joint filtering distribution. The simplest

approach is to exploit the transition densities associated with equations (1) and (2) and ignore information

in the observation sequence y1:t:

q(xt|x0:t−1, s0:t) = gθ(xt|x0:t−1, s0:t),

q(st|x0:t−1, s0:t−1) = gθ(st|st−1).
(6)

In the Appendix, the optimal incremental importance distributions are derived, including all relevant infor-

mation to obtain the closest approximation to the target distribution. The optimal incremental importance

distributions can be constructed using a modified unscented Kalman filter10 (UKF) by Andrieu et al. (2003).

However, I confirm via a simulation that the computational costs of sampling from the optimal importance

distributions far exceed its benefits, especially when combined with a PMCMC sampler. Therefore, the

incremental importance distributions in equation (6) are employed in forward filtering for all simulations

and applications throughout this paper.

As an importance distribution is usually not identical to the target distribution, we need to correct the

corresponding approximations by imposing the following importance weights to generated particles:

ω
(i)
t =

pθ(x
(i)
0:t, s

(i)
0:t|y1:t)

q(x
(i)
0:t, s

(i)
0:t)

=
fθ(yt|x

(i)
0:t, s

(i)
0:t)gθ(x

(i)
t |x

(i)
0:t−1, s

(i)
0:t)gθ(s

(i)
t |s

(i)
t−1)

pθ(yt|y1:t−1)q(x
(i)
t |x

(i)
0:t−1, s

(i)
0:t)q(s

(i)
t |x

(i)
0:t−1, s

(i)
0:t−1)

pθ(x
(i)
0:t−1, s

(i)
0:t−1|y1:t−1)

q(x
(i)
0:t−1, s

(i)
0:t−1)

∝
fθ(yt|x

(i)
0:t, s

(i)
0:t)gθ(x

(i)
t |x

(i)
0:t−1, s

(i)
0:t)gθ(s

(i)
t |s

(i)
t−1)

q(x
(i)
t |x

(i)
0:t−1, s

(i)
0:t)q(s

(i)
t |x

(i)
0:t−1, s

(i)
0:t−1)

ω
(i)
t−1.

(7)

The so-called incremental importance weight ω̄
(i)
t is defined as:

ω̄
(i)
t =

fθ(yt|x
(i)
0:t, s

(i)
0:t)gθ(x

(i)
t |x

(i)
0:t−1, s

(i)
0:t)gθ(s

(i)
t |s

(i)
t−1)

q(x
(i)
t |x

(i)
0:t−1, s

(i)
0:t)q(s

(i)
t |x

(i)
0:t−1, s

(i)
0:t−1)

.

10As pointed out by many authors, linear/Gaussian approximation to a general non-linear/non-Gaussian state-space model

through UKF is not accurate when the non-linearity is severe. The approximation errors by UKF quickly accumulate as the

sample size increases. Wan and van der Merwe (2001) therefore suggested using UKF to design the importance distribution of a

particle filter. They also empirically show that the resulting particle filtering algorithm performs well in capturing unobserved

states and estimating model parameters.
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Because the importance weight ω
(i)
t is only proportional to ω̄

(i)
t ω

(i)
t−1 due to the unknown normalizing constant

pθ(yt|y1:t−1), ω̄
(i)
t ω

(i)
t−1 is self-normalized as:

ω̂
(i)
t =

ω̄
(i)
t ω

(i)
t−1

∑N

j=1 ω̄
(j)
t ω

(j)
t−1

which yields our estimate of the importance weight at time t. Additionally, note that the normalizing

constant can be approximated by:

p̂θ(yt|yt−1) =

N
∑

i=1

ω̄
(i)
t ω

(i)
t−1.

A critical problem of the SIS algorithm is weight degeneracy11 . Gordon et al. (1993) originally developed a

standard particle filter to solve weight degeneracy by including a resampling step in which N random particles

{x̃
(i)
0:t, s̃

(i)
0:t}

N
i=1 are re-drawn from the existing particles {x

(i)
0:t, s

(i)
0:t}

N
i=1 according to the normalized importance

weight {ω̂
(i)
t }N

i=1. The additional resampling step replicates particles with high importance weights while

removing particles with low importance weights to prevent weight degeneracy. It is worth mentioning that

the standard particle filter described by Gordon et al. (1993) can be considered a special case of the auxiliary

particle filter of Pitt and Shephard (1999)12. These particle filters are also known as sequential Monte Carlo

(SMC) methods. Because the resampling step allows us to obtain equally weighted particles approximately

distributed from pθ(x0:t, s0:t|y1:t), a new set of weights {ω̃
(i)
t = 1

N
}N

i=1 is assigned to resampled particles

{x̃
(i)
0:t, s̃

(i)
0:t}

N
i=1. The joint smoothing density pθ(x0:T , s0:T |y1:T ) of interest can be obtained by the recursive

structure in equations (4) and (5) as t = T . In what follows, I provide a summary of an SMC algorithm for

NLG-SSSM.

Algorithm 1-1: Sequential Monte Carlo (SMC)

i) Draw {s
(i)
0 }N

i=1 from q(s0) and draw {x
(i)
0 }N

i=1 from q(x0|s
(i)
0 ). Save the normalized importance weights

{ω̂
(i)
0 =

ω̄
(i)
0

P

N
j=1 ω̄

(i)
0

}N
i=1 where ω̄

(i)
0 =

pθ(x
(i)
0 |s

(i)
0 )pθ(s

(i)
0 )

q(x
(i)
0 |s

(i)
0 )q(s

(i)
0 )

.

• Iterate step ii), iii), and vi) for t = 1, 2, ..., T .

ii) Resample N particles {x̃
(i)
0:t−1, s̃

(i)
0:t−1}

N
i=1 from {x

(i)
0:t−1, s

(i)
0:t−1}

N
i=1 with probability {ω̂

(i)
t−1}

N
i=1 and assign

new importance weights {ω̃
(i)
t−1 = 1

N
}N

i=1. Rename the particles {x̃
(i)
0:t−1, s̃

(i)
0:t−1}

N
i=1 into {x

(i)
0:t−1, s

(i)
0:t−1}

N
i=1

and the importance weights {ω̃
(i)
t−1}

N
i=1 into {ω

(i)
t−1}

N
i=1.

11Weight degeneracy is a phenomenon that most of the particles {x
(i)
0:t, s

(i)
0:t}

N

i=1 diverge from their true latent states over time,

increasing the variance of importance weights, and eventually, all but one of the importance weights converge to zero.
12The auxiliary particle filter uses updated importance weights with information on yt+1 in resampling xt and st. However,

this article does not explicitly attempt to implement the auxiliary particle filter due to high computational costs of estimating

NLG-SSSM.
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iii) Draw {s
(i)
t }N

i=1 from g(s
(i)
t |x

(i)
0:t−1, s

(i)
0:t−1) and draw {x

(i)
t }N

i=1 from g(x
(i)
t |x

(i)
0:t−1, s

(i)
0:t). Set {x

(i)
0:t}

N
i=1 =

{x
(i)
0:t−1, x

(i)
t }N

i=1 and {s
(i)
0:t}

N
i=1 = {s

(i)
0:t−1, s

(i)
t }N

i=1.

vi) Calculate the unnormalized weights: ω̄
(i)
t ω̂

(i)
t−1 =

fθ(yt|x
(i)
0:t,s

(i)
0:t)pθ(x

(i)
t |x

(i)
0:t−1,s

(i)
0:t)pθ(s

(i)
t |s

(i)
t−1)

q(x
(i)
t |s

(i)
0:t−1,s

(i)
0:t)q(s

(i)
t |x

(i)
0:t−1,s

(i)
0:t−1)

ω̂
(i)
t−1 and obtain

the normalized weights: ω̂
(i)
t =

ω̄
(i)
t ω̂

(i)
t−1

P

N
j=1 ω̄

(i)
t ω̂

(i)
t−1

.

In the proposed SMC method, the importance sampling is repeatedly operated at each time period to

generate various particle realizations {x
(i)
0:T , s

(i)
0:T }

N
i=1 from pθ(x0:T , s0,T |y1:T ). The target joint smoothing

distribution is approximated by:

pθ(x0:T , s0,T |y1:T ) ≈

N
∑

i=1

ω̂
(i)
T δ

{x
(i)
0:T ,s

(i)
0:T }

(x0:T , s0:T )

where δ
{x

(i)
0:T ,s

(i)
0:T }

(x0:T , s0:T ) places a unit probability mass on each path of {x
(i)
0:T , s

(i)
0:T }

N
i=1. Accordingly, we

draw M particle trajectories from {x
(i)
0:T , s

(i)
0:T }

N
i=1 with the normalized weight {ω̂

(i)
T }N

i=1 to simulate from the

joint smoothing distribution pθ(x0:T , s0,T |y1:T ).

Algorithm 1-2: Forward Filtering for pθ(x0:T , s0:T |y1:T )

• Run Algorithm 1-1 (SMC algorithm) and save the particle set {x
(i)
0:T , s

(i)
0:T }

N
i=1 along with the nor-

malized importance weights {ω̂
(i)
T }N

i=1 at time T .

i) Draw {x̃
(j)
0:T , s̃

(j)
0:T }

M
j=1 from {x

(i)
0:T , s

(i)
0:T }

N
i=1 according to the normalized importance weights {ω̂

(i)
T }N

i=1.

2.2 Backward Smoothing for a Non-linear/Non-Gaussian SSSM

The approximate joint smoothing distribution obtained using an SMC algorithm is often unreliable due

to path degeneracy. For instance, when re-sampling xt and st in the SMC method, we discard many past

trajectories in {x
(i)
0:t, s

(i)
0:t}

N
i=1, decreasing the number of unique particles at each time period. Consequently,

the resulting particles {x
(i)
0:t, s

(i)
0:t}

N
i=1 share just a few common ancestors as t increases. This inevitably leads

to a poor approximation of the joint smoothing distribution pθ(x0:T , s0:T |y1:T ). As regimes change more

frequently or the number of regimes is large, the path degeneracy problem gets worse, as shown by Andrieu

et al. (2003) and Driessen and Boers (2005). Even if an increase in the number of particles can mitigate

path degeneracy, huge computation costs are required for a PMCMC algorithm.

Based on the ideas of Godsill et al.(2004), we can effectively address the problem of path degeneracy by

complementing forward filtering with additional backward smoothing for NLG-SSSM. Consider the following

9



factorization for backward smoothing:

pθ(x0:T , s0:T |y1:T ) = pθ(xT , sT |y1:T )
T−1
∏

t=0

pθ(xt, st|y1:T , xt+1:T , st+1:T ) (8)

Theoretically, the above decomposition suggests that one can sequentially generate xT , sT from pθ(xT , sT |y1:T )

and then xt, st from pθ(xt, st|xt+1:T , st+1:T , y1:T ) for t = T −1, ..., 1, 0. The conditional density at time t can

be decomposed as:

pθ(xt, st|y1:T , xt+1:T , st+1:T ) = pθ(xt, st|y1:t, yt+1:T , xt+1:T , st+1:T )

=
pθ(yt+1:T , xt, st|y1:t, xt+1:T , st+1:T )

pθ(yt+1:T |y1:t, xt+1:T , st+1:T )

∝ pθ(yt+1:T |y1:t, xt:T , st:T )pθ(xt, st|y1:t, xt+1:T , st+1:T )

= pθ(yt+1:T |y1:t, xt:T , st:T )
pθ(xt, xt+1:T , st, st+1:T |y1:t)

pθ(xt+1:T , st+1:T |y1:t)

∝ pθ(yt+1:T |y1:t, xt:T , st:T )pθ(xt:T , st:T |y1:t)

= pθ(yt+1:T |y1:t, xt:T , st:T )gθ(xt+1:T , st+1:T |xt, st)pθ(xt, st|y1:t)

(9)

where pθ(xt+1:T , st+1:T |xt, st) = [
∏T

τ=t gθ(xτ |xt:τ−1, st:τ )]gθ(st+1|st) due to the hierarchical structure of

NLG-SSSM.

As shown in equation (9), the smoothing recursion requires the joint marginal filtering density pθ(xt, st|y1:t).

The SMC algorithm introduced in the previous section can provide a numerical approximation of pθ(xt, st|y1:t)

as a direct application. The joint marginal density pθ(xt, st|y1:t) is given by:

pθ(x0:t, s0:t|y1:t) =
∑

s0:t−1

∫

pθ(x0:t, s0:t|y1:t)dx0:t−1.

In practice, integrating over the all the past states can be easily done by simply discarding {x
(i)
0:t−1, s

(i)
0:t−1}

N
i=1

up to time t− 1 and keeping only {x
(i)
t , s

(i)
t }N

i=1 at time t with the normalized importance weights {ω̂
(i)
t }N

i=1.

The saved particles and importance weights approximate the joint marginal density pθ(xt, st|y1:t):

pθ(xt, st|y1:t) ≈

N
∑

i=1

ω̂
(i)
t δ

{x
(i)
t ,s

(i)
t }

(xt, st)

where δ
{x

(i)
t ,s

(i)
t }

(xt, st) is the Dirac measure and ω̂
(i)
t is the normalized weight attached to particles x

(i)
t and

s
(i)
t .

Particles at time t are updated conditional on xt+1:T and st+1:T according to equation (9) using additional

importance sampling and resampling steps as follows:

pθ(xt, st|xt+1:T , st+1:T , y1:T ) ≈

N
∑

i=1

ω̂
(i)
t|Tδ

{x
(i)
t ,s

(i)
t }

(xt, st). (10)

10



The modified importance weight ω̂
(i)
t|T is defined as:

ω̂
(i)
t|T =

pθ(yt+1:T |y1:t, x
(i)
t:T , s

(i)
t:T )pθ(x

(i)
t+1:T , s

(i)
t+1:T |x

(i)
t , s

(i)
t ) ω̂

(i)
t

∑N

j=1 pθ(yt+1:T |y1:t, x
(j)
t:T , s

(j)
t:T )pθ(x

(j)
t+1:T , s

(j)
t+1:T |x

(j)
t , s

(j)
t ) ω̂

(j)
t

where pθ(xt+1:T , st+1:T |xt, st) = [
∏T

τ=t gθ(xτ |xt:τ−1, st:τ )]gθ(st+1|st). The empirical distribution in equa-

tion (10) is employed to generate particles {x̃
(i)
t , s̃

(i)
t }M

i=1 sequentially backward in time conditional on

{x
(i)
t+1:T , s

(i)
t+1:T }

M
i=1 and y1:T . The following is the summary of the backward simulation for NLG-SSSM.

Algorithm 1-3: Backward Smoothing for pθ(x0:T , s0:T |y1:T )

• Run Algorithm 1-1 (SMC algorithm) and save the particle set {x
(i)
t , s

(i)
t }N

i=1 along with the normal-

ized importance weights {ω̂
(i)
t }N

i=1 for t = 1, 2, ..., T .

i) Draw {x̃T , s̃T } from {x
(i)
T , s

(i)
T }N

i=1 with the normalized importance weights {ω̂
(i)
T }N

i=1.

• Iterate step ii), and iii) for t = T − 1, T − 2, .., 0

ii) Calculate the modified normalized weights ω̂
(i)
t|T

conditional on x̃t+1:T and s̃t+1:T .

iii) Draw x̃t, s̃t from {x
(i)
t , s

(i)
t }N

i=1 according to the modified importance weight {ω̂
(i)
t|T }

N
i=1.

• Repeat step i),ii), and iii) M times and save {x̃
(i)
0:T , s̃

(i)
0:T }

M
i=1.

The backward smoothing algorithm can be operated to generate various particle realizations {x̃
(i)
0:T , s̃

(i)
0:T }

M
i=1

from the joint smoothing distribution pθ(x0:T , s0,T |y1:T ). As briefly discussed in the previous section, the

forward filtering algorithm to approximate pθ(x0:T , s0,T |y1:T ) seriously suffers from path degeneracy. The

backward smoothing algorithm, however, is free from path degeneracy because it exploits al ofl the generated

particles at each time, going backward in time. This superior feature of the backward smoothing algorithm

is the key to successfully developing an efficient PG sampler in the next section.

