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Abstract

The maximal domain theorem by Gul and Stacchetti (J. Econ. Theory 87

(1999), 95-124) implies that for markets with indivisible objects and sufficiently

many agents, the set of gross substitutable preferences is a largest set for which the

existence of a competitive equilibrium is guaranteed, and hence no relaxation of the

gross substitutability can ensure the existence of a competitive equilibrium. How-

ever, we note that there is a flaw in their proof, and give an example to show that

a claim used in the proof may fail to be true. We correct the proof and sharpen

the result by showing that even there are only two agents in the market, if the

preferences of one agent are not gross substitutable, then gross substitutable pref-

erences can be found for another agent such that no competitive equilibrium exists.

Moreover, we introduce the new notion of implicit gross substitutability, which is

weaker than the gross substitutability condition and is still sufficient for the exis-

tence of a competitive equilibrium when the preferences of some agent are monotone.
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1 Introduction

An essential issue for markets with heterogeneous indivisible objects is under which condi-

tions an efficient allocation of objects can be supported by a system of competitive prices

as an equilibrium outcome.1 A sufficient condition for the existence of a competitive

equilibrium is the gross substitutability (GS) condition, which requires that objects are

substitutes in the sense that the demand of each agent for an object does not decrease

when prices of some other objects increase. Kelso and Crawford [7] introduce a price ad-

justment procedure and show that under gross substitutable preferences, such procedure

will give rise to a competitive equilibrium.

Gul and Stacchetti [3] study markets with monotone preferences by adopting a less

restrictive condition, the weak gross substitutability (WGS) condition, which requires that

agents view objects as substitutes for each other when prices are non-negative. Based on

the price adjustment procedure by Kelso and Crawford, they first note that under the

monotonicity assumption, WGS preferences are sufficient for the existence of a competitive

equilibrium. Then they prove that the WGS condition is also necessary in the maximal

domain sense: for a market with sufficiently many agents, if the preferences of some agent

violate the WGS condition, then WGS preferences can be found for other agents such

that no competitive equilibrium exists.

Nevertheless, we note that there is a flaw in the proof of the maximal domain result

by Gul and Stacchetti, and present an example to show that a claim used in their proof

may fail to be true. To correct the proof, we give an equivalent characterization of the GS

1A sampling of relevant works includes Kelso and Crawford [7], Bikhchandani and Mame [2], Ma [8],
Beviá et al. [1], Gul and Stacchetti [3, 4], Sun and Yang [10], and Teytelboym [11].
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condition2 and an alternative maximal domain result which shows that if the preferences

of some agent fail the GS condition, we can construct GS preferences for another agent

such that no competitive equilibrium exists in the two-agent market. This implies that

even for markets with few agents, no relaxation of the GS condition (or the WGS condition

together with the monotonicity assumption3) can guarantee the existence of a competitive

equilibrium, improving upon the Gul-Stacchetti maximal domain theorem, but making it

seem more difficult to give new existence results with conditions weaker then the gross

substitutability.

One way to circumvent the above difficulty is to consider the markets in which not

all agents have monotone preferences. It should be noted that, while monotonicity of

preferences is a commonly used assumption in the literature, there are numerous economic

situations in which monotonicity is not always satisfied.4 For instance, an extra bed might

be a burden for an agent with a small house. We introduce the new notion of implicit

gross substitutability (IGS), which requires that allowing agents to dispose of undesirable

objects for free will make objects become substitutes, and thus exhibits substitutability

in an implicit way. We prove that the IGS condition is weaker than the WGS condition,

and is still sufficient for the existence of a competitive equilibrium when there exists an

agent with monotone preferences.

The rest of the paper is organized as follows. In Section 2, we recall the Gul-Stacchetti

maximal domain theorem and give an example to show that there is a flaw in the proof.

In Section 3, we give an alternative proof with a new characterization of the gross sub-

stitutability. Finally, we provide an existence result with the IGS condition in Section 4,

and present two proofs in the Appendices.

