Quantum theory of firm

Dimitri O. Ledenyov and Viktor O. Ledenyov

James Cook University, Townsville, Australia

10. October 2015
Quantum theory of firm

Dimitri O. Ledenyov and Viktor O. Ledenyov

Abstract – The present innovative research continues a series of scientific articles on a) the theory of the firm in the nonlinear dynamic financial and economic systems in the classic economics science, b) the information theory of the firm in the classic economics science, c) the quantum microeconomics theory in the quantum economics science, presenting the groundbreaking theoretical research results: 1) the quantum theory of firm in the frames of the quantum microeconomics theory in the quantum econophysics science is proposed; 2) the formulas (1, 2) to compute the firm’s discrete-time EBITDA (the firm’s value) changes at the different time moments are derived; 3) the formulas (3, 4) to calculate the distribution of a number of the firms’ excited business processes of certain value at the selected firm’s state in the economy of scale and scope are presented; 4) the notion on the wave function in the quantum econophysical time-dependent/time independent wave equations is introduced; 5) the formulas (5, 6) to predict the firm’s discrete-time EBITDA (the firm’s value) state changes in the national/global economies at the certain time moment, using the wave functions in the quantum econophysical time-dependent/time independent wave equations, are derived; 6) the quantum phenomena, including the possible weak/strong interactions between the firms in the national/global economies are described; 7) the comparative analysis between a big number of the classic theories of the firm and the quantum theory of the firm is completed, explaining the main characteristic differences and existing similarities; 8) the evolutionary shift from the classic theory of the firm to the quantum theory of the firm is described; 9) the perspectives on the application of the quantum theory of the firm with the aim to solve the various economic problems in the real- and speculative- sectors of economic markets are discussed.

JEL: C0, D0, G21, G24, G30, G32, G34, G38, G39, L1, L4, L11, L25, L60, M2, M16, D0, E32, E43, E44, E53, E58, E61, G18, G21, G28

PACS numbers: 89.65.Gh, 89.65.-s, 89.75.Fb

Keywords: theory of firm, quantum theory of firm, firm’s performance state prediction problem at certain time moment, wave function in the quantum econophysical time-dependent/time independent wave equations in quantum microeconomics theory in quantum econophysics science, wave function in Schrödinger quantum mechanical wave equation in quantum mechanics science, weak/strong interactions between firms, quantum econophysics, econometrics, nonlinear dynamic economic system, economy of scale and scope, quantum microeconomics, quantum economics.
Introduction

Let us begin the introduction to this research article by highlighting a number of insightful opinions on the quantum theory of the firm:

1. The quantum theory of the firm defines the firm as a quantum object in terms the quantum econophysics science, using the theoretical representations from the quantum econophysics, the experimental findings from the quantum physics and the mathematical equations from the quantum mechanics.

2. The quantum theory of the firm presents a coherent scientific view on the nature of the firm, making it possible for the academicians and businessmen to clearly understand the complex conceptions on the firm’s barriers to entry creation, the firm’s strategic boundaries definition, and the firm’s limits to growth evaluation in the time of the major paradigm change, when our knowledge about the firm transforms due to the ongoing progress in the quantum econophysics, quantum physics and the quantum mechanics sciences.

3. The quantum theory of the firm demonstrates the quantum mechanics formulas can be successfully applied to accurately characterize the firm and raises the new questions about the further applicability of the classic mathematics and econometrics formulas in the case of the firm’s accurate characterization in the time domain.

4. The quantum theory of the firm gives us a chance to think about a wide spectrum of the scientific ideas: from the linear representations to the nonlinear representations, from the continuous-time considerations to the discrete-time considerations, from the strong interactions to the weak interactions, from the reflective barriers/boundaries to the quantum tunneling through the barriers/boundaries, from the big impacts by the big changes to the big impacts by small influences.

5. The quantum theory of the firm solves the firm’s economic indicators change forecast problems, using the wave function techniques in the quantum econophysics science.

Let us continue the introduction by saying that the discussion on the main scientific problems of our interest in the quantum theory of the firm will include the following topics:

1. the formulation of the quantum theory of firm in the frames of the quantum microeconomics theory in the quantum econophysics science;

2. the formulas (1, 2) derivation to compute the firm’s discrete-time EBITDA (the firm’s value) changes at the different time moments;
3. the formulas (3, 4) derivation to calculate the distribution of a number of the firms’ excited business processes of certain value at the selected firm’s state in the economy of scale and scope;

4. the introduction of the notion on the wave function in the quantum econophysical time-dependent/time independent wave equations;

5. the formulas (5, 6) derivation to predict the firm’s discrete-time EBITDA (the firm’s value) state changes in the national/global economies at the certain time moment, using the wave functions in the quantum econophysical time-dependent/time independent wave equations;

6. the quantum phenomena description, including the possible weak/strong interactions between the firms in the national/global economies;

7. the completion of the comparative analysis between a big number of the classic theories of the firm and the quantum theory of the firm, explaining the main characteristic differences and existing similarities;

8. the description of the evolutionary shift from the classic theory of the firm to the quantum theory of the firm;

9. the discussion on the perspectives on the application of the quantum theory of the firm with the aim to solve the various economic problems in the real- and speculative- sectors of economic markets;

10. the exchange by the research opinions on the perspectives of software program development to solve the various economic problems in the real- and speculative- sectors of economic markets, using the new quantum theory of the firm in the quantum econophysics science.

Quantum firm theory in quantum microeconomics theory in quantum econophysics science

The theory of the firm in the classic microeconomics theory in the classic economics science researches the firm’s organizational structure, the firm’s functional performance, and the firm’s economic variables change forecast. A big number of the research articles, reports, chapters and books on the theory of the firm in the classic microeconomics theory in the classic economics science have been written by the academicians and the practitioners. There are many various classic theories of the firm, proposed by many distinguished scientists in Babbage (1832), Ueda (1904, 1937), Marshall (1923), Berle, Means (1932a, b), Ohlin (1933), Coase

The quantum theory of the firm in the quantum microeconomics theory in the quantum econophysics science takes into account the premises that there may be the quantum economic processes in the nonlinear dynamic economic system over the certain time period, which have to be discovered, described and considered in details. In this context, the quantum theory of the firm postulates that the discrete-time transitions from one level of the firm’s economic performance to another level of the firm’s economic performance will occur in the nonlinear dynamic economic system at the time moment, when:

1. The present land, labour and capital resources are (added and absorbed) / (released and radiated) in the form of quanta, decreasing or increasing the general energy entropy in the nonlinear dynamic economic system (the nonlinear medium);

2. The disruptive scientific/technological/financial/social/political innovation(s) is/are introduced into or withdrawn from the nonlinear dynamic economic system (the nonlinear medium), creating the resonance conditions to amplify/attenuate the value of the firm’s economic performance, during the evolution process of the economy of scale and scope in the time domain (Note: the resonance can result in the increase/decrease of the energy of the electromagnetic wave in the electrodynamics science);

3. The firm’s business processes population inversion mechanism is present, when a) the every business process in the firm can be conditionally compared to the electron in the atom, b) the discrete increase of business process value in the firm can be conditionally associated with the discrete increase of electron’s energy in the atom during the energy pumping process in the laser, c) the land, labour and capital resources release at the population inversion mechanism realization in the firm can be conditionally regarded as the light radiation at the population inversion mechanism action in the laser.
4. The derived formula to describe the discrete-time EBITDA changes during the firm’s economic performance variations in terms of the quantum theory of the firm is

\[\ell_{\text{micro}}^{\alpha_{m,n}} = \Delta EBITDA(t) = EBITDA(t)_{m} - EBITDA(t)_{n} \]

\[\ell_{\text{micro}}^{\alpha_{m,n}} = \Delta \text{firm’s value}(t) = \text{firm’s value}(t)_{m} - \text{firm’s value}(t)_{n} \]

where: \(\ell_{\text{micro}} \) – Ledenyov constant,
\(\omega \) – cyclic velocity,
\(t \) – time,
EBITDA – the Earnings Before Interest Tax Depreciation Amortization,
Firm’s value – the firm’s market capitalization minus the firm’s long term investments and debt.

