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1 Introduction

In every real life phenomenon there is an uncertainty involved. We want to

model this uncertainty for some reasons. One of the reason is forecasting for

the purpose of decision making. If we have some knowledge of the future

then we can make decisions to meet our objectives. Econometrics is used for

modeling this uncertainty, specially in Economics. Making a right decision on

right time is very important to tackle the complex system of Economy. There

are mainly four objectives of the Econometric modeling. First is Describing a

real life phenomenon using some model, secondly Forecasting, thirdly Casual

Analysis and last but not least Policy Analysis, as suggested by ?.

Consumer Price Index (CPI) is a key variable which indicate the overall

price level of basket of goods and services in a country. It has many useful

motives, some are suggested by ?, as measuring cost of living, indexation of

monetary flows, indexation of wages, indexation of rents, indexation of social

security benefit and inflation. Inflation is one of the important variable that

can influence the whole economy and government policy defined as rate of

change in CPI. Inflation not only affects the individual as well as economy.

To maintain a rapid growth in the economy it is very important to maintain
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inflation at threshold level. High inflation with a momentum can be an in-

dication of diluting economy. On the other hand low inflation may also have

negative impact on growth.

Inflation forecasting is equally important for monetary policy as well as fiscal

policy. Private agents, labor market and financial market also react to the

change in inflation. Irrespective of having expectation about inflation, so it is

of grave importance to have accurate forecast to some horizons. Inflation is

very important indicator of a country’s economy. It provides understanding

of the state of economy. Generally economist alleged that high inflation is

caused by the extensive supply of money.It is a main objective of the central

bank to maintain a moderate level of inflation for steady growth of economy.

In Pakistan various factors effect inflation including money supply and fuel

prices. ? studied some determinants of inflation and found that in Pakistan

it is highly effected by the monetary policy. Recent rise in inflation has many

causes but excessive printing of money by democratic governments, rise in

prices of fuel in international market, rise in price of electricity, shortage of

electricity and rise in production cost are the important factors influencing

the inflation rate. Although there are different studies to define a threshold

level of inflation for which there is a positive impact on growth and beyond

which has a negative impact on growth. Generally in case of developing

countries 7-11 percent of inflation is claim to be a level for which there is a

2



positive impact as noted by ?. In case of Pakistan it is found that inflation

around 8 percent is best .

Forecasting is one of the main objectives of Econometric modeling. There are

mainly two types of forecasting. Statistical forecasting i.e. based on histor-

ical data (Univariate models also called extrapolation ) and Economic fore-

casting i.e. based on Multivariate models (VAR models and cointegration).

Univariate models are used for short term forecasting where as multivariate

models are renowned for long term forecasting. Both type of models have

their pros and cons. One may argue that univariate models are same like a

guess which may or may not be true (rather its a scientific guess with some

confidence interval). On the other hand multivariate models are more com-

plex and errors like model mispecification can arise. Another factor which

may add accuracy to forecasting is frequency of the data. High frequency

data can be used to have more accurate forecast. High frequency data has

an advantage of accurate forecast which may induce complexity specially to

multivariate models.

In the present study our main objective is to forecast inflation in case of

Pakistan as accurate as possible. Secondary one is comparing forecasting

performance. For this purpose we are using highest frequency data of na-

tional price level available in case of Pakistan monthly data. We will forecast

the inflation using classic Box-Jenkins methodology and Functional Time Se-
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ries Analysis using data of CPI general from 2002-2011 of Pakistan.

2 Literature Review

In forecasting inflation many efforts have been made using different vari-

ables and methodology. Many authors have used univariate models (ARIMA

and ARCH models), famous Philips curve (VAR models) and cointegration.

Many determinants like unemployment, Economic growth and Monetary

variables like money supply have been used for this purpose. If we study

the evaluation of time series methodologies we found that ? had pioneer

work ,which laid the foundation of modern time series analysis and forecast-

ing. This work was actually done to resolve some problems in engineering

related to frequency domain. He was trying to estimate under lying signal

for set of time series observations corrupted by noise. These signal extraction

models work almost similar to complex econometric models in forecasting,

developed at different time.