2See Theorem 3 in Section 3.
3We prove that under monotonicity, GS and WGS are equivalent. (Corollary 6)
4See Manelli [9] and Hara [5, 6] for discussions on markets without the monotonicity assumption.
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2 Gross substitutability as a maximal domain

Consider an economy with a finite set N = {1, . . . , n} of agents and a finite set Ω =

{a1, . . . , am} of heterogeneous indivisible objects. Let p = (pa) ∈ R
|Ω| be a price vector,

where pa denotes the price of object a ∈ Ω. Note that negative prices are allowed. For

any bundle of objects A ⊆ Ω, let χA ∈ R
|Ω| denote the characteristic price vector that

has price 1 for objects a ∈ A and price 0 for objects a /∈ A. We assume that agents’ net

utility functions are quasilinear in prices in the sense that each agent i’s utility of holding

bundle A ⊆ Ω at price level p is

ui(A, p) ≡ vi(A)− p(A),

where vi : 2
Ω → R is a valuation function satisfying vi(∅) = 0 and p(A) is a shorthand for

∑

a∈A pa. The valuation function vi is called monotone if vi(B) ≤ vi(A) for B ⊆ A ⊆ Ω.

We also assume that agents are not subject to any budget constraints, and hence we can

represent such an economy by E = ⟨Ω; (vi, i ∈ N)⟩.

A competitive equilibrium for economy E is a pair ⟨p;X⟩, where X = (X1, . . . , Xn) is

a partition of objects among all agents and p is a price vector such that for all i ∈ N ,

Xi ∈ Dvi(p) ≡ argmax
A⊆Ω

ui(A, p).

In that case, X is called an equilibrium allocation and p is called an equilibrium price

vector. The possibility that Xi = ∅ for some agent i is allowed.

A crucial condition for the guaranteed existence of a competitive equilibrium is the

gross substitutability. Formally, a valuation function vi : 2
Ω → R is called gross substi-
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tutable (GS) if for any vector p ∈ R
|Ω|, the following condition holds:

A ∈ Dvi(p), p
′ ≥ p ⇒ ∃B ∈ Dvi(p

′) such that {a ∈ A : pa = p′a} ⊆ B. (1)

Moreover, we say that vi is weakly gross substitutable (WGS) if condition (1) holds for all

non-negative vectors p ∈ R
|Ω|
+ . Note that WGS is strictly weaker than GS. Consider the

function vi : 2
Ω → R given by Ω = {a, b, c} and

vi(A) =















2, if A={a},

1, otherwise.

It is not difficult to verify that vi satisfies WGS, but violates GS.

Kelso and Crawford [7] introduce a price adjustment procedure and show that under

gross substitutable preferences, such procedure will give rise to a competitive equilibrium.

More precisely, a direct application of Theorem 2 of Kelso and Crawford [7] leads to the

following result.

Theorem 1 (Kelso-Crawford) For the economy E = ⟨Ω; (vi, i ∈ N)⟩, there exists a

competitive equilibrium if one of the following conditions holds:

(a) each agent’s valuation function satisfies the GS condition.

(b) each agent’s valuation function is monotone and satisfies the WGS condition.

On the other hand, Theorem 2 of Gul and Stacchetti [3] shows that when there are

sufficiently many agents and each agent’s preferences are assumed to be monotone, the

set of WGS preferences is a maximal domain for which the existence of a competitive

equilibrium is guaranteed.
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Theorem 2 (Gul-Stacchetti) Let v1 : 2Ω → R be a monotone valuation function that

violates the WGS condition. Then there exits an n-agent economy E = ⟨Ω; (v1, . . . , vn)⟩

such that vi is monotone and satisfis the WGS condition for i = 2, . . . , n, but no compet-

itive equilibrium exists in E .

To prove the above maximal domain theorem, Gul and Stacchetti [3, pp. 122-123] claim

that if there exists a bundle A ⊆ Ω augmented with a vector p ∈ R
|Ω| such that |A\B| > 1

and B\A = {b}, where B is an optimal solution for the problem

argmin |(A\C) ∪ (C\A)|

s.t. v1(C)− p(C) > v1(A)− p(A),

then no competitive equilibrium exists in the economy ⟨Ω; (v1, v2, v3, va1 , . . . , var)⟩ given

by Ω = A ∪B ∪ {a1, . . . , ar},

v2(C) =















0, if C ∩ (A\B) = ∅,

max{pa + v1(Ω) + 1 : a ∈ C ∩ (A\B)}, otherwise,

v3(C) =















0, if C ∩ [(A\B) ∪ {b}] = ∅,

max{pa + v1(Ω) + 1 : a ∈ C ∩ [(A\B) ∪ {b}]}, otherwise,

and,

vaj(C) =















v1(Ω) + 1, if aj ∈ C,

0, otherwise,

for j = 1, . . . , r.

However, the following example shows that the claim is not correct.