5. The Ledenyov distribution of a number of excited firms’ business processes of certain value at the selected level (state) in the economy of scale and scope in terms of the quantum microeconomics theory is

\[\frac{N_{m}}{N_{n}} = \exp \left(-\frac{(EBITDA(t)_{m} - EBITDA(t)_{n})}{\lambda_{\text{micro}}T} \right) \]

\[\frac{N_{m}}{N_{n}} = \exp \left(-\frac{\text{firm’s value}(t)_{m} - \text{firm’s value}(t)_{n}}{\lambda_{\text{micro}}T} \right) \]

where: \(\lambda_{\text{micro}} \) – Ledenyov constant,
\(N_{m} \) – number of firms’ processes of certain value at the state (m),
\(N_{n} \) – number of firms’ business processes of certain value at the state (n),
\(N = N_{m} + N_{n} \) – general number of firms’ processes of certain value in the economy of scale and scope,
\(t \) – time,
\(T \) – temperature of the economy of scale and scope, which corresponds to the level of entropy of the economy of scale and scope (the level of information/business activities by the firms),
EBITDA – the Earnings Before Interest Tax Depreciation and Amortization,
Firm’s value – the firm’s market capitalization minus the firm’s long term investments and debt.

In other words, let us emphasis that the quantum theory of the firm states that there may be the discrete-time induced transition(s) between the different levels of the firm’s EBITDAs (the
firm’s values) in the nonlinear dynamic economic system at the time, when the following things are present:

1. the land, labour and capital, which can be added and absorbed / released and radiated in the form of quanta in the nonlinear dynamic economic system (the nonlinear medium);

2. the discrete-time fluctuational processes, which can appear in the form of the disruptive scientific/technological/financial/social/political innovation(s) that absorb or release the available land, labour and capital resources, creating the resonance, in the nonlinear dynamic economic system (the nonlinear medium) during the evolution process of the firm in the economy of scale and scope in the time domain;

3. the firm’s business processes population inversion mechanism, which occurs at the following condition: $N_2/N_1 > 1$.

The authors would like to add that there are many possible disruptive scientific/technological/financial/social/political innovations in Ledenyov D O, Ledenyov V O (2015h, i): “Let us give the possible examples of the above discussed disruptive scientific/technological/financial/social/political innovation(s):

1. **Scientific innovation**: the discovery of new scientific phenomena and laws such as the relativity law in the physics in Landes (1998);

2. **Technological innovation**: the creation of new materials / devices such as the new metals / steam engines, new metals / combustion engines, semiconductors / transistors, semiconductors / lasers, superconductors / electric motors, superconductors / single electron transistors, superconductors / Josephson junctions, superconductors / quantum random number generators, superconductors / quantum processors in Ledenyov D O, Ledenyov V O (2015a);

3. **Financial innovation**: the creation of new financial products and services such as the derivatives and mobile banking;

4. **Social innovation**: the introduction of new socioeconomic models, for instance: the shared-value initiative, which can be defined as: “the policies and operating practices that enhance the competitiveness of a company while simultaneously advancing the economic and social conditions in the communities in which it operates” in Porter, Kramer (2006, 2011);

5. **Political innovation**: the establishment of the new effective governmental system.”

Now, let us conduct a comparative review on the classic theories of the firm and the quantum theory of the firm, discussing the advantages and limitations of the considered theories:
1. **a. The neo-classical theory of the firm** describes the various market structures, regulation issues, strategic pricing, barriers to entry, economies of scale and scope and even optimum portfolio selection of risky assets, and establishes the principle of profit maximisation, according to which profit is maximised, when marginal revenue is equal to marginal cost in the conditions of complete information, in the frames of the classic microeconomics theory in the classic economics science. The theory does not allow for the firm evolution in Berle, Means (1932a, b), Kantarelis (2007). The theory can be classified as a static theory, which does not take to an account the dynamic processes during the firm’s evolution/degradation;

b. The quantum theory of the firm describes the firm’s organizational structure, the firm’s functional performance, and the firm’s economic variables change forecast in the frames of the quantum microeconomics theory in the quantum economics science. The theory is formulated, using the discrete-time processes conception instead of the continuous time processes conception as in the case of all other theories of the firm. The next distinction is in the fact that the theory can be defined as a dynamic theory, which researches the discrete-time dynamic processes during the firm’s evolution/degradation in the time domain. The theory permits a possible existence of the quantum tunnelling phenomena through the firm’s barriers to entry and the firm’s strategic boundaries, leading to a discrete-time dynamic change of the firm’s limits to the growth. The quantum tunneling phenomena between the firms can be originated by the disruptive innovations, resulting in the increasing competition between the firms, when one firm can penetrate/re-define the other firm’s barriers to entry and strategic boundaries.

2. **a. The transaction cost theory of the firm** states that the people begin to organise their production in the firms, when the transaction cost of coordinating production through the market exchange in the conditions of the imperfect information, is greater than within the firm, in the frames of the classic microeconomics theory in the classic economics science in Coase (1937). It does not take into consideration the agency costs or the firm evolution, neither does it explain how the vertical integration should take place in the face of investments in the human assets, with the unobservable value, that cannot be transferred in Kantarelis (2007).

b. The quantum theory of the firm researches the firm’s organizational structure, the firm’s functional performance, and the firm’s economic variables change forecast in the frames of the quantum microeconomics theory in the quantum economics science. The theory is formulated, using the discrete-time processes conception instead of the continuous time processes conception as in the case of all other theories of the firm. The next distinction is in the fact that the theory can be defined as a dynamic theory, which researches the discrete-time dynamic processes during the firm’s evolution/degradation in the time domain. The theory
permits a possible existence of the *quantum tunnelling phenomena* through the firm’s barriers to entry and the firm’s strategic boundaries, leading to a discrete-time dynamic change of the firm’s limits to the growth. The *quantum tunneling phenomena* between the firms can be originated by the disruptive innovations, resulting in the increasing competition between the firms, when one firm can penetrate/re-define the other firm’s barriers to entry and strategic boundaries. In addition, the theory states that the firm can function, when the transaction cost of coordinating business processes within the firm can be lower, comparable or even bigger than outside the firm in the open market at certain time period, because of the quantum nature of the firm. The theory explains the existence of the high-tech / biotech startups with the high transaction cost of coordinating business processes within the firm than outside the firm in the case of the venture capital financing schemes, when the new device/technology/drug creation by the firm takes a long time period.