In forecasting time series based on purely statistical or models based on

historical data, many types of modification like , linear, non linear, smooth-

ing parametric and non-parametric models were used in this regard. X-12

ARIMA models developed by US Bureau forecast after extracting the cycli-
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cal and seasonal component. Exponential smoothing is another method used

to forecast variable’s future values. Originally it was developed by ? and

then ? applied this technique to forecast sales. He also introduced a slope

term in the model. The main idea behind exponential smoothing was to give

exponential weights to the observations based their time of occurrence. The

most recent observation has the maximum weight and rest have exponen-

tially decaying weights with the minimum weight to the first observation.

The advantage of this technique is it minimizes the inherited noise in the

observation which leads to a smooth curve. This curve made by exponential

smoothing is then used to forecast future values. The main disadvantage

of this method is that it lacks the theoretical consideration due to which it

doesn’t allow for prediction interval.? studied the least square estimated of

coefficients of exponential smoothing model.His contribution added the flavor

of econometrics in the model Many other contributions were made till 1970

in existing as well as new techniques. In the same year ? came up with a

methodology that address many practical issues for modeling and forecasting

time series.

In case of multivariate forecasting techniques first one is a multivariate ex-

tension of ARIMA model i.e. Vector ARIMA models. Vector Autoregressive

(VAR) is special case of VARIMA. VAR was first derived by the ?. In gen-

eral The main disadvantage of the VAR model is, that it has too many extra
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estimated parameters which are usually insignificant , as a result out of sam-

ple forecasting is poor as noted by ? although in sample forecasting is good.

Performance of VAR models were even worst at level when variables involved

are non stationary. ? comes up with a solution called cointegration and Er-

ror Correction models. These models have good out sample forecasting on

the long horizon. Some modified and improved versions of the method are

also available. Besides these some non linear models like regime switching

models, Artificial Neural Network models, GARCH models and ARFIMA

models are also used for forecasting purpose.

Comparison of forecast efficiency of different type of models have been

made in many studies. ? and ? concluded that ARIMA models perfor-

mance is superior then Wharton Economic model. ? in his famous book

compared the performance of both type of models and concluded that time

series models are superior then Economic models. Specifically in univariate

vs economic forecasting. ?found that ARIMA models outperform all other

models in forecasting Irish inflation. They also investigated the performance

of VAR models in Bayesian paradigm. ?showed that univarite models outper-

form models like Philip’s curve. ? showed that time series ARIMA models

outperform macro models. In a paper by ?, predictive performance of the

univariate time series and some economic forecast models were compared. He
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found that univariate models are the optimal ones for forecasting inflation.

In the early history of Pakistan till 1990 inflation was not a big issue.

After the adoption of Structural Adjust Program in 90’s the focus shifted

on this side. The main debate started after 2000 about inflation, monetary

variables and policy. Before 2000 we have few studies in this context. After

it many studies have been made specially focused on inflation and monetary.

The main focus of the studies was to determining the possible variable re-

sponsible for change in inflation. These multivariate studies was of two type.

Theoretical (Economic Forecasting)and models just for forecasting inflation

with out any theory based analysis (Statistical Forecasting). Most of the

work done in theory based model was to test monetary theory or checking

possible determinants of inflation.

For example Ahmed [1991] found Gross National product (GNP), growth

rate of imports, growth in ratio of M1 and M2 as important variables in

determining inflation. Dhakala[1993] found M1 , interest rate import prices

as important variables. Hasen [1995] put forwards the view of using fiscal

variables. Ahmed and Ali [1999] finds interest rate as important one. Khan

[2002] finds Dollar exchange rate, Khalid 2005 suggest imported inflation

and openness important. Malik [2006] founds money supply as more influ-

ential. Aleem [2007] conclude adaptive expectation private sector credit and
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imported prices as one of possible causes of inflation. Omer and Farooq

[2008] and Khan et. al [2008] tested and concluded political instability as

most influential on unstable price level. Some of the researchers tested some

theories. Akhter [1990] supported monetarist point of view in determining

inflation. Bayer[1993], Qayyum [2006] and Kemal[2006] found evidence in

favor of Quantity Theory of Money. On the other hand some studies are

also their for multivariate case in forecasting inflation of Pakistan. Different

models have been used for example Ahmed [1999] used 2sls method. Hyder

and Shah used Recursive VAR model. Qayyum [2005] built a p-star model.

Khan [2006] and Kemal [2006] used VECM for the purpose of forecasting.

Gul [2012] using data 1992-2010 finds Philips Curve still good to forecast in-

flation in Pakistan. Tahir et. al [2014] used data from 1991-1 to 2013-11 and

Bayesian VAR modle to forecast inflation of Pakistan. He used three priors

for this purpose. Minnesota, Independent Normal-Wishart and Independent

Minnesota Wishart priors.