Example 1 Let Ω = {a, b, c}, A = {a, c}, B = {b}, and let p ∈ R
|Ω| be the vector such
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that pa = pc = 2 and pb = 1. Consider the economy E = ⟨Ω; (v1, v2, v3)⟩ given by

v1(C) =















































7, if C = {a, c} or {a, b, c},

5, if C = {b}, or {a, b} or {b, c},

3, if C = {a} or {c},

0, if C = ∅,

and

v2(C) =















10, if C ∩ A ̸= ∅,

0, otherwise,

v3(C) =































10, if C ∩ A ̸= ∅,

9, if C = {b},

0, if C = ∅.

Clearly, the allocation X1 = {b}, X2 = {a}, X3 = {c} can be supported by prices pa =

pc = 2 and pb = 1 as an equilibrium allocation.

3 A correct proof of Theorem 2

Our approach relies on the notion of improvability, which requires that any suboptimal

bundle A ⊆ Ω at price level p ∈ R
|Ω| can be strictly improved by either removing an

object from it, or adding a set of objects to it, or doing both. It should be noted that

our improvability condition is similar to in spirit, but apparently weaker than the single

improvement condition by Gul and Stacchetti [3]. Formally, a valuation function vi :

2Ω → R is said to be improvable (or weakly improvable) if for any price vector p ∈ R
|Ω|

(or non-negative price vector p ∈ R
|Ω|
+ ) and for any A ∈ 2Ω\Dvi(p), there exists a bundle
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B ⊆ Ω such that |A\B| ≤ 1 and ui(B, p) > ui(A, p).

Theorem 3 Consider the valuation function vi : 2
Ω → R.

(a) Assume that vi is monotone. Then vi satisfies the WGS condition if and only if it is

weakly improvable.

(b) The valuation function vi satisfies the GS condition if and only if it is improvable.

Proof. See Appendix A.

The following result shows that even for markets with only two agents, the existence

of a competitive equilibrium cannot be guaranteed by any relaxation of the GS condition.

Theorem 4 Let v1 : 2Ω → R be a valuation function that violates the GS condition.

Then there exists a GS valuation function v2 such that no competitive equilibrium exists

in the two-agent economy E = ⟨Ω; (v1, v2)⟩.

Proof. Since v1 violates the GS condition, the result of Theorem 3 (b) implies that v1 is

not improvable. Hence, there exit a vector p1 ∈ R
|Ω| and a bundle A /∈ Dv1(p

1) such that

the following condition holds:

C ⊆ Ω and u1(C, p
1) > u1(A, p

1) ⇒ |A\C| ≥ 2.

Let C∗ be an optimal solution for the problem

argmin |A\C|

s.t. u1(C, p
1) > u1(A, p

1)

such that for any C ⊆ Ω,
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A ∩ C = A ∩ C∗ and u1(C, p
1) > u1(A, p

1) ⇒ |C\A| ≥ |C∗\A.|

Consider the vector

p2 = p1 + ε · χΩ\(A∪C∗) − ε · χA∩C∗ −
u1(C

∗, p1)− u1(A, p
1)

|A\C∗|
· χA\C∗ .

Note that there exists some ε > 0 such that

A ∈ Dv1(p
2) = {C∗} ∪ {C ⊆ Ω : u1(C, p

1) = u1(A, p
1), A ⊆ C ⊆ A ∪ C∗}.

Let M = max{|v1(C)| : C ⊆ Ω} and let p̄ ∈ R
|Ω| be the vector given by

p̄a =































p2a, if a ∈ C∗,

p2a − δ, if a ∈ A\C∗,

M + 1, otherwise,

(2)

where

δ =
1

|A\C∗|
·min{u1(A, p

2)− u1(C, p
2) : C /∈ Dv1(p

2)} > 0.

Let v2 be the valuation function given by

v2(C) = p̄(C) +















M + 1, if C ∩ (A\C∗) ̸= ∅,

0, otherwise.

(3)

9



Clearly, v2 is gross substitutable since it is the sum of an additive function and a unit-

demand function.5

We are going to prove that not competitive equilibrium exists in the economy E =

⟨Ω; (v1, v2)⟩. Suppose, to the contrary, that there exits an equilibrium ⟨p; (X1, X2)⟩ for E .

Since the allocation (X1, X2) must be efficient, we have X1 ⊆ A ∪ C∗, X2 ∩ (A\C∗) ̸= ∅,

and hence u1(X1, p
2)+ δ · |A\C∗| ≤ u1(C

∗, p2). Moreover, let p′ ∈ R
|Ω| be the vector given

by

p′a =















p2a, if a ∈ C∗,

pa, otherwise,

then ⟨p′; (X1, X2)⟩ is also a competitive equilibrium for E . We consider two cases.