3 Particle Markov Chain Monte Carlo Methods for a non-linear/non-

Gaussian SSSM

To simulate the posterior distribution p(θ, x0:T , s0:T |y1:T ), one may attempt to alternatively sample θ from

p(θ|x0:T , s0:T , y1:T ), x0:T from p(x0:T |s0:T , θ, y1:T ) and s0:T from p(s0:T |θ, x0:T , y1:T ). While this conventional

Gibbs sampling approach seems straightforward to implement, there are some practical problems due to the

presence of the regime indicator variable.

First, a multi-move sampler is not available for drawing s0:T from p(s0:T |θ, x0:T , y1:T ) when the path

dependence problem is encountered in the transition and measurement equations. Note that the current

11



observation and the continuous state in equation (1) are dependent on the entire sequence of the regime

indicator variable up to time t. As the regime indicator variables are unobservable, we need to integrate

over all possible regime paths when computing the likelihood, which is essential for a multi-move sampler.

However, as the number of possible cases increases exponentially with t, evaluating the likelihood is not

feasible in this case. A single-move sampler provides another option. However, as shown in Liu et al. (1994),

Scott (2002), and Kim and Kim (2015), it is hard to obtain a correct stationary distribution via a single-move

sampler if the regime indicator variable is very persistent or has absorbing states. In Section 2.4, it will be

shown that the proposed PG sampler in this article produces reliable Bayesian estimates and achieves fast

mixing even for an NLG-SSSM with the path dependence feature.

Second, the MCMC transition kernel becomes degenerate when the continuous state and the discrete

regime indicator variables are perfectly correlated. A prominent example is provided by the Bayesian change-

point models in Pesaran et al. (2006) and Koop and Potter (2007). As x0:T is generated in a block conditional

on s0:T and y1:T and then s0:T is generated conditional on x0:T and y1:T , this sampling scheme is degenerate.

This is because xt does not change if st = 0; conversely, if xt is constant, then st is generated to be 0.

All these practical problems are solved by draw x0:T and s0:T from the joint smoothing distribution

p(x0:T , s0:T |y1:T , θ) using Gibbs sampling methods. The main difficulties in deriving a proper Gibbs sampler

are that the joint smoothing distribution shows complex patterns of dependence among the latent variables,

and sampling {x0:T , s0:T } directly from the joint smoothing distribution p(x0:T , s0:T |y1:T , θ) is not possible in

general as a result of non-linearity and non-Gaussianity. I adopt a PG sampling approach to estimate NLG-

SSSM following Andrieu et al. (2010) and illustrate that the proposed PG sampler performs well in various

cases. Like any other Gibbs samplers, the PG sampling method does not require additional accept/reject

steps, which produce mixing properties that are better than those of particle Metropolis-Hastings samplers.

For a valid particle approximation to a Gibbs sampler, I use an artificial target distribution Ψ(.) that

incorporates all of the randomness generated by an SMC method. If the new extended target distribution

Ψ(.) admits the original posterior p(θ, x0:T , s0:T |y1:T ) as a marginal, a valid Gibbs sampler can be designed

by Ψ(.). For this purpose, the particle Gibbs sampler is augmented by auxiliary variables to capture the

additional randomness of an SMC method:

At = {a
(i)
t }N

i=1.

The so-called ancestor index a
(i)
t ∈ {1, 2, ...,N} is the index variable of the ancestor at time t − 1 of i-th

particles {x
(i)
t , s

(i)
t }. For example, if x

(5)
t−1 and s

(5)
t−1 are drawn for x

(i)
t and s

(i)
t in the resampling step of an

SMC method, the index variable yields a
(i)
t = 5. Using the ancestor index, entire particle trajectories are

12



constructed by tracing back to their ancestral lineages recursively:

x
(i)
0:t = {x

(a
(i)
t )

0:t−1, x
(i)
t }, s

(i)
0:t = {s

(a
(i)
t )

0:t−1, s
(i)
t } for i = 1, 2, ..., N.

Now, let K ∈ {1, 2, ...,N} be the index of a fixed reference trajectory. We can keep track of its ancestral

lineage as follows:

x
(K)
0:T = {x

(a
(K)
T

)
0:T−1, x

(K)
T } = {x

(a
(a

(K)
T

)

T−1 )

0:T−2 , x
(a

(K)
T

)
T−1 , x

(K)
T } = ...

s
(K)
0:T = {s

(a
(K)
T

)

0:T−1 , s
(K)
T } = {s

(a
(a

(K)
T

)

T−1 )

0:T−2 , s
(a

(K)
T

)

T−1 , s
(K)
T } = ...

For the fixed reference trajectory, an additional index bt is used for notational simplicity. The index for the

reference trajectory is defined as:

x
(K)
0:T = x

(b0:T )
0:T = {x

(b0)
0 , x

(b1)
1 , ..., x

(bT−1)
T−1 , x

(bT)
T }

s
(K)
0:T = s

(b0:T )
0:T = {s

(b0)
0 , s

(b1)
1 , ..., s

(bT−1)
T−1 , s

(bT )
T }

According to the definition of bt, we can rewrite the index bt in terms of the ancestor index as bt = K for

t = T and bt = a
(bt+1)
t+1 for t = 0, ..., T − 1. The introduced indices are auxiliary variables in an SMC sampler

and will play a key role later in deriving valid MCMC transition kernels. Finally, the remaining latent states

except the reference trajectory are denoted by X
(−b0:T )
0:T and S

(−b0:T )
0:T .

Using the ancestor index variables, the density of the SMC in Section 2.1 is defined as:

Φ(X0:T , S0:T , A1:T |θ) =

N
∏

i=1

q(x
(i)
0 |s

(i)
0 )q(s

(i)
0 )

T
∏

t=1

[ N
∏

i=1

ω̄
(i)
t−1

∑

j ω̄
(j)
t−1

q(x
(i)
t |x

(a
(i)
t )

0:t−1, s
(i)
0:t)q(s

(i)
t |x

(a
(i)
t )

0:t−1, s
(a

(i)
t )

0:t−1)

]

=

N
∏

i=1

q(x
(i)
0 |s

(i)
0 )q(s

(i)
0 )

T
∏

t=1

[ N
∏

i=1

Mθ
t (a

(i)
t , x

(i)
t , s

(i)
t )

]

(12)

in which Mθ
t (a

(i)
t , x

(i)
t , s

(i)
t ) is given as follows:

Mθ
t (a

(i)
t , x

(i)
t , s

(i)
t ) =

ω̄
(i)
t−1

∑

j ω̄
(j)
t−1

q(x
(i)
t |x

(a
(i)
t )

0:t−1, s
(i)
0:t)q(s

(i)
t |x

(a
(i)
t )

0:t−1, s
(a

(i)
t )

0:t−1),

and X0:T = {x
(i)
0:T }

N
i=1; S0:T = {s

(i)
0:T }

N
i=1; A1:T = {a

(i)
1:T}

N
i=1; q(.) denote importance densities that may

depend on the observation sequence y1:t. The unnormalized importance weights in equation (12) are given

as follows:

ω̄
(i)
t =

fθ(yt|x
(i)
0:t, s

(i)
0:t)pθ(x

(i)
t |x

(i)
0:t−1, s

(i)
0:t)pθ(s

(i)
t |s

(i)
t−1)

q(x
(i)
t |x

(i)
0:t−1, s

(i)
0:t)q(s

(i)
t |x

(i)
0:t−1, s

(i)
0:t−1)

.
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I note that the normalized importance weight ω̂
(i)
t =

ω̄
(i)
t ω̂

(i)
t−1

P

j ω̄
(j)
t ω̂

(j)
t−1

can be rewritten as ω̂
(i)
t =

ω̄
(i)
t

P

j ω̄
(j)
t

because

we assign 1
N

to ω̂
(i)
t−1 after resampling. Similarly, we can easily determine the conditional density of the SMC

given a reference trajectory x
(b0:T )
0:T and s

(b0:T )
0:T :

Φ(X
(−b0:T )
0:T ,S

(−b0:T )
0:T , A

(−b1:T )
1:T |θ, x

(b0:T )
0:T , s

(b0:T )
0:T , b0:T )

=
Φ(X0:T , S0:T , A1:T |θ)

q(x
(b0)
0 |s

(b0)
0 )q(s

(b0)
0 )

∏T

t=1

[

ω̄
(bt)
t−1

P

j ω̄
(j)
t−1

q(x
(bt)
t |x

(b0:t−1)
0:t−1 , s

(b0:t)
0:t )q(s

(bt)
t |x

(b0:t−1)
0:t−1 , s

(b0:t−1)
0:t−1 )

]

=

N
∏

i=1
i 6=b0

q(x
(i)
0 |s

(i)
0 )q(s

(i)
0 ) ×

T
∏

t=1

[ N
∏

i=1
i 6=bt

Mθ
t (a

(i)
t , x

(i)
t , s

(i)
t )

]

(13)

The extended target distribution to construct valid MCMC kernels is given by:

Φ(θ, X0:T , S0:T , A1:T , K) ≡ Φ(θ, x
(b0:T )
0:T , s

(b0:T )
0:T , b0:T )Φ(X

(−b0:T )
0:T , S

(−b0:T )
0:T , A

(−b0:T )
1:T |θ, x

(b0:T )
0:T , s

(b0:T )
0:T , b0:T )

≡
1

NT+1
p(θ, x

(b0:T )
0:T , s

(b0:T )
0:T |y1:T )

×

N
∏

i=1
i 6=b0

q(x
(i)
0 |s

(i)
0 )q(s

(i)
0 ) ×

T
∏

t=1

[ N
∏

i=1
i 6=b0

Mθ
t (a

(i)
t , x

(i)
t , s

(i)
t )

]

(14)

where X0:T = {x
(b0:T )
0:T , X

(−b0:T )
0:T }; S0:T = {s

(b0:T )
0:T , S

(−b0:T )
0:T }; K ∈ {1, 2, ..., N} is the index of a reference

trajectory. A particle Gibbs sampler will be developed in this section to estimate NLG-SSSM by targeting the

extended target distribution. The suggested sampling scheme will have p(θ, x0:T , s0:T |y1:T ) as the stationary

distribution by marginalizing over all the auxiliary variables by an SMC algorithm, as shown in Andrieu et

al. (2010).

3.1 Benchmark Particle Gibbs

We are interested in sampling from p(θ, x0:T , s0:T |y1:T ) based on a Particle Gibbs (PG) sampler. The

main difficulty of the Bayesian inference is that the target density has a high-dimensional parameter space

Θ×X(T+1) ×S(T+1). This problem can be alleviated by building a multi-stage Gibbs sampler including the

auxiliary variables as suggested by Andrieu et al. (2010). In what follows, I provide details of the benchmark

PG sampler to estimate NLG-SSSM.

The first step of the benchmark PG sampler is to sample the index K of a reference trajectory. This is

exactly the same as drawing one particle trajectory from all generated particle trajectories using an SMC
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method. The conditional distribution for the index K is given by:

Φ(K|θ, X0:T , S0:T , A1:T ) =
w̄

(K)
T

∑N

j=1 w̄
(j)
T

(15)

based on the following Proposition 1.

Proposition 1 The conditional Φ(K|θ, X0:T , S0:T , A1:T ) under the extended target Φ(θ, X0:T , S0:T , A1:T , K)

is proportional to the importance weight at T :

Φ(K|θ, X0:T , S0:T , A1:T ) ∝ w̄
(K)
T .

The proof of Proposition 1 is given in the Appendix. Based on Proposition 1, it is straightforward to sample

a reference index K from its conditional in equation (15).

In the second step of the standard PG sampler, we sample θ based on a partially collapsed Gibbs step,

which means that some of the random variables are marginalized before conditioning. It does not violate the

invariance of the corresponding sampler. For more details, see van Dyk and Park (2008). From constructing

he extended target distribution, the conditional distribution for θ is given by:

Φ(θ|x
(b0:T )
0:T , s

(b0:T )
0:T , b0:T ) = p(θ|x

(b0:T )
0:T , s

(b0:T )
0:T , y1:T ) (16)

Note that in practice, sampling θ from p(θ|x0:T , s0:T , y1:T ) is much simpler than sampling θ conditional

only on the observations y1:T
13. I assume that sampling θ from its conditional distribution under Φ(.) is

straightforward by either using conjugate priors or Metropolis-Hastings given x
(b0:T )
0:T , s

(b0:T )
0:T .

The conditional distribution for the third step of the benchmark PG sampler is given in equation (13).

More specifically, we generate N −1 particle trajectories conditional on θ and a reference trajectory from the

conditional distribution Φ(X
(−b0:T )
0:T , S

(−b0:T )
0:T , A

(−b1:T )
1:T |θ, x

(b0:T )
0:T , s

(b0:T )
0:T , b0:T ). To achieve this goal, we employ

a so-called conditional SMC algorithm. Simply speaking, the conditional SMC method is an algorithm that

generates N−1 particles with the reference trajectory {x
(b0:T )
0:T , s

(b0:T )
0:T } fixed throughout the sampling process.

Before introducing the conditional SMC sampler, it is worth mentioning that the actual values of the indices

b0:T are not important et all, and therefore, we can assign an alternative sequence to b0:T = {N, N, ..., N}

as a matter of convenience. This is because the index sequence b0:T is just a convenient tool to keep track

of the past latent variables in entire particle sets. The following algorithm is the conditional SMC method

used in the benchmark PG sampler.

13For instance, the transition probabilities for st can be easily generated from the beta distributions when using conjugate

priors. When non-conjugate priors are used or conditional posteriors do not belong to well-known distributions for some

parameters, we can employ Metropolis-Hastings algorithms within a Particle Gibbs sampling approach conditional on the

latent states.
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Algorithm 2-1: Conditional Sequential Monte Carlo (CSMC)

i) Draw {s
(i)
0 }N−1

i=1 from q(s0) and draw {x
(i)
0 }N−1

i=1 from q(x0|s
(i)
0 ) sequentially. Set {x

(N)
0 , s

(N)
0 } =

{x
(b0)
0 , s

(b0)
0 }. Save the normalized importance weights {ω̂

(i)
0 =

ω̄
(i)
0

P

N
j=1 ω̄

(i)
0

}N
i=1 where ω̄

(i)
0 =

pθ(x
(i)
0 |s

(i)
0 )pθ(s

(i)
0 )

q(x
(i)
0 |s

(i)
0 )q(s

(i)
0 )

.

• Iterate step ii), iii), and vi) for t = 1, 2, ..., T .

ii) Draw ancestor indices {a
(i)
t }N−1

i=1 with probability {ω̂
(i)
t−1}

N
i=1. Draw {s

(i)
t }N−1

i=1 from g(s
(i)
t |x

(a
(i)
t )

0:t−1, s
(a

(i)
t )

0:t−1)

and {x
(i)
t }N−1

i=1 from g(x
(i)
t |x

(a
(i)
t )

0:t−1, s
(a

(i)
t )

0:t−1, s
(i)
t ) sequentially.

iii) Set a
(N)
t = N and {x

(N)
t , s

(N)
t } = {x

(bt)
t , s

(bt)
t }. New trajectories are set by x

(i)
0:t = {x

(a
(i)
t )

0:t−1, x
(i)
t } and

s
(i)
0:t = {s

(a
(i)
t )

0:t−1, s
(i)
t } for i = 1, 2, ...,N .

vi) Calculate the unnormalized weights: ω̄
(i)
t =

fθ(yt|x
(i)
0:t,s

(i)
0:t,y1:t−1)pθ(x

(i)
t |x

(a
(i)
t

)

0:t−1 ,s
(i)
0:t)pθ(s

(i)
t |s

(a
(i)
t

)

t−1 )

q(x
(i)
t |x

(a
(i)
t )

0:t−1 ,s
(i)
0:t)q(s

(i)
t |x

(a
(i)
t )

0:t−1 ,s
(a

(i)
t )

0:t−1 )

.

and obtain the normalized weights: ω̂
(i)
t =

ω̄
(i)
t

P

N
j=1 ω̄

(i)
t

for i = 1, 2, ...,N .