In the past fifteen years there are numerous fields in which Functional Data

Analysis is applied. Bio medicine , signal processing, Economic, Finance,

Demographic forecasting, Human growth, multi-stream web data, Ecology ,

Environment studies and many more see (ullah [2013]). It is mainly consist

of smoothing techniques, data reduction techniques, functional linear mod-

els and forecasting methods. In demography age specific mortality rates, ?,
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fertility, mortality and ?, monthly non-durable goods index ? and income

distribution.

Particularly in foretasting inflation ? applied the functional data method on

forecasting inflation. He used Sector wise disaggregated data of CPI in two

and more levels. He used data of CPI disaggregated at 2nd and 3rd level

from January 1997 to February 2008. Authors modeled Each series of disag-

gregated data as a functional observation. After smoothing the data using

kernel smoothing methods, Functional Autoregressive model(FAR) was fit-

ted. Recomposing each level of forecasted data series to get next level series

using some weights and finally getting CPI. Authors fitted many model to

forecast the series after smoothing. FAR(1), fitting FAR after differencing

(DFAR), FAR on 3 month moving average (FAR-3m). Authors found FAR-

3m model to be optimal in forecasting inflation.

In case of Pakistan many attempts have been made for forecasting inflation.

Forecasting inflation using time series models were attempted by many au-

thors. ? foretasted inflation used data od CPI from 1993-7 to 2004-6. He

fitted many ARIMA models using Box-Jenkins methodology. Author com-

pared performance of all these univariate models using performance eval-

uation criteria. ? foretasted inflation using Artificial neural networks. ?

modeled the data 1961-2013 of CPI using ARIMA models foretasted the in-

flation of Pakistan to be 8.83 in year 2013. They found ARIMA(1,1,1) model
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the best for forecasting inflation. ? used monthly data of CPI from 2008-7 to

2013-6. Authors modeled the data using two methods . ARIMA models and

decomposing CPI to its time series components and then recomposing after

projection to forecast inflation. They concluded that the ARIMA models

gives better results.

3 Methodology and Data

In this section we will briefly explain the functional data analysis and its

application to forecasting Functional Time Series Analysis (FTSA). In fore-

casting inflation we have used CPI of Pakistan from JAN-2002 to DEC-2011.

3.1 ARMA Models

The autoregressive model is a kind of linear regression in which independent

variables is actually the response variable from the previous period (i.e. lag

of the series). For example for a series yt, the autoregressive of order p (i.e.

AR(p) ) is of the form

yt = φ1yt−1 + φ2yt−2, ..., φpyt−p + ǫt (1)
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where ǫt is noise in the data series assumed to be identically independently

distributed with 0 mean. The reason to denote AR(p) is that yt is regressed

on its own subsequent previous years values.The moving average is a linear

model of a time series dependent on the past errors. So the MA model of

order q an be expressed as

yt = θ1ǫt−1 + θ2ǫt−2 + ...+ θqǫt−q (2)

3.1.1 Test for Structural Break

We have used in this thesis ? test for structural breaks. The standard

model considered by authors is a multiple linear regression model with T

time periods and m potential break points, which results in m + 1 regimes.

The model is given by

Y = Xβ + Zδ + ǫ (3)

where Z is a set of variables whose coefficient vary across regimes and X is

set of variable whose coefficients remain same across the regimes.We have

used here sequential procedure so we will only define it. The steps involved

in the testing are following. First full sample is considered and consistency

of parameters of variables is tested. If the hypothesis is rejected then the

data is divided into two subsets and possible presence of structural breaks
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is tested. The data is dived and the test for more and more regimes are

performed until the hypothesis accept. Following F test is used for testing

F =
1

T

(T − (l + 1)q

lq

)

δ̂R(RV (δ̂)R)−1Rδ̂ (4)

where q is number of restrictions, l is number of potential break points R is

restriction matrix and V is variance-covariance matrix.