Case I. X1\C
∗ ̸= ∅. By (2) and (3), we have that p′a ≥ p2a − δ for each a ∈ X1\C

∗.

This implies

u1(X1, p
′) ≤ u1(X1, p

2) + δ · |X1\C
∗| < u1(X1, p

2) + δ · |A\C∗|

≤ u1(C
∗, p2) = u1(C

∗, p′).

Since X1 ∈ Dv1(p
′), this is impossible.

Case II. X1 ⊆ C∗. Then we have A\C∗ ⊆ X2. Since |A\C | ≥ 2, it follows that

p′a ≤ p2a − δ for each a ∈ A\C∗, and hence

u1(A, p
′) ≥ u1(A, p

2) + δ · |A\C∗| > u1(X1, p
2) = u1(X1, p

′).

This is also impossible.

5A valuation function vi : 2
Ω → R is additive if there exists a vector p ∈ R

|Ω| such that vi(C) = p(C)
for all C ⊆ Ω. A monotone function vi is unit-demand if vi(C) = maxa∈Cvi({a}) for all C ⊆ Ω. One can
easily check that the sum of an additive function and a unit-demand function is gross substitutable.
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The following result improves upon the Gul-Stacchetti maximal domain theorem, and

implies that even for markets with few agents, no relaxation of the weak gross sub-

stitutability, together with the monotonicity, can ensure the existence of a competitive

equilibrium.

Theorem 5 Assume that there are n agents and n ≥ 2. Let v1 : 2
Ω → R be a monotone

valuation function that violates the WGS condition. Then there exists a set of monotone

and WGS valuation functions, {v2, . . . , vn}, such that no competitive equilibrium exists in

the economy ⟨Ω; (v1, v2, . . . , vn)⟩.

Proof. Since v1 violates the WGS condition and hence violates the GS condition, by

Theorem 4, there exits a GS valuation function w2 such that no competitive equilibrium

exists in the economy ⟨Ω; (v1, w2)⟩. Let ŵ2 denote the valuation function given by

ŵ2(A) = max{w2(C) : C ⊆ A} for A ⊆ Ω.

We first prove that ŵ2 satisfies the GS condition.

Let w3 be the valuation function given by w3(A) = 0 for A ⊆ Ω, and let w4 be an

arbitrary GS valuation function. By Theorem 1, we know that there exists a competitive

equilibrium ⟨p; (X2, X3, X4)⟩ for the economy ⟨Ω; (w2, w3, w4)⟩. For each bundle A ⊆ Ω,

let A′ denote a subset of A such that ŵ2(A) = w2(A
′) = ŵ2(A

′). Then we have that for

any A ⊆ Ω,

ŵ2(X2 ∪X3)− p(X2 ∪X3) ≥ [w2(X2)− p(X2)] + [w3(X3)− p(X3)]

≥ [w2(A
′)− p(A′)] + [w3(A\A

′)− p(A\A′)]

= ŵ2(A)− p(A).
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This implies that ⟨p; (X2∪X3, X4)⟩ is a competitive equilibrium for economy ⟨Ω; (ŵ2, w4)⟩.

Since w4 is an arbitrary GS valuation function, the result of Theorem 4 implies that ŵ2

satisfies the GS condition.

Consider the economy E = ⟨Ω; (v1, . . . , vn)⟩, where v2 = ŵ2 and vi = w3 for i ≥ 3. We

are going to prove that no competitive equilibrium exists in E . Suppose, to the contrary,

that there is a competitive equilibrium ⟨q; (Y1, . . . , Yn)⟩ for E . Since each agent’s valuation

function is monotone, we have qa ≥ 0 for all a ∈ Ω, and without loss of generality, we

may assume that Yi = ∅ for i ≥ 3.

Let Y ′
2 be a subset of Y2 such that ŵ2(Y2) = w2(Y

′
2) = ŵ2(Y

′
2). Then for any A ⊆ Ω,

we have

w2(A)− q(A) ≤ v2(A)− q(A) ≤ v2(Y2)− q(Y2) = v2(Y
′
2)− q(Y ′

2)− q(Y2\Y
′
2)

≤ v2(Y
′
2)− q(Y ′

2) = w2(Y
′
2)− q(Y ′

2),

which implies Y ′
2 ∈ Dw2

(q) and qa = 0 for all a ∈ Y2\Y
′
2 . Since v1 is monotone, it follows

that Y1 ∪ (Y2\Y
′
2) ∈ Dv1(q), contradicting to the fact that no competitive equilibrium

exists in ⟨Ω; (v1, w2)⟩.