Note that sampling ancestor indices {a
(i)
t }N−1

i=1 in step ii) is equivalent to resampling N − 1 particles

{x̃
(i)
t−1, s̃

(i)
t−1}

N−1
i=1 from {x

(i)
t−1, s

(i)
t−1}

N
i=1 with probability {ω̂

(i)
t−1}

N
i=1. This completes the benchmark PG sam-

pler for NLG-SSSM. The summary of the benchmark PG algorithm is given by the following.

Algorithm 2-2: Benchmark PG for Non-linear/non-Gaussian SSSM

Choose θ arbitrarily and draw {X0:T , S0:T , A1:T } by running Algorithm 1-1 (SMC algorithm):

{X0:T , S0:T , A1:T } ∼ Φ(X0:T , S0:T , A1:T |θ)

• Iterate step i), step ii), and step iii) for r = 1, 2, ..., R.

i) Draw K ∈ {1, 2, ...,N} (a reference trajectory) from: K ∼ Φ(K|θ, X0:T , S0:T , A1:T )

And set {x
(b0:T )
0:T , s

(b0:T )
0:T } = {x

(K)
0:T , s

(K)
0:T }.

ii) Draw θ from: θ ∼ Φ(θ|x
(b0:T )
0:T , s

(b0:T )
0:T , b0:T )

iii) Draw {X
(−b0:T )
0:T , S

(−b0:T )
0:T , A

(−b1:T )
1:T } by running Algorithm 2-1 (CSMC algorithm) from:

{X
(−b0:T )
0:T , S

(−b0:T )
0:T , A

(−b1:T )
1:T } ∼ Φ(X

(−b0:T )
0:T , S

(−b0:T )
0:T , A

(−b1:T )
1:T |θ, x

(b0:T )
0:T , s

(b0:T )
0:T , b0:T )

And set X0:T = {X
(−b0:T )
0:T , x

(b0:T )
0:T }, S0:T = {S

(−b0:T )
0:T , s

(b0:T )
0:T }, A1:T = {A

(−b1:T )
1:T , b0:T−1}.

The variable K represents the index of a reference particle trajectory; R is the total number of MCMC

iterations.

Many papers such as those by Whiteley (2010), Fredrik and Schon (2012), and Whiteley et al. (2011)

recognize that a standard PG sampler seriously suffers from poor mixing due to path degeneracy. The same

problem arises in the benchmark PG sampler when it is applied to NLG-SSSM. To address the issue of path

degeneracy and poor mixing, I introduce an alternative PG sampler in the next section.
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3.2 Proposed Particle Gibbs

An SCM algorithm with additional backward simulation substantially alleviates path degeneracy by

shuffling particle trajectories backward in time. A PG sampler with ancestor sampling (PGAS) developed

by Fredrik and Schon (2012) and Lindsten et al. (2014) implicitly incorporates the backward simulation by

updating particle trajectories forward in time without adding explicit backward recursion. In this section, I

propose a PGAS sampler for NLG-SSSM that targets the extended target distribution in equation (14) to

resolve path degeneracy and improve mixing of the resulting MCMC chain.

The main difference between the proposed PG sampler and the benchmark PG sampler is in the treat-

ment of the index variables b0:T−1 = {b0, b1, ..., bT−1} of a reference trajectory. While the benchmark PG

sampler keeps a particular reference trajectory fixed at each MCMC iteration, the proposed PG sampler

constructs a new particle trajectory by drawing the ancestor indices bt−1(= abt

t ) at each time. For in-

stance, if bt−1 = 5 is drawn in a supplementary procedure, we accordingly set a new reference trajectory as

x
(b0:t)
1:t = {x

(b0:t−2)
1:t−2 , x

(bt−1=5)
t−1 , x

(bt)
t }. This additional step to update the indices b0:T−1 has a similar effect to

that of backward recursion, which will be shown in Proposition 2.

The first and second steps of the proposed PGAS sampler are exactly the same as those of the benchmark

PG sampler. The index of a new reference trajectory K is sampled among {X0:T , S0:T , A1:T }, which contains

a previously accepted reference trajectory. Based on Proposition1 , K is drawn according to the importance

weight ω̄
(i)
T at T . As before, we assume that sampling θ is straightforward based on the conditional in

equation (16).

Using partially collapsed Gibbs steps and the extended target density in equation (14), we have the

following conditional to generate particles given a reference trajectory for t = 0:

Φ(X
(−b0)
0 , S

(−b0)
0 |θ, x

(b0:T )
0:T , s

(b0:T )
0:T , b0:T ) =

N
∏

i=1
i 6=b0

q(x
(i)
0 |s

(i)
0 )q(s

(i)
0 ) (17)

and, for t = 1, 2, ..., T

Φ(X
(−bt)
t ,S

(−bt)
t , A

(−bt)
t |θ, X0:t−1, S0:t−1, A1:t−1, x

(bt:T )
t:T , s

(bt:T )
t:T , bt−1:T )

= Φ(X
(−bt)
t , S

(−bt)
t , A

(−bt)
t |θ, X

(−b0:t−1)
0:t−1 , S

(−b0:t−1)
0:t−1 , A

(−b1:t−1)
1:t−1 , x

(b0:T )
0:T , s

(b0:T )
0:T , b0:T )

=
Φ(X

(−b0:t)
0:t , S

(−b0:t)
0:t , A

(−b0:t)
0:t |θ, x

(b0:T )
0:T , s

(b0:T )
0:T , b0:T )

Φ(X
(−b0:t−1)
0:t−1 , S

(−b0:t−1)
0:t−1 , A

(−b0:t−1)
0:t−1 |θ, x

(b0:T )
0:T , s

(b0:T )
0:T , b0:T )

=

N
∏

i=1
i 6=bt

ω̄
(i)
t−1

∑

j ω̄
(j)
t−1

q(x
(i)
t |x

(a
(i)
t )

0:t−1, s
(a

(i)
t )

0:t−1, s
(i)
t )q(s

(i)
t |x

(a
(i)
t )

0:t−1, s
(a

(i)
t )

0:t−1) =

N
∏

i=1
i 6=bt

Mθ
t (a

(i)
t , x

(i)
t , s

(i)
t )

(18)

17



Equations (17) and (18) show that we can draw {X
(−b0)
0 , S

(−b0)
0 } using q(x

(i)
0 |s

(i)
0 )q(s

(i)
0 ) and then draw

{X
(−b0:t)
0:t , S

(−b0:t)
0:t , A

(−b1:t)
1:t } from the combination of the resampling weight and the importance distributions,

ω̄
(i)
t−1

P

j
ω̄

(j)
t−1

q(x
(i)
t |x

(a
(i)
t )

0:t−1, s
(a

(i)
t )

0:t−1, s
(i)
t )q(s

(i)
t |x

(a
(i)
t )

0:t−1, s
(a

(i)
t )

0:t−1). Lastly, the transition kernel to produce a new ancestor

index bt−1(= abt

t ) is given in Proposition 2.

Proposition 2 The conditional Φ(bt−1|θ, X0:t−1, S0:t−1, A0:t−1, x
(bt:T )
t:T , s

(bt:T )
t:T , bt:T ) under the extended target

Φ(θ, X0:T , S0:T , A1:T , K) is proportional to the following backward kernel at t − 1:

Φ(bt−1|θ,X0:t−1, S0:t−1, A0:t−1, x
(bt:T )
t:T , s

(bt:T )
t:T , bt:T )

∝

[ T
∏

l=t

fθ(yl|x
(b0:l)
0:l , s

(b0:l)
0:l )gθ(xl|x

(b0:l−1)
0:l−1 , s

(b0:l)
0:l )gθ(s

(bl)
l |s

(bl−1)
l−1 )

]

ω̂
(bt−1)
t−1

Thus, we draw bt−1 (= a
(bt)
t ) ∈ {1, 2, ..., N} with the following probability:

ω̃
(i)
t−1|T =

ω̄
(i)
t−1|T

∑N

j=1 ω̄
(j)
t−1|T

(19)

where

ω̄
(i)
t−1|T

=

[ T
∏

l=t

fθ(yl |x
(b0:l)
0:l , s

(b0:l)
0:l )gθ(xl|x

(b0:l−1)
0:l−1 , s

(b0:l)
0:l )gθ(s

(bl)
l |s

(bl−1)
l−1 )

]

ω̂
(bt−1)
t−1 .

Appendix provides the proof of Proposition 2. I note, in a special case, that the backward kernel in Proposition

2 is equivalent to that of backward simulation in equation (9).

Lemma 1 For a Markov state space model, the conditional Φ(bt−1|θ, X0:t−1, S0:t−1, A0:t−1, x
(bt:T )
t:T , s

(bt:T )
t:T , bt:T )

is proportional to the backward kernel used in backward simulation:

Φ(bt−1|θ,X0:t−1, S0:t−1, A0:t−1, x
(bt:T)
t:T , s

(bt:T )
t:T , bt:T )

∝ fθ(yt|x
(bt)
t , s

(bt)
t )gθ(xt|x

(bt−1)
t−1 , s

(bt)
t )gθ(s

(bt)
t |s

(bt−1)
t−1 )ω̂

(bt−1)
t−1

The proof of Lemma 1 is straightforward using the special dependence structure of a Markov state space

model; I therefore skip the proof for brevity. Based on the derived MCMC kernels, a modified conditional

SMC with ancestor sampling is introduced, which is crucial for implementing the proposed PG sampler with

ancestor sampling.

Algorithm 3-1: CSMC with Ancestor Sampling (CSMC-AS)

i) Draw {s
(i)
0 }N−1

i=1 from q(s0) and draw {x
(i)
0 }N−1

i=1 from q(x0|s
(i)
0 ) sequentially. Set {x

(N)
0 , s

(N)
0 } =

{x
(b0)
0 , s

(b0)
0 }. Save the normalized importance weights {ω̂

(i)
0 =

ω̄
(i)
0

P

N
j=1 ω̄

(i)
0

}N
i=1 where ω̄

(i)
0 =

gθ(x
(i)
0 |s

(i)
0 )gθ(s

(i)
0 )

q(x
(i)
0 |s

(i)
0 )q(s

(i)
0 )

.
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• Iterate step ii), iii), and vi) for t = 1, 2, ..., T .

ii) Draw ancestor indices {a
(i)
t }N−1

i=1 according to probability {ω̂
(i)
t−1}

N
i=1. Draw {s

(i)
t }N−1

i=1 from q(s
(i)
t |x

(a
(i)
t )

0:t−1, s
(a

(i)
t )

0:t−1)

and {x
(i)
t }N−1

i=1 from q(x
(i)
t |x

(a
(i)
t )

0:t−1, s
(a

(i)
t )

0:t−1, s
(i)
t ) sequentially.

iii) Draw bt−1(= a
(bt)
t ) with probability ω̃

(i)
t−1|T in equation (19). Set a

(N)
t = bt−1 and {x

(N)
t , s

(N)
t } =

{x
(bt)
t , s

(bt)
t }. The trajectories are set by x

(i)
0:t = {x

(a
(i)
t )

0:t−1, x
(i)
t } and s

(i)
0:t = {s

(a
(i)
t )

0:t−1, s
(i)
t } for i = 1, 2, ..., N .

vi) Calculate the unnormalized weights ω̄
(i)
t =

fθ(yt|x
(i)
0:t,s

(i)
0:t)gθ(x

(i)
t |x

(a
(i)
t

)

0:t−1 ,s
(i)
0:t)gθ(s

(i)
t |s

(a
(i)
t

)

t−1 )

q(x
(i)
t |x

(a
(i)
t

)

0:t−1 ,s
(i)
0:t)q(s

(i)
t |x

(a
(i)
t

)

0:t−1 ,s
(a

(i)
t

)

0:t−1 )

.

and obtain the normalized weights: ω̂
(i)
t =

ω̄
(i)
t

P

N
j=1 ω̄

(i)
t

for i = 1, 2, ...,N .

Note that sampling ancestor indices {a
(i)
t }N−1

i=1 in step ii) is equivalent to resampling N − 1 particles

{x̃
(i)
t−1, s̃

(i)
t−1}

N−1
i=1 from {x

(i)
t−1, s

(i)
t−1}

N
i=1 with probability {ω̂

(i)
t−1}

N
i=1, as before. The summary of the proposed

PG with ancestor sampling to estimate NLG-SSSM is given below.

Algorithm 3-2: PGAS for a Non-linear/non-Gaussian SSSM

Choose θ arbitrarily and draw {X0:T , S0:T , A1:T } by running Algorithm 1-1 (SMC algorithm) from:

{X0:T , S0:T , A1:T } ∼ Φ(X0:T , S0:T , A1:T |θ)

• Iterate step i), step ii), and step iii) for r = 1, 2, ..., R.

i) Draw K ∈ {1, 2, ...,N} (a reference trajectory) from: K ∼ Φ(K|θ, X0:T , S0:T , A1:T )

And set {x
(b0:T )
0:T , s

(b0:T )
0:T } = {x

(K)
0:T , s

(K)
0:T }.

ii) Draw θ from: θ ∼ Φ(θ|x
(b0:T )
0:T , s

(b0:T )
0:T , b0:T )

iii) Draw {X
(−b0)
0 , S

(−b0)
0 } and {bt−1(= a

(bt)
t ), X

(−bt)
t , S

(−bt)
t , A

(−bt)
t } for t = 1,2,...,T by running Algorithm

3-1 (CSMC-AS algorithm).

where X0:t = {x
(b0:t)
0:t , X

(−b0:t)
0:t }; S0:t = {s

(b0:t)
0:t , S

(−b0:t)
0:t }; A1:t = {A

(−b1:t)
1:t , b0:t−1}; K represents the index of a

reference particle trajectory; R is the total number of MCMC iterations. The proposed PGAS sampler allows

a reference trajectory to change its ancestry as the conditional SMC with ancestor sampling is operated in

the forward direction. This approach is more robust to path degeneracy and enables a faster-mixing MCMC

kernel than the benchmark PG sampler.

Though the ancestor sampling technique helps avoid path degeneracy by shuffling the ancestor indices

and reducing the correlation between the particle trajectories, it cannot be applied to an NLG-SSSM with

a degenerate transition equation. In such a model, the only previous particle trajectory that contains

a particular future particle is that from which the future particle was originally generated. Hence, the

probability of updating previous particle trajectories in ancestor sampling is always zero at every time
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period unless new values of the latent states are jointly generated along with the corresponding ancestor

indices.

3.3 Proposed Particle Gibbs for a Degenerate Transition Equation

Building upon the idea of Lindsten et al. (2014), Carter et al. (2014) 14, and Bunch et al. (2015), I

incorporate particle rejuvenation to estimate degenerate NLG-SSSM. The main idea of the new algorithm

is to generates new values of latent states {xt, st} along with ancestor indices bt−1(= a
(bt)
t ) of a reference

trajectory at each MCMC iteration. In the proposed scheme, new values of the latent states are not restricted

to the output of a SMC procedure and are also drawn with more relevant information than the conditional

SMC method. More specifically, additional importance distributions are designed to approximate a properly

chosen backward kernel to simultaneously sample an ancestor index and new values for the associated latent

states {xt, st}. Unlike the PGAS sampler in Algorithm 5-2, information on the future states {xt+1:T , st+1:T }

is incorporated in drawing {xt, st}.

All of the MCMC steps are the same as those of Algorithm 5-2, except fir step iii). The following

proposition provides a justification for using the backward kernel to jointly generate new values of the latent

states and the ancestor index.

Proposition 3 The conditional Φ(x
(bt)
t , s

(bt)
t , bt−1|θ, X0:t−1, S0:t−1, A0:t−1, x

(bt:T)
t:T , s

(bt:T )
t:T , bt:T ) under the ex-

tended target Φ(θ, X0:T , S0:T , A1:T , K) is proportional to the backward kernel at t − 1:

Φ(x
(bt)
t , s

(bt)
t , bt−1|θ,X0:t−1, S0:t−1, A0:t−1, x

(bt+1:T )
t+1:T , s

(bt+1:T )
t+1:T , bt:T )

∝

[ T
∏

l=t

fθ(yl|x
(b0:l)
0:l , s

(b0:l)
0:l )gθ(xl|x

(b0:l−1)
0:l−1 , s

(b0:l)
0:l )gθ(s

(bl)
l |s

(bl−1)
l−1 )

]

ω̂
(bt−1)
t−1

The proof of Proposition 3 is given in the Appendix, which is similar to the proof of Proposition 2. Analo-

gously, it can be easily verified that the latent states of the initial period are sampled based on the following

MCMC kernel.

