
Munich Personal RePEc Archive

On Capturing the Spreading Dynamics

over Trading Prices in the Market

Situngkir, Hokky

Dept. Computational Sociology, Bandung Fe Institute

15 October 2015

Online at https://mpra.ub.uni-muenchen.de/67247/

MPRA Paper No. 67247, posted 16 Oct 2015 06:47 UTC



1 

 

On Capturing the Spreading Dynamics over 

Trading Prices in the Market 
 

 

 

 

 

 

 

 

 

Hokky Situngkir 

[hs@compsoc.bandungfe.net] 

Dept. Computational Sociology 

Bandung Fe Institute 

 

 

 

 

 

 

 

 

Abstract 

While market is a social field where information flows over the interacting agents, there have been 

not so many methods to observe the spreading information in the prices comprising the market. By 

incorporating the entropy transfer in information theory in its relation to the Granger causality, the 

paper proposes a tree of weighted directed graph of market to detect the changes of price might affect 

other price changes. We compare the proposed analysis with the similar tree representation built 

from the correlation coefficients of stock prices in order to have insight of possibility in seeing the 

collective behavior of the market in general.  

 

Keywords: stock market, spreading information dynamics, econophysics, information theory, transfer 

entropy, granger causality, ultrametric. 
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1. Introduction 

Market is the place where information flows of interacting agents, investors, firms. Information flows 

spread in many channels, be it micro-interaction among market actors or the changes of prices. 

Decisions made only from one side of observation betray the complex nature of the market and is 

doomed to fail. Works on market dynamics observe levels by levels of the market [13], from the micro 

level of investors and how they interact shaping the market price, and also the works on the statistics 

of market in order to gain comprehensive view on the dynamics of a single price and the spectrum of 

stocks traded in the market. Observing the spectrum of the stock prices are actually looking over the 

movement of prices as they perceived by investors and market actors from their portfolio’s 
dashboard, strategies, and various kinds of decision making tools.  

 

Stock price movements are interdependent one another, for investors of a particular stock would 

never close their eyes with the other stock prices, or at least the composite index tried to reflect the 

global situation of the market. This is obvious from the stylized statistical facts of the market. The 

“almost” symmetry and fat tailed distribution of returns are somehow demonstrated the 

interdependent nature of the market. The return of the stock prices, 𝑟(𝑡) ∈ ℜ,  

 𝑟(𝑡) = ln 𝓅(𝑡) − ln 𝓅(𝑡 − 1)         (1) 

 

where 𝓅(𝑡) denotes the price at time 𝑡, are clustered in its volatility for the way investors and 

traders behave towards the market changes [2].  

 

One interesting discussions about the stock market dynamics are the way information flows in the 

market as reflected in changes of one price with the other. It is not a secret that an investor frequently 

decide her actions toward a particular stocks by referring to other stock’s price changes.  Thus, there 

is a sort of information flows in timely manner from stocks to stocks price changes.  The changes of 

one stock prices may affect the changes of the other ones. Statistically, the question is how we can 

measure it, even though some responds might come from our understanding over the information 

theory.  

 

Entropy is a notion in information theory about disorderliness of a system based upon the micro-states 

comprised it. The changes of entropy are related to the timely dynamics of the system. When 

information flows, the entropy is transferred and the system is changes over time. A change over time 

in a system does not have to be related to the cause and effect within the system, though. A thing 

occurs and is followed by other changes does not have to be seen the cause of the other changes. 

Nonetheless, the spreading of information can be seen as a thing causing other thing, especially when 

it comes to highly interacting micro states within a system.  

 

The study of entropy transfer is related to information flows over the changing of micro-states within 

the interacting composite of the system. The paper is the discussion about this in our observation of 

the Indonesian stock market. The structure of the paper is as follows. The information theoretical 

concept of entropy transfer is introduced as we see stock price moves from one another. The concept 

is also related to the causality concept as introduced by Granger-causality [5]. The paper tries to 

portray the spreading dynamics over the stock prices within a market by the representation of 

weighted directed tree and compare the result with the one yielded with correlation coefficients 

among stock prices [7]. The discussion is about how we can gain more information about the market 

on the representation of the tree, be it from the information theoretic entropy transfer and Granger-

causality and also from the ultrametric tree yielded from the analysis of ultrametric tree.  
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2. Model 

Market time series can be seen as a composite of the set of ℳ interacting dynamical sub-system. 