3. **a. The managerial theory of the firm** suggests that the managers would seek to maximise their own utility and consider the implications of this for the firm behaviour in contrast to the profit-maximising case in the frames of the classic microeconomics theory in the classic economics science in Baumol (1959, 1962), Marris (1964) and Williamson (1966).

 b. The quantum theory of the firm focuses on the firm’s organizational structure, the firm’s functional performance, and the firm’s economic variables change forecast in the frames of the quantum microeconomics theory in the quantum economics science. The theory is formulated, using the discrete-time processes conception instead of the continuous time processes conception as in the case of all other theories of the firm. The next distinction is in the fact that the theory can be defined as a *dynamic theory*, which researches the discrete-time dynamic processes during the firm’s evolution/degradation in the time domain. The theory permits a possible existence of the *quantum tunnelling phenomena* through the firm’s barriers to entry and the firm’s strategic boundaries, leading to a discrete-time dynamic change of the firm’s limits to the growth. The *quantum tunneling phenomena* between the firms can be originated by the disruptive innovations, resulting in the increasing competition between the firms, when one firm can penetrate/re-define the other firm’s barriers to entry and strategic boundaries. Moreover, the theory permits that the managers, owners, founders, investors and shareholders would try to optimize the firm’s structural/organizational/operational/economic/financial performances/variables/indicators in the time domain, going from the accumulated knowledge bases, however the theory states that all the optimization/profit maximization processes will have the quantum discrete-time nature.
4. **a. The principal-agent theory of the firm** extends the neo-classical theory of the firm and managerial theory of the firm by adding agents to the firm, and it considers the friction due to asymmetric information between owners of firms and their stakeholders or managers and employees; the friction between agent and principal requires precise measurement of agent performance and the engineering of incentive mechanisms in the frames of the classic microeconomics theory in the classic economics science. The weaknesses of the theory are many: it is difficult to engineer the incentive mechanisms, it relies on the complicated incomplete contracts (borderline unenforceable), it ignores the transaction costs (both external and internal), and it does not allow for the firm evolution in Spence and Zeckhauser (1971), Ross (1973), Kantarelis (2007).

b. The quantum theory of the firm studies the firm’s organizational structure, the firm’s functional performance, and the firm’s economic variables change forecast in the frames of the quantum microeconomics theory in the quantum economics science. The theory is formulated, using the discrete-time processes conception instead of the continuous time processes conception as in the case of all other theories of the firm. The next distinction is in the fact that the theory can be defined as a dynamic theory, which researches the discrete-time dynamic processes during the firm’s evolution/degradation in the time domain. The theory permits a possible existence of the quantum tunnelling phenomena through the firm’s barriers to entry and the firm’s strategic boundaries, leading to a discrete-time dynamic change of the firm’s limits to the growth. The quantum tunneling phenomena between the firms can be originated by the disruptive innovations, resulting in the increasing competition between the firms, when one firm can penetrate/re-define the other firm’s barriers to entry and strategic boundaries. In addition, the theory assumes that there may be a big number of the economic agents in the firm, pursuing their own business interests, however the theory emphasizes that all the business activities by the economic agents toward the business processes optimization/profit maximization will have the quantum discrete-time nature.

5. **a. The behavioural theory of the firm** assumes that the groups of people participate in setting goals and making decisions on the production; inventory; market share; sales and profits in the firm, potentially creating conflicts in the frames of the classic microeconomics theory in the classic economics science. The theory proposes that the real firms aim to satisfy rather than maximize their results in agreement with the bounded rationality concept in Simon (1950), Cyert, March (1963).

b. The quantum theory of the firm researches the firm’s organizational structure, the firm’s functional performance, and the firm’s economic variables change forecast in the frames
of the quantum microeconomics theory in the quantum economics science. The theory is formulated, using the discrete-time processes conception instead of the continuous time processes conception as in the case of all other theories of the firm. The next distinction is in the fact that the theory can be defined as a dynamic theory, which researches the discrete-time dynamic processes during the firm’s evolution/degradation in the time domain. The theory permits a possible existence of the quantum tunnelling phenomena through the firm’s barriers to entry and the firm’s strategic boundaries, leading to a discrete-time dynamic change of the firm’s limits to the growth. The quantum tunneling phenomena between the firms can be originated by the disruptive innovations, resulting in the increasing competition between the firms, when one firm can penetrate/re-define the other firm’s barriers to entry and strategic boundaries. Moreover, the theory states that the behaviour by the business stake holders will be defined by the random walk concept. The theory permits that the behaviour by the business stake holders toward the maximization of business results will take place in agreement with the bounded rationality concept and/or the bounded irrationality concept. The probability of the decision making by the business stake holders toward the maximization of business results, going from the bounded rationality concept and/or the bounded irrationality concept, is equal 50%.

6. a. The evolutionary theory of the firm states that the firm possesses unique resources (the resource based view of the firm): financial, physical, human and organizational in the frames of the classic microeconomics theory in the classic economics science. It sees the firm as a reactor to change and a creator of change for competitive advantage. The firm, as a creator of change, may cause creative destruction, which in turn may give birth to new industries and enable sectors of, or entire, economies to grow. The theory does not take to the account that the creative innovation process cannot be easily programmed within a firm or a nation in Penrose (1959), Wernerfelt (1984), Barney (1991), Kantarelis (2007).

 b. The quantum theory of the firm investigates the firm’s organizational structure, the firm’s functional performance, and the firm’s economic variables change forecast in the frames of the quantum microeconomics theory in the quantum economics science. The theory is formulated, using the discrete-time processes conception instead of the continuous time processes conception as in the case of all other theories of the firm. The next distinction is in the fact that the theory can be defined as a dynamic theory, which researches the discrete-time dynamic processes during the firm’s evolution/degradation in the time domain. The theory permits a possible existence of the quantum tunnelling phenomena through the firm’s barriers to entry and the firm’s strategic boundaries, leading to a discrete-time dynamic change of the firm’s limits to the growth. The quantum tunneling phenomena between the firms can be originated by
the disruptive innovations, resulting in the increasing competition between the firms, when one firm can penetrate/re-define the other firm’s barriers to entry and strategic boundaries. In addition, the theory states that the firm’s evolution is a discrete-time quantum process, but not a continuous-time classic process. The theory emphasizes that the firm evolves due to the origination of the creative disruptive innovation processes in the economies of the scales and scopes.

b. The quantum theory of the firm researches the firm’s organizational structure, the firm’s functional performance, and the firm’s economic variables change forecast in the frames of the quantum microeconomics theory in the quantum economics science. The theory is formulated, using the discrete-time processes conception instead of the continuous time processes conception as in the case of all other theories of the firm. The next distinction is in the fact that the theory can be defined as a dynamic theory, which researches the discrete-time dynamic processes during the firm’s evolution/degradation in the time domain. The theory permits a possible existence of the quantum tunnelling phenomena through the firm’s barriers to entry and the firm’s strategic boundaries, leading to a discrete-time dynamic change of the firm’s limits to the growth. The quantum tunneling phenomena between the firms can be originated by the disruptive innovations, resulting in the increasing competition between the firms, when one firm can penetrate/re-define the other firm’s barriers to entry and strategic boundaries. Moreover, the theory can be considered as the dynamic theory, because it considers the discrete-time information flowing and processing processes, in distinction from the knowledge theory of firm, which can be qualified as the static theory, because it deals with the accumulated knowledge bases at certain time moment only. The theory states that the firm can be accurately characterized by the measurement of the information flows, information computing, and information processing only. The theory emphasizes that the ability on the knowledge base accumulation by the firm and the ability on the knowledge base use by the firm are the two
different characteristics, which can be characterized by the measurement of the information flows, information computing, and information processing uniquely. It is not enough to accumulate the knowledge within the firm, it is necessary to understand how the accumulated knowledge is being used by the firm.