Φ(x
(b0)
0 , s

(b0)
0 |θ,x

(b1:T )
1:T , s

(b1:T )
1:T , b0:T )

∝

[ T
∏

l=1

fθ(yl|x
(b0:l)
0:l , s

(b0:l)
0:l )gθ(xl|x

(b0:l−1)
0:l−1 , s

(b0:l)
0:l )gθ(s

(bl)
l |s

(bl−1)
l−1 )

]

gθ(x
(b0)
0 |s

(b0)
0 )gθ(s

(b0)
0 )

We can also see that the backward kernel in Proposition 3 is simplified for a Markov state space model.

14Carter et al. (2014) developed PMCMC samplers with a strategy similar to the particle rejuvenation technique. However,

they specified a different extended target distribution to implement their methods and thus modified conditional SMC methods.

Following Bunch et al. (2015), I do not change the original extended target distribution.
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Lemma 2 For a Markov state space model, the conditional Φ(x
(bt)
t , s

(bt)
t , bt−1|θ, X0:t−1, S0:t−1, A0:t−1, x

(bt:T )
t:T , s

(bt:T )
t:T , bt:T )

under the extended target Φ(θ, X0:T , S0:T , A1:T , K) is proportional to the backward kernel used in backward

simulation:

Φ(x
(bt)
t ,s

(bt)
t , bt−1|θ, X0:t−1, S0:t−1, A0:t−1, x

(bt:T )
t:T , s

(bt:T )
t:T , bt:T )

∝ gθ(x
(bt+1)
t+1 |x

(bt)
t , s

(bt+1)
t+1 )gθ(s

(bt+1)
t+1 |s

(bt)
t )fθ(yt|x

(bt)
t , s

(bt)
t )gθ(xt|x

(bt−1)
t−1 , s

(bt)
t )gθ(s

(bt)
t |s

(bt−1)
t−1 )ω̂

(bt−1)
t−1

I skip the derivation of Lemma 2 for brevity. The MCMC procedure associated with the above backward

kernel involves partially collapsed Gibbs steps and leaves Φ(.) invariant, as before. While the backward

kernel in Proposition 2 resembles that of Proposition 3, proper methods to implement those steps are quite

different. The normalizing constant of the backward kernel in Proposition 2 is easily calculated based on

equation (19) in that we sample only the ancestor index bt−1 of a reference trajectory. On the other hand, the

normalizing constant of the backward kernel in Proposition 3 to jointly draw {xt, st, bt−1} is not analytically

tractable in general.

We can handle this problem by constructing MCMC kernels, leaving the conditional distributions in

Proposition 3 (for t = 0 and for t = 1, 2, ..., T ) invariant. For instance, a conditional importance sampling

(CIS) technique can be applied to approximate the conditional distributions at each time period. Consider

the following importance distribution:

W (xt, st, bt−1) = Ψ(xt, st|x
∗(bt)
t , s

∗(bt)
t , x

(bt−1)
0:t−1 , s

(bt−1)
0:t−1 , x

(bt+1:T )
t+1:T , s

(bt+1:T )
t+1:T )

ν
(bt−1)
t−1

∑N

j ν
(j)
t−1

for t = 1, 2, ..., T (20)

where {x
∗(bt)
t , s

∗(bt)
t } are the previously accepted MCMC draws and {xt, st, bt−1} are newly generated draws.

Similarly, the importance distribution for t = 0 and t = T is properly designed by modifying equation (20).

The above importance distribution indicates that a new ancestor index bt−1 of a reference trajectory is

first sampled from a proposal weight v
(bt−1)
t−1 , and new values of the latent states {xt, st} are then generated

conditional on the previously accepted {x
∗(bt)
t , s

∗(bt)
t }, the new past reference trajectory {x

(bt−1)
0:t−1 , s

(bt−1)
0:t−1 } up

to time t−1 and all the future reference trajectory {x
(bt+1:T )
t+1:T , s

(bt+1:T )
t+1:T }. The summary is given below for the

CIS algorithm in which C denotes the total number of particles used.

Algorithm 4-1: Conditional Importance Sampling (CIS) at time t

i) Set {x
(C)
t , s

(C)
t } = {x

(bt)
t , s

(bt)
t }.

• Iterate step ii) and step iii) for c = 1, 2, ..., C − 1.

ii) Draw ancestor index b
(c)
t−1 ∈ {1, 2, ...,N} with probability

ν
(bt−1)

t−1
P

N
j ν

(j)
t−1

.

Set x
(b

(c)
t−1)

0:t−1 = {x
(b0:t−2)
0:t−2 , x

(b
(c)
t−1)

t−1 } , s
(b

(c)
t−1)

0:t−1 = {s
(b0:t−2)
0:t−2 , s

(b
(c)
t−1)

t−1 }.
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iii) Draw {x
(c)
t , x

(c)
t } from Ψ(xt, st|x

(bt)
t , s

(bt)
t , x

(b
(c)
t−1)

0:t−1 , s
(b

(c)
t−1)

0:t−1 , x
(bt+1:T )
t+1:T , s

(bt+1:T )
t+1:T ).

Set x
(c)
0:T = {x

(b
(c)
t−1)

0:t−1 , x
(c)
t , x

(bt+1:T )
t+1:T } and s

(c)
0:T = {s

(b
(c)
t−1)

0:t−1 , s
(c)
t , s

(bt+1:T )
t+1:T } .

vi) Calculate the unnormalized weights for c = 1, 2, ..., C:

τ̄
(c)
t =

[

∏T

l=t fθ(yl|x
(c)
0:l , s

(c)
0:l )pθ(xl|x

(c)
0:l−1, s

(c)
0:l )pθ(s

(c)
l |s

(c)
l−1)

]

ω̂
(b

(c)
t−1)

t−1

Ψ(x
(c)
t , s

(c)
t |x

(bt)
t , s

(bt)
t , x

(b
(c)
t−1)

0:t−1 , s
(b

(c)
t−1)

0:t−1 , x
(bt+1:T )
t+1:T , s

(bt+1:T )
t+1:T )ν

(b
(c)
t−1)

t−1

Obtain the normalized weights: τ̂
(c)
t =

τ̄
(c)
t

P

C
j=1 τ̄

(j)
t

.

v) Draw: {xt, st, bt−1} from {x
(c)
t , s

(c)
t , b

(c)
t−1}

C
c=1 with probability τ̂

(c)
t .

We can perform conditional importance sampling with large C to enhance the mixing property in exchange

for increasing computational costs. Using the derivation by Andrieu et al. (2010), it can be shown that the

CIS admits the target Markov kernel in Proposition 3 as a stationary distribution. Indeed, any valid MCMC

kernel such as the Metropolis-Hastings kernel can be used to approximate the target kernel. As a proper

importance distribution in the CIS is dependent on the structure of a state space model of interest, we will

discuss this issue based on a particular SSSM in the next section.

Now, the details of step iii) of the proposed PG sampler with particle rejuvenation are introduced in the

following algorithm with the CIS scheme.

Algorithm 4-2: CSMC with Particle Rejuvenation (CSMC-PR)

i) Draw {s
(i)
0 }N−1

i=1 from the q(s0) and draw {x
(i)
0 }N−1

i=1 from q(x0|s
(i)
0 ) sequentially.

ii) Draw {x
(b0)
0 , s

(b0)
0 } from the Markov kernel W (.) in equation (20) and set {x

(N)
0 , s

(N)
0 } = {x

(b0)
0 , s

(b0)
0 }.

Save the normalized importance weights {ω̂
(i)
0 =

ω̄
(i)
0

P

N
j=1 ω̄

(i)
0

}N
i=1 where ω̄

(i)
0 =

gθ(x
(i)
0 |s

(i)
0 )gθ(s

(i)
0 )

q(x
(i)
0 |s

(i)
0 )q(s

(i)
0 )

.

• Iterate step iii), vi), and v) for t = 1, 2, ..., T .

iii) Draw ancestor indices {a
(i)
t }N−1

i=1 with probability {ω̂
(i)
t−1}

N
i=1. Draw {s

(i)
t }N−1

i=1 from q(s
(i)
t |x

(a
(i)
t )

0:t−1, s
(a

(i)
t )

0:t−1)

and {x
(i)
t }N−1

i=1 from q(x
(i)
t |x

(a
(i)
t )

0:t−1, s
(a

(i)
t )

0:t−1, s
(i)
t ) sequentially.

iii) Run Algorithm 4-1 (CIS algorithm) to draw {x
(bt)
t , s

(bt)
t , bt−1}. Set a

(N)
t = bt−1 and {x

(N)
t , s

(N)
t } =

{x
(bt)
t , s

(bt)
t }. New particle trajectories are set by x

(i)
0:t = {x

(a
(i)
t )

0:t−1, x
(i)
t } and s

(i)
0:t = {s

(a
(i)
t )

0:t−1, s
(i)
t } for

i = 1, 2, ..., N .

vi) Calculate the unnormalized weights: ω̄
(i)
t =

fθ(yt|x
(i)
0:t,s

(i)
0:t,y1:t−1)gθ(x

(i)
t |x

(a
(i)
t

)

0:t−1 ,s
(i)
0:t)gθ(s

(i)
t |s

(a
(i)
t

)

t−1 )

q(x
(i)
t |x

(a
(i)
t

)

0:t−1 ,s
(i)
0:t)q(s

(i)
t |x

(a
(i)
t

)

0:t−1 ,s
(a

(i)
t

)

0:t−1 )

.

Obtain the normalized weights: ω̂
(i)
t =

ω̄
(i)
t

P

N
j=1 ω̄

(i)
t

for i = 1, 2, ...,N .
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The proposed algorithm is an extension of the PG algorithm by Lindsten et al. (2014) to estimate NLG-

SSSM. The uniform ergodicity for the suggested algorithm can be demonstrated using the work of Lindsten

et al. (2014). The summary of the proposed PG sampler for degenerate NLG-SSSM is provided below.

Algorithm 4-3: PGAS with Particle Rejuvenation for a Non-linear/non-Gaussian SSSM

Choose θ arbitrarily and draw {X0:T , S0:T , A1:T } by running Algorithm 1-1 (SMC algorithm) from:

{X0:T , S0:T , A1:T } ∼ Φ(X0:T , S0:T , A1:T |θ)

• Iterate step i), step ii), and step iii) for r = 1, 2, ..., R.

i) Draw K ∈ {1, 2, ...,N} (a reference trajectory) from: K ∼ Φ(K|θ, X0:T , S0:T , A1:T )

And set {x
(b0:T )
0:T , s

(b0:T )
0:T } = {x

(K)
0:T , s

(K)
0:T }.

ii) Draw θ from: θ ∼ Φ(θ|x
(b0:T )
0:T , s

(b0:T )
0:T , b0:T )

iii) Draw {X
(−b0)
0 , S

(−b0)
0 } and {bt−1(= a

(bt)
t ), x

(bt)
t , s

(bt)
t }, {X

(−bt)
t , S

(−bt)
t , A

(−bt)
t } for t = 1,2,...,T by run-

ning Algorithm 4-2 (CSMC-PR algorithm).

where X0:t = {x
(b0:t)
0:t , x

(−b0:t)
0:t }; S0:t = {s

(b0:t)
0:t , s

(−b0:t)
0:t }; A1:t = {A

(−b1:t)
1:t , b0:t−1}; K represents the index of a

reference particle trajectory; and R is the total number of MCMC iterations.

3.4 Implementation of Proposed Particle Gibbs

In practice, the extended target density in (14) and associated backwards kernels can be simplified ac-

cording to the structure of a particular NLG-SSSM of interest. This section provides more details on how the

suggested PG algorithms are implemented using two specific examples. First, consider the regime switching

stochastic volatility (SV) model by So et al. (1998): Example 1

yt = µ + exp(
xt−1

2
)ǫt, ǫt ∼ N(0, 1) (21)

xt = δst
+ φ(xt−1 − δst−1 ) + ut, ut ∼ N(0, σ2

u)

where yt is the equity return at time t; xt−1 is the latent log-volatility at time t; and E[ǫtut] = 0. The current

position of xt is given by a function of xt−1, st, and st−1 in the transition equation, and the observation yt

is given by a nonlinear function of xt−1 in the measurement equation. Because xt and yt depend only on a

few past states in such a model structure, the backward kernel in Proposition 2 reduces to:

Φ(bt−1|θ, X0:t−1, S0:t−1, A0:t−1, x
(bt:T)
t:T , s

(bt:T )
t:T , bt:T )

∝

[

fθ(yt|x
(bt−1)
t−1 )gθ(x

(bt)
t |x

(bt−1)
t−1 , s

(bt)
t , s

(bt−1)
t−1 )gθ(s

(bt)
t |s

(bt−1)
t−1 )

]

ω̂
(bt−1)
t−1

∝ ω
(bt−1)
t−1|T .

(22)
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Therefore, bt−1 ∈ {1, 2, ..., N} is drawn with the normalized importance weight in (19).

Similarly, new values of the latent states and their ancestor indices are jointly simulated by step iii) of

Algorithm 4-3 using the following MCMC kernel:

Φ(x
(bt)
t , s

(bt)
t , bt−1|θ, X0:t−1, S0:t−1, A0:t−1, x

(bt+1:T )
t+1:T , s

(bt+1:T )
t+1:T , bt:T )

∝

[

fθ(yt+1 |x
(bt)
t )gθ(x

(bt+1)
t+1 |x

(bt)
t , s

(bt+1)
t+1 , s

(bt)
t )gθ(s

(bt+1)
t+1 |s

(bt)
t )

× fθ(yt|x
(bt−1)
t−1 )gθ(x

(bt)
t |x

(bt−1)
t−1 , s

(bt)
t , s

(bt−1)
t−1 )gθ(s

(bt)
t |s

(bt−1)
t−1 )

]

ω̂
(bt−1)
t−1

(23)

Before implementing the CIS procedure in Algorithm 4-1, we should construct importance distributions that

target the kernel in (23). First, the importance weight τ̄
(i)
t is simplified by using ν

(i)
t−1 = ω̂

(i)
t−1 and the easily

calculable likelihood function fθ(yt|x
(bt−1)
t−1 ) in drawing bt−1. Thus, the ancestor index b

(c)
t−1 ∈ {1, 2, ...,N} of

a reference trajectory is drawn with the updated ω̂
(i)
t−1 as:

b
(c)
t−1 ∼

fθ(yt|x
(bt−1)
t−1 )ω̂

(bt−1)
t−1

∑N

j=1 fθ(yt|x
(j)
t−1)ω̂

(j)
t−1

.

New values of the latent states are efficiently generated using their transition densities:

s
(c)
t ∼ pθ(st|s

(bt+1)
t+1 , s

(b
(c)
t−1)

t−1 ) =
pθ(s

(bt+1)
t+1 |st)pθ(st|s

(b
(c)
t−1)

t−1 )

∑

st
pθ(s

(bt+1)
t+1 |st)pθ(st|s

(b
(c)
t−1)

t−1 )

and

x
(c)
t ∼ pθ(xt|x

(bt+1)
t+1 , x

(b
(c)
t−1)

t−1 s
(bt+1)
t+1 , s

(c)
t , s

(b
(c)
t−1)

t−1 ) ∝ pθ(x
(bt+1)
t+1 |xt, s

(bt+1)
t+1 , s

(c)
t )pθ(xt|x

(b
(c)
t−1)

t−1 , s
(c)
t , s

(b
(c)
t−1)

t−1 )

It is shown in Appendix that x
(c)
t follows N(µt, Vt) where Vt =

σ2
u

(1+φ2) ; µt = δst
+ φ

(1+φ2) ((xt+1 − δst+1) +

(xt−1 − δst−1)). The unnormalized importance weight τ̂ (c) in the CIS algorithm therefore is given by:

τ̂ (c) = fθ(yt+1|x
(c)
t )[

∑

st

pθ(s
(bt+1)
t+1 |st)pθ(st|s

(b
(c)
t−1)

t−1 )]pθ(x
(bt+1)
t+1 |x

(b
(c)
t−1)

t−1 s
(bt+1)
t+1 , s

(c)
t , s

(b
(c)
t−1)

t−1 ).