Finally, we prove that under monotonicity, WGS and GS are equivalent. Based on this

and Theorem 5, it can be shown that for markets without the monotonicity assumption,

the set of GS preferences is a maximal domain for which the existence of a competitive

equilibrium is guaranteed.

Theorem 6 A monotone valuation function vi : 2Ω → R satisfies the GS condition if

and only if it satisfies the WGS condition.

Proof. Let vi : 2
Ω → R be a monotone valuation function. By Theorem 3, it suffices to

prove that vi is improvable whenever it is weakly improvable. Assume that vi is weakly
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improvable. Let p ∈ R
|Ω| be a price vector such that pa < 0 for some a ∈ Ω and choose an

arbitrary bundle of objects A ⊆ Ω such that A /∈ Dvi(p). Let p
+ ∈ R

Ω
+ denote the vector

given by

p+a =















pa, if pa ≥ 0,

0, otherwise,

and let Ω′ = {a ∈ Ω : pa ̸= p+a }. Since vi is monotone, we have C ∪ Ω′ ∈ Dvi(p
+) for all

C ∈ Dvi(p
+), and hence

Dvi(p) = {C ∪ Ω′ : C ∈ Dvi(p
+)} ⊆ Dvi(p

+). (4)

We consider two cases.

Case I. A∪Ω′ ∈ Dvi(p
+). Let B = A∪Ω′. Since A /∈ Dvi(p), by (4), it follows that A

is a proper subset of B and ui(B, p) > ui(A, p).

Case II. A ∪ Ω′ /∈ Dvi(p
+). Since vi is weakly improvable, there exists B′ ⊆ Ω such

that |(A ∪ Ω′)\B′| ≤ 1 and ui(B
′, p+) > ui(A ∪ Ω′, p+). Let B = B′ ∪ Ω′. Since vi is

monotone, we have

ui(B, p+) ≥ ui(B
′, p+) > ui(A ∪ Ω′, p+) ≥ ui(A, p

+),

and hence ui(B, p) > ui(A, p).

Corollary 1 Assume that there are n agents and n ≥ 2. Let v1 : 2Ω → R be a val-

uation function that violates the GS condition. Then there exists a set of GS valua-

tion functions, {v2, . . . , vn}, such that no competitive equilibrium exists in the economy

⟨Ω; (v1, v2, . . . , vn)⟩.

13



4 Implicit gross substitutability

The maximal domain results studied in Section 3 makes it seem difficult to establish

existence results with relaxations of the WGS condition. To make a breakthrough, we

first introduce the notion of implicit gross substitutability (IGS), which is inspired by the

idea of “free disposal” condition, and generalizes the WGS condition. Then we prove that

the IGS condition is sufficient for the existence of a competitive equilibrium when the

preferences of some agent are known to be monotone.

Monotonicity of preferences is a commonly used assumption in the economic literature.

This assumption can be justified by offering free disposal of unwanted objects. In that

case, possessing more objects does not make any agent worse off, and each agent i’s

original valuation function vi would thereby be replaced by its monotone cover v̂i, i.e.,

the valution function given by

v̂i(A) = max{vi(C) : C ⊆ A} for A ⊆ Ω.

A valuation function vi : 2Ω → R is called implicitly gross substitutable (IGS) if its

monotone cover v̂i is gross substitutable. Roughly speaking, the IGS condition requires

that allowing agents to dispose of undesirable objects for free will make objects become

substitutes for each other, and thus exhibits substitutability in an implicit way. The

following result shows that IGS is weaker than WGS.

Theorem 7 The monotone cover v̂1 of a WGS valuation function v1 : 2Ω → R satisfies

the GS condition.

Proof. Let v1 be a WGS valuation function. Consider the price adjustment procedure

of Kelso and Crawford [7] for the economy E = ⟨Ω; (v1, v2, v3)⟩, where v2 is the valuation

14



function given by v2(A) = 0 for all A ⊆ Ω and v3 is an arbitrary GS valuation function.