8. **a. The information theory of firm** describes the firm in terms of the information computing and processing processes in the frames of the classic microeconomics theory in the classic economics science in Ledenyov D O, Ledenyov VO (2015c). The main distinction of the information theory of firm from the knowledge theory of firm is in the fact that the information theory of firm characterizes the firm by means of the dynamic information flow and processing processes analysis. In other words, the information theory of firm is a truly dynamic theory of the firm, but not a static theory of the firm as in the case of all other theories.

b. The quantum theory of the firm describes the firm’s organizational structure, the firm’s functional performance, and the firm’s economic variables change forecast in the frames of the quantum microeconomics theory in the quantum economics science. The theory is formulated, using the discrete-time processes conception instead of the continuous time processes conception as in the case of all other theories of the firm. The next distinction is in the fact that the theory can be defined as a dynamic theory, which researches the discrete-time dynamic processes during the firm’s evolution/degradation in the time domain. The theory permits a possible existence of the quantum tunnelling phenomena through the firm’s barriers to entry and the firm’s strategic boundaries, leading to a discrete-time dynamic change of the firm’s limits to the growth. The quantum tunneling phenomena between the firms can be originated by the disruptive innovations, resulting in the increasing competition between the firms, when one firm can penetrate/re-define the other firm’s barriers to entry and strategic boundaries. In addition, the theory states that the firm’s information processing and computing can be described by the mathematics in the quantum mechanic theory.

Firm value forecast in quantum firm theory in quantum microeconomics theory in quantum econophysics science

Discussing the firm’s earnings forecast problem, it makes sense to highlight an interesting fact that the firm’s value (the firm’s earnings: EBITDA) is usually computed and forecasted, using the continuous-time wave models in the classic microeconomics theory in the classic economics science. However, there is a scientific opinion that the functional nature of the modern firm is discrete, because the main parameters of the firm tend to change discretely in the
Therefore, the authors proposed that the firm can be better characterized by the discrete-time wave models in the quantum theory of the firm in the quantum microeconomics theory in the quantum economics science in Ledenyov D O, Ledenyov V O (2015i).

Let us derive a set of the complete formulas to predict the firm’s economic performance state changes in the national/global economies at the certain time moment, using the wave function in the quantum econophysical wave equation in the quantum theory of the firm in the quantum econophysics science as in Ledenyov D O, Ledenyov V O (2015i, j), making some additional clarifications:

“Let us write the time dependent Ledenyov quantum econophysical wave equation in the quantum microeconomics theory in the quantum econophysics science

\[i \hbar \frac{\partial}{\partial t} \psi_{\text{micro}} = \hat{\mathcal{L}}_{\text{micro}} \psi_{\text{micro}}, \]

(5)

where: \(i \) – the imaginary unit,
\(\psi_{\text{micro}} \) – the wave function of a quantum system, which is a mathematical function in the quantum mechanics to accurately characterize a specified state of a quantum system. The square of the amplitude of the wave function at a given point being representative of the probability of the system being found in that state at that point.
\(\hbar \) – the Ledenyov constant,
\(t \) – the time,
\(\frac{\partial}{\partial t} \) – the partial derivative with respect to the time,
\(\hat{\mathcal{L}}_{\text{micro}} \) – the Ledenyov operator to characterize the total energy of the wave function.

The time independent Ledenyov quantum econophysical wave equation in the quantum microeconomics theory in the quantum econophysics science is

\[\hat{\mathcal{E}}_{\text{micro}} \psi_{\text{micro}} = \hat{\mathcal{L}}_{\text{micro}} \psi_{\text{micro}}, \]

(6)

where: \(\psi_{\text{micro}} \) – the wave function of a quantum system, which is a mathematical function in the quantum mechanics to accurately characterize a specified state of a quantum system. The square of the amplitude of the wave function at a given point being representative of the probability of the system being found in that state at that point,
\(\hat{\mathcal{E}}_{\text{micro}} \) – the Ledenyov operator to characterize the total energy of the wave function,
\(\hat{\mathcal{L}}_{\text{micro}} \) – the Ledenyov operator to characterize the total energy of the wave function,
\(\hat{\mathcal{E}}_{\text{micro}} \) – the energy of the state \(\psi_{\text{micro}} \).”

Continuing the scientific discussion, the authors would like to comment that we know that: “the wave function is considered as a natural attribute of quantum mechanics” in Rylov...

In general, the authors believe that the Ledenyov wave function in the Ledenyov quantum econophysical wave equation represents a most complete accurate characterization that can be given to the firm’s economic performance state in the microeconomic system in agreement with the quantum microeconomic theory in the quantum econophysics science.

Conclusion

This research article presents a number of the highly innovative theoretical research results:

1. the quantum theory of firm in the frames of the quantum microeconomics theory in the quantum econophysics science is proposed;

2. the formulas (1, 2) to compute the firm’s discrete-time EBITDA (the firm’s value) changes at the different time moments are derived;
3. the formulas (3, 4) to calculate the distribution of a number of the firms’ excited business processes of certain value at the selected firm’s state in the economy of scale and scope are presented;

4. the notion on the wave function in the quantum econophysical time-dependent/time independent wave equations is introduced;

5. the formulas (5, 6) to predict the firm’s discrete-time EBITDA (the firm’s value) state changes in the national/global economies at the certain time moment, using the wave functions in the quantum econophysical time-dependent/time independent wave equations, are derived;

6. the quantum phenomena, including the possible weak/strong interactions between the firms in the national/global economies are described;

7. the comparative analysis between a big number of the classic theories of the firm and the quantum theory of the firm is completed, explaining the main characteristic differences and existing similarities;

8. the evolutionary shift from the classic theory of the firm to the quantum theory of the firm is described;

9. the perspectives on the application of the quantum theory of the firm with the aim to solve the various economic problems in the real- and speculative- sectors of economic markets are discussed.

10. the perspectives of software program development to solve the various economic problems in the real- and speculative- sectors of economic markets, using the new quantum microeconomics theory in the quantum econophysics science, are discussed.

Acknowledgement

The first author started his scientific work on the information processing in Kharkiv, Ukraine, researching the microwave filters, making the discovery that the quantum knot of the magnetic vortex is in an extreme quantum limit, focusing on the research and development toward the ultra dense memory on the quantum knots of the magnetic vortices, and presenting his innovative research results at the international conferences, including the Marconi seminar at Birmingham University in the UK in 1999.

The advanced research on the analog and digital signals processing in the electronics and physics has been conducted by the first author under Prof. Janina E. Mazierska at James Cook University in Townsville in Australia in 2000 – 2015.
The idea to perform the *econophysical research* on the *discrete time digital signals* and the *continuous-time signals* toward the oscillating economic variables spectrum analysis in the *macroeconomics* attracted the *first author’s research interest* in recent years.

The *first author* would like to tell an interesting story that he decided to fly from *James Cook University* in the *City of Townsville* in the *State of Australia* to *University of Czernowitz* in the *City of Czernowitz* in the *State of Ukraine* to pay his respect to Prof. Joseph Alois Schumpeter’s scientific achievements in March, 2015, because Prof. Joseph Alois Schumpeter started to think on the *business cycles and economic development* in the *economics science* at *University of Czernowitz* in the *City of Czernowitz* in the *State of Ukraine* in 1909 – 1911, completing the writing of his well known book on the *business cycles* in Schumpeter (1939).