Investors put their trading decisions due to their portfolio and market strategies, shaping the prices 

of the traded stocks. Over time, the prices are depicted the dynamical processes within the collective 

behavior of the investors. The vicissitudes of a price could affect the dynamic of other prices due to 

their portfolios. Capturing the dynamics of spreading ups and downs within the market is observing 

the information flow from one price to one another. For instance we have a source system 𝒴(𝑡) as 

the source of information affecting other sub-system 𝒳(𝑡), collecting the remaining sub-systems  in 

the vector of 𝒵(𝑡). From the information theoretic studies [4, 14], we know that the differential 

entropy of a random vector 𝒳 is defined,  
 ℎ(𝒳(𝑡)) = − ∫ 𝑝(𝒙)𝔑𝑑 ln 𝑝(𝒙) 𝑑𝒙        (2) 

 

as the random vector takes value in 𝔑𝑑 with probability density function 𝑝(𝒙). When the random 

variable 𝒳(𝑡) is multivariate discrete of all possible values of 𝑥 ∈ {𝑥1, 𝑥2, … , 𝑥𝑛}, the entropy is  

 𝐻(𝒳(𝑡)) = − ∑ 𝑝(𝑥)𝑛𝑖=1 ln 𝑝(𝑥𝑖)        (3) 

 

where now, 𝑝 is the probability mass function of 𝒳.  

 

Thus, the transfer entropy, 𝒯𝑌(𝑡)→𝑋(𝑡)|𝑍(𝑡), of the previous 𝒳(𝑡), 𝒴(𝑡), and 𝒵(𝑡) is written as, 

 𝒯𝑌(𝑡)→𝑋(𝑡)|𝑍(𝑡) = 𝐻(𝑋(𝑡)|⟦𝑋−(𝑡), 𝑍−(𝑡)⟧) − 𝐻(𝑋(𝑡)|⟦𝑋−(𝑡), 𝑌−(𝑡), 𝑍−(𝑡)⟧)   (4) 

 

where 𝐻(𝐴) denotes the entropy of the variable 𝐴,  𝐻(𝐴|𝐵) the conditional entropy,  

 𝐻(𝑋(𝑡)|𝑌(𝑡)) = − ∑ ∑ 𝑝(𝑥𝑖, 𝑦𝑖) ln 𝑝(𝑥𝑖|𝑥𝑖)𝑚𝑗=1𝑛𝑖=1       (5 

 

for 𝑚 can be different with 𝑛, and 𝑝(𝑥𝑖|𝑥𝑖) as the conditional probability, as to  

 𝐻(𝑋(𝑡), 𝑌(𝑡)) = − ∑ ∑ 𝑝(𝑥𝑖, 𝑦𝑖) ln 𝑝(𝑥𝑖 , 𝑥𝑖)𝑚𝑗=1𝑛𝑖=1       (6) 

 

with  𝑝(𝑥𝑖 , 𝑥𝑖) as the joint probability. The past of vectors 𝒳(𝑡), 𝒴(𝑡), and 𝒵(𝑡) are respectively  𝑋−(𝑡) = {𝑋(𝑡 − 1), 𝑋(𝑡 − 2), … , 𝑋(𝑡 − 𝑝)}, 𝑌−(𝑡) = {𝑌(𝑡 − 1), 𝑌(𝑡 − 2), … , 𝑌(𝑡 − 𝑝)},  and 𝑍−(𝑡) = {𝑍(𝑡 − 1), 𝑍(𝑡 − 2), … , 𝑍(𝑡 − 𝑝)} with the length vector 𝑝, and the vectors in the bracket ⟦𝐴, 𝐵⟧ are concatenated.  

  

From there we have,  

 𝒯𝑌(𝑡)→𝑋(𝑡)|𝑍(𝑡) ≡ ∑ 𝑝(𝑋(𝑡), 𝑋−(𝑡), 𝑌−(𝑡), 𝑍−(𝑡))𝑙𝑛 𝑝(𝑋(𝑡)|𝑋−(𝑡),𝑌−(𝑡),𝑍−(𝑡))𝑝(𝑋(𝑡)|𝑋(𝑡),𝑍−(𝑡))    (7) 

 

where 𝑝(𝐴) is the probability associated with the vector variable 𝐴, and 𝑝(𝐴|𝐵) = 𝑝(𝐴,𝐵)𝑝(𝐵) , the 

probability of observing 𝐴 with knowledge about the values of 𝐵. 