3.1.2 Non-Stationarity, its Detection and Remedy

If distribution of a series (say) yt dose not changes over time the series is

called Stationary. If we able to test such kind of stationarity, then this kind

of stationarity is called strong stationarity. The actual problem in testing

such kind of stationarity is that we are unable to find the distribution of a

time dependent variable. Due to this difficulty we move toward weak station-

arity. A series is called weakly stationary if its mean variance and covariance

are constant over time. In time series analysis, the stationarity of a series

is tested assuming different time series data generating process (DGP) of

series. For example the pioneer work of ? assumed the DGP AR(1)model

with drift and trend. The test was developed with a null hypothesis of unit

root in the series. There are many modification of unit root test is available

including non-parametric and Bayesian techniques. In testing seasonal unit
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root the first and simplest approach motivates by his own non-seasonal test

was proposed by ?. An extension and general form of the test was proposed

by ?. Our focus is mainly on seasonal monthly unit root so we move towards

the objective instead of discussing nonseasonal unit root and seasonal unit

root of quarterly data.First test for seasonal unit root for monthly data was

proposed by Franses(testing for seasonal unit root in monthly data rotter-

dem). ? proposed an alternative test which is an extension of HEGY test

for quarterly data. ? and ? have generalized the regression-based approach

of HEGY and BM to allow for differential seasonal drift in quarterly and

monthly scenarios respectively.

3.1.3 Box-Jenkins Methodology

In order to select a good model to forecast univariate time series? proposed

a three step methodology. The steps are (a) Identification (b) Estimation

and (c) Diagnostic .

1. Identification

In selecting a appropriate model we have to identify the parameters

(p,d,q)as more the one model can exist for a particular series. Due

to a property called invertibility i.e. an infinite AR model can be

represented by an MA model, we may have more then one model. After

testing the stationarity of the series, we examine the Auto-Correlation
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(ACF)and Partial Auto-Correlation (PACF)functions plot to decide

the model.

2. Estimation

The observed ACF and PACF are used to identify the model, then we

estimate the model for significant spikes observed in ACF and PACF.

For different models we use Akike information criteria and Bayesian in-

formation criteria to choose a model. A parsimonious models is always

desired in the class of models.

3. Diagnostics

After estimation we have to check the model adequacy. In this stage

we apply some test on the residuals and estimated coefficients to check

the goodness of fit of the model. We plot the residual to check the

outlires, plot ACF to check autocorrelation in the residuals ,apply test

to check normality of the residuals and significance of the coefficients.

These are test are applied to select an appropriate model.

3.2 Functional Data Analysis and its Application

In statistics we deal with sequence of observation of vectors, but in FDA we

deal with functions. Each function is a set of observations which is called a

functional observation. So in this analysis we need more the one (functional)
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observation. For example growth curve of children in terms of height mea-

sured at different age, each child growth curve can be treated as a functional

observation. Another example is temperature of different cities. Now in this

case there may be two types of functional observation, we can deal with the

temperature of whole year of a station as functional observation if we have

data of many years or for year we can model the data of many station in

functional data. Also as in these curves the first and second derivative (dif-

ference) can reveal interesting features of growth.

The functional observation can be a single long record which could be broken

at finer scale for analysis. e.g. the temperature of a station could be broken

at each year to treat as a functional observation. The functional data can

also be an input output system, it can also be used in linear models. we can

also fit distribution on a data using functional data analysis. In statistics

fitting a pdf to data means estimating its parameters , which determines

its shape. The purpose of fitting a probability distribution is actually some

kind of forecasting,e.g. calculating probability of a certain value of a vari-

able. Now in real world normality is myth. So instead proving data to be

normal and fitting a distribution, we can go for curve fitting which has only

assumption of smoothness. Almost all of statistical analysis can be done in

FDA without any prior assumption and with greater accuracy. The main

features of the FDA are
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1. Model the data.

2. Highlight Characteristic of the data.

3. Study the patterns in the data

4. Prediction

3.3 Defining FDA

Let yij be the observation and tij be the continuum for each record i, where

j = 1, 2, 3.......n and i− 1, 2, 3, .....Nthen the pair (yij, tij) can be represented

as

yij = xi (tij) + ǫij (5)

where xi is a function and ǫij ∼ N(0, σ2) is noise. We are assuming here

that tij is same for all records but it can vary for different records. The

construction of functional model is estimated separately for each record but

when signal to noise ratio is low we can use the same information for each

record. We are treating tij as time but it can be any continuum e.g. time,

space, age frequency wave etc. In functional data form model can be written

as

yj = x (tj) + ǫj (6)
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where yj represents one functional observation. The variance of the error

term is

V ar(yij) = σ2I (7)

but it allows to vary the variance for each record. If the observation are

without noise , then the model is simple interpolation of observations.Thus

ǫi adds roughness to the data. Our goal in the modeling is to minimize this

noise to get efficient fit as much as possible.