It may worth to note that the *first and second authors* were graduated from *V. N. Karazin Kharkiv National University* in the *City of Kharkiv* in the *State of Ukraine* in 1999 and 1993, hence we would like to comment that our *research interest* in the *economic cycles* in the *economics science* is quite natural, because Prof. Simon Kuznets conducted his *scientific work* on the *cyclical fluctuations in the economic systems* in the *City of Kharkiv* in the *State of Ukraine* in 1915 - 1922, being influenced by the Prof. Joseph Alois Schumpeter research ideas and coming up with the remarkable research results in Kuznets (1930, 1973).

It is a notable historical fact that the *first and second authors* were strongly influenced by the *remarkable scientific papers and books* by *Lev Davydovich Landau*, who had a considerable interest in the *physics* and, at the later stage of his life, in the *econophysics*, working in the *City of Kharkiv* in the *State of Ukraine* in 1930s.

The *second author* began his research work on the *information processing*, specifically focusing on the *information processing and coding* by various electronic computing devices in *Ukraine* in the later 1980s and early 1990s. The *second author* made his *significant research contributions* to establish the *scientific field* on the *information processing* by the *quantum computing devices*, researching and developing the 1024 Quantum Random Number Generator on the Magnetic Flux Qubits, based on the *Superconducting Quantum Interference Device* (SQUID) arrays, for the *space applications* at a number of leading research institutions and elite universities in *Europe* and in *North America* since mid 1990s. The *second author* is frequently regarded and commonly recognized as a *founder* of the *research field* on the *information processing* by the *superconducting quantum computing devices*, which was established in *Europe* almost 30 years ago.

The *second author’s scientific views* were mainly influenced by Prof. *Lev Landau research papers* on the *quantum physics*, which have been absorbed during his *research work* in
the City of Kharkiv in the State of Ukraine in 1990s; and by Prof. Niels Bohr research articles on the quantum physics, which have been studied during his scientific work at Technical University of Denmark in the City of Lyngby near the City of Copenhagen in the State of Denmark in Scandinavia in 1995, 1997-1998.

Discussing the scientific problems on the signal generation, it is necessary to comment that the second author completed his research on the Gunn diode microwave generators in 1991-1992 at V. N. Karazin Kharkiv National University in Kharkiv, Ukraine, and then continued his innovative scientific work on the various scientific programs towards the continuous-time waves generators such as the Yttrium Iron Garnet (YIG) microwave generators, tuned by the magnetic field, as well as the discrete-time digital signal generators such as the 1024 Quantum Random Number Generator on the Magnetic Flux Qubits, based on the Superconducting Quantum Interference Device (SQUID) arrays, the superconducting microwave resonators, among other research programs during the last three decades. In addition, the second author has developed a plenty of experience in the discrete-time digital signal generators, using the digital modulation techniques such as the Pulse Amplitude Modulation (PAM), Quadrature Amplitude Modulation (QAM), Phase Shift Keying (BPSK, QPSK, MPSK), Frequency Shift Keying (FSK), Gaussian Minimum Shift Keying (GMSK), etc.

The second author has been greatly influenced by the Henry George’s scientific ideas, articles and books in the economics since the beginning of 1990s. The second author has had the numerous opportunities to discuss a wide range of research problems in the economics during his frequent visits to the international conferences and his intensive research work at leading universities in Europe and North America during last four decades.

Let us repeat that this innovative research uses the knowledge on the analogue and digital signals processing in the physics and the electronics engineering, which is described in our scientific book on the nonlinearities in the microwave superconductivity in Ledenyov D O, Ledenyov V O (2015a).

The final writing, editing and reading of our research article have been made by the authors during our travel to the Prof. Viktor Yakovlevich Bunyakovsky motherland in the Town of Bar in Vinnytsia Region in the State of Ukraine in the beginning of May, 2015 and August, 2015.

The additional research changes have been added by the authors during the visits to the City of Kharkiv in the State of Ukraine in June / July / September, 2015. The obtained research results have been extensively discussed with a number of prominent scientists at the VII International Economic Forum: Innovations, Investments, Kharkiv initiatives at Kharkiv Palace hotel in Kharkiv, Ukraine on September 4, 2015.
This *innovative research* has been conducted by the *authors* during their *research work* and *research meetings* in *Australia, Austria, Canada, Denmark, Dubai, Egypt, Italy, Malaysia, New Zealand, Norway, P.R. China, Russian Federation, Singapore, Ukraine, United Kingdom, United Arab Emirates*, and USA in 1990 – 2015.

Let us make a *final comment* by saying that, in the case of the *unlimited presence* of the *information, knowledge* and *creative integrative thinking* around the *Globe*, we do believe that the *new innovative discoveries* in the *science and technology* could be generated by the *talented scientists* and *inventors* at *any place* in our *global multi-polar World* at *any time*.

E-mails: dimitri.ledenyov@my.jcu.edu.au,

ledenyov@univer.kharkov.ua.
References:

Economics Science, Finance Science, Economic History Science:

8. Bagehot W 1873, 1897 Lombard Street: A description of the money market Charles Scribner's Sons New York USA.
13. Schumpeter J A 1906 Über die mathematische methode der theoretischen ökonomie ZfVSV Austria.
15. Schumpeter J A 1911; 1939, 1961 Theorie der wirtschaftlichen entwicklung; The theory of economic development: An inquiry into profits, capital, credit, interest and the business cycle Redvers Opie (translator) OUP New York USA.

19. Slutsky E E 1915 Sulla teoria del bilancio del consumatore *Giornale degli economisti e rivista di statistica* 51 no 1 pp 1 – 26 Italy.

21. von Mises L 1912 The theory of money and credit *Ludwig von Mises Institute* Auburn Alabama USA

24. Keynes J M 1936 The general theory of employment, interest and money *Macmillan Cambridge University Press* Cambridge UK.

26. Ellis H, Metzler L (editors) 1949 Readings in the theory of international trade *Blakiston* Philadelphia USA.

27. Friedman M (editor) 1953 Essays in positive economics *Chicago University Press* Chicago USA.

33. Minsky H P 2015 Minsky archive The Levy Economics Institute of Bard College Blithewood
 Bard College Annandale-on-Hudson New York USA
 http://www.bard.edu/library/archive/minsky/.
40. Scornick-Gerstein F May, 1996 Private communications on land value taxation theory by
 Henry George Royal Automobile Club London UK.
41. Scornick-Gerstein F 1999 The future of taxation: The failure of the poll tax in the UK
45. Stiglitz J E 2015 The great divide Public Lecture on 19.05.2015 London School of
 Economics and Political Science London UK
48. Dodd N 2014 The social life of money Princeton University Press NJ USA

Juglar Economic Cycle in Macroeconomics:
49. Juglar C 1862 Des crises commerciales et de leur retour périodique en France en Angleterre
 et aux États-Unis Guillaumin Paris France.

Kondratiev Economic Cycle in Macroeconomics:

52. Tugan-Baranovsky M 1894 Industrial crises in contemporary England: Their causes and influences on the life of the people St Petersburg/Moscow Russian Federation.

