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Abstract

This paper considers the location-scale quantile autoregression in which the location
and scale parameters are subject to regime shifts. The regime changes in lower and up-
per tails are determined by the outcome of a latent, discrete-state Markov process. The
new method provides direct inference and estimate for different parts of a nonstationary
time series distribution. Bayesian inference for switching regimes within a quantile, via a
three-parameter asymmetric-Laplace distribution, is adapted and designed for parameter
estimation. Using the Bayesian output, the marginal likelihood is readily available for
testing the presence and the number of regimes. The simulation study shows that the pre-
dictability of regimes and conditional quantiles by using asymmetric Laplace distribution
as the likelihood is fairly comparable with the true model distributions. However, ignor-
ing that autoregressive coefficients might be quantile-dependent leads to substantial bias
in both regime inference and quantile prediction. The potential of this new approach is

illustrated in the empirical application to the U.S. financial market of different frequencies.
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1 Introduction

Koenker and Xiao (2006) study quantile autoregression models in which the autoregressive coef-
ficients may take distinct values over different quantiles of the innovation process. Their models can
capture systematic influences of conditioning variables on the location, scale and shape of the condi-
tional distribution. Let {U;} be a sequence of i.i.d. standard uniform random variables. Consider the

mth-order autoregressive process

ye = 0o (Up) + 601 (Up) ye—1 + .. + 00 (U) Yt—m (1.1)

where y; is the time series observation at time ¢, and #’s are unknown functions [0,1] — R to be
estimated. Provided that the right side of (1.1) is monotone increasing in Uy, it follows that the 7th

conditional quantile function of 3; can be obtained as

Qu. (TIyi—1) = 00(7) + 01(T)ye—1 + . 4 O (T)Yt—m (1.2)

where ¥, | = (Yi—1, .., Yt—m) . The transition from (1.1) to (1.2) is an immediate consequence of

I In (1.2), the quantile autoregressive coefficients may

equivariance to monotone transformations.
be 7-dependent and thus can vary over the quantiles. The conditioning variables not only shift the
location of the distribution of y; , but also may alter the scale and shape of the conditional distribution.
Koenker and Xiao (2006) also show that quantile autoregressive models exhibit a form of asymmetric
persistence and temporarily explosive behavior.

However, the linear quantile autoregressive models cannot accommodate many stylized facts such as
structural breaks and nonlinearities in macroeconomic and financial time series. The aim of this article
is to extend the quantile autoregression of Koenker and Xiao (2006) by modeling nonstationary quantile
dynamics. Particularly, I consider the location-scale quantile autoregression in which the location
and scale parameters are subject to regime shifts within a quantile. Switching quantile regimes is
determined by the outcome of an unobserved state indicator variable that follows a Markov process with
unknown transition probabilities. The proposed Markov-Switching Quantile Autoregression (MSQAR)
nests the quantile autoregression of Koenker and Xiao (2006) as a special case when conditional

distributions are stationary.

!'See the theorem of equivariance to monotone transformations in Koenker (2005), page 39.



MSQAR is a convenient approach built on the vast literature of Markov-switching time series mod-
els.? Nonetheless, simply combining quantile autoregressive models with Markov-switching techniques
is econometrically infeasible. The challenge is that the objective function of quantile autoregression
is a non-likelihood based function generally estimated by nonlinear least square. The non-likelihood
based function does not allow make inference on the latent state variable for switching regimes. To
solve this problem, I assume that quantile error terms follow a three-parameter asymmetric-Laplace
distribution (Yu and Zhang (2005)). This paper shows that maximizing this distribution is mathemat-
ically equivalent to minimizing quantile objective functions. Importantly, it also satisfies the restrictive
conditions of quantile regression. With this distribution, the inference for switching quantile regimes
can be made through the standard Hamilton filter approach (Hamilton (1994)).

This paper adopts Bayesian approach for model estimation. As discussed in Yu and Moyeed (2001),
the use of an asymmetric Laplace distribution for error terms provides a natural way to deal with some
serious computational challenges through Bayesian quantile regression. Also see Chernozhukov and
Hong (2003). In the terminology of Chib and Greenberg (1995), this paper adopts a “block-at-a-time”
Metropolis-Hastings sampling to reduce computational cost.? This algorithm groups highly correlated
parameters as one block to be simultaneously updated at each Metropolis-Hasting step conditional on
the remaining blocks, see e.g., Tierney (1994), Ausin and Lopes (2010), Geweke and Tanizaki (2001),
among others. To further speed up convergence and to achieve desirable mixing properties in MCMC
chains, I employ the adaptive scheme of Gerlach et al. (2011) and Chen et al. (2012), which combines
a random walk and an independent kernel Metropolis-Hastings algorithm, each based on a mixture of
multivariate normal distributions.

Importantly, in this paper the Bayesian output provides a convenient way to assess the presence
and the number of regimes by constructing Bayesian factors through marginal likelihoods in the sense
of Chib and Jeliazkov (2001). The empirical illustration in the U.S. financial market clearly supports

the presence of regimes in quantile autoregression. In addition, this paper performs a simulation

See e.g., Sims and Zha (2006), Gray (1996), Cheung and Erlandsson (2005), Hamilton and Susmel (1994), Kim et al.
(2008), among many others. Guidolin (2012) provides a recent review for the applications of Markov-switching models
in empirical finance.

3To the best of my knowledge, the work closely relevant to this paper is in parallel developed by Liu and Luger (2015)
who have proposed Gibbs sampling approach to estimate Markov-Switching quantile autoregressive models. However,
this paper differs from their work in several important ways. Unlike their work that restricts autoregressive coefficients
independent of regime changes and only allows regime changes in quantile locations, this paper generalizes the MSQAR
model to allow autoregressive coefficients dependent on both regimes and quantiles. However, once the autoregressive
coefficients depend on regime changes, their Gibbs sampling algorithm fails to derive the full conditional densities due
to the product between the autoregressive coefficients and the lagged quantile location parameters. Therefore, the
Metropolis-Hastings within Gibbs sampling approach proposed in this paper is the appropriate approach to address this
issue, and can also reduce computational cost.



study to examine the adequacy of using the asymmetric Laplace distribution as the likelihood in
regime inference and quantile prediction when the true model errors follow different distributions.
The potential effect of ignoring that autoregressive coefficients might be 7-dependent has also been
investigated via the simulation study.

The rest of this paper is structured as follows. Section 2 introduces the connection of asymmetric-
Laplace distributions to the solution of quantile regressions. Section 3 defines Markov-Switching
quantile autoregression. In this section Markov-Switching autoregression is discussed as the benchmark
model. Section 4 describes the Bayesian methods in this paper for model estimation. Section 5
introduces the computation method of marginal likelihoods for testing the presence and the number
of regimes. Section 6 presents model simulations and results. Section 7 reports the results of the

empirical application to the U.S. financial markets. Section 8 concludes this paper.