Since v2 is monotone and each valuation function satisfies WGS, it follows that each

object will receive at least one offer at the initial zero price vector 0 ∈ R
|Ω| and the

procedure will terminate at a competitive equilibrium ⟨p; (X1, X2, X3)⟩ such that p ∈ R
|Ω|
+

and pa = 0 for a ∈ X2. For any bundle A ⊆ Ω, let A′ be a subset of A such that

v̂1(A) = v1(A
′). Note that v2(X2) − p(X2) ≥ 0. This implies that for any A ⊆ Ω,

v̂1(X1 ∪ X2) − p(X1 ∪ X2) ≥ [v1(X1) − p(X1)] + [v2(X2) − p(X2)] ≥ v1(A
′) − p(A′) =

v̂1(A) − p(A) + p(A\A′) ≥ v̂1(A) − p(A), and hence ⟨p; (X1 ∪ X2, X3)⟩ is a competitive

equilibrium for the economy ⟨Ω; (v̂1, v2)⟩. Together with Theorem 4, it follows that v̂1

satisfies GS.

We conclude the paper with a new existence result, Theorem 9, in which we try to

extend Theorem 1 with the notion of IGS condition. The result of Theorem 9 relies on

a more general observation which shows that when there exists an agent with monotone

preferences, the existence of a competitive equilibrium is irrelevant to whether agents are

allowed to dispose of undesirable objects for free.

Theorem 8 Let E = ⟨Ω; (vi, i ∈ N)⟩ be an economy and denote Ê ≡ ⟨Ω; (v̂i, i ∈ N)⟩. If

v1 is monotone, then the following results hold:

(a) Each equilibrium allocation for E is also an equilibrium allocation for Ê.

(b) Each equilibrium price vector for Ê is also an equilibrium price vector for E .

(c) E has a competitive equilibrium if and only if Ê has a competitive equilibrium.

Proof. See Appendix B.

Theorem 9 For any economy E = ⟨Ω; (vi, i ∈ N)⟩, there exists a competitive equilibrium

if v1 is monotone and each agent i’s valuation function vi satisfies IGS.
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Proof. Assume that v1 is monotone and vi satisfies IGS for i = 1, . . . , n. This implies

that v̂i satisfies GS for i = 1, . . . , n, and hence there exists a competitive equilibrium for

the economy ⟨Ω; (v̂1, . . . , v̂n)⟩ by Theorem 1. Combining with Theorem 8, we obtain the

desired result.

Appendix A. Proof of Theorem 3

The proof of Theorem 3 requires the following lemma.

Lemma 1 Suppose that the valuation function vi : 2
Ω → R is weakly improvable. Then

for price vectors p, p′ ∈ R
|Ω| with p′ ≥ p and for A ∈ Dvi(p)\Dvi(p

′), there exists A∗ ∈

argminC∈Dvi
(p)[p

′(C)− p(C)] such that {a ∈ A : p′a = pa} ⊆ A∗.

Proof. Let C∗ ∈ argminC∈Dvi
(p)[p

′(C) − p(C)] and let X = {a ∈ A\C∗ : p′a > pa}. In

case X = ∅, we have A ∈ argminC∈Dvi
(p)[p

′(C) − p(C)] and the proof is done. Assume

that X = {a1, . . . , ar} ̸= ∅. Since vi is weakly improvable and

{A,C∗} ⊆ Dvi(p+ χΩ\(A∪C∗)) = {C ∈ Dvi(p) : C ⊆ A ∪ C∗},

we can find a small positive number ε for which there exists

A1 ∈ Dvi(p+ χΩ\(A∪C∗) + εχ{a1}) ⊆ Dvi(p+ χΩ\(A∪C∗))

such that A\{a1} ⊆ A1 ⊆ A ∪ C∗.

Inductively, we can construct a sequence of sets, A1, . . . , Ar ∈ Dvi(p + χΩ\(A∪C∗)),

such that A\{a1, . . . , ai} ⊆ Ai ⊆ A ∪ C∗ for i = 1, . . . , r. Since A\X ⊆ Ar, it follows

that {a ∈ A : p′a = pa} ⊆ Ar and {a ∈ Ar\C
∗ : p′a > pa} = ∅, and hence Ar ∈
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argminC∈Dvi
(p)[p

′(C)− p(C)].

We are now ready to prove Theorem 3.