53. Kondratieff N D 1922 The world economy and its trends during and after war Regional branch of state publishing house Vologda Russian Federation.

55. Kondratieff N D 1925 The big cycles of conjuncture The problems of conjuncture 1 (1) pp 28 – 79.

59. Kondratieff N D 1984 The Long wave cycle Richardson & Snyder New York USA.

67. Forrester J W 1985 Economic conditions ahead: Understanding the Kondratieff wave

68. Kuczynski Th 1978 Spectral analysis and cluster analysis as mathematical methods for the
 periodization of historical processes: Kondratieff cycles – Appearance or reality?
 Proceedings of the Seventh International Economic History Congress vol **2** International
 Economic History Congress Edinburgh UK pp 79–86.

69. Kuczynski Th 1982 Leads and lags in an escalation model of capitalist development:
 Kondratieff cycles reconsidered *Proceedings of the Eighth International Economic History
 Congress* vol **B3** International Economic History Congress Budapest Hungary pp 27.

73. Van Duijn J J 1983 The long wave in economic life *Allen and Unwin* Boston MA USA.

75. Mandel E 1980 Long waves of capitalist development *Cambridge University Press*
 Cambridge UK.

76. Van der Zwan A 1980 On the assessment of the Kondratieff cycle and related issues in
 Prospects of Economic Growth Kuipers S K, Lanjouw G J (editors) North-Holland
 Oxford UK pp 183 – 222.

77. Tinbergen J 1981 Kondratiev cycles and so-called long waves: The early research *Futures* **13**
 (4) pp 258 – 263.

79. Cleary M N, Hobbs G D 1983 The fifty year cycle: A look at the empirical evidence in
 Long Waves in the World Economy Freeman Chr (editor) *Butterworth* London UK
 pp 164 – 182.

 and empirical evidence in Long Waves in the World Economy Freeman Chr (editor)

86. Freeman C, Louçã F 2001 As time goes by: From the industrial revolutions to the information revolution *Oxford University Press* Oxford UK.

87. Goldstein J 1988 Long cycles: Prosperity and war in the modern age *Yale University Press* New Haven CT USA.

89. Berry B J L 1991 Long wave rhythms in economic development and political behavior *Johns Hopkins University Press* Baltimore MD USA.

95. Modelski G, Thompson W R 1996 Leading sectors and world politics: The co-evolution of global politics and economics *University of South Carolina Press* Columbia SC USA.

99. Perez C 2002 Technological revolutions and financial capital – The dynamics of bubbles and golden ages *Edward Elgar Cheltenhem UK.*

Kitchin Economic Cycle in Macroeconomics:

Kuznets Economic Cycle in Macroeconomics:

109. Kuznets S 1924 Economic system of Dr. Schumpeter *M. Sc. Thesis under Prof. Wesley Clair Mitchell* Columbia University NY USA.

110. Kuznets S 1930 Secular movements in production and prices *Ph. D. Thesis under Prof. Wesley Clair Mitchell* Columbia University NY USA.
111. Kuznets S 1930 Secular movements in production and prices. Their nature and their bearing upon cyclical fluctuations *Houghton Mifflin* Boston USA.

117. Kuznets S 1968 Toward a theory of economic growth, with reflections on the economic growth of modern nations.

118. Kuznets S 1971 Economic growth of nations: Total output and production structure.

Accurate Characterization of Properties of Economic Cycles in Macroeconomics:
137. Samuelson P A 1947 Foundations of economic analysis Harvard University Press Cambridge MA USA.

163. Jourdon Ph 2008 La monnaie unique Europeenne et son lien au developpement economique et social coordonne: une analyse cliometrique *Thèse Universite Montpellier* France.

172. Uechi L, Akutsu T 2012 Conservation laws and symmetries in competitive systems
 Progress of Theoretical Physics Supplement no 194 pp 210 – 222.

173. Central Banking Newsdesk 2013 Swiss board member supports counter-cyclical capital buffer

174. Union Bank of Switzerland 2013 UBS outlook Switzerland

175. Da Costa 2015 Weak first-quarter growth due to seasonal issues after all, SF Fed says
 The Wall Street Journal New York USA.

 Federal Reserve Bank of St Louis
 http://research.stlouisfed.org/fred

177. Desai M, King St, Goodhart Ch 2015 Hubris: why economists failed to predict the crisis and how to avoid the next one Public Lecture on 27.05.2015 London School of Economics and Political Science London UK

178. Desai M 2015 Do we need a new macroeconomics? Public Lecture on 09.07.2015
 London School of Economics and Political Science London UK (the presentation was made after the publication of an initial version of our research article at the MPRA and SSRN)

179. Wall Street Journal 2015a Economic forecasting survey US GDP (quarterly) for 5 years (28.06.2015)
 Wall Street Journal New York USA
 http://projects.wsj.com/econforecast/#ind=gdp&r=20

180. Wall Street Journal 2015b Economic forecasting survey US GDP (quarterly) for 7 years (28.06.2015)
 Wall Street Journal New York USA
 http://projects.wsj.com/econforecast/#ind=gdp&r=28

181. Wikipedia (English) 2015c Business cycle Wikipedia California USA

Theory of Firm in Microeconomics:
182. Babbage Ch 1832 On the economy of machinery and manufacturers Charles Knight 13 Pall Mall East London UK.
189. Ohlin B 1933 Interregional and international trade Harvard University Press Cambridge Massachusetts USA.

211. Williamson O E 1964 The economics of discretionary behavior: Managerial objectives in a theory of the firm Prentice-Hall Englewood Cliffs NJ USA.

221. Stigler G 1968 The organization of industry Richard Irwin Inc Homewood USA.

239. Mintzberg H 1973 The nature of managerial work *Harper & Row* New York USA.

272. Lede Li 1986 A stochastic theory of the firm Working Paper no 1844-86 Sloan School of Management MIT USA.

300. Donaldson L 2001 The contingency theory of organizations *Sage* London UK.

Disruptive Innovation in Terms of Economics Science in Macroeconomics and Microeconomics:

313. Schumpeter J A 1911; 1939, 1961 _Theorie der wirtschaftlichen entwicklung; The theory of economic development: An inquiry into profits, capital, credit, interest and the business cycle_ Redvers Opie (translator) _OUP_ New York USA.

332. Christensen C M 1999a Innovation and the general manager Irwin McGraw-Hill Homewood IL USA.

333. Christensen C M 1999b Impact of disruptive technologies in telecommunications in Bringing PC economies to the telecommunications industry PulsePoint Communications.

350. Shah Ch D, Brennan T A, Christensen C M April 2003 Interventional radiology: Disrupting invasive medicine.

351. Christensen C M March April 2003 Beyond the innovator's dilemma Strategy & Innovation 1 no 1.

371. Bernoulli J 1713 Ars conjectandi (The art of guessing).

373. De Moivre 1730 Miscellanea analytica supplementum (The analytic method).

377. Bunyakovskiy V Ya 1825 Rotary motion in a resistant medium of a set of plates of constant thickness and defined contour around an axis inclined with respect to the horizon Ph D Thesis no 1 under Prof. Augustin - Louis Cauchy supervision École Polytechnique Paris France.

383. Chebyshev P L 1846 An experience in the elementary analysis of the probability theory Crelle’s Journal fur die Reine und Angewandte Mathematik.