2 Asymmetric Laplace Distribution Connection

The QAR(m) model of (1.2) can be reformulated in a more conventional regression form as

m

ye = 00(r) + D> Oi(7)ys—1 + ee(7) (2.1)

=1

where €4(7) is quantile error terms which follow an asymmetric-Laplace (AL) distribution, denoted by

AL(0,s,7), with the density function as

f(5t§07§a 7—) — T(lg_T)exp {_€t (T — I(€t < 0))} (2_2)

<

where I(-) is an indicator function. 7 determines the skewness of the distribution, ¢ > 0 is a scale
parameter. AL(0,¢,7) with the location parameter being zero provides that the 7th quantile of the
distribution is zero as Pr (g, < 0) = 7, which satisfies the quantile regression condition fBoo fe(s)ds =
7. The asymmetric-Laplace distribution with the density function of (2.2) has the mean and variance,
E(gt) = ¢(1 —27)/[(1 — 7)7] and Var(e;) = ¢2(1 — 27 + 272)/[(1 — 7)%7?], respectively. See Yu and

Zhang (2005) for details. With the assumption of i.i.d. &:(7), the sample likelihood function is given



LO,7) = [f1—7)/]" " (2.3)
= Qy (Tlye )
exrpq — Z . [T =1 (y: < Qy: (Tlyi-1))]
t=m+1

In the literature the error density is often left unspecified, see e.g., Koenker and Bassett (1978),
Koenker (2005), and Koenker and Xiao (2006), etc. Quantile autoregression is the solution to the

following minimization problem

0(t) =arg min E(p; (ye — Qy (T|y,_1;0(1)))) (2.4)

9(r)eRm+1
where 0 (1) = (0p(7), ..., Om (7)) is the parameter space to be estimated. The quantile criterion (check
or loss) function p,(-) is defined as p,(¢) = € (7 — I(e < 0)) in Koenker and Bassett (1978). Solving

the sample analog gives the estimator of (7)

O(r) =arg min pr = Qy, (Tly;-150(7))) (2.5)

B(T )eR™+L

Recently, Yu and Moyeed (2001), Yu and Zhang (2005) and Gerlach et al. (2011), among others,
have illustrated the link between the quantile estimation problem and asymmetric-Laplace distribution.
Since the quantile loss function is contained in the exponent of the asymmetric-Laplace likelihood,
maximizing the sample likelihood of (2.3) is mathematically equivalent to minimizing the quantile
loss function of (2.5). It is important to emphasize that, in practice, the parameter 7 is chosen by
researchers as quantile levels of interest during parameter estimation and only a single quantile of the
distribution of y; is estimated. More importantly, the asymmetric Laplace distribution transforms the
non-likelihood based quantile regression of (2.5) to a likelihood based approach (Chernozhukov and
Hong (2003)), so that the inference for the probability of switching regimes is possibly made through

Hamilton filter.

3 Markov-Switching Quantile Autoregression

For the 7th conditional quantile of y;, let {s;} be an ergodic homogeneous Markov chain on a finite



set S ={1,..., K}, with a transition matrix P(7) defined by the following transition probabilities

{pij(7) = Pr (s = jlsi—1 =4;7)}

for 4,7 € S and assume s; follows a first-order Markov chain. The transition probabilities satisfy
Zjes pij(7) = 1. The stochastic process for s; is strictly stationary if p;;(7) is less than unity and
does not take on the value of 0 simultaneously. Specifically, this paper considers constant transition
probabilities to keep the model tractable. However, this assumption can be relaxed to time-varying
transition probabilities as discussed by e.g., Filardo (1994) and Diebold et al. (1994), among others.
In their works, transition probabilities can vary with economic fundamentals.

Using transition probabilities above, this paper defines Markov-Switching quantile autoregressive

models (MSQAR) as

Yy = Qu(tlyi- 1; 05,(7)) + (1)

= Og0(7 —i—ZQst, T)ye—1 + €(T) (3.1)

Note that if no regimes occur (K = 1), the MSQAR model in (3.1) collapses to the QAR model of
Koenker and Xiao (2006). In this sense, the proposed MSQAR model nests the quantile autoregression
of Koenker and Xiao (2006) as a special case.

Suppose that y; can be observed directly but can only make an inference about the value of s,
based on the observations as of date t. With the asymmetric Laplace connection established in previous
section, the latent discrete Markov process, {s;}, can be inferred by applying the Hamilton filtering
approach (Hamilton, 1994) to each quantile level. The likelihood function of the MSQAR model can
also be obtained from the Hamilton filter algorithm. Appendiz A details how to draw the probabilistic
inferences about the unobserved states, {s;}, given observations on y;.

The connection to the solution of quantile regression can also be viewed as follows. Based on

quantile loss functions, ©(7) is solved for the following minimization problem

i B | 2oor 0= Qulse =3 s @D T (= :7) (32)



where y: = {yt, Yt—1,-.-, Y1, %0 }. Apply the law of iterated expectation to rewrite (3.2) as

win 2B [pr (Yt — Q. (Tlst,r = 4, ¥1-1:O(7))) Pr (se = jlye, 75 ©O(7))] (3.3)
JES

Provided that 7 is chosen by researchers of interest, maximizing the likelihood of (A.3) is mathe-
matically equivalent to the minimization of (3.2), since the likelihood function can be alternatively
rewritten as L(©®;7) = Hthl Yjes [ (Wilse = J,yi-1,7:O(7)) Pr(se = jly:, 7:©(7)) with Pr(s; =
Jyem0(7)) = X icgPij(T)&i1—1)t—1(7) (see Appendiz A). However, Pr(s; = jly:,7;©(7)) cannot
be filtered by using the nonlinear least square estimation of (3.3); therefore, the likelihood function of

the asymmetric Laplace distribution must be used to infer transition probabilities.
Given the filtered probability for s; and parameter estimates, it is then straightforward to forecast

the one-step-ahead 7th quantile of y;11 at time ¢ conditional on knowing s;41 -,

m—1
Quer (Tlser1 = 3,56:05(T)) = 050(T) + D 05011 (7)ys (3.4)
=0

Further, from (A.2), the quantile forecast for ¢t + 1 conditional on time ¢ is obtained as

k
Qe (TIy50(7) = Y Quess (Tlste1 = 5.36505(7)) Pr (s = jlyi, 71 ©(7)) (3.5)
j=1

which is to multiply the appropriate forecast of the quantile in the jth regime given by (3.4) with
the probability that the process will be in that regime given by (A.2), and to sum those products for
every regime together. Note that h-step-ahead forecasts for h > 2 require different approaches since it
involves forecasts of y;1p—1 in (3.4) for Qy, ., (T|St4h—1,7 = J, Yi+n—1;0;(7)), as shown in Cai (2010).
An alternative method to obtain Markov-Switching conditional quantiles is to consider an autore-

gressive error structure while the mean and variance are subject to regime changes

m
Yt = Bst,O + Z Bst,lytfl + 05,6t (36)
=1

where (3, and o,, are conditional mean coefficients and standard deviation functions whose values
depend on the outcome of s;. This model in (3.6) corresponds to the Markov-switching autoregressive
(MSAR) model used by many studies, e.g., Garcia and Perron (1996), Kim and Nelson (1999), Engel
and Kim (1999), Engel (1994), Cheung and Erlandsson (2005), Kim et al. (2008), etc., to analyze



macroeconomic and financial dynamics under the assumption that ¢; follows either a standard normal

or a standardized student-t distribution. The 7th conditional quantile function implied by (3.6) is