After sampling necessary random samples, the most likely particle set and the corresponding ancestor index

are accepted with the importance weight τ̂ (c).

Another example of a NLG-SSSM is given as follows:

Example 2

y1,t = β0 + β1ft + β2f
2
t + ǫ1,t ǫt ∼ N(0, σ2

ǫ1
)

y2,t = α0 + ft + ǫ2,t ǫ2,t ∼ N(0, σ2
ǫ2

) (24)
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ft = φft + ut − γut−1, ut ∼ N(0, σ2
st

)

where y1,t and y2,t are the two observable variables; ft is the latent continuous state variable; and st presents

the latent regime-indicator variable. The presented model can be considered a simple non-linear dynamic

factor model15 similar to ones considered by Bai and Ng (2008) and Ludvigson and Ng (2007). They discuss

the use of squared factors in improving forecasting equations. Another important feature of the model in

(24) is that the common factor ft is allowed to have an infinite moving average (MA) representation with

both autoregressive (AR) and MA parts, as shown by Forni et al. (2000). The proposed model also can be

considered as a simple reduced-form term structure model in which an observable variable y2,t contains a

macro factor ft for a bond yield y1,t; see Song (2014) for more details.

Bayesian inference in Example 2 is quite complex mainly due to the ARMA structure of ft. The recursive

nature of the ARMA process makes ft dependent upon the whole sequence of the latent regime indicator

variable up to time t, which is referred to as the path dependence problem. The problem is partly solved by

casting the ARMA process into a state space representation to recover the Markovian nature of ft and st:




ft

ut



 =





φ −γ

0 0









ft−1

ut−1



 +





1

1



 ut, ut ∼ N(0, σ2
st

).

(xt = Fxt−1 + Gut, ut ∼ N(0, σ2
st

))

However, note that the transition equation becomes degenerate as rank(G) < dim(xt) in the matrix form.

As a result, the probability of updating the ancestor of a particular future state is exactly zero when the

proposed PG sampler with ancestor sampling is applied. In fact, this type of degenerate model is pretty

common in many applications, as many macro variables possess ARMA dynamics.

The aforementioned problem can be easily circumvented by employing the PGAS sampler with particle

rejuvenation in Algorithm 4-3. Given the model structure in (24), we have the MCMC kernel for step iii) of

Algorithm 4-3:

Φ(x
(bt)
t , s

(bt)
t , bt−1|θ, X0:t−1, S0:t−1, A0:t−1, x

(bt+1:T )
t+1:T , s

(bt+1:T )
t+1:T , bt:T )

∝

[

gθ(x
(bt+1)
t+1 |x

(bt)
t , s

(bt)
t )gθ(s

(bt+1)
t+1 |s

(bt)
t )fθ(yt|x

(bt)
t )gθ(x

(bt)
t |x

(bt−1)
t−1 , s

(bt)
t )gθ(s

(bt)
t |s

(bt−1)
t−1 )

]

ω̂
(bt−1)
t−1

(25)

The importance distributions used in the CIS procedure are constructed to approximate the kernel in (25).

The importance weight τ̄
(i)
t is set by ν

(i)
t−1 = ω̂

(i)
t−1 in drawing bt−1:

b
(c)
t−1 ∼

ω̂
(bt−1)
t−1

∑N

j=1 ω̂
(j)
t−1

.

15Admittedly, the proposed PG sampler is not suitable for the case in which a substantially large number of observable

variables share common factors. I leave this analysis for future work.

25



By making use of the transition densities, new values of the latent states are generated as follows:

s
(c)
t ∼ pθ(st|s

(bt+1)
t+1 , s

(b
(c)
t−1)

t−1 ) =
pθ(s

(bt+1)
t+1 |st)pθ(st|s

(b
(c)
t−1)

t−1 )

∑

st
pθ(s

(bt+1)
t+1 |st)pθ(st|s

(b
(c)
t−1)

t−1 )

and

x
(c)
t ∼ pθ(xt|x

(b
(c)
t−1)

t−1 , s
(c)
t )

For the degenerate transition equation, the future state xt+1 cannot be incorporated in the importance

distribution of xt as the inverse of the covariance matrix Σst
= σ2

st
GG′ does not exist. Thus, the importance

weight is defined by:

τ̂ (c) = fθ(yt|x
(c)
t )[

∑

st

pθ(s
(bt+1)
t+1 |st)pθ(st|s

(b
(c)
t−1)

t−1 )]pθ(x
(bt+1)
t+1 |x

(c)
t , s

(bt+1)
t+1 )

The proposed PG samplers in this section are applied to two particular examples for illustration.

3.5 Performance of Proposed Algorithm: Simulation Study

The main goal of this section is to compare the performance of the proposed PG algorithms with that

of the benckmark PG algorithm in estimating NLG-SSSM. For this purpose, I simulate the models in (21)

and (24) for T = 3000 and T = 500, respectively. The first model is generated with {µ = 0, δ1 = −1, δ2 =

0.5, φ = 0.9, σ2
u = 0.01, π11 = 0.99, π22 = 0.99}, and the second model is generated with {β0 = 0, β1 = 1, β2 =

−0.5, α0 = 0, φ = 0.9, γ = 0.3, σ2
ǫ1

= 0.01, σ2
ǫ2

= 0.01, σ2
1 = 0.01, σ2

1 = 0.05, π11 = 0.99, π22 = 0.99}, where

pjj is the transition probability for j = 1, 2. I run all the three PG samplers (Algorithm 2-2, Algorithm

3-2, Algorithm 4-3) for Example 1 and the two PG samplers (Algorithm 2-2, Algorithm 4-3) for Example 2.

Note that Algorithm 2-2 and Algorithm 3-2 become equivalent in Example 2 due to the degenerate transition

equation. The numbers of particles used in the benchmark PG and the PGAS samplers are N = 1, 000,

and N = 20, respectively. The numbers of particles for the PGAS with particle rejuvenation are set as

N = 20, M = 20. I keep the latter 40,000 iterations and discard the initial 1,000 iterations as warm up for

all simulations. All Bayesian estimates reported in this section are the averages of 5 simulations.

The inefficiency factor described by Geweke (1992) is one of the popular measures of MCMC efficiency.

The inefficiency factor is defined as:

κJ = 1 + 2

J
∑

j=1

ρj , J = 2, 000,

where ρj is the correlation for lag j. As posterior draws become less and less serially correlated, the inefficient

factor approaches the ideal minimum value of 1. On the other hand, in the case of an inefficient MCMC
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sampler that produces highly correlated MCMC draws, the ratio becomes larger than 1. The inefficiency

factor serves to quantify the relative efficiency loss in computing posterior moments by comparing correlated

and independent samples. Tables 1.A and 1.B show the inefficiency factors of the model parameters in (21)

and (24).

The PG sampler with ancestor sampling in Algorithm 3-2 exhibits the best performance for Example

1. The inefficiency factors are reported in Table 1.A. The inefficiency factors obtained based on the PGAS

sampler are substantially smaller than those of the benchmark PG sampler and are comparable to those

of the PGAS sampler with particle rejuvenation. Even though both of the PGAS samplers in Algorithm

3-2 and Algorithm 4-3 perform well with a small number of particles, Algorithm 4-3 induces additional

computational costs in implementing the CIS procedure in Algorithm 4-1. The relative computing times for

Algorithm 3-2 with N = 20 and Algorithm 4-3 with N = 20, M = 20 are 0.2481 and 0.4340, respectively,

compared with the benchmark PG sampler. Figure 1.A shows the autocorrelation functions (ACF) for the

model parameters δ1 and φ. The ACFs drop very quickly to zero with the small numbers of particles when

Algorithm 3-2 and Algorithm 4-3 are applied. In contrast, the benchmark PG sampler in Algorithm 2-2 does

not mix well even with a large number of particles16. It is worth mentioning that the ancestor sampling in

Algorithm 3-1 and the particle rejuvenation in Algorithm 4-2 significantly improve the mixing speed without

explicitly incorporating the observation sequence y1:t in their importance distributions.

The simulation results for Example 2 are presented in Table 1.B and Figure 1.B. The inefficiency factors

in Table 1.B indicate that autocorrelations in MCMC draws are considerably removed when we work with

the particle rejuvenation procedure to handle a degenerate NLG-SSSM. The PGAS sampler with particle

rejuvenation yields significant efficiency gains even with the small number of particles. Conversely, the

inefficiency factors of the standard PG sampler are noticeably high even with the large number of particles.

The same conclusion is drawn from the ACFs in Figure 1.B where the ACFs based on Algorithm 4-3 are

always lower than those of Algorithm 2-2. In many applications, the particle rejuvenation in Algorithm 4-3

can be simplified as in (25) and thus does not require huge computational costs. Nevertheless, it reduces the

ACFs significantly and achieves faster mixing.

16The results from the benchmark PG sampler with a number of particles smaller than N = 800 are not reported because

they do not converge to the correct stationary distribution even after a reasonable number of MCMC iterations.
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4 Empirical Application: Regime-dependent Leverage Effect of

U.S Stock Market

To illustrate the proposed estimation procedure, I estimate an extended version of the regime switching

stochastic volatility (SV) model by So et al. (1998):

yt = µ + exp(
xt−1

2
)ǫt, (26)

xt = δst
+ φ(xt−1 − δst−1) + ut, (27)





ǫt

ut



 ∼ N(





0

0



 ,





1 ρst
σu

ρst
σu σ2

u



)

p(st = j|st−1 = k) = πkj,

K
∑

j=1

πkj = 1, i, k = 1, 2,

where yt is the equity return at time t; xt−1 is the latent log-volatility at time t. Equivalently, the transition

equation is represented by:

xt = δst
+ φ(xt−1 − δst−1 ) + σu(ρst

ǫt +
√

1 − ρ2
st

ηt), ηt ∼ N(0, 1)

where Corr(ǫt, ηt) = 0. By rewriting ǫt in terms of yt, we have:

xt = δst
+ φ(xt−1 − δst−1) + ρst

σuexp(−
xt−1

2
)(yt − µ) + σu

√

1 − ρ2
st

ηt

The transition equation shows that the evolution of xt is linear in yt. Therefore, when ρst
is negative, a

drop in yt leads to an increase in log-volatility at time t + 1. This negative relationship is referred to as

the leverage effect17 . Yu (2005) demonstrated that discrete-time SV models with the leverage effect are

theoretically18 and empirically appealing.

In stochastic volatility literature, the volatility response to a shock to a stock return is often assumed to

be constant over time. However, Bandi and Renò (2012) recently raised the possibility that the time-varying

leverage effect as a higher leverage ratio should render a larger variance in the response to a shock to a

return19. More specifically, they specify the leverage effect as a function of spot volatility and distinguish

17Harvey and Shephard (1996) first propose a discrete time SV model to capture the leverage effect and estimate it using a

a quasi-maximum likelihood method.
18The SV model with the leverage effect is the Euler approximation to the well-known continuous-time asymmetric stochastic

volatility model broadly used in the option price literature.
19Daouk and Ng (2011) also showed that the leverage effect is larger in down markets than in up markets. Yu (2012)

emphasized that the magnitude of the leverage effect depends on the size and the direction of the shocks to the previous stock

price.

28



volatility regimes by choosing deterministic threshold values of spot volatility in their parametric models.

Following Bandi and Renò (2012), the proposed regime switching SV model in (26) and (27) accommodates

the regime-dependent leverage effect. However, the main difference is that the leverage effect is specified as a

function of the regime-specific means of log volatility, and corresponding regimes are endogenously estimated

in the proposed model instead of using deterministic threshold values.

Bayesian inference using the proposed SV model is difficult in that the existing MCMC algorithms in the

literature are not directly applicable. For example, Omori et al. (2007) used the idea of approximating the

joint distribution of the two correlated innovations in the SV model with ten mixture normal distributions20.

However, because the correlation parameter ρst
shifts with unknown timings, the approximation of the joint

distribution by the mixture normals becomes infeasible. Alternatively, one may attempt to use a single-move

algorithm, such as the one adopted by Yu (2012). This approach is also problematic because the single-move

approach is difficult to implement due to the very persistent latent regime-indicator variable.

The proposed PGAS algorithm is employed to estimate the regime switching SV model with the regime-

dependent leverage effect. The proposed SV model with 2-state and 3-state regimes is applied to daily S&P

500 and NASDAQ returns from January 2, 1997 to August 5, 2015 to analyze how the leverage effect changes

depending on volatility regimes. The empirical results for the 2-state regime switching model are reported

in Table 2 and Figures 2 and 3. First, it can be seen in Figures 2.A and 3.A. that the posterior probability

of high volatility regime very sharply changes, leaving a low uncertainty in the timings of regime shifts for

S&P 500 and NASDAQ returns. Second, it can be clearly seen from Figures 2.B and 3.B that the posterior

means of the regime-dependent correlation parameters are noticeably different across high- and low-volatility

regimes. Table 2 shows that in a low-volatility regime, the posterior mean of the correlation parameter is

estimated to be -0.5, while it is -0.672 in a high-volatility regime for S&P 500 returns. This difference is

even more substantial for NASDAQ returns. The posterior mean of the correlation parameter is -0.269 in

the low-volatility regime and -0.653 in the high-volatility regime. These Bayesian estimates produce ample

evidence for the presence of the regime-dependent leverage effect.

The 3-state regime switching SV model produces similar results, which are shown in Table 3 and Figures

4 and 5. The posterior mean of the correlation parameter for NASDAQ returns is estimated to be -0.667 in

a high-volatility regime, -0.596 in a medium-volatility regime and -0.221 in a low-volatility regime. For S&P

500 returns, the correlation parameter in a high-volatility regime cannot be clearly identified due to a small

sample size. However, for medium- and low-volatility regimes where large samples are available, Figure 4.B

20For SV models without leverage, Kim et al. (1998) and Chib et al. (2002) propose efficient multi-move algorithms based

on a log-squared transformation of return and mixture normal approximation to the distribution of a transformed shock.
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illustrates a similar point. The posterior mean of the correlation parameter in a medium-volatility regime is

reasonably larger in absolute value than that in a low-volatility regime.

To formally compare the considered SV models, I adopt the Deviance Information Criterion (DIC) by

Spiegelhalter et al. (2002):

DIC = −2Eζ|Y [lnf(Y |ζ)] + 2{lnf(Y |ζ̄)] − Eζ|Y [lnf(Y |ζ)]}

where Y is the whole observation sequence; ζ encompasses the model parameters and the latent variables; and

ζ̄ is the posterior means of ζ. DIC has been widely used in the literature for comparing complex hierarchical

models. It consists of two components, a term measuring Bayesian goodness of fit and a term imposing a

penalty on model complexity. The first term −2Eζ|Y [lnf(Y |ζ)] is defined as the posterior expectation of

the deviance, and the second term 2{lnf(Y |ζ̄)] − Eζ|Y [lnf(Y |ζ)]} is defined as the difference between the

posterior mean of the deviance and the deviance evaluated at ζ̄. The posterior mean of the deviance is easily

obtained using the MCMC draws for the latent state variables and the model parameters:

lnf(Y |ζ)] ≈
1

R

R
∑

r=1

lnf(Y |ζ(r)).

The first and third columns of Table 4 show DICs for S&P 500 and NASDAQ returns. In Table 4, I

also consider 2-state and 3-state regime-switching SV models with the constant leverage effect for complete

comparison. Based on DIC, the most preferred model is the 3-state regime-switching SV model with the

regime-dependent leverage effect. It is also interesting to see that the 3-state regime-switching SV models are

always preferred to the 2-state regime-switching SV models, regardless of the nature of the leverage effect.