405. Slutsky E E 1915 Sulla teoria sel bilancio del consumatore Giornale degli economisti e rivista di statistica 51 no 1 pp 1 – 26 Italy.
412. Slutsky E E 1925b Ueber stochastische Asymptoten und Grenzwerte Metron Padova Italy vol 5 no 3 pp 3 – 89.
414. Slutsky E E 1927a The summation of random causes as sources of cyclic processes Problems of Conjuncture (Voprosy Kon’yunktury) vol 3 issue 1 pp 34 – 64 Moscow Russian Federation.

419. Slutsky E E 1937b The summation of random causes as the source of cyclical processes *Econometrica* 5 pp 105 – 146.

432. Cramer H 1946 Mathematical methods of statistics *Princeton University Press* USA.
442. Mandelbrot B B 1963a The stable Paretoian income distribution when the apparent exponent is near two International Economic Review no 4.
455. Mandelbrot B B 1977 Fractals: Form, chance and dimension W H Freeman San Francisco USA.
456. Mandelbrot B B 1982 The fractal geometry of nature W H Freeman San Francisco USA.
458. Gnedenko B V, Khinchin A Ya 1961 An elementary introduction to the theory of probability Freeman San Francisco USA.

500. Lamperti J 1966 Probability *Benjamin* New York USA.

506. Breiman L 1968 Probability *Addison-Wesley* Reading MA USA.

525. Maddala G S 1983 Limited-dependent and qualitative variables in econometrics *Cambridge University Press* Cambridge UK.

534. Taylor S 1986 Modeling financial time series *John Willey and Sons Inc* New York USA.

542. Lancaster T 1990 The econometric analysis of transition data *Cambridge University Press* Cambridge UK.

546. Cleveland W S 1993 Visualizing data *Hobart Press* Summit New Jersey USA.

547. Pesaran M H, Potter S M (editors) 1993 Nonlinear dynamics, chaos and econometrics *John Wiley and Sons Inc* New York USA.

549. Peters E E 1994 Fractal market analysis: Applying chaos theory to investment and economics *John Wiley and Sons Inc* New York USA.

554. Moore G E 2003 No exponential is forever – but we can delay forever *ISSCC*.

563. Hubbard B B 1998 The world according to wavelets A K Peters Wellesley MA USA.
564. Mallat S A 1998 Wavelet tour of signal processing Academic Press San Diego CA USA.
565. Teolis A 1998 Computational signal processing with wavelets Birkhauser Switzerland.
582. Koop G 2003 Bayesian econometrics John Wiley and Sons Inc New York USA.

Selected Research Papers in Macroeconomics, Microeconomics & Nanoeconomics Sciences:
593. Ledenyov V O, Ledenyov D O 2012a Shaping the international financial system in century of globalization Cornell University NY USA pp 1 – 20
594. Ledenyov V O, Ledenyov D O 2012b Designing the new architecture of international financial system in era of great changes by globalization Cornell University NY USA pp 1 – 18

596. Ledenyov D O, Ledenyov V O 2012b On the risk management with application of econophysics analysis in central banks and financial institutions Cornell University NY USA pp 1 – 10

597. Ledenyov D O, Ledenyov V O 2013a On the optimal allocation of assets in investment portfolio with application of modern portfolio management and nonlinear dynamic chaos theories in investment, commercial and central banks Cornell University NY USA pp 1 – 34

600. Ledenyov D O, Ledenyov V O 2013d To the problem of turbulence in quantitative easing transmission channels and transactions network channels at quantitative easing policy implementation by central banks Cornell University NY USA pp 1 – 40

601. Ledenyov D O, Ledenyov V O 2013e To the problem of evaluation of market risk of global equity index portfolio in global capital markets MPRA Paper no 47708 Munich University Munich Germany pp 1 – 25
http://mpra.ub.uni-muenchen.de/47708/.

602. Ledenyov D O, Ledenyov V O 2013f Some thoughts on accurate characterization of stock market indexes trends in conditions of nonlinear capital flows during electronic trading
at stock exchanges in global capital markets *MPRA Paper no 49964* Munich University Munich Germany pp 1 – 52
http://mpra.ub.uni-muenchen.de/49964/ .

http://mpra.ub.uni-muenchen.de/50235/ ,

http://mpra.ub.uni-muenchen.de/51176/ ,

http://mpra.ub.uni-muenchen.de/51903/ ,

http://mpra.ub.uni-muenchen.de/61946/ ,

http://mpra.ub.uni-muenchen.de/53780/ ,

611. Ledenyov D O, Ledenyov V O 2014f MicroLBO software program with the embedded optimized near-real-time artificial intelligence algorithm to create winning virtuous strategies toward leveraged buyout transactions implementation and to compute direct/reverse leverage buyout transaction default probability number for selected public/private companies during private equity investment in conditions of resonant absorption of discrete information in diffusion - type financial system with induced nonlinearities ECE James Cook University Townsville Australia, Kharkov Ukraine.

613. Ledenyov D O, Ledenyov V O 2015b Winning virtuous strategy creation by interlocking interconnecting directors in boards of directors in firms in information century MPRA Paper

http://mpra.ub.uni-muenchen.de/66577/,

http://mpra.ub.uni-muenchen.de/67010/,

622. Ledenyov D O, Ledenyov V O 2015i MicroID software program with the embedded optimized near-real-time artificial intelligence algorithm to create the winning virtuous business strategies and to predict the director’s election / appointment in the boards of directors in the firms, taking to the consideration both the director’s technical characteristics and the interconnecting interlocking director’s network parameters in conditions of the resonant absorption of discrete information in diffusion - type financial economic system with induced nonlinearities ECE James Cook University Townsville Australia, Kharkov Ukraine.

623. Ledenyov D O, Ledenyov V O 2015j MicroITF operation system and software programs:
1) the operation system to control the firm operation by means of the information resources near-real-time processing in the modern firms in the case of the diffusion - type financial economic system with the induced nonlinearities; 2) the software program to accurately characterize the director’s performance by means of a) the filtering of the generated/transmitted/received information by the director into the separate virtual channels, depending on the information content, and b) the measurement of the levels of signals in every virtual channel with the generated/transmitted/received information by the director, in the overlapping interconnecting interlocking directors networks in the boards of directors in the firms during the Quality of Service (QoS) measurements process; and 3) the software program to create the winning virtuous business strategies by the interlocking interconnecting directors in the boards of directors in the modern firms in the case of the diffusion - type financial economic system with the induced nonlinearities, using the patented recursive artificial intelligence algorithm ECE James Cook University Townsville Australia, Kharkov Ukraine.
Ledenyov D O, Ledenyov V O 2015k *MicroIMF* software program: the *MicroIMF* software program to make the computer modeling of 1) the interactions between the information money fields of one cyclic oscillation and the information money fields of other cyclic oscillation(s) in the nonlinear dynamic economic system, 2) the interactions between the information money fields of cyclic oscillation and the nonlinear dynamic economic system itself, and 3) the density distributions of the information money fields by different cyclic oscillations (the economic continuous waves) in the nonlinear dynamic economic system *ECE James Cook University* Townsville Australia, Kharkov Ukraine.

Ledenyov D O, Ledenyov V O 2015l *MicroSA* software program 1) to perform the spectrum analysis of the cyclic oscillations of the economic variables in the nonlinear dynamic economic system, including the discrete-time signals and the continuous-time signals; 2) to make the computer modeling and to forecast the business cycles for a) the central banks with the purpose to make the strategic decisions on the monetary policies, financial stability policies, and b) the commercial/investment banks with the aim to make the business decisions on the minimum capital allocation, countercyclical capital buffer creation, and capital investments *ECE James Cook University* Townsville Australia, Kharkov Ukraine.