Qyt (T|yt—1) = 6&,0(7—) + Zlgst,lyt*l (37)
=1

where (s, 0(7) = Bs,,0 + 05, Qs, (7) and Qc, (7) is the 7th theoretical quantile of a distribution assumed
for ;. Observe that s, 0, 05, and Bs, 1, ..., Bs;,m are 7-independent, meaning that they determine the
time-series behavior of the conditional quantiles of y; regardless of the probability level 7 € (0,1).
The conditional quantile in (3.7) implied by a MSAR model is a location quantile model in which the
difference across conditional quantiles is determined completely by the quantile intercept, such as the
theoretical quantiles (Q., (7)) of the assumed distribution of autoregressive error terms. Notably, this
implied conditional quantile function is simply a special case of the proposed MSQAR model if the
autoregressive coefficients 6, ;(7) in (3.1) are independent of 7. According to Corollary 1 of Koenker
and Xiao (2006) a quantile autoregressive process may allow for some (transient) forms of explosive
behavior while maintaining stationary in the long run. This explosive behavior, nonetheless, is not
allowed in MSAR models.

For Markov-Switching time series models, one must use some identification restrictions for both
MSQAR and MSAR models to avoid the label switching issue. See Bauwens et al. (2010) and Hamilton
et al. (2007) for a discussion. Similarly in this paper, regimes for MSQAR models are labeled by the
restrictions on quantile intercepts, for example, 61 o(7) > ... > 0g (7). In the empirical application
of this paper, the transition probabilities are allowed but not imposed dependent on 7. The intuition
is that even though economic states are common across quantiles implying the same unconditional
probabilities, no theories show that regime persistence should be the same across quantiles.* The
potential difference in regime persistence might be explained by asymmetric risk preference in that
markets in downturn periods (lower tails) are more likely intervened by central governments or appear
to have higher level of fluctuations due to market uncertainties than in upturn periods (upper tails).
To obtain some insights on this empirical question, regime persistence in this paper is allowed to be

driven by data across quantiles.

4Unconditional probabilities are defined as 7;(7) = Pr(s; = j;7) for j € S. For example, if S = {1, 2}, unconditional
probabilities of w1 and 72 can be obtained as (1 — p22)/(2 — p11 — p22) and (1 — p11)/(2 — p11 — p22), respectively. The
regime persistence for regime 1 and 2 is directly given by pi1 and pa2, respectively. To illustrate the intuition, assume
Prisar = {p11 = 0.95,p22 = 0.9} and Puysgar(7) = {p11(7) = 0.80, p22(7) = 0.60}, both give the same unconditional
probabilities m1 = 71 (7) = 0.667 and 72 = 72(7) = 0.333 but different regime persistence.



4 Bayesian Inference

MSQAR models are non-linear and involve indicator functions, which introduce kinks and disconti-
nuities into the sample likelihood function in (A.3). In addition, less observations fall in more extreme
quantiles, which leads to the potential small sample issue. These issues make classical methods such
as MLE very difficult for model estimation. In this paper, I instead prefer to use Bayesian MCMC
methods to learn about the model parameters.

Given the sample realizations, y; for t = 1,..., T, the posterior distribution of @(7) takes the usual
form: p(O(7)|y:) x L(y:|®(7))m (O(7)), where L(y;|®(7)) is the sample likelihood function and
m(O(7)) is the prior distribution. Yu and Moyeed (2001) and Cai and Stander (2008) prove that the
posterior distribution is proper under the improper prior for general quantile regression models. In this
paper, the prior distribution is taken as uniform over Z(7), the admissible parameter space of ©(7),
i.e., satisfying the label switching restrictions. The prior for the scale parameter is 7(s(7)) o ¢(7) 7!
also used in Gerlach et al. (2011).

Just like Vrontos et al. (2002) and Ausin and Lopes (2010), I also find that MCMC mixing can be
improved and the computational cost reduced by using simultaneous updating of the highly correlated
parameter groups at each Metropolis-Hastings (MH) step. In the terminology of Chib and Greenberg
(1995), this approach is therefore based on a “block-at-a-time” MH sampler which is carried out
by cycling repeatedly through draws of each parameter block conditional on the remaining parameter
blocks. Let ©(1) = (P(7),601(7), ..., 0k (7)) represent the blocks of the population parameters. P(7) =
(pij(7)) contains all transition probability parameters and 0;(7) includes all parameters in the jth
regime for j = 1, ..., K. Hence, the parameters in @(7) are grouped in K +1 blocks and the parameters
of each block are simultaneously updated conditional on the remaining blocks.

This paper implements the MH sampler according to the adaptive scheme of Gerlach et al. (2011)
and Chen et al. (2012) which combines the random walk MH (RW-MH) and the independent kernel
MH (IK-MH) algorithms, each based on a mixture of multivariate normal distributions. The random
walk part of this scheme is designed to allow occasional large jumps, perhaps away from local modes,
thereby improving the chances that the Markov chain will explore the posterior distribution space.
Hence, this adaptive scheme allows for further speeding convergence and achieving desirable mixing
properties in MCMC chains.

To illustrate this adaptive algorithm in the block-at-a-time MH sampler, I rewrite the notation of



the parameter blocks as ©(7) = (01(7),02(7), ..., 0k+1(7)), where 61(7) = P(7) and 6;(7) denotes

the parameters in the (j — 1)th regime for j = 2,..., K + 1. And, let ®_;(7) denote the vector ©(7)

excluding the block @,(7) for j = 1,..., K 4+ 1. Starting at g = 1 with ®1(r) = <0[11} (T)s ey 0[11(}+1(7')),

the G random walk MH iterations for @(7) proceed as follows

Stepl. Increment g by 1 and set ®9 (1) equal to ®@9~1(7).

Step2. For i =1,....,k + 1 in turn, generate 65(7) as
0;(r) = 0N(r) +e. e~ pN(0,diag {b;}) + (1 - p) N (0,wdiag {b;})
and replace 0[9}(7') in ®Y(7) by 6¢(r) with the probability min (;, 1), where

7

L (y,165(r). ©(r)) = (05(7), ©)(7))
L (g0 (r)) x (€¥(r))

G =

Step3. If g < G1, go to Step 1.

Upon completion, these first G iterations yield the burn-in sample. Following Chen et al. (2012), I
set p = 0.95, w = 100, and tune the positive number b; so that the empirical acceptance rate lies in
the range (0.2,0.45) for the ith block. Tuning is done every 100 iterations by increasing b; when the
acceptance rate in the last 100 iterations is higher than 0.45, or decreasing b; when that rate is lower
than 0.2.

At the end of the first G; iterations, the burn-in sample mean p;(7) and covariance matrix X;(7)
of ;(7) with corresponding lower triangular Cholesky factor 23/2(7) are computed fori = 1,..., K+ 1.
The MCMC sampling scheme then continues for Gy additional iterations according to the following

independent kernel MH steps:

Step4. Increment g by 1 and set @ (1) equal to ®@9~1(7).