A close look at the second and fourth columns of Table 4 reveals that the models including the regime-

dependent leverage effect are preferred, given the same number of regimes. Therefore, the newly proposed

SV models confirm that the time-varying leverage effect in the U.S. stock market is indeed an important

feature and is governed by the long-run mean of the volatility process.

5 Concluding Remarks

In summary, this article has developed and illustrated two efficient Bayesian methods to estimate non-

linear/non-Gaussian switching state space models based on particle ancestor sampling and particle rejuve-

nation. In particular, a special attention has been paid to develop posterior simulation procedures for the

continuous-state and discrete-regime indicator variables. It has been demonstrated that the proposed algo-

rithms do not require a large number of particles to achieve fast mixing and thus allow for fast convergence
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to the posterior distribution, in contrast to the benchmark PG sampler and Particle Marginal Metropolis-

Hastings methods, which usually involve unnecessary accept/reject steps. Importantly, the PG sampler with

particle rejuvenation is shown to perform perfectly even when a non-linear/non-Gaussian switching state

space model of interest involves a degenerate transition equation, which results in zero probability of updat-

ing an ancestor index in ancestor sampling. The proposed PG samplers are easy to implement in practice and

can be applied to models without the Markovian property. According to a general PMCMC scheme suggested

by Mendes et al. (2014), Particle Marginal Metropolis-Hastings (PMMH) can be incorporated to simulate

the model parameters that are strongly correlated with the latent variables, which will result in further

improvements in the proposed algorithms. By applying the proposed PG sampler with ancestor sampling to

Standard and Poor’s 500 and NASDAQ daily return data, this article shows that stronger (weaker) lever-

age effects are associated with a high (low) -volatility regime within parametric regime-switching stochastic

volatility models, which is consistent with the important empirical findings of Bandi and Renò (2012).

A Appendix

A.1 Derivation of Optimal Incremental Importance Distribution

In generating the new states {x
(i)
t , s

(i)
t } in forward filtering, the optimal incremental importance distri-

bution is given as:

q(xt, st|x0:t−1, s0:t−1) = pθ(xt, st|x0:t−1, s0:t−1, y1:t)pθ(yt|x0:t−1, s0:t−1, y1:t−1)

The former component are decomposed into two parts:

pθ(xt, st|x0:t−1, s0:t−1, y1:t) = pθ(xt|x0:t−1, s0:t, y1:t)pθ(st|x0:t−1, s0:t−1, y1:t)

To derive an importance density close to the target, we can show:

pθ(st|x0:t−1, s0:t−1, y1:t) =
pθ(st, yt|x0:t−1, s0:t−1, y1:t−1)

pθ(yt|x0:t−1, s0:t−1, y1:t−1))

∝ pθ(st, yt|x0:t−1, s0:t−1, y1:t−1)

= pθ(yt|x0:t−1, s0:t, y1:t−1)pθ(st|x0:t−1, s0:t−1, y1:t−1)

∝ pθ(yt|x0:t−1, s0:t, y1:t−1)gθ(st|st−1)

The validity of going from the second line to the third line is that all the past information on y1:t−1, and
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x0:t−1 is not relevant for st conditional on st−1. The density pθ(yt|x0:t−1, s0:t, y1:t−1) is given as:

pθ(yt|x0:t−1, s0:t, y1:t−1) =

∫

pθ(yt, xt|x0:t−1, s0:t, y1:t−1)dxt

=

∫

fθ(yt|x0:t, s0:t, y1:t−1)pθ(xt|x0:t−1, s0:t, y1:t−1)dxt

Finally, the second term in the target density is given as:

pθ(yt|x0:t−1, s0:t−1, y1:t−1) =
∑

st

pθ(yt, st|x0:t−1, s0:t−1, y1:t−1)

=
∑

st

pθ(yt|x0:t−1, s0:t, y1:t−1)gθ(st|st−1)

Notice that the density pθ(yt|x0:t−1, s0:t, y1:t−1) is included both in the second component of the impor-

tance distribution and in the conditional density for st as well. The density pθ(yt|x0:t−1, s0:t, y1:t−1) is not

analytically tractable and thus the density should be approximated to construct the increment importance

density.

A.2 Proof of Proposition 1

In what follows, the set of the latent variables {xt, st} is denoted by zt for notational simplicity. By the

hierarchical structure of the model in equation (1), the transition density of zt conditional on θ is given by

gθ(zt|z0:t−1) = gθ(xt|x0:t−1, s0:t)gθ(st|st−1).

Using the definition of the importance weight in equation (7), we rewrite the posterior density of the

latent states

pθ(z0:t|y1:t) =
pθ(z0:t, y1:t)

pθ(y1:t)

=
1

pθ(y1:t)
pθ(z0)

[ t
∏

l=1

fθ(yl|z0:l)pθ(zl|z0:l−1)

]

=
1

pθ(y1:t)
ω̄0q(z0)

[ t
∏

l=1

ω̄lq(zl |z0:l−1)

]

(A.1)

where ω̄l = fθ(yl|z0:l)gθ(zl|z0:l−1)
q(zl|z0:l−1)

for l = 1, 2, ..., t. Therefore, for a reference particle trajectory up to time t,
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we have

pθ(z
(b0:t)
0:t |y1:t) =

1

pθ(y1:t)
ω̄

(b0)
0 q(z

(b0)
0 )

[ t
∏

l=1

ω̄
(bl)
l q(z

(bl)
l |z

(b0:l−1)
0:l−1 )

]

=
1

pθ(y1:t)

[ t
∏

l=0

N
∑

j

ω̄
(j)
l

]

ω̄
(b0)
0

∑N

j ω̄
(j)
0

q(z
(b0)
0 )

[ t
∏

l=1

ω̄
(bl)
l

∑N

j ω̄
(j)
l

q(z
(bl)
l |z

(b0:l−1)
0:l−1 )

]

=
1

pθ(y1:t)

[ t
∏

l=0

N
∑

j

ω̄
(j)
l

]

ω̂
(b0)
0 q(z

(b0)
0 )

[ t
∏

l=1

ω̂
(bl)
l q(z

(bl)
l |z

(b0:l−1)
0:l−1 )

]

=
1

pθ(y1:t)

[ t
∏

l=0

N
∑

j

ω̄
(j)
l

]

q(z
(b0)
0 )

[ t
∏

l=1

Mθ
s (a

(bl)
l , z

(bl)
l )

]

ω̂
(bt)
t

(A.2)

where Mθ
l (a

(bl)
l , z

(bl)
l ) = ω̂

(bl−1)
l−1 q(z

(bl)
l |z

(b0:l−1)
0:l−1 ) and ω̂

(bl)
l =

ω̄
(bl)

l
P

N
j ω̄

(j)
l

. By plugging equation (A.2) in the

extended target density in equation (14), we have:

Φ(θ, Z0:T , A1:T , K) ≡
1

NT+1
p(θ, z

(b0:T )
0:T |y1:T )

N
∏

i=1
i 6=b0

q(z
(i)
0 )

T
∏

t=1

[ N
∏

i=1
i 6=bt

Mθ
t (a

(i)
t , z

(i)
t )

]

=
1

NT+1

p(θ)pθ(y1:T )pθ(z
(b0:T )
0:T |y1:T )

p(y1:T )

N
∏

i=1
i 6=b0

q(z
(i)
0 )

T
∏

t=1

[ N
∏

i=1
i 6=bt

Mθ
t (a

(i)
t , z

(i)
t )

]

∝
1

NT+1
p(θ)pθ(y1:T )pθ(z

(b0:T )
0:T |y1:T )

N
∏

i=1
i 6=b0

q(z
(i)
0 )

T
∏

t=1

[ N
∏

i=1
i 6=bt

Mθ
t (a

(i)
t , z

(i)
t )

]

=
p(θ)

NT+1

[ T
∏

t=0

N
∑

j

ω̄
(j)
t

] N
∏

i=1

q(z
(i)
0 )

T
∏

t=1

[ N
∏

i=1

Mθ
t (a

(i)
t , z

(i)
t )

]

ω̂
(bT )
T

= p(θ)ẐN
T (θ)Φ(Z0:T , A1:T |θ)ω̂

(K)
T

(A.3)

where ẐN
T (θ) =

[

∏T

t=0
1
N

∑N

j ω̄
(j)
t

]

and K = bT . Notice that ẐN
T (θ) is the particle estimate of ZT (θ) =

pθ(y1:T ). Therefore,

Φ(K|θ, Z0:T , A1:T ) ∝ Φ(θ, Z0:T , A1:T , K) ∝ ŵ
(K)
T .
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A.3 Proof of Proposition 2

The conditional in Proposition 2 is proportional to

Φ(bt−1|θ,Z
(−b0:t−1)
0:t−1 , A

(−b1:t−1)
1:t−1 , z

(b0:T )
0:T , b0:t−2, bt:T )

= Φ(bt−1|θ, Z0:t−1, A1:t−1, z
(bt:T )
t:T , bt:T )

∝ Φ(θ, Z0:t−1, A1:t−1, z
(bt:T )
t:T , bt−1:T )

= Φ(θ, z
(b0:T )
0:T , b0:T )Φ(Z0:t−1,

(−b0:t−1) A
(−b1:t−1)
1:t−1 |θ, z

(b0:T )
0:T , b0:T )

=
1

NT+1
p(θ, x

(b0:T )
0:T , s

(b0:T )
0:T |y1:T )

N
∏

i=1
i 6=b0

q(z
(i)
0 ) ×

t−1
∏

l=1

[ N
∏

i=1
i 6=bl

Ml(a
(i)
l , z

(i)
l )

]

=
p(θ|y1:T )

NT+1
pθ(z

(b0:T )
0:T |y1:T )

N
∏

i=1
i 6=b0

q(z
(i)
0 ) ×

t−1
∏

l=1

[ N
∏

i=1
i 6=bs

Ml(a
(i)
l , z

(i)
l )

]

=
p(θ|y1:T )

NT+1

pθ(z
(b0:T )
0:T |y1:T )

pθ(z
(b0:t−1)
0:t−1 |y1:t−1)

pθ(z
(b0:t−1)
0:t−1 |y1:t−1)

N
∏

i=1
i 6=b0

q(z
(i)
0 ) ×

t−1
∏

l=1

[ N
∏

i=1
i 6=bs

Ml(a
(i)
l , z

(i)
l )

]

∝
pθ(z

(b0:T )
0:T |y1:T )

pθ(z
(b0:t−1)
0:t−1 |y1:t−1)

pθ(z
(b0:t−1)
0:t−1 |y1:t−1)

∝

T
∏

l=t

pθ(yl|z
(b0:l)
0:l )pθ(zl|z

(b0:l−1)
0:l−1 ) ω̂

(bt−1)
t−1

(A.4)

because pθ(z
(b0:t−1)
0:t−1 |y1:t−1) ∝ ω̂

(bt−1)
t by equation (A.2) and

pθ(z
(b0:T )
0:T |y1:T )

pθ(z
(b0:t−1)
0:t−1 |y1:t−1)

=
pθ(z

(b0:t−1)
0:t−1 , z

(bt:T )
t:T |y1:t−1, yt:T )

pθ(z
(b0:t−1)
0:t−1 |y1:t−1)

=
pθ(z

(bt:T )
t:T , yt:T |z

(b0:t−1)
0:t−1 , y1:t−1)pθ(z

(b0:t−1)
0:t−1 |y1:t−1)

pθ(yt:T |y1:t−1)pθ(z
(b0:t−1)
0:t−1 |y1:t−1)

∝ pθ(z
(bt:T )
t:T , yt:T |z

(b0:t−1)
0:t−1 )

=
T

∏

l=t

pθ(yl|z
(b0:l)
0:l )pθ(zl|z

(b0:l−1)
0:l−1 )

∝

[ T
∏

l=t

fθ(yl |x
(b0:l)
0:l , s

(b0:l)
0:l )gθ(xl|x

(b0:l−1)
0:l−1 , s

(b0:l)
0:l )gθ(s

(bl)
l |s

(bl−1)
l−1 )

]

.

(A.5)

In the fourth line of equation (A.5), the irrelevant observation sequence y1:t−1 is dropped. This completes

the proof of proposition 2.
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A.4 Proof of Proposition 3

The proof of proposition 3 is similar to the proof of Proposition 2.

Φ(z
(bt)
t , bt−1|θ,Z

(−b0:t−1)
0:t−1 , A

(−b1:t−1)
1:t−1 , z

(b0:t−1)
0:t−1 , z

(bt+1:T )
t+1:T , b0:t−2, bt:T )

= Φ(z
(bt)
t , bt−1|θ, Z0:t−1, A1:t−1, z

(bt+1:T )
t+1:T , bt:T )

∝ Φ(θ, Z0:t−1, A1:t−1, z
(bt:T )
t:T , bt−1:T)

= Φ(θ, z
(b0:T )
0:T , b0:T )Φ(Z0:t−1,

(−b0:t−1) A
(−b1:t−1)
1:t−1 |θ, z

(b0:T )
0:T , b0:T )

=
1

NT+1
p(θ, x

(b0:T )
0:T , s

(b0:T )
0:T |y1:T )

N
∏

i=1
i 6=b0

q(z
(i)
0 ) ×

t−1
∏

l=1

[ N
∏

i=1
i 6=bl

Ml(a
(i)
l , z

(i)
l )

]

∝
p(θ|y1:T )

NT+1
pθ(z

(b0:T )
0:T |y1:T ) =

p(θ|y1:T )

NT+1

pθ(z
(b0:T )
0:T |y1:T )

pθ(z
(b0:t−1)
0:t−1 |y1:t−1)

pθ(z
(b0:t−1)
0:t−1 |y1:t−1)

∝
pθ(z

(b0:T )
0:T |y1:T )

pθ(z
(b0:t−1)
0:t−1 |y1:t−1)

pθ(z
(b0:t−1)
0:t−1 |y1:t−1)

∝

T
∏

l=t

pθ(yl|z
(b0:l)
0:l )pθ(zl|z

(b0:l−1)
0:l−1 ) ω̂

(bt−1)
t−1

∝

[ T
∏

l=t

fθ(yl|x
(b0:l)
0:l , s

(b0:l)
0:l )gθ(xl|x

(b0:l−1)
0:l−1 , s

(b0:l)
0:l )gθ(s

(bl)
l |s

(bl−1)
l−1 )

]

ω̂
(bt−1)
t−1

(A.6)

In the seventh line, we use equation (A.5). This completes the proof of proposition 3.

A.5 Derivation of a Candidate Distribution for xt

An importance distribution is derived for the latent variable xt conditional on the regime indication

variable st in a special case of a linear/Gaussian transition equation. The latent variable xt follows:

xt = δst
+ Hst

(xt − xst−1) + et, et ∼ i.i.d.N(0, Σst
)
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where H is the transition matrix. The transition density at time t + 1 and t is given by:

g(xt) = pθ(xt|xt+1, xt, st+1, st, st−1)

∝ pθ(xt+1|xt, st+1, st)pθ(xt|xt−1, st, st−1)

∝ exp

[

−
1

2
(x∗

t+1 − Hst+1x
∗
t )

′Σ−1
st+1

(x∗
t+1 − Hst+1x

∗
t ) −

1

2
(x∗

t − Hst
x∗

t−1)
′Σ−1

st
(x∗

t − Hst
x∗

t−1)

]

∝ exp

[

−
1

2

[

x∗′

t H ′
st+1

Σ−1
st+1

Hst+1x
∗
t − 2x∗′

t H ′
st+1

Σ−1
st+1

x∗
t+1 + x∗′

t Σ−1
st

x∗
t − 2x∗′

t Σ−1
st

Hst
x∗

t−1

]]

∝ exp

[

−
1

2

[

x∗′

t (H ′
st+1

Σ−1
st+1

Hst+1 + Σ−1
st

)x∗
t − 2x∗′

t (H ′
st+1

Σ−1
st+1

x∗
t+1 + Σ−1

st
Hst

x∗
t−1)

]]

∝ exp

[

−
1

2
(x∗

t − µ∗
t )

′V −1
t (x∗

t − µ∗
t )

]

where x∗
t = xt − δst

; Vt = (H ′
st+1

Σ−1
st+1

Hst+1 + Σ−1
st

)−1; µ∗
t = Vt(H

′
st+1

Σ−1
st+1

x∗
t+1 + Σ−1

st
Hst

x∗
t−1). Thus,

xt|xt+1, xt, st+1, st, st−1 ∼ N(µt, Vt)

where µt = δst
+ µ∗

t .
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[5] Bandi, Federico M., and Roberto Renò. ”Time-varying leverage effects.” Journal of Econometrics 169.1

(2012): 94-113.