  

The notion of the entropy is an information theoretic terminology that can be regarded as the measure 

of the disorder level within the random variable of the time series data. Transfer entropy from 𝒴(𝑡) 

to 𝒳(𝑡) is reflecting the amount of disorderliness reduced in future values of 𝒳(𝑡) by knowing the 

past values of 𝒳(𝑡) and the given past values of 𝒴(𝑡). Time “moves” as entropy is transferred and 

observed in flowing information from series to series. 
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We have two regressions toward 𝑋(𝑡), the first is the moving series without putting the 𝑌(𝑡) into 

account, 

 𝑋(𝑡) = 𝐴⟦𝑋−(𝑡), 𝑍−(𝑡)⟧ + ∈1 (𝑡)        (8) 

 

and the other one which regard to the information transfer from 𝑌(𝑡) to 𝑋(𝑡), 

 𝑋(𝑡) = 𝐴⟦𝑋−(𝑡), 𝑌−(𝑡), 𝑍−(𝑡)⟧ + ∈2 (𝑡)       (9) 

 

where A is the vector of linear regression coefficient, and the ∈1and ∈2 are the residuals of the 

regression. The residuals have respective variances of 𝜎(∈1) and 𝜎(∈2), and under Gaussian 

assumption, the entropy of 𝑋(𝑡) is, 

 𝐻(𝑋(𝑡)| 𝑋−(𝑡), 𝑍−(𝑡)) = 12 (ln 𝜎(∈1) + 2𝜋𝑒))       (10) 

 

and 

 𝐻(𝑋(𝑡)| 𝑋−(𝑡), 𝑍−(𝑡)) = 12 (ln 𝜎(∈2) + 2𝜋𝑒))       (11) 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. The representation of calculated cause and effect or information transfer among most traded stocks 

in Indonesia Stock Market for 3 years of trading (2012-2015). 

 

 

 

 

 



5 

 

Thus, we can get the estimated transfer entropy  

 𝒯𝑌(𝑡)→𝑋(𝑡)|𝑍(𝑡) = 12 ln 𝜎(∈1)𝜎(∈2)         (12) 

 

This information theoretic notion opens the bridging discussions to the statistics of the autoregressive 

methods of Granger-causality [5, 6]. The idea of Granger-causality came from understanding that 𝒴(𝑡) 

is said to cause 𝒳(𝑡) for 𝒴(𝑡) helps predict the future of 𝒳(𝑡) [5, 8, 9]. This is a statistical concept 

equivalent (with some notions) with the transfer entropy [1, 3], of which in our case, the Granger-

causality is estimated as,  

 𝒢𝑌(𝑡)→𝑋(𝑡)|𝑍(𝑡) = ln 𝜎(∈1)𝜎(∈2) = 2 𝒯𝑌(𝑡)→𝑋(𝑡)|𝑍(𝑡)       (13) 

 

Thus, the entropy transferred can be seen as causal relations among random variables, with which we 

can learn the spreading dynamics over trading prices in the market represented by the multivariate 

data. 

 

 

3. Experiment on Data 

After reshaping the return of the time series data, i.e.: by detrending and remove the temporal mean 

from all time series [2, 15], the set of the data is analyzed for the information theoretic causal 

estimations. Market is a complex system with interacting agents through the market prices, thus in so 

many ways, causality may be detected even at a small glimpse of ups and downs of a market object. 

This is shown in a scale of the 𝑛 × 𝑛 matrix in figure 1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Calculated spreading dynamics over the years of trading 2012-2015 among some popular Indonesian 

stocks, the thicker the arc, the bigger the detected information flows within respective price time series. 
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Therefore, in order to observe the dynamics of spreading information as relatively causal price 

changes, we depicted the calculated yields as directed weighted graph. The directed weighted graph, 

defined as 𝐺 = (𝑉, 𝐴), as they are made by the set of vertices, 𝑉, and the set of arcs, 𝐴. The graph is 

represented as adjacency matrix with elements 𝑎𝑖𝑗 ∈ 𝐴, where the 𝑖, 𝑗 ∈ 𝑉. In the representation, we 

show the weight of the arcs as the maximum causality index,  

 𝑎𝑖𝑗 = {𝒯𝑖→𝑗, 𝑝(𝒯𝑖→𝑗) ≥  ∑ 𝒯𝑖→𝑗𝑝𝑗=10, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                            (14) 

 

From here, we have in hand the mapping of the spreading price changes in the stock markets, in terms 

of causality. For 3 years of trading period (2012-2015), we depicted the result as shown in figure 2. 

The figure represents the collective dynamics of the ups and downs of stock prices traded in the 

Indonesian Stock Market within 3 years of trading.  

 

In the figure it is also shown some stocks with highest market capitalization, marked with blue nodes. 