Step5. For i =1,...,k + 1 in turn, generate 65(7) as

05(r) = (1) + 2% (1)e, e~ pN(0,I)+ (1 p) N (0,wI)



and replace 6l (7) in O (1) by 6¢(7) with the probability min (¢;, 1), where

i

B L (yt|95(7'), @[2(7’)) T (0;?(7-)’ @[_91(7_0 q (ez[g] (7_)>
L (y,|0(r)) 7 (©19(r)) q (65(r)

i =

Step6. If g < G + G2, go to Step 4.

Observe that the use of X;(7) in Step 5 accounts for the posterior correlation among the elements of
0,(7), thereby improving the efficiency of the Markov chain. The parameter updates are sequentially
repeated until the convergence of the Markov chain is achieved. The burn-in draws are discarded,
and the steps are iterated a large number of times to generate draws from which the desired features
(means, variances, quantiles, etc.) of the posterior distribution can be estimated consistently.

In this paper, G; = 50,000 for the random walk MH sampler and G5 = 50,000 with a thinning
of 5 for the independent kernel MH sampler, resulting in posterior samples comprising 10,000 draws.
The convergence of the TK-MH Markov chains is assessed using the Geweke (1992) test. For each
parameter, | also assess the accuracy of its posterior mean by computing the numerical standard error
(NSE) according to the batch-means method (Ripley, 1987). In all simulated and real data examples

of this paper, it is observed that MCMC chains are well converged inside 50,000 iterations.

5 Specification Issues

In this section I address two issues with the model specification that arise when the presence and
the number of regimes are considered. I resolve both these issues with the marginal likelihood 7 (y|7),
which is the key input to the computation of a model’s posterior probability (Kass and Raftery, 1995).
The marginal likelihood can easily be computed for MSQAR models estimated for different numbers

of regimes, so it then becomes natural to base inference about the presence and the number of regimes

10



by Bayesian model selection.

Denote the 7th MSQAR model with £ number of regimes as M} with the model-specific parameter
vector O for k = 1,..., K. In this context, Bayesian model selection proceeds by pairwise comparison
of the models in the collection of { My} through their posterior odds ratio, which for any two models Mj,
and M, is written as Pr (My|y, ) /Pr (Mgly, ) = [Pr (My|7) /Pr (Mg|7)] [7 (y| My, 7) /7 (y| Mg, T)].
The first fraction on the right-hand side of the odds ratio is known as the prior odds and the second
as the Bayes factor. If the interest is to test the presence of regimes, the hypothesis should be
Hy: k=1ws. H : g > 1. Note that for £ = 1, the corresponding MSQAR model collapses to
the QAR model of Koenker and Xiao (2006) which can be estimated by the same Bayesian approach
described in previous section. If the interest is empirical to the choice of the number of regimes, then
the hypothesis should be Hy: k=awvs. Hy : g > a for a > 1.

The marginal likelihood is related to the prior, posterior, and sample density functions via the

equality
_ [ (Y| My, Ok(7)) m(Ok (1) [ M, )
(M. 7) = m(Ok(7)ly, M)

which holds at all admissible points of the parameter space. So for given values O (7)* of the model

parameters, an estimate of log w(y|Mjy, T) can be obtained by using
log 7 (y| My, 7) = log [ (y| My, Or(7)") + log m (Ok(7)"|My) — log 7 (O (7)"y, Mk)  (5.1)

where 7 (O (7)*|y, M}) is an estimate of the posterior ordinate at the chosen parameter values. In
principle, ©(7)* could be any point in the space of admissible values. As Chib and Jeliazkov (2001)
explains, however, efficiency considerations dictate that log 7 (y| My, 7) is likely to be more accurately
evaluated at a high density point, such as the posterior mean or mode, rather than at a point in the
tails of the posterior. Here, I use the posterior mean for ease of computation.

The first term on the right-hand side of (5.1) is the log of the MSQAR likelihood function in (A.3)
evaluated at O (7)". The second term on the right-hand side of (5.1) is the log of the prior density
evaluated at O (7)*. The log of the posterior ordinate estimate appearing as the third term on the

right-hand side of (5.1) requires further computations as

) By {0 (04(r), 04(r)* |y, My) 4 (O4(r). ()" [y, My}
™ (On(r)ly, M) = By {0 (Ou(7)" Ox(1) . M)}

11



where o = min ((,1) denote the probability of move (probability of accepting the proposed value).
The numerator expectation Ej is with respect to the posterior distribution m (O (7)|y, My) and the
denominator expectation Fsy is with respect to the proposal density q (Of(7)*, Ok(7)|y, My). This

implies that a simulation-consistent estimate of the posterior ordinate is available as

RS (6] (r),0u(r) Iy M) (6] (), €n(r) |y, M)

7 (O (7)" |y, My) = j
el IS o (k) O (r)ly, My

where {@g] (’7’)} are the sampled draws from the posterior distribution (for example, from the indepen-
dent kernel MH step in this paper) and {G),Lﬂ (T)} are draws from the proposal density q (Ox(7)*, Ok (7)|y,
M), given the fixed value O(7)*.

Chib and Jeliazkov (2001) has also provided the posterior ordinate for multiple parameter blocks

as

* * o Ei{a(0;(1),0,(r)* |y, ¥, Wth) ¢ (0,(7),0;(T) |y, ¥i_,, ¥t}
7Oy Ol 0 (1)) = Ey {a(0;(1)*,0;(7)|y, ¥;_,, wi+l)}

j—1

where ©;(7) is the jth parameter block for j =1,..., K + 1, ¥;_1 = (01(7),...,0;_1(7)) and ¥/ =
(041(7), ..., Ok +1(7)). Ey is the expectation with respect to conditional posterior 7 (6;(7), ¥/ ty,
\113[1) and Fs is with respect to the conditional product measure 7 (‘Ifj+1|y, \I/;k) q(0;(1)*,0,(1)|y,
wr_q, \I/j+1). These two integrals can be estimated as before from the Metropolis-Hasting MCMC
output. See Chib and Jeliazkov (2001) for detail steps. Upon substitution of all the estimated posterior
ordinates into (5.1), the estimate of (the log of) the marginal likelihood is

K+1

log #(y| My, 7) = log [ (y| My, ©k(7)*) + log  (O(r)*|My,) — Y log # (0 x(7)*|y, My)
=1

The simulation-sample sizes in the numerator and the denominator are allowed to be different,
although in practice I set them to be equal. The marginal likelihood of the MSQAR model is available

almost as soon as the full MCMC run is finished.

6 Simulation

This section carries on a Monte Carlo study to examine the performance of the adaptive “block-at-
a-time” MH sampler in MSQAR model estimation. There are in fact two main purposes for this study:

(i) to verify the adequacy of using the asymmetric Laplace distribution as the likelihood when the true
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model errors follow different distributions, and (ii) to investigate the potential effect on regime inference
and quantile prediction of ignoring that autoregressive coefficients might be 7—dependent. Specifically,
two simulation experiments are designed to achieve the second purpose: (1) an experiment using data
simulated from a MSAR model of (3.7) with autoregressive coefficients independent of 7, and (2)
using the simulation method in Koenker and Xiao (2006) to simulate data by allowing autoregressive

coefficients depending on both s; and 7 as in (3.1).