3.4 Basis System to fit a Functional Model

The function xi is modeled using some basis function. Basis are the set of

independent vectors whose linear combination is used to model hundreds and

thousands of data points simultaneously. More it is also based on some in-

terpolating techniques and matrix algebra which we enjoy in Econometrics.

Due to linearity inference is also convenient for testing parameters. There

many types of basis function available such as constant basis, polynomial

basis, power basis, exponential basis, Fourier basis and B-spline basis. we

will use B-spline basis in our study.First of all we will introduce the splines,

which is basic building block of the smoothing spline regression model. The

splines method is basically the numerical approximation of a curve. If we
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want approximate a curve by a polynomial function we can approximate

through numerical methods. One of the possible option is splines.

3.4.1 B-Splines Basis

Let we have a sequence of non-decreasing real numbers as t0, t1, t3. . . . . . .tn−1, tn+1

such that t1 < t2 < t3 < . . . . . . < tn−1 < tn < tn+1 We define the knots

as t
−m−1 = . . . . . . . = t0, t1, t3. . . . . . .tn−1, tn+1 = . . . . . . . = tn+m We ap-

pended the sequence backward as well as forward due to recursive nature of

B-Splines. If we need we can use the index due to recursiveness in the first

element as t
−m−1 and a total of n + 2m recursive knots. Now the index of

the knots tii = 0, 1, 2, . . . . . . .n + 2m − 1. For each of the knots ti, where

i = 0, 1, 2, . . . . . . .n + 2m − 1 we can define a set of real values function re-

cursively Bik where k = 0, 1, 2. . . . . .K is the degree of B-Splines basis as

follows

Bi0 =



















1, if ti < t < ti+1

0, otherwise

Also the general form of B-Spline is Bik+1(x) = αi,k+1(x)Bik(x) + [1 −

αi+1,k+1(x)Bi+1,k(x)]

18



Where,

αi,k =



















x−ti
ti+k−ti

, if ti+k 6= ti

0, otherwis

Using above definition we have to define some terminologies.

1. The sequence a is known as knot sequence, and each individual term

represents knot.

2. Bik(x) is called ith B-Spline basis function of order k, and the relation

is called d’Boor recursive relation named after Carl de Boor (2001).

3. For any non negative integer k, the vector space Vi(t) over R by set of

all B-Spline basis functions of order k is called B-Spline of order k.

4. An element Vi(t) is B-Spline function of order k.

5. The first term Bn+1,0 is called the intercept

for k > 1 and i = 1, 2, 3.......n B-Splines have following properties

1. Positive βi,k ≥ 0

2. Local Support βi,k = 0 for t0 < t < ti and ti+k < t < tn+k

3. Unity
∑

βi,k = 1 for t ǫ [t0, tn]

4. Recursive (as defined above)
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5. Continuity i.e. βi,k has n− 2 continuous derivatives.

3.5 Functional Time Series Analysis

In fact FTSA is an application of FDA in forecasting a high dimensional time

series data. It uses all the tools describe by FDA and some conventional time

series models to forecast. As mentioned earlier many authors applied FTSA

methodology for forecasting purpose using different methodologies. We have

modified algorithm defined by ? . The modified algorithm will be is as fol-

lows.

1. detect and remedy outliers.

2. Transform the observed data yj(t) using some appropriate transforma-

tion, which control heterogeneity in the data and also out of sample

variance.

3. Estimate the smooth function xi(tj) using some smoothing technique

on transformed data for whole continuum.

yj = xi(tj) + ǫj

4. Estimate the mean µ(x) across years of the functional observation, and

estimate FPCA decomposition to estimate
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xi(tj) = µ̂(x) +
∑K

k=1
βj,kφk(x) + ej(x)

5. fit a time series model to these coefficients βj,k.

6. forecast βj,k and recombine to forecast functional values xi(tj).