It is interesting to see that the highest capitalization stocks are spreading over the leaves within the 

tree. When it comes to the dynamics of information (entropy) transfer, somehow it can reflect the 

structures of most portfolios and strategies used by the investors due to the period. The figure 

demonstrates a bird’s eye view on the collective dynamics of price movements in the market. 
Nonetheless, many studies related to the stocks portfolio due to the fundamental aspects [12] of the 

observed firm can gain from the mapping in the figure for predictive assignments.  

 

 

4. Discussions: on relations with ultrametric tree of stock prices  

The observation on the spectral price movements in the stock market, by employing the “mapping” 
using the similar hierarchical tree has also been proposed previously [7, 11]. The idea is  to transform 

the correlation coefficient into a special space metric, name ultrametric space by,  

 𝑑𝑖𝑗 = √2(1 − 𝑐𝑖𝑗           (15) 

 

where 𝑑𝑖𝑗  is the distance from the respective correlation coefficient 𝑐𝑖𝑗  between stock 𝑖 and 𝑗. The 

unique space metric complies the properties of the Euclidean space,  

 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑖𝑒𝑠 → { 𝑑𝑖𝑗 = 0, 𝑖 = 𝑗   𝑑𝑖𝑗 = 𝑑𝑗𝑖            𝑑𝑖𝑗 ≤ 𝑑𝑖𝑘 + 𝑑𝑘𝑗        (16) 

 

 

with a special properties of  

 𝑑𝑖𝑗𝑢𝑙𝑡𝑟𝑎𝑚𝑒𝑡𝑟𝑖𝑐 ≤ max(𝑑𝑖𝑘𝑢𝑙𝑡𝑟𝑎𝑚𝑒𝑡𝑟𝑖𝑐 , 𝑑𝑘𝑗𝑢𝑙𝑡𝑟𝑎𝑚𝑒𝑡𝑟𝑖𝑐)       (17) 

By using the Kruskal algorithm to have the Minimum Spanning Tree [7], the tree representation of 

correlative behavior among stock prices is delivered. In order to compare this representation with the 

spreading dynamics shown in figure 2, the same data is processed by employing the equation 15. The 

yielded tree is shown in figure 3.  
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Figure 3. The Minimum Spanning Tree for some stocks in Indonesian Stock Market (2012-2015). 

 

 

 

The tree of spreading information dynamics and ultrametric tree of stock prices are both representing 

in tree visualization but capturing different aspects of the spectrum of prices in the market. The first 

captures the information transfer from one stock price to another, by focusing more on the two stock 

prices with conditionals with the other. The ultrametric tree is constructed more on whole spectrum 

of the prices. That is why both represent different information on the observation. For instance, the 

stocks with highest capitalization stocks are more to become the anchor in the minimum spanning 

tree of price correlation. They are represented to be the “market mover” within the Indonesian Stock 
Market for their liquidity. Thus the observation of the correlation tree are supposed to be more on 

the emerged clustering of the stocks.  

 

It is different with the tree of the spreading information as we proposed in the paper. The tree shows 

more on some statistical scenario of the dynamics of the market over time. The directed arcs from 

nodes to nodes shows how information are moves as reflected by the strategies and portfolios of the 

investors statistically. The “anchor” stocks are shown more likely to be in the outer leaves of the whole 
tree for their liquidity in the market. Their price dynamics are shown to be more caused rather become 

cause of other price dynamics. Therefore, the tree of the spreading price dynamics represents a more 

detailed micro states of the market than the minimum spanning tree.  

 

However, in the sense of investment strategies and portray of the whole market dynamics, both are 

enriching one another. The ultrametric tree can be seen as a way to construct portfolio and the 

clustered movements of the price, while the tree of the spreading information gives the aggregated 

or macro-view of the portfolios used by investors globally.   
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4. Concluding Remarks  

The concept of causality as derived from the transfer entropy is introduced to see the dynamics of 

spreading information among the changes of the stock prices in Indonesia. It is interesting to have a 

tool of observation to see over changes of stock prices that can be related by detection of the entropy 

transfer or “causal” aspects. From the resulting “causal-tree” we can see the spreading information 
dynamics over the changes of price movements. The global view gives insights on how investors 

collectively perceive the changes of a price and behave towards it. Information flows in the market 

are detected by the mapping of the detected dynamical relations between one stock with another via 

their prices.  

 

The discussions also brings on the works on the representation of correlations among stock prices in 

the ultrametric space of minimum spanning tree. While correlation dynamics as portrayed in the 

ultrametric space is more about the clustering aspects of price movements, it is demonstrated that 

the spreading dynamics is observed better by using the proposed observation with the information 

theory. However, the interplay between both representation may gain more information about the 

behavior of the market in general. 
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