6.1 Monte Carlo Simulation: Design 1

This experiment simulates data from a MSAR model with 2 regimes as

2.0+ O~2yt—1 + 0.5€t, St = 1

Yt =
—2.0+ 0.4y 1 + &y, St = 2
0.9 0.1
with the transition probability matrix P = . The true parameter values are referenced
0.1 0.9

based on empirical data estimations in this paper. Two underlying distributions are considered for error
terms, including a standard normal distribution (N(0,1)) and a standardized student-t distribution
with 3 degrees of freedom (¢3). The 7th theoretical conditional quantile of y; can be expressed in a
MSQAR form as

O10(7) + 011Y1—1, s =1
Qyt(T‘Yt—B@(T)) =

O20(7) + O21y1—1, st =2
with the corresponding quantile parameters as 619(7) = 2.0 + 0.5Q., (1), 611 = 0.2, Oyo(7) = —2.0 +
Qe, (1), and 021 = 0.4. Q.,(7) is the 7th theoretical quantile of a underlying distribution. As seen,
the autoregressive coefficients, 611 and 621, are T—independent.

200 data replications are simulated for each underlying distribution. 5,000 observations are gen-
erated for each data replication but only the last 500 observations are kept for estimation in order
to reduce initial effects. MSQAR models are examined in different sample sizes, T' = {200,500} and
quantile levels, 7 = {0.05,0.25,0.5,0.75,0.95}.

Table 1 reports the estimation results. This table includes the true quantile parameters (True),
posterior means (PM), standard errors (Std), the root of mean squared errors (RMSE), and the mean

absolute deviation (MAD). RMSE and MAD errors in Table 1 are small over different quantile levels
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and distributions. The small difference between the true and estimated parameters indicates the
reasonable accuracy in model estimation. The small standard errors also show a favorable precision
in model estimation. Furthermore, the accuracy and the precision of model estimations are improved
with the increase in sample sizes considered due to the reduction in RMSEs, MADs and standard
errors. As expected, the model estimation for the less extreme quantiles present smaller RMSE and

MAD errors than extreme quantiles.

[Table 1 about here|

Figure 1 plotting the posterior kernel densities of parameter estimates along with true parameters
indicated by the vertical lines. Figure 1 shows that the posteriors well contain the true quantile
parameters with a slightly better performance for 7 = 0.5. In many cases, the posteriors appear
skewed but still with most of the density concentrated near the true parameter values. To save space,
Figure 1 plots results for 7 = 0.05,0.5,0.95 and N = 200 from the normal distribution. Other results

are similar and available upon request.

|Figure 1 about here|

The accuracy of estimation is further assessed by examining the deviations between the true con-
ditional quantile Qy, (7|y:—1;©) implied by the true MSAR models and Qy, (7|y:—1; O(7)), the directly
estimated conditional quantile by the MSQAR model. More precisely, the mean absolute deviation

error (MADE) is computed across observations as

MADE = % i ‘Qyt (T1Y4-150) — Qu, (T\yt_l; @(T)))
t=1

where é(T) are the posterior means of the parameters and the MADE is computed for each DGP
replication. The results are shown in Table 2, where for each DGP configuration the entries are the
median of the 200 MADESs reported with the corresponding lower 5% and upper 95% quantiles in
square brackets. Furthermore, denote MSAR N N as the MSAR model estimated with the standard
normal distribution assumption for data simulated from standard normal and MSAR t t as the
MSAR model estimated with the student-t distribution assumption for data simulated from t3. As

expected, MSAR N N and MSAR t t as the true models obtain the best estimation precision.
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Nonetheless, using the asymmetric Laplace distribution as the likelihood also achieves reasonable
quantile predictability comparable to the true models. Compared to MSAR N _t and MSAR t N,
the MSQAR model estimation appears to have smaller MADE values in general with a narrowing of the
range between the lower and upper MADE quantiles. Of course, increasing the sample size improves
the estimation precision at all quantile levels along with a narrowing of the range between the lower and
upper MADE quantiles. Basically, this simulation experiment shows that using asymmetric Laplace
distribution as the likelihood achieves reasonable accuracy and precision in model estimation, regime

predictability and quantile prediction when the true model errors follow different distributions.

[Table 2 about here]

6.2 Monte Carlo Simulation: Design 2

To investigate the potential effect of T-dependent autoregressive coefficients on regime inference
and quantile prediction, this experiment simulates data by modifying the approach of Koenker and

Xiao (2006) as follows. Randomly draw a value z from U(0,1). If 0 < z < 0.25, then generates y; as

24 0.1y—1 +0.5e4(2), sp=1
Yo =
—2403yi—1 +e(2), s=2

If 0.25 < 2 < 0.75, then generates y; as

24 04yi—1 +0.5e4(2), si=1
Yt =
—24+0.6yi—1 +e4(2), s4=2

If 0.75 < z < 1, then generates y; as

240.Tyi—1 + 0.5e4(2), st =1
Yt =
—24+09yi—1 +e4(2), s4=2

where £,(z) is the theoretical quantile value given the probability z and the transition probability
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0.9 0.1
matrix P = . Similarly, a standard normal distribution (N(0,1)) and a standardized

0.1 09

student-t distribution with 3 degrees of freedom (t3) are considered for e;(z). Therefore, the corre-

sponding theoretical conditional quantile of y; is given by

O10(7) + 011 (T)ye—1, se=1
Qy: (Tlyt-1;0(7)) =

020(7) + O21(7)yr—1, st =2

where 619(7) = 24+0.5Q¢, (7), O20(7) = —2+Q.,(7) and {011(7), 021 (7)} = {(0.1,0.3),(0.4,0.6),(0.7,0.9)}
for 0 < 7 < 0.25, 0.25 < 7 <0.75, and 0.75 < 7 < 1, respectively. Compared to Simulation Design
1, this experiment simulates data from a location-scale quantile autoregressive model with the au-
toregressive coefficients varying with 7 from lower to upper tails. In this experiment the models are
estimated only for 7 = {0.05,0.5,0.95}, one quantile level for each simulation segment.

Table 3 reports the simulation results for Simulation Design 2. Similar to the results in Simulation
Design 1, the MSQAR model estimation using asymmetric Laplace distribution as the likelihood

achieves reasonable accuracy and precision with the improvement as the increase in sample sizes.

[Table 3 about here|

However, the results from Tables 4 tell very different stories from those in Tables 2. Table 4 re-
porting the accuracy of quantile predictions shows that the MSQAR model with asymmetric Laplace
distribution as the likelihood achieves the greatest performance of quantile predictions due to the
smallest MADE values among all competing models estimated. For example, for data simulated from
normal distribution with 7 = 0.05 and N = 200, the MSQAR model has MADE=1.181 smaller than
1.465 and 1.500 from the MSAR N N and MSAR_t N models, respectively. In addition, the in-
tervals between lower and upper MADE quantiles of the MSQAR model are not only narrower but
also lower than those from the MSAR model. This simulation result indicates both higher estimation
precision and accuracy of the MSQAR model estimation than the benchmark model. Basically, the re-
sults in Table 4 further consolidate the non-negligible effects of 7-dependent autoregressive coefficients
on quantile prediction. Overall, the simulation in this subsection demonstrates that conditional quan-
tiles implied by a MSAR model are too restrictive with the assumption of autoregressive coefficients

independent of 7, and thus lead to substantial bias in quantile estimation.
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[Table 4 about here]

7 Empirical Illustration

Many empirical studies have applied quantile autoregressive models to estimate financial risks. In
this section I illustrate the potential of the proposed MSQAR model in estimating S&P 500 index
returns with regime changes in tails for market risk assessment across quantiles. Monthly (from
January 1926 to February 2013 with 1047 months) and weekly (from January 1950 to February 2013
with 3294 weeks) S&P 500 index returns are taken from the Center for Research in Security Prices

(CRSP). Figure 2 plots the time series of the S&P index returns.