3.6 Evaluation of Forecast and Forecast Accuracy

After fitting an appropriate model to the data , the ultimate objective of

the model fitting is to forecast. So after checking all the diagnostics, if

forecasting is not good then the model is useless. To evaluate the forecasting

of the models we have many measures. Let we have a data set y1, y2, y3, ..., yt

and we partitioned the data such that some of the data is used for modeling

(usually initial 80 percent data,this percentage may vary depending upon the

size of data) and some of the data is hold for checking the accuracy of the

forecast (usually 20 percent of the data at the end). First data can be said as

training data and second can be said as test data ?. The difference between

training data forecast and actual test data values is called forecast errors.

et = yt − ŷt

. Most of the measures of forecast accuracy are based on this error. There

are mainly scale-dependent errors, percentage error, symmetric measures,
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relative errors, relative measures and scaled measures. The pioneer and core

measures are scale dependent measure, consisting of

MeanSquareError(MSE) = mean(e2t )

RootMeanSquareError(RMSE) =
√
MSE =

√

mean(e2t )

MeanAbsoluteError(MAE) = mean(|et|)

MedianAbsoluteError(MdAE) = median(|et|)

All other type of measures have same idea , with the tackling scale and

unit of data. In our case as we have scale free and unit free data, more over

data of one variable so we shall use these basic measures.

4 Result and Discussion

Numerous studies have been made to forecast inflation using different mod-

els. There are mainly two types of models used, theoretical and statistical.

Present study belongs to the types of model which are statistical. These

models are purely based on data. Among these models SARIMA models

are famous. We also used another method to model the data in our study.

Functional time series analysis is new and emerging field of statistics, which
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is used to model high frequency data. In present article we will model the

monthly data of both types of series using SARIMA models and Functional

time series analysis. Then comparison would be made to asses the superiority

of the models.

4.1 Modeling General CPI

We tried to model general CPI by using SARIMA and FTSA. We spliced

the data in homogeneous parts. Each functional observation consist of 1

year data. So we have 9 functional observations. We used 9 functional

observations in FTSA to Model general CPI.The possible structural break

points dates are

Table 1: Structural breaks in General CPI

Series Structural Break Points Dates
CPI General 2004(4) 2005(8) 2006(12) 2008(4) 2009(8)

We will use the dummies of these break points in the model to get a

stable estimates of parameters. The order of integration of the series was

tested using seasonal unit root test. The result shows the annual unit root

of order 2 i.e. is integrated of order 2. The estimated models using SARIMA

and FTSA are
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Gen.jpeg

Figure 1: Time series and ACF plot of General CPI

4.2 Results and Discussion

The comparison using forecast accuracy measure is given in the following

table.

In above table we can see that modeling CPI general using FTSA is far far

better than modeling using SARIMA. MSE shows FTSA is almost 7 times

better than SARIMA. RMSE shows almost double efficiency over SARIMA.

MAE almost 3 times and MEDAE shows that forecast accuracy of FTSA is

5 times better than SARIMA in modeling general CPI.

We can see that forecasted value using FTSA has less difference than

forecasted value using SARIMA model. Which also shows the superiority of
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Table 2: SARIMA model of General CPI

Coefficients Estimates Standard Error t-Statistics P-Value

ma1 -0.8015 0.0826 -9.70339 0
sar1 0.9486 0.0728 13.03022 0
sma1 -1.0407 0.1463 -7.11347 0
sma2 0.2471 0.1488 1.660618 0.099587

AIC -724.74 AICc -724.14 BIC -711.42
σ2 5.217e-05: Log Likellihood 367.37

Ljung-Box Q Statistics Q(4) 4.3717, 0.358
Q(8) 6.9608, 0.5409
Q(12) 11.4945, 0.4871

FTSA over SARIMA models using data of general CPI. So modelling using

FTSA is recomended for forecasting inflation.
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Table 3: FTSA estimated parameters µ, φ and β of CPI general

µ φ β

0.007447 0.317661 -0.01372
0.005575 -0.02043 -0.01737
0.009984 0.400729 -0.00225
0.011648 0.407582 -0.00429
0.00376 0.451007 -0.00447
0.006184 0.29089 -0.00443
0.015616 0.379315 0.040919
0.011357 0.258099 -0.00305
0.008024 0.107805 0.008672
0.009976 0.196118
0.006021 -0.07827
-0.00105 -0.13129

Table 4: Forecast accuracy comparison of General CPI

Method MSE RMSE MAE MEDAE
SARIMA-Gen 28.39617 5.328806 4.813637 5.168776
FTSA-GEN 4.125 2.031009 1.492074 1.004106

Table 5: Comparison based on forecast of 2011

Actual SARIMA FTSA
254.844 259.48 257.94
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