(a) (⇒) Suppose that vi is weakly gross substitutable, but there exists a bundle of objects

A /∈ Dvi(p) for some p ∈ R
|Ω|
+ such that |A\C| > 1 for all C ∈ Γ(A, p) ≡ {C ⊆ Ω :

ui(C, p) > ui(A, p)}. Let B ∈ Γ(A, p) be a bundle such that |A\B| ≤ |A\C| for all

C ∈ Γ(A, p). It follows that there exist two distinct objects a, b ∈ A\B and a price vector

p1 = p+ ε1χΩ\(A∪B) for some ε1 > 0 such that A\C = A\B for each bundle C ∈ Γ (A, p1)

Let B∗ ∈ Dvi(p
1). Since vi is monotone and A ∪B∗ /∈ Γ(A, p1), we have

ui(A, p
1) ≥ vi(A ∪B∗)− p1(A ∪B∗)

≥ vi(B
∗)− p1(B∗)− p1(A\B∗)

= ui(B
∗, p1)− p1(A\B∗),

and hence p1(A\B∗) ≥ ui(B
∗, p1) − ui(A, p

1). Let λ = [ui(B
∗, p1) − ui(A, p

1)]/p1(A\B∗)

and let p2 ∈ R
|Ω|
+ be the vector given by

p2a =















p1a − λ · p1a, it a ∈ A\B∗,

p1a, otherwise.

Clearly, Dvi(p
2) = Dvi(p

1) ∪ {A}, Therefore, when the price increases from p2 to p3 =

p2 + e{a}, no bundles in Dvi(p
3) would contain b, violating the WGS condition.

(⇐) Let p and p′ be two distinct nonnegative vectors in R
|Ω|
+ such that p′ ≥ p and let

A be a set of objects such that A ∈ Dvi (p) \Dvi (p
′).

Note that since A /∈ Dvi (p
′), there exists a positive number t1 ∈ (0, 1) such that A1 ∈

Dvi (t1p
′ + (1− t1) p

0) and A1 /∈ Dvi (tp
′ + (1− t) p0) for t > t1. Let p

1 = t1p
′+(1− t1) p

0.
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By (a) again, there exists

A2 ∈ arg min
C∈Dvi

(p1)

[

p′ (C)− p1 (C)
]

such that {a ∈ A1 : p
′
a = p1a} ⊆ A2. Since {a ∈ Ω : p′a = p0a} = {a ∈ Ω : p′a = p1a}, it follows

that
{

a ∈ A0 : p
′
a = p0a

}

⊆
{

a ∈ A1 : p
′
a = p1a

}

⊆ A2.

In case A2 ∈ Dvi (p
′), the proof is done. Otherwise, there exists a positive number

t2 ∈ (0, 1) such that A2 ∈ Dvi (t2p
′ + (1− t2) p

1) and A2 /∈ Dvi (tp
′ + (1− t) p1) for t > t2.

Let p2 = t2p
′ + (1− t2) p

1. Using (a), there exists

A3 ∈ arg min
C∈Dvi

(p2)

[

p′ (C)− p2 (C)
]

such that {a ∈ A2 : p
′
a = p2a} ⊆ A3.

Since the number of sets of objects is finite, we may inductively construct a finite

sequence of distinct price vectors p′ = pr ≥ pr−1 ≥ · · · ≥ p1 ≥ p0 and a finite sequence of

distinct sets of objects A0, A1, . . . , Ar such that Ar ∈ Dvi (p
′) and for k = 1, . . . , r,

1. Ak ∈ argmin
C∈Dvi(pk−1)

[

p′ (C)− pk−1 (C)
]

,

2.
{

a ∈ Ak−1 : p
′
a = pk−1

a

}

⊆ Ak, and

3.
{

a ∈ Ω : p′a = pk−1
a

}

⊆
{

a ∈ Ω : p′a = pka
}

.

This implies {a ∈ A : p′a = pa} ⊆ Ar, and hence completes the proof of (a).
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(b) For any arbitrary vector p ∈ R
|Ω|, let p′ ∈ R

|Ω| be the vector given by

p′a =















pa, if ∀A ⊆ Ω\{a}, pa ≤ vi(A ∪ {a})− vi(A),

minA⊆Ω\{a}[vi(A ∪ {a})− vi(A)], otherwise.

Let vpi be the monotone valuation function given by vpi (A) = vi(A)−p′(A) for A ⊆ Ω and

p̄ ∈ R
|Ω|
+ the non-negative vector such that p̄a = pa − p′a for a ∈ Ω. Since vpi (A)− p̄(A) =

vi(A)− p(A) for all A ⊆ Ω, we note that

(i) vi satisfies GS if and only if vpi satisfies WGS for all p ∈ R
|Ω|; and

(ii) vi is improvable if and only if vpi is weakly improvable for all p ∈ R
|Ω|.