[Figure 2 about here|

Particularly, the interest in this empirical illustration is given to the presence of regimes, regime
identification and the statistical significance of the conditional quantile estimation. Besides the MSAR
model, an additional benchmark model, the CAViaR model (conditional autoregressive Value-at-Risk
by regression quantiles) of Engle and Manganelli (2004), is also considered for comparison.® The
marginal likelihood described in Section 5 is computed to test the presence of regimes by constructing
the Bayesian factors.5 This paper defines that regime 2 represents more extreme outcomes than regime
1. For instance, at lower tails, quantiles of regime 2 should be more negative or farther into the left
tail areas than those of regime 1, which is mostly associated with the periods of economic recessions
and crises. In contrary, at upper tails, quantiles of regime 2 should be more positive or farther into
the right tail areas than those of regime 1.

Table 5 reports the MSQAR model estimation results for monthly and weekly S&P 500 returns.”
The results show that the numerical standard errors are small and the Markov chain appears to be
converged well as indicated by the generally insignificant values of the Geweke (1992) test statistic.

Table 5 also shows that the quantile intercepts (619) monotonically increase with the increase of

°In this paper, I estimate CAViaR model specified with the symmetric absolute value, see Engle and Manganelli
(2004), page 369. Xiao and Koenker (2009) show that this CAViaR specification is conveniently the corresponding
quantile function of the modified linear GARC H (p, q¢) model of Taylor (1986).

5Despite that this paper focuses on the presence of regimes, the choice of the number of regimes with more than 2
regimes, such as Nalewaik (2011) and Baele et al. (2014), etc., can be tested in a similar way.

"The tests based on ACF and PACF (not reported here, but available upon request) reject autocorrelation in the
residuals of the estimated models up to 26 lags, which indicates that the MSQAR models with the lag of order one in
Table 5 are statistically sufficient to capture the dynamics of the return data. Furthermore, in nonlinear settings where
the number of parameters increases with the number of regimes it is very convenient to choose parsimonious models
that require a low number of parameters increases with the number of regimes.
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quantile levels, and the autoregressive coefficients of regime 2 (f2;;) are larger in magnitude than
those of regime 1 (611,). Furthermore, Figure 3 plots the estimated parameters over quantiles with
the 5% and 95% credible intervals of posterior distributions. The intervals of quantile autoregressive
coefficients exclude zero for lower and upper tails, while the intervals around 7 = 0.5 include zero. This
result is interesting in that return predictability might be discovered from the nonzero autoregressive
coefficients of lower and upper tails, while the zero-included coefficients around 7 = 0.5 do not have
such ability. According to the efficient market hypothesis (EMH), at any given time, stock prices fully
reflect all available information. Hence, in an efficient market, stock prices become not predictable but
random. In practice, the information from lower and upper tails temporarily deviating from EMH,
thus, can be useful for investors to discern investment patterns in a market. The similar empirical

evidence has also been found by Bali et al. (2009).

[Table 5 about here|

[Figure 3 about here]

Looking at the plots of transition probabilities in Figure 3, their variation across quantiles in regime
1 is much smaller than in regime 2. The transition probabilities of regime 1 are ranging from 0.85
to 0.985, compared to the range of regime 2 from 0.381 to 0.945. It seems that the more extreme
the quantile level is, the lower the persistence of regime 2 (p22(7)) is. Despite the variation in the
regime persistence, the unconditional probabilities are very similar across quantiles, i.e., m1(7) and
mo(7) are around 0.84 and 0.16 for each quantile level, respectively. This result is reasonable in that
the unconditional probability reflects possible changes in common and fundamental macroeconomic
conditions. In contrast to the unconditional probability, regime persistence is possibly varying across
quantiles. This observation is further consolidated by Figure 4 plotting the smoothed probability
s,—2,47 for 7 = 0.05,0.5 (see Appendiz A for the computation method.). The shaded areas are
NBER-dated business cycles. In this figure, regime 2 for the 5% lower tail appears to be much less

persistence, while both smoothed probabilities trace closely to the NBER-dated business cycles.

|[Figure 4 about here|
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Applying the method in Section 5, Table 6 reports the logarithm of the marginal likelihoods for
testing the presence of regimes. Using the scale of Kass and Raftery (1995), very strong evidence of
the MSQAR model over the QAR model has been found as the Bayesian factors 7 (y|MSQAR,T)/
7 (y|QAR, ) for all 7s considered exceed 150. This result supports the presence of regimes across

quantiles for both monthly and weekly S&P 500 index returns.

[Table 6 about here]

Figure 5 plots conditional quantiles for 7 = 0.05 as @, (T\yt_l,st; @(T)) =Y ies Que (Tly,_1
sp = i;éi(T)) Pr (st = i|yy; é(T)) The dark lines in Figure 5 are the conditional quantile dynam-
ics (Qu, (T]Ys_1, S¢; O(7))) and the top and bottom light lines are the conditional quantile dynamics
of regime 1 (Qy, (T|y,_1,s: = 1;01(7))) and regime 2 (Qy, (T|y;_1,5: = 2;602(7))), respectively. The
usefulness of the proposed MSQAR model can be immediately recognized from Figure 5. Specifi-
cally, it is recognized that existing methods without regime shifts cannot separate the market risk
level associated with economic recessions from that associated with economic normal times. Thus,
quantiles estimated from those approaches are at best the results of averaging on different economic
states. However, Figure 5 demonstrates that the MSQAR model can identify market risks which are
associated with different economic regimes. Quantile regimes identified by the MSQAR model are
particularly beneficial for risk management, such as stress-testing financial institutions under Basel
Accord regulation, since a risk manager or a central government concerns about extreme scenarios or

worst possible outcomes.

[Figure 5 about here]

A commonly used criterion to compare between quantile models is the violation ratio vr = 7/7
where 7 = 1 Ethl I(y: < Qu, (T]Ys—1; O(7)) is the number of quantile exceedances (violations) divided
by the evaluation sample size. Ideally, the violation ratios should be close to one. Otherwise if vr < 1,
then estimates are too conservative (less violations than nominal), while a ratio vr > 1 means too
aggressive (more violations than nominal). Table 7 reporting violation ratios shows that the CAViaR
model has the violation ratio closest to one, followed by the MSQAR model. The violation ratio results

also show that the MSAR model gives aggressive estimations for lower tails but conservative for upper
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tails. I further assess the quantile estimation with the unconditional coverage (UC) test of Kupiec
(1995), the conditional coverage (CC) test of Christoffersen (1998), the dynamic quantile (DQ) test of
Engle and Manganelli (2004), and the Value-at-Risk model based on quantile regressions of Gaglianone
et al. (2011).8 These tests are quite standard in the quantile evaluation literature; see Kuester et al.
(2006) for details. The test results reported in Table 8 show that all these tests considered do not
reject the null hypotheses for the MSQAR and CAViaR models which have a satisfactory quantile

estimation. In contrast, the MSAR models are rejected by UC, CC and VQR tests.