Quantum Physics, Quantum Electronics, Quantum Computing:

Planck M 1900a Über eine Verbesserung der Wienschen Spektralgleichung On an improvement of Wien's equation for the spectrum *Verhandlungen der Deutschen Physikalischen Gesellschaft* 2 pp 202 – 204
http://archive.org/stream/verhandlungende01goog#page/n212/mode/2up.

Planck M 1900b Zur Theorie des Gesetzes der Energieverteilung im Normalspektrum *Verhandlungen der Deutschen Physikalischen Gesellschaft* 2 p 237
http://archive.org/stream/verhandlungende01goog#page/n246/mode/2up.

Planck M 1900c Entropie und Temperatur strahlender Wärme Entropy and temperature of radiant heat *Annalen der Physik* 306 (4) pp 719 – 737
http://adsabs.harvard.edu/abs/1900AnP...306..719P,
https://dx.doi.org/10.1002%2Fandp.19003060410.

Planck M 1900d Über irreversible Strahlungsvorgänge On irreversible radiation processes *Annalen der Physik* 306 (1) pp 69 – 122
http://adsabs.harvard.edu/abs/1900AnP...306..69P,
https://dx.doi.org/10.1002%2Fandp.19003060105.

Planck M 1903 Treatise on thermodynamics *Longmans, Green & Co* London UK
http://archive.org/stream/treatiseonthermo00planuoft#page/n7/mode/2up,
http://openlibrary.org/books/OL7246691M.

Planck M 1906 Vorlesungen über die Theorie der Wärmestrahlung *JA Barth* Leipzig Germany
http://lccn.loc.gov/07004527.

Planck M 1914 The theory of heat radiation 2nd edition *P Blakiston's Son & Co* http://openlibrary.org/books/OL7154661M.

Planck M 1943 Zur Geschichte der Auffindung des physikalischen Wirkungsquantums *Naturwissenschaften* 31 (14–15) pp 153 – 159
http://adsabs.harvard.edu/abs/1943NW.....31..153P,
https://dx.doi.org/10.1007%2FBF01475738.

Einstein A 1905 Zur Elektrodynamik bewegter Körper On the electrodynamics of moving bodies *Annalen der Physik* Berlin Germany (in German) 322 (10) pp 891 – 921
http://onlinelibrary.wiley.com/doi/10.1002/andp.19053221004/pdf,
http://adsabs.harvard.edu/abs/1905AnP...322..891E),
http://dx.doi.org/10.1002%2Fandp.19053221004.

Einstein A 1917 Zur Quantentheorie der Strahlung On the quantum mechanics of radiation *Physikalische Zeitschrift* (in German) 18 pp 121 – 128
http://adsabs.harvard.edu/abs/1917PhyZ...18..121E.

Einstein A 1924 Quantentheorie des einatomigen idealen gases Quantum theory of monatomic ideal gases *Sitzungsberichte der Preussischen Akademie der Wissenschaften Physikalisch-Mathematische Klasse* (in German) pp 261 – 267
http://echo.mpiwg-berlin.mpg.de/MPiWG:DRQK5WYB.

http://journals.aps.org/pr/pdf/10.1103/PhysRev.47.777,
http://adsabs.harvard.edu/abs/1935PhRv...47..777E.

643. de Broglie L 1926 Ondes et mouvements Waves and motions *Gauthier-Villars* Paris France.

644. de Broglie L 1927 Rapport au 5e Conseil de Physique Solvay Brussels Belgium.

645. de Broglie L 1928 La mécanique ondulatoire Wave mechanics *Gauthier-Villars* Paris France.

651. Townes Ch 1939 Concentration of the heavy isotope of carbon and measurement of its nuclear spin Ph.D. thesis Caltech California USA

653. Gordon J, Zeiger H, Townes Ch 1955 The maser — new type of microwave amplifier, frequency standard, and spectrometer Physical Review 99 (4) p 1264
 http://adsabs.harvard.edu/abs/1955PhRv...99.1264G ,
 https://dx.doi.org/10.1103%2FPhysRev.99.1264 .

 http://adsabs.harvard.edu/abs/1956PhRv..102.1308S ,
 https://dx.doi.org/10.1103%2FPhysRev.102.1308 .

655. Townes Ch H 1964 Nobel Prize in Physics Stockholm Sweden

656. Townes Ch H 1966 Obtaining of coherent radiation with help of atoms and molecules Uspekhi Fizicheskikh Nauk (UFN) vol 88 no 3.

657. Townes Ch H 1969 Quantum electronics and technical progress Uspekhi Fizicheskikh Nauk (UFN) vol 98 no 5.

682. Basov N G 1965 Semiconductor quantum generators Uspekhi Fizicheskih Nauk (UFN)
 vol 85 no 4.
 UK.
 Temperature Physics 29 pp 301 – 331.
686. Fulton T A, Dolan G J 1987 Observation of single-electron charging effects in small
 phenomena in nanostructures Plenum Press New York USA.
689. Yokoyama H, Ujihara K 1995 Spontaneous emission and laser oscillation in micro-
690. Alferov Zh I 1996 The history and future of semiconductor heterostructures in
691. Mygind J 1997 Private communications on the new sources of noise in the single electron
 transistors Department of Physics Technical University of Denmark Lyngby Denmark.
 3.
693. Muck M 1998 Radio frequency superconducting quantum interference devices Institute
 of Applied Physics University of Giessen Germany.
694. Bimberg D, Grundmann M, Ledentsov N N 1999 Quantum dot heterostructures John
 Wiley and Sons Inc New York USA.
 York USA.
 generator on magnetic flux qubits Proceedings of the 2nd Institute of Electrical and
 Electronics Engineers Conference IEEE-NANO 2002 Chicago Washington DC USA IEEE
Wave Function in Schrödinger Quantum Mechanical Wave Equation in Quantum Mechanics:

Continuous Time Signal, Analog Signals, Discrete Time Signal, Digital Signals, Spectrum of Signals, Electromagnetic Field, Gravitation Field, Calibrating Field, Information Field

Theories in Physics and Engineering Sciences:

735. Maxwell J C 1890 Introductory lecture on experimental physics in *Scientific papers of J C Maxwell* Niven W D (editor) vols 1, 2 Cambridge UK.

737. Walsh J L 1923b A property of Haar’s system of orthogonal functions *Math Ann* 90 p 3845.

http://cm.bell-labs.com/cm/ms/what/shannonday/paper.html.

CiteSeerX: 10.1.1.154.2879
http://dx.doi.org/10.1016%2FS0019-9958%2859%2990376-6

http://dx.doi.org/10.1109%2FT-C.1972.223524.

746. Orfanidis S J 1995 Introduction to signal processing *Prentice-Hall* Englewood Cliffs NJ USA.

748. Fountain T 1987 Processor arrays, architecture and applications *Academic Press* London UK.

771. Wikipedia 2015g Discrete-time signal *Wikipedia Inc* USA

772. Wikipedia 2015h Hadamard code *Wikipedia* USA

773. Ledenyov D O, Ledenyov V O 2015a Nonlinearities in microwave superconductivity
 8th edition *Cornell University* NY USA pp 1 – 923