Putting (i), (ii) and (a) together yields the desired result.

Appendix B. Proof of Theorem 8

(a) Assume that ⟨p,X⟩ is a competitive equilibrium for E . We are going to prove that X

is an equilibrium allocation for Ê . Let p′ ∈ R
|Ω|
+ be the price vector given by

p
′

a =











pa, if pa ≥ 0,

0, if pa < 0.

We first prove that ⟨p′,X⟩ is a competitive equilibrium for E . Let Ā = {a ∈ Ω : pa < 0}.

In case there exists a ∈ Ā\X1, since v1 is monotone, we have

v1 (X1 ∪ {a})− p (X1 ∪ {a}) ≥ v1 (X1)− p (X1)− pa > v1 (X1)− p (X1) ,
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violating the fact X1 ∈ Dv1 (p). This implies Ā ⊆ X1, and hence we have Xi ∈ Dvi (p
′)

for i ̸= 1 and for each bundle A ∈ 2Ω,

v1 (X1)− p′ (X1) = [v1 (X1)− p (X1)] + p
(

Ā
)

≥
[

v1
(

A ∪ Ā
)

− p
(

A ∪ Ā
)]

+ p
(

Ā
)

= v1
(

A ∪ Ā
)

− p′
(

A ∪ Ā
)

≥ v1 (A)− p′ (A) .

We next prove that v̂i (Xi) = vi (Xi) for all i ∈ N . In case there exists an agent

i ̸= 1 such that v̂i (Xi) > vi (Xi), there exists a proper subset B of Xi such that v̂i (Xi) =

vi (B) = v̂i (B). Together with the fact pa ≥ 0 for all a ∈ Xi, we have vi (B) − p (B) >

vi (Xi)− p (B) ≥ vi (Xi)− p (Xi). Since Xi ∈ Dvi (p), this is impossible.

We are now ready to prove that ⟨p′,X⟩ is also a competitive equilibrium for Ê . In case

there exists an agent j ̸= 1 such that v̂j (Xj)− p′ (Xj) < v̂j (C)− p′ (C) for some bundle

C ∈ 2Ω. Since Xj ∈ Dvj (p
′) and v̂j (Xj) = vj (Xj), we have

vj (C)− p′ (C) ≤ vj (Xj)− p′ (Xj) = v̂j (Xj)− p′ (Xj) < v̂j (C)− p′ (C) .

This implies vj (C) < v̂j (C) and v̂j (C) = vj (C
′) for some proper subset C ′ of C, and

hence

vj (C
′)− p′ (C ′) ≥ v̂j (C)− p′ (C) > vj (Xj)− p′ (Xj) ,

contradicting to the fact Xj ∈ Dvj (p
′).

(b) Assume that ⟨p,X⟩ is a competitive equilibrium for Ê . Note that since all agents

in Ê have monotone preference, the equilibrium price vector p must be nonnegative. We

are going to construct a competitive equilibrium ⟨p,Y⟩ for E such that for i ̸= 1, Yi ⊆ Xi

and v̂i (Xi) = vi (Yi) = v̂i (Yi), and Y1 = [∪i ̸=1 (Xi\Yi)] ∪X1.

For each i ∈ {2, . . . , n}, we choose Yi ⊆ Xi such that v̂i (Xi) = vi (Yi) = v̂i (Yi). Since
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Xi ∈ Dv̂i (p), we have

v̂i (Xi)− p (Xi) ≥ v̂i (Yi)− p (Yi) = v̂i (Xi)− p (Yi) ≥ v̂i (Xi)− p (Xi) .

This implies pa = 0 for a ∈ Xi\Yi, and for any subset A of Ω,

vi (Yi)− p (Yi) = v̂i (Xi)− p (Xi) ≥ v̂i (A)− p (A) ≥ vi (A)− p (A) .

Let Y1 = [∪i ̸=1 (Xi\Yi)]∪X1. Since v1 is monotone and pa = 0 for all a ∈ ∪i ̸=1 (Xi\Yi), it

follows that for any subset A of Ω,

v1 (Y1)− p (Y1) ≥ v1 (X1)− p (X1) = v̂1 (X1)− p (X1)

≥ v̂1 (A)− p (A) = v1 (A)− p (A) ,

and the proof of (b) is done.

Finally, the result of (c) is an immediate consequence of the combination of (a) and

(b).
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