[Table 7 about here|

[Table 8 about here|

In addition, it is also important to evaluate the model by the monotonicity requirement on the
conditional quantile functions. If the monotonicity is satisfied, there should be no crossings over
quantiles. Severe crossing problems violate the theorem of equivariance to monotone transformation
from (1.1) to (1.2). Figure 6 plots the estimated quantiles of each single regime. The straight lines
are Qu, (T|y;_1, 5t = 1;01(7)) and Qu, (T|1Ys_1, 8t = 2;05(7)) for regime 1 and 2, respectively. The
dots are the scatter plots with y; as y-axis and y;1 as z-axis. Despite that the MSQAR model is
nonlinear, it takes a linear form within a single regime. Quantiles within a regime are not parallel due
to quantile autoregressive coefficients of 7-dependent. Figure 6 shows that the estimated quantiles have
no crossing issues for monthly S&P 500 returns, while the minor crossing problem occurs for weekly
frequency data. Overall, Figure 6 does not raise any severe crossing issue for the data considered in

this paper.

|Figure 6 about here]

8 Conclusion

This paper proposes a new location-scale quantile autoregression, so-called Markov-switching quan-
tile autoregression, to characterize behaviors of different parts of a nonstationary time series distribu-

tion. The new method directly inferences and estimates dynamic quantiles by allowing the location

8The Theorem 4 of Engle and Manganelli (2004) is used for the DQ test using four lags
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and scale parameters subject to regime shifts. Unobservable economic regimes are inferred by standard
Hamilton filter approach in which quantile error terms follow a three parameter asymmetric Laplace
distribution. Bayesian estimation is adopted to deal with some serious computational challenges in this
nonlinear model which has non-differentiable likelihood functions. The Bayesian output also provides
a convenient way to test the presence and the number of regimes by computing marginal likelihoods.

The simulation study in this paper has verified the adequacy of using the asymmetric Laplace
distribution as the likelihood in regime inference and quantile prediction when the true model errors
follow different distributions. In addition, the potentially substantial bias in quantile estimation has
been found via the simulation study when the benchmark model (Markov-Switching autoregressive
model) assumes that autoregressive coefficients are independent of 7. The empirical illustration of
the proposed model in the U.S. financial market clearly supports the presence of regimes in quantile

autoregression and achieves statistical significance in quantile estimation.
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Table 1: The Simulation Design 1: Estimation Results

(1) Simulation with Normal Distribution

True N =200 N =500

PM Std RMSE MAD PM Std RMSE MAD
7T =0.05
P11 0.900 0.883  0.034  0.042 0.031 0.895 0.019  0.022 0.017
D22 0.900 0.890  0.034  0.039 0.030 0.901  0.022  0.025 0.019
610(7) 1.178 1.262  0.113  0.120 0.099 1.249  0.081 0.092 0.075
611(7) 0.200 0.181  0.038  0.210 0.168 0.184 0.032  0.178 0.145
020(7) -3.645 -3.584  0.295  0.082 0.065 -3.606  0.193  0.054 0.043
021(7) 0.400 0.401  0.097  0.172 0.200 0.400 0.059  0.147 0.116
T=0.25
P11 0.900 0.887  0.034  0.040 0.029 0.898  0.019  0.021 0.016
D22 0.900 0.889  0.032  0.038 0.029 0.899  0.021 0.024 0.018
O10(7) 1.663 1.671  0.088  0.053 0.041 1.665  0.060  0.036 0.029
011(7) 0.200 0.194  0.030  0.151 0.122 0.195  0.024  0.120 0.099
O20(7) -2.674 -2.677 0.221 0.083 0.067 -2.660 0.123  0.046 0.037
021(7) 0.400 0.394  0.067  0.168 0.133 0.402  0.039  0.098 0.081
7=0.5
P11 0.900 0.889  0.034  0.040 0.029 0.900 0.019  0.021 0.015
P22 0.900 0.888  0.032  0.038 0.029 0.897  0.021 0.023 0.018
610(7) 2.000 1.997 0.085  0.043 0.035 1.988  0.055  0.028 0.022
011(7) 0.200 0.196  0.028  0.142 0.112 0.198  0.021 0.106 0.085
620(7) -2.000 -2.057 0.209  0.108 0.089 -2.041  0.119  0.063 0.052
021 (7) 0.400 0.382  0.064  0.165 0.139 0.388  0.037  0.097 0.080
T=0.75
P11 0.900 0.891  0.035  0.040 0.030 0.903  0.019  0.022 0.018
D22 0.900 0.884  0.032  0.040 0.031 0.894  0.021 0.024 0.019
010(7) 2.337 2.323  0.087  0.038 0.031 2.311  0.057  0.027 0.021
011(7) 0.200 0.203  0.029  0.144 0.116 0.206  0.021 0.107 0.054
020(7) -1.326 -1.499  0.231 0.118 0.172 -1.469  0.148  0.105 0.125
021(7) 0.400 0.358 0.075  0.177 0.173 0.365  0.047  0.140 0.115
T=0.95
P11 0.900 0.884  0.040  0.048 0.035 0.896  0.024  0.027 0.021
D22 0.900 0.863  0.036  0.057 0.046 0.874  0.025  0.040 0.033
O10(7) 2.822 2.779  0.123  0.046 0.037 2.772  0.080  0.034 0.027
611(7) 0.200 0.217  0.042  0.225 0.188 0.215 0.033  0.181 0.148
O20(7) -0.355 -0.453 0.124  0.144 0.380 -0.451  0.103  0.123 0.322
021(7) 0.400 0.337  0.086  0.187 0.215 0.328  0.067  0.145 0.204

PM, Std, RMSE and MAD are posterior mean, standard deviation, the root of mean squared errors

and the mean absolute deviation errors, respectively.
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(2) Simulation with ¢3 Distribution