[6] Black, F. ”Studies of stock market volatility changes” Proceedings of the American Statistical Association,

Business and Economic Statistics Section (1976): pp. 177-181

36



[7] Bunch, Pete, Fredrik Lindsten, and Sumeetpal Singh. ”Particle Gibbs with refreshed backward simula-

tion.” Acoustics, Speech and Signal Processing (ICASSP), 2015 IEEE International Conference on. IEEE,

2015.

[8] Carter, Christopher K., Eduardo F. Mendes, and Robert Kohn. ”An extended space approach for particle

Markov chain Monte Carlo methods.” arXiv preprint arXiv:1406.5795 (2014).

[9] Chib, Siddhartha, Federico Nardari, and Neil Shephard. ”Markov chain Monte Carlo methods for stochas-

tic volatility models.” Journal of Econometrics 108.2 (2002): 281-316.

[10] Christie, Andrew A. ”The stochastic behavior of common stock variances: Value, leverage and interest

rate effects.” Journal of financial Economics 10.4 (1982): 407-432.

[11] Daouk, Hazem, and David Ng. ”Is unlevered firm volatility asymmetric?.” Journal of Empirical Finance

18.4 (2011): 634-651.

[12] Driessen, Hans, and Yvo Boers. ”Efficient particle filter for jump Markov nonlinear systems.” IEE

Proceedings-radar, sonar and navigation 152.5 (2005): 323-326.

[13] Forni, Mario, Marc Hallin, Marco Lippi, and Lucrezia Reichlin. ”The generalized dynamic-factor model:

Identification and estimation.” Review of Economics and statistics 82.4 (2000): 540-554.

[14] Fruhwirth-Schnatter, Sylvia. Finite mixture and Markov switching models. Springer Science & Business

Media, (2006).

[15] Geweke, John. ”Evaluating the accuracy of sampling-based approaches to the calculation of posterior

moments (with discussion).” Bayesian Statistics 4 (1992): 169-194.

[16] Giordani, Paolo, Robert Kohn, and Dick van Dijk. ”A unified approach to nonlinearity, structural

change, and outliers.” Journal of Econometrics 137.1 (2007): 112-133.

[17] Godsill, Simon J., Arnaud Doucet, and Mike West. ”Monte Carlo smoothing for nonlinear time series.”

Journal of the american statistical association 99.465 (2004).

[18] Gordon, Neil J., David J. Salmond, and Adrian FM Smith. ”Novel approach to nonlinear/non-Gaussian

Bayesian state estimation.” IEE Proceedings F (Radar and Signal Processing). Vol. 140. No. 2. IET

Digital Library, 1993.

[19] Hamilton, James D. ”A new approach to the economic analysis of nonstationary time series and the

business cycle.” Econometrica: Journal of the Econometric Society (1989): 357-384.

37



[20] Harvey, Andrew C., and Neil Shephard. ”Estimation of an asymmetric stochastic volatility model for

asset returns.” Journal of Business & Economic Statistics 14.4 (1996): 429-434.

[21] Kim, Chang-Jin. ”Dynamic linear models with Markov-switching.” Journal of Econometrics 60.1

(1994): 1-22.

[22] Kim, Chang-Jin, and Charles R. Nelson. State-space models with regime switching: classical and Gibbs-

sampling approaches with applications. Vol. 2. Cambridge: MIT press, (1999).

[23] Kim, Chang-Jin, and Jaeho Kim. ”Bayesian Inference in Regime-Switching ARMA Models with Ab-

sorbing States: The Dynamics of the Ex-Ante Real Interest Rate Under Structural Breaks.” Forthcoming

Journal of Business & Economic Statistics (2014).

[24] Kim, Sangjoon, Neil Shephard, and Siddhartha Chib. ”Stochastic volatility: likelihood inference and

comparison with ARCH models.” The Review of Economic Studies 65.3 (1998): 361-393.

[25] Koop, Gary, and Simon M. Potter. ”Estimation and forecasting in models with multiple breaks.” The

Review of Economic Studies 74.3 (2007): 763-789.

[26] Lindsten, Fredrik, Michael I. Jordan, and Thomas B. Schon. ”Particle Gibbs with ancestor sampling.”

The Journal of Machine Learning Research 15.1 (2014): 2145-2184.

[27] Lindsten, Fredrik, Pete Bunch, Sumeetpal S. Singh, and Thomas B. Schon. ”Particle ancestor sampling

for near-degenerate or intractable state transition models.” arXiv preprint arXiv:1505.06356 (2015).

[28] Lindsten, Fredrik, and T. B. Schon. ”On the use of backward simulation in the particle Gibbs sam-

pler.” Acoustics, Speech and Signal Processing (ICASSP), 2012 IEEE International Conference on. IEEE,

(2012).

[29] Liu, Jun S., Wing Hung Wong, and Augustine Kong. ”Covariance structure of the Gibbs sampler with

applications to the comparisons of estimators and augmentation schemes.” Biometrika 81.1 (1994): 27-40.

[30] Ludvigson, Sydney C., and Serena Ng. ”The empirical risk-return relation: a factor analysis approach.”

Journal of Financial Economics 83.1 (2007): 171-222.

[31] Mendes, Eduardo F., Christopher K. Carter, and Robert Kohn. ”On general sampling schemes for

Particle Markov chain Monte Carlo methods.” arXiv preprint arXiv:1401.1667 (2014).

38



[32] Nonejad, Nima. ”Particle Gibbs with ancestor sampling for stochastic volatility models with: heavy

tails, in mean effects, leverage, serial dependence and structural breaks.” Studies in Nonlinear Dynamics

& Econometrics (2014).

[33] Omori, Yasuhiro, Siddhartha Chib, Neil Shephard, and Jouchi Nakajima. ”Stochastic volatility with

leverage: Fast and efficient likelihood inference.” Journal of Econometrics 140, no. 2 (2007): 425-449.

[34] Pesaran, M. Hashem, Davide Pettenuzzo, and Allan Timmermann. ”Forecasting time series subject to

multiple structural breaks.” The Review of Economic Studies 73.4 (2006): 1057-1084.

[35] Pitt, Michael K., et al. ”On some properties of Markov chain Monte Carlo simulation methods based

on the particle filter.” Journal of Econometrics 171.2 (2012): 134-151.

[36] Pitt, Michael K., and Neil Shephard. ”Filtering via simulation: Auxiliary particle filters.” Journal of

the American statistical association 94.446 (1999): 590-599.

[37] Scott, Steven L. ”Bayesian methods for hidden Markov models.” Journal of the American Statistical

Association 97.457 (2002).

[38] Smets, Frank, and Rafael Wouters. ”Shocks and Frictions in US Business Cycles: A Bayesian DSGE

Approach.” The American Economic Review 97.3 (2007): 586-606.

[39] So, Mike EC P., Kin Lam, and Wai Keung Li. ”A stochastic volatility model with Markov switching.”

Journal of Business & Economic Statistics 16.2 (1998): 244-253.

[40] Song, Dongho. ”Bond Market Exposures to Macroeconomic and Monetary Policy Risks.” (2014).

[41] Spiegelhalter, David J., Nicola G. Best, Bradley P. Carlin, and Angelika Van Der Linde. ”Bayesian

measures of model complexity and fit.” Journal of the Royal Statistical Society: Series B (Statistical

Methodology) 64.4 (2002): 583-639.

[42] Flury, Thomas, and Neil Shephard. ”Bayesian inference based only on simulated likelihood: particle

filter analysis of dynamic economic models.” Econometric Theory 27.05 (2011): 933-956.

[43] Van Dyk, David A., and Taeyoung Park. ”Partially collapsed Gibbs samplers: Theory and methods.”

Journal of the American Statistical Association 103.482 (2008): 790-796.

[44] Wan, Eric A., and Rudolph Van Der Merwe. ”The unscented Kalman filter.” Kalman filtering and

neural networks (2001): 221-280.

39



[45] Whiteley, Nick. ”Discussion on Particle markov chain monte carlo methods.” Journal of the Royal

Statistical Society: Series B (Statistical Methodology) 72.3 (2010): 306-307.

[46] Whiteley, Nick, Christophe Andrieu, and Arnaud Doucet. ”Efficient Bayesian inference for switching

state-space models using discrete particle Markov chain Monte Carlo methods.” working paper (2010).

[47] Yu, Jun. ”On leverage in a stochastic volatility model.” Journal of Econometrics 127.2 (2005): 165-178.

[48] Yu, Jun. ”A semiparametric stochastic volatility model.” Journal of Econometrics 167.2 (2012): 473-

482.

40



Table 1.A. Efficiency Evaluation: Example 1 [ Geweke’s (1992) Inefficiency Factor ] 
 𝑦𝑡 = exp (𝑥𝑡−12 ) 𝜀𝑡,   𝜀𝑡~ 𝑁 (0,1), 𝑥𝑡 = 𝛿𝑠𝑡 +  𝜙(𝑥𝑡−1 − 𝛿𝑠𝑡−1) + 𝑢𝑡 ,   𝑢𝑡  ~ 𝑁 (0, 𝜎𝑢2), [𝜀𝑡𝑢𝑡] ~ 𝑁 ([00] , [1 00 𝜎𝑢2]), Pr[𝑆𝑡 = 𝑗| 𝑆𝑡−1 = i] =  𝜋𝑖𝑗 ,    𝑓𝑜𝑟 𝑖 = 1,2 𝑎𝑛𝑑 𝑗 = 1,2. [𝛿1 = −1, 𝛿2 = 0.5, 𝜙 = 0.5, 𝜎𝑢2 = 0.04, 𝜋11 = 0.99, 𝜋22 = 0.99] 

 

 

 

  𝜅𝐽 =  1 + 2 ∑ 𝜌𝑗𝐽
𝑗=1 ,   𝐽 = 2,000 

 

  

PG 

  

PGAS 

  

PGAS-PR 

 

 

Model 

Parameters 

 

N = 1000  

  

N = 20 

  

N = 20 

M = 20 𝛿1 439.62  22.28  29.80 𝛿2 489.25  51.94  71.75 𝜙 2287.59  813.05  679.50 𝜎𝑢2 3372.89  901.02  873.28 𝜋11 7.72  2.14  2.51 𝜋22 10.27  3.02  2.74 

Relative Computing 

Time 

1  0.2481  0.4340 

 
Note: 1. The empirical autocorrelation functions are obtained based on 40,000 MCMC iterations. The first 3,000 

iterations are discarded as the burn-in. Running time for the PG sampler is 50901.04sec. 

2. The average of the inefficient factors from 5 simulations are reported.  

3. PG refers to the benchmark PG sampler. 

4. PGAS refers to the proposed PG sampler with ancestor sampling. 

5. PGAS-PR refers to the proposed PG sampler with ancestor sampling and particle rejuvenation. 

 

 

 

 

 

 

 



Table 1.B. Efficiency Evaluation: Example 2 [ Geweke’s (1992) Inefficiency Factor ] 
 𝑦1,𝑡 = 𝛽0 + 𝛽1𝑓𝑡 + 𝛽2𝑓𝑡2 +  𝜀1,𝑡 ,   𝜀1,𝑡~ 𝑁 (0, 𝜎𝜀12 ), 𝑦2,𝑡 = 𝛼0 + 𝑓𝑡 +  𝜀2,𝑡 ,   𝜀2,𝑡~ 𝑁 (0, 𝜎𝜀22 ), [𝑓𝑡𝑢𝑡] =  [𝜙 −𝛾0 0 ] [𝑓𝑡−1𝑢𝑡−1] +  [11] 𝑢𝑡 ,   𝑢𝑡  ~ 𝑁 (0 , 𝜎𝑢2), Pr[𝑆𝑡 = 𝑗| 𝑆𝑡−1 = i] =  𝜋𝑖𝑗 ,    𝑓𝑜𝑟 𝑖 = 1,2 𝑎𝑛𝑑 𝑗 = 1,2. [𝛿1 = −1, 𝛿2 = 0.5, 𝜙 = 0.5, 𝜎𝑢2 = 0.04, 𝜋11 = 0.99, 𝜋22 = 0.99] 

 

 

 

  𝜅𝐽 =  1 + 2 ∑ 𝜌𝑗𝐽
𝑗=1 ,   𝐽 = 2,000 

 

  

PG 

    

PGAS-PR 

 

 

Model 

Parameters 

 

N = 1000 

    

N = 20 

 M = 20 𝛽0 1969.85    472.94 𝛽1 2518.01    530.16 𝛽2 591.28    33.24 𝜎𝜀12  152.75    3.35 𝛼0 2850.21    541.86 𝜎𝜀22  1342.20    14.27 𝜙 139.48    17.09 𝛾 165.44    8.15 𝜎𝑢2 1699.27    18.58 𝜋11 39.72    2.38 𝜋22 35.58    3.32 

Relative 

Computing Time 

1    0.5751 

 
Note: 1. The empirical autocorrelation functions are obtained based on 40,000 MCMC iterations. The first 3,000 

iterations are discarded as the burn-in. Running time for the PG sampler is 10171.12sec. 

2. The average of the inefficient factors from 5 simulations are reported. 

3. PG refers to the benchmark PG sampler. 

4. PGAS refers to the proposed PG sampler with ancestor sampling. 

5. PGAS-PR refers to the proposed PG sampler with ancestor sampling and particle rejuvenation.  

 



Table 2.A  Bayesian Estimation of SV Model with Regime-dependent Leverage Effect for S&P 500: 

2 State Case [Sample: Jan/02/1975 ~ Aug/05/2015] 
 𝑦𝑡 = 𝜇 + exp (𝑥𝑡−12 ) 𝜀𝑡,   𝜀𝑡~ 𝑖. 𝑖. 𝑑. 𝑁. (0,1) 𝑥𝑡 = 𝛿𝑠𝑡 +  𝜙(𝑥𝑡−1 − 𝛿𝑠𝑡−1) + 𝑢𝑡 ,   𝑢𝑡  ~ 𝑖. 𝑖. 𝑑 𝑁 (0, 𝜎𝑢2) 

[𝜀𝑡𝑢𝑡] ~ 𝑁 ([00] , [ 1 𝜌𝑠𝑡𝜎𝑢𝜌𝑠𝑡𝜎𝑢 𝜎𝑢2 ]) 

Pr[𝑆𝑡 = 𝑗| 𝑆𝑡−1 = i] =  𝜋𝑖𝑗 , ∑ 𝜋𝑖𝑗2𝑗=1 = 1,   𝑓𝑜𝑟 𝑖, 𝑗 = 1,2. 
 

Parameters 

 

Prior  

 

 

Posterior 

 
  

Mean 

 

 

SD 

 

Mean 

 

Median 

 

SD 
 

90 % HPDI 𝜋11 0.99 0.01 0.998 0.997 0.001 (0.997 0.999) 𝜋22 0.99 0.01 0.997 0.995 0.001 (0.995 0.999) 𝜇 0 1 0.036 0.024 0.008 (0.024 0.049) 𝛿1 -0.5 0.5 -0.396 -0.444 0.029 (-0.444 -0.350) 𝛿2 0 0.5 0.159 0.108 0.031 (0.108 0.210) 𝜙 0 0.5 0.954 0.945 0.005 (0.945 0.962) 𝜌1 0 2 -0.500 -0.593 0.054 (-0.593 -0.407) 𝜌2 0 2 -0.672 -0.740 0.045 (-0.740 -0.590) σ𝑢2 0.01 0.5 0.010 0.008 0.001 (0.008 0.012) 

 
 

Note: 1.  Burn-in / Total iterations = 5,000 / 25,000 

 2.  S.D. refers to the standard deviations of the posterior distributions. 

 3.  A highest posterior density interval (HPDI) is an interval, the narrowest one possible with a chosen 

probability.   

 

 

 

 

 

 

 

 

 

 

 

 



Table 2.B  Bayesian Estimation of SV Model with Regime-dependent Leverage Effect for 

NASDAQ: 2 State Case [Sample: Jan/02/1975 ~ Aug/05/2015] 
 𝑦𝑡 = 𝜇 + exp (𝑥𝑡−12 ) 𝜀𝑡,   𝜀𝑡~ 𝑖. 𝑖. 𝑑. 𝑁. (0,1) 𝑥𝑡 = 𝛿𝑠𝑡 +  𝜙(𝑥𝑡−1 − 𝛿𝑠𝑡−1) + 𝑢𝑡 ,   𝑢𝑡  ~ 𝑖. 𝑖. 𝑑 𝑁 (0, 𝜎𝑢2) 

[𝜀𝑡𝑢𝑡] ~ 𝑁 ([00] , [ 1 𝜌𝑠𝑡𝜎𝑢𝜌𝑠𝑡𝜎𝑢 𝜎𝑢2 ]) 

Pr[𝑆𝑡 = 𝑗| 𝑆𝑡−1 = i] =  𝜋𝑖𝑗 , ∑ 𝜋𝑖𝑗2𝑗=1 = 1,   𝑓𝑜𝑟 𝑖, 𝑗 = 1,2. 
 

Parameters 

 

Prior  

 

 

Posterior 

 
  

Mean 

 

 

SD 

 

Mean 

 

Median 

 

SD 
 

90 % HPDI 𝜋11 0.99 0.01 0.999 0.998 0.001 (0.998 1.000) 𝜋22 0.99 0.01 0.997 0.995 0.001 (0.995 0.999) 𝜇 0 1 0.089 0.077 0.008 (0.077 0.102) 𝛿1 -0.5 0.5 -0.390 -0.443 0.032 (-0.443 -0.337) 𝛿2 0 0.5 0.422 0.308 0.063 (0.308 0.517) 𝜙 0 0.5 0.958 0.947 0.007 (0.947 0.968) 𝜌1 0 2 -0.269 -0.329 0.037 (-0.329 -0.206) 𝜌2 0 2 -0.653 -0.719 0.044 (-0.719 -0.576) σ𝑢2 0.01 0.5 0.012 0.010 0.002 (0.010 0.015) 

 
 

Note: 1.  Burn-in / Total iterations = 5,000 / 25,000 

 2.  S.D. refers to the standard deviations of the posterior distributions. 

 3.  A highest posterior density interval (HPDI) is an interval, the narrowest one possible with a chosen 

probability.   

 

 

 

 

 

 

 

 

 

 

 



Table 3.A  Bayesian Estimation of SV Model with Regime Switching Leverage Effect for S&P 500: 

3 State Case [Sample: Jan/02/1975 ~ Aug/05/2015] 
 𝑦𝑡 = 𝜇 + exp (𝑥𝑡−12 ) 𝜀𝑡,   𝜀𝑡~ 𝑖. 𝑖. 𝑑. 𝑁. (0,1) 𝑥𝑡 = 𝛿𝑠𝑡 +  𝜙(𝑥𝑡−1 − 𝛿𝑠𝑡−1) + 𝑢𝑡 ,   𝑢𝑡  ~ 𝑖. 𝑖. 𝑑 𝑁 (0, 𝜎𝑢2) 

[𝜀𝑡𝑢𝑡] ~ 𝑁 ([00] , [ 1 𝜌𝑠𝑡𝜎𝑢𝜌𝑠𝑡𝜎𝑢 𝜎𝑢2 ]) 

Pr[𝑆𝑡 = 𝑗| 𝑆𝑡−1 = i] =  𝜋𝑖𝑗 , ∑ 𝜋𝑖𝑗3𝑗=1 = 1,   𝑓𝑜𝑟 𝑖, 𝑗 = 1,2,3. 
 

Parameters 

 

Prior  

 

 

Posterior 

 
  

Mean 

 

 

SD 

 

Mean 

 

Median 

 

SD 
 

90 % HPDI 𝜋11 0.98 0.04 0.997 0.996 0.001 (0.996 0.999) 𝜋12 0.01 0.03 0.002 0.001 0.001 (0.001 0.003) 𝜋21 0.01 0.03 0.003 0.001 0.001 (0.001 0.005) 𝜋22 0.98 0.04 0.995 0.993 0.001 (0.993 0.997) 𝜋31 0.01 0.03 0.005 0.001 0.004 (0.001 0.013) 𝜋32 0.01 0.03 0.017 0.007 0.008 (0.007 0.032) 𝜇 0 1 0.035 0.022 0.008 (0.022 0.047) 𝛿1 -0.5 0.5 -0.431 -0.469 0.024 (-0.469 -0.391) 𝛿2 0 0.5 0.065 0.002 0.035 (0.002 0.117) 𝛿3 0 0.5 0.871 0.698 0.116 (0.698 1.088) 𝜙 0 0.5 0.937 0.924 0.009 (0.924 0.951) 𝜌1 0 2 -0.565 -0.645 0.045 (-0.645 -0.499) 𝜌2 0 2 -0.713 -0.790 0.045 (-0.790 -0.636) 𝜌3 0 2 -0.588 -0.802 0.173 (-0.802 -0.221) σ𝑢2 0.01 0.5 0.010 0.007 0.001 (0.007 0.012) 

 

Note: 1.  Burn-in / Total iterations = 5,000 / 25,000 

 2.  S.D. refers to the standard deviations of the posterior distributions. 

 3.  A highest posterior density interval (HPDI) is an interval, the narrowest one possible with a chosen 

probability.   

 

 

 

 



Table 3.B  Bayesian Estimation of SV Model with Regime Switching Leverage Effect for NASDAQ: 

3 State Case [Sample: Jan/02/1975 ~ Aug/05/2015] 
 𝑦𝑡 = 𝜇 + exp (𝑥𝑡−12 ) 𝜀𝑡,   𝜀𝑡~ 𝑖. 𝑖. 𝑑. 𝑁. (0,1) 𝑥𝑡 = 𝛿𝑠𝑡 +  𝜙(𝑥𝑡−1 − 𝛿𝑠𝑡−1) + 𝑢𝑡 ,   𝑢𝑡  ~ 𝑖. 𝑖. 𝑑 𝑁 (0, 𝜎𝑢2) 

[𝜀𝑡𝑢𝑡] ~ 𝑁 ([00] , [ 1 𝜌𝑠𝑡𝜎𝑢𝜌𝑠𝑡𝜎𝑢 𝜎𝑢2 ]) 

Pr[𝑆𝑡 = 𝑗| 𝑆𝑡−1 = i] =  𝜋𝑖𝑗 , ∑ 𝜋𝑖𝑗3𝑗=1 = 1,   𝑓𝑜𝑟 𝑖, 𝑗 = 1,2,3. 
 

Parameters 

 

Prior  

 

 

Posterior 

 
  

Mean 

 

 

SD 

 

Mean 

 

Median 

 

SD 
 

90 % HPDI 𝜋11 0.98 0.04 0.997 0.995 0.001 (0.995 0.999) 𝜋12 0.01 0.03 0.002 0.001 0.001 (0.001 0.004) 𝜋21 0.01 0.03 0.002 0.001 0.001 (0.001 0.004) 𝜋22 0.98 0.04 0.997 0.995 0.001 (0.995 0.998) 𝜋31 0.01 0.03 0.001 0.000 0.001 (0.000 0.003) 𝜋32 0.01 0.03 0.004 0.001 0.002 (0.001 0.006) 𝜇 0 1 0.088 0.076 0.008 (0.076 0.100) 𝛿1 -0.5 0.5 -0.595 -0.654 0.035 (-0.654 -0.538) 𝛿2 0 0.5 -0.092 -0.137 0.028 (-0.137 -0.043) 𝛿3 0 0.5 0.697 0.634 0.038 (0.634 0.758) 𝜙 0 0.5 0.921 0.909 0.007 (0.909 0.933) 𝜌1 0 2 -0.221 -0.313 0.055 (-0.313 -0.131) 𝜌2 0 2 -0.596 -0.674 0.047 (-0.674 -0.513) 𝜌3 0 2 -0.667 -0.757 0.054 (-0.757 -0.580) σ𝑢2 0.01 0.5 0.016 0.013 0.002 (0.013 0.018) 

 

Note: 1.  Burn-in / Total iterations = 5,000 / 25,000 

 2.  S.D. refers to the standard deviations of the posterior distributions. 

 3.  A highest posterior density interval (HPDI) is an interval, the narrowest one possible with a chosen 

probability.   

 

 

 

 



 

Table 4.  Deviance Information Criterion: Bayesian Model Comparison  

 𝐷𝐼𝐶 =  −2𝐸𝜁|𝑌[ln 𝑓(𝑌|𝜁)] +  2 {ln 𝑓(𝑌|𝜁)̅ − 𝐸𝜁|𝑌[ln 𝑓(𝑌|𝜁)]} 

 

 S&P 500 Nasdaq 

 

Model 

 

DIC 

 

 

Ranking 

 

 

DIC 

 

 

Ranking 

 

1 26,088.95 4 27,015.57 4 

2 26,078.41 3 26,992.56 3 

3 26,054.90 2 26,977.52 2 

4 26,044.53 1 26,947.22 1 

 

Note: 1.  Model 1: 2-state Regime Switching SV with Constant Leverage Effect 

     Model 2: 2-state Regime Switching SV with Regime-dependent Leverage Effect 

     Model 3: 3-state Regime Switching SV with Constant Leverage Effect 

     Model 4: 3-state Regime Switching SV with Regime-dependent Leverage Effect 

 

2.  Burn-in / Total iterations = 5,000 / 25,000 

  

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Figure 1.A. Autocorrelation Functions for Selected Model Parameters: Example 1 [T = 3000] 

 

 
Mean of Log Volatility in Low Volatility Regime (𝛿1) 

 
AR Coefficient (𝜙)  

  

 

Note: 1. The empirical autocorrelation functions are obtained based on 40,000 MCMC iterations. The first 3,000 

iterations are discarded as the burn-in.  

2. The averages of the ACFs calculated from 5 simulations are reported.  

3. PG refers to the benchmark PG sampler. ACF for PG is the black bold line. 

4. PGAS refers to the proposed PG sampler with ancestor sampling. ACF for PGAS is the red dotted line. 

5. PGAS-PR refers to the proposed PG sampler with ancestor sampling and particle rejuvenation. ACF for 

PGAS-PR is the blue dashed line. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Figure 1.B. Autocorrelation Functions for Selected Model Parameters: Example 2 [T = 500] 

 

 
Coefficient for 𝑓𝑡 (𝛽1) 

 
Coefficient for 𝑓𝑡2

 (𝛽2) 

 

Note: 1. The empirical autocorrelation functions are obtained based on 40,000 MCMC iterations. The first 3,000 

iterations are discarded as the burn-in.  

2. The averages of the ACFs calculated from 5 simulations are reported. 

3. PG refers to the benchmark PG sampler. ACF for PG is the black bold line. 

4. PGAS-PR refers to the proposed PG sampler with ancestor sampling and particle rejuvenation. ACF for 

PGAS-PR is the blue dashed line. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Table 2.A Posterior Estimates of Stochastic Volatility and Regime Probability: 2 State RS-SV with 

Leverage Effect [S&P 500: Jan/02/1975 ~ Aug/05/2015] 
 

 
Posterior Mean of Stochastic Volatility 

 
Posterior Probability of High Volatility Regime 

 

Note: 1. The empirical autocorrelation functions are obtained based on 20,000 MCMC iterations. The first 3,000 

iterations are discarded as the burn-in.  

2. N = 20 particles are used in the proposed PGAS sampler. 

 

 

 

 

 

 

 

 

 

 

 



Table 2.B Posterior Distributions of Regime Switching Parameters: 2 State RS-SV with Leverage 

Effect [S&P 500: Jan/02/1975 ~ Aug/05/2015] 
 

 
Posterior Distributions of 𝜇𝑠𝑡 

 
Posterior Distributions of 𝜌𝑠𝑡 

 

Note: 1. The empirical autocorrelation functions are obtained based on 20,000 MCMC iterations. The first 3,000 

iterations are discarded as the burn-in.  

2. N = 20 particles are used in the proposed PGAS sampler. 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 3.A Posterior Estimates of Stochastic Volatility and Regime Probability: 2 State RS-SV with 

Leverage Effect [NASDAQ: Jan/02/1975 ~ Aug/05/2015] 
 

 
Posterior Mean of Stochastic Volatility 

 
Posterior Probability of High Volatility Regime 

 

Note: 1. The empirical autocorrelation functions are obtained based on 20,000 MCMC iterations. The first 3,000 

iterations are discarded as the burn-in.  

2. N = 20 particles are used in the proposed PGAS sampler. 

 

 

 

 

 

 

 

 

 

 

 



Table 3.B Posterior Distributions of Regime Switching Parameters: 2 State RS-SV with Leverage 

Effect [NASDAQ: Jan/02/1975 ~ Aug/05/2015] 
 

 
Posterior Distributions of 𝜇𝑠𝑡 

 
Posterior Distributions of 𝜌𝑠𝑡 

 

Note: 1. The empirical autocorrelation functions are obtained based on 20,000 MCMC iterations. The first 3,000 

iterations are discarded as the burn-in.  

2. N = 20 particles are used in the proposed PGAS sampler. 

 

 

 

 

 

 

 

 

 

 

 



Table 4.A  Posterior Estimates of Stochastic Volatility and Regime Probability: 3 State RS-SV with 

Leverage Effect [S&P 500: Jan/02/1975 ~ Aug/05/2015] 
 

 
Posterior Mean of Stochastic Volatility 

 
Posterior Probability of Low Volatility Regime 

 

Posterior Probability of Medium Volatility Regime 

 
Posterior Probability of High Volatility Regime 

 
 

Note: 1. The empirical autocorrelation functions are obtained based on 20,000 MCMC iterations. The first 3,000 

iterations are discarded as the burn-in.  

2. N = 20 particles are used in the proposed PGAS sampler. 

 

 

 



Table 4.B Posterior Distributions of Regime Switching Parameters: 3 State RS-SV with Leverage 

Effect [S&P 500: Jan/02/1975 ~ Aug/05/2015] 
 

 
Posterior Distributions of 𝜇𝑠𝑡 

 
Posterior Distributions of 𝜌𝑠𝑡 

 

Note: 1. The empirical autocorrelation functions are obtained based on 20,000 MCMC iterations. The first 3,000 

iterations are discarded as the burn-in.  

2. N = 20 particles are used in the proposed PGAS sampler. 

 

 

 

 

 

 

 

 

 

 

 



Table 5.A  Posterior Estimates of Stochastic Volatility and Regime Probability: 3 State RS-SV with 

Leverage Effect [NASDAQ: Jan/02/1975 ~ Aug/05/2015] 
 

 
Posterior Mean of Stochastic Volatility 

 
Posterior Probability of Low Volatility Regime 

 

Posterior Probability of Medium Volatility Regime 

 
Posterior Probability of High Volatility Regime 

 

Note: 1. The empirical autocorrelation functions are obtained based on 20,000 MCMC iterations. The first 3,000 

iterations are discarded as the burn-in.  

2. N = 20 particles are used in the proposed PGAS sampler. 

 

 

 

 

 

 



Table 5.B Posterior Distributions of Regime Switching Parameters: 3 State RS-SV with Leverage 

Effect [NASDAQ: Jan/02/1975 ~ Aug/05/2015] 
 

 
Posterior Distributions of 𝜇𝑠𝑡 

 
Posterior Distributions of 𝜌𝑠𝑡 

 

Note: 1. The empirical autocorrelation functions are obtained based on 20,000 MCMC iterations. The first 3,000 

iterations are discarded as the burn-in.  

2. N = 20 particles are used in the proposed PGAS sampler. 
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