Table 1 continued True N =200 N =500

PM Std RMSE MAD PM Std RMSE MAD
7 =0.05
P11 0.900 0.879 0.031 0.042 0.033 0.885 0.021 0.029 0.022
P22 0.900 0.880  0.041 0.050 0.037 0.892 0.024 0.028 0.022
010(7) 1.321 1.428 0.101 0.111 0.094 1.441 0.077 0.108 0.094
011(7) 0.200 0.191 0.035 0.180 0.148 0.193 0.028 0.142 0.117
020(T) -3.359 -3.319  0.398 0.119 0.093 -3.319  0.246 0.074 0.059
021(7) 0.400 0.416 0.118 0.197 0.240 0.407 0.080 0.121 0.161
T=0.25
P11 0.900 0.885 0.031 0.038 0.029 0.891 0.021 0.026 0.020
P22 0.900 0.879  0.035 0.045 0.033 0.889 0.021 0.027 0.021
O10(7) 1.779 1.770 0.062 0.035 0.028 1.777 0.043 0.024 0.018
011(7) 0.200 0.202  0.024 0.118 0.095 0.202 0.016 0.078 0.060
020(7) -2.442 -2.465  0.156 0.064 0.049 -2.443  0.091 0.037 0.031
021 (T) 0.400 0.393  0.048 0.120 0.093 0.400 0.029 0.073 0.058
T=0.5
P11 0.900 0.886  0.031 0.037 0.028 0.892 0.021 0.025 0.020
P22 0.900 0.876 0.034 0.046 0.034 0.886 0.021 0.028 0.022
610(7) 2.000 1.994  0.058 0.029 0.022 1.993 0.034 0.017 0.014
011(7) 0.200 0.199 0.023 0.115 0.091 0.201 0.013 0.067 0.051
020(T) -2.000 -2.025 0.117 0.060 0.048 -2.025 0.074 0.039 0.028
021(7) 0.400 0.394  0.037 0.095 0.077 0.396 0.024 0.062 0.049
T=0.75
P11 0.900 0.886  0.032 0.039 0.029 0.892 0.022 0.026 0.020
P22 0.900 0.870 0.034 0.050 0.039 0.881 0.022 0.033 0.026
610(7) 2.221 2.218 0.075  0.034  00.025 2212  0.043  0.020  0.016
011(7) 0.200 0.199 0.027 0.133 0.101 0.202 0.016 0.080 0.063
020(T) -1.558 -1.643  0.137 0.103 0.083 -1.647  0.085 0.079 0.065
021(7) 0.400 0.383 0.042 0.113 0.092 0.385 0.027 0.076 0.062
T =0.95
P11 0.900 0.881 0.039 0.048 0.036 0.888 0.026 0.032 0.024
P22 0.900 0.853  0.037 0.067 0.055 0.861 0.025 0.051 0.044
010(7) 2.679 2.690 0.186 0.069 0.053 2.675 0.128 0.048 0.038
011(7) 0.200 0.197  0.066 0.153 0.265 0.202 0.047 0.137 0.186
020(7) -0.641 -0.596  0.110 0.185 0.141 -0.596  0.073 0.134 0.106
021 (T) 0.400 0.354  0.066 0.201 0.167 0.358 0.048 0.158 0.130

PM, Std, RMSE and MAD are posterior mean, standard deviation, the root of mean squared errors

and the mean absolute deviation errors, respectively.
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Table 2: The Simulation Design 1: Summary Statistics for the Quantile Predictability

Simulated from Normal Distribution

Simulated from t3 Distribution

[0.063,0.341]

[0.041,0.140]

[0.040,0.358]

[0.061,0.402]

[0.059,0.592]

MSQAR MSAR N MSAR t MSQAR MSAR N MSAR t
N = 200
7=0.05 0.197 0.125 0.249 0.174 0.243 0.144
[0.124,0.323] [0.050,0.223] [0.061,0.345] [0.070,0.538] [0.076,0.629] [0.059,0.623]
7 =0.25 0.099 0.100 0.122 0.112 0.188 0.108
[0.068,0.176] [0.044,0.172] [0.048,0.182] [0.033,0.179] [0.063,0.410] [0.040,0.240]
7=0.5 0.093 0.093 0.091 0.098 0.118 0.099
[0.064,0.203] [0.044,0.150] [0.042,0.157] [0.044,0.159] [0.048,0.253] [0.039,0.150]
T=0.75 0.119 0.097 0.113 0.131 0.189 0.105
[0.096,0.161] [0.046,0.147] [0.043,0.166] [0.074,0.228] [0.073,0.491] [0.044,0.219]
7=0.95 0.168 0.118 0.232 0.175 0.235 0.135
[0.060,0.387] [0.053,0.215] [0.053,0.345] [0.059,0.456] [0.081,0.662] [0.055,0.612]
N =500
7 =0.05 0.134 0.084 0.156 0.155 0.200 0.103
[0.068,0.275] [0.041,0.148] [0.048,0.271] [0.053,0.323] [0.061,0.483] [0.051,0.317]
7=0.25 0.090 0.068 0.084 0.087 0.176 0.076
[0.056,0.114] [0.034,0.107] [0.041,0.1137] [0.049,0.137] [0.071,0.310] [0.041,0.126]
7=0.5 0.085 0.063 0.070 0.077 0.091 0.070
[0.033,0.117] [0.033,0.102] [0.035,0.144] [0.041,0.115] [0.047,0.169] [0.038,0.108]
T=0.75 0.117 0.067 0.077 0.133 0.176 0.078
[0.099,0.208] [0.035,0.107] [0.041,0.218] [0.092,0.188] [0.088,0.368] [0.039,0.134]
7 =0.95 0.132 0.082 0.137 0.171 0.194 0.094

[0.067,0.297]

Entry values in this table are mean absolute deviation errors (MADE) across 200 replications. Values in square brackets are the 5%

and 95% quantiles of MADEs across 200 replications. MSAR_N and MSAR_t represent the MSAR model estimated by

normal and student-t distributions, respectively.



Table 3: The Simulation Design 2: Estimation Results

(1) Simulation with Normal Distribution

N = 200 N = 500
True PM Std RMSE MAD PM Std RMSE  MAD
T =0.05
P11 0.900 0.908 0.022 0.022 0.135 0.904 0.017  0.019 0.125
P22 0.900 0915  0.022  0.024  0.142 0.910  0.018  0.023 0.138
10(7) 1.178 1.164  0.048 0.050  0.204 1.168  0.043  0.044 0.192
011(7) 0.100 0.103  0.002  0.004  0.059 0.102  0.002  0.002 0.044
B20(T) -3.645 -3.975  0.059  0.332  0.575 -3.939  0.028  0.300 0.543
021(7) 0.300 0.326  0.005  0.027  0.162 0.322  0.003  0.022 0.148
T7=0.5
P11 0.900 0.898  0.025  0.025  0.144 0.901  0.018  0.018 0.117
P22 0.900 0.892 0.022 0.023  0.140 0.895 0.018  0.019 0.123
610(7) 2.000 1.995  0.046  0.046  0.189 2.001  0.038  0.038 0.176
011 (1) 0.400 0.401  0.011  0.011  0.096 0.400  0.011  0.011 0.096
620(7) -2.000 -2.015 0.064 0.066  0.237 -2.006  0.047  0.048 0.198
021 () 0.600 0.598  0.017  0.017  0.122 0.599  0.015  0.015 0.112
T=0.95
P11 0.900 0.897  0.025  0.025  0.145 0.899  0.021  0.021 0.127
P22 0.900 0.884 0.021  0.026  0.149 0.887  0.017  0.022 0.131
010(7) 2.822 3.055 0.040  0.260  0.483 3.082  0.016  0.236 0.510
611(7) 0.700 0.644 0.009 0.061  0.237 0.639  0.001  0.057 0.247
020() -0.355 -0.348  0.006  0.017  0.127 -0.339  0.006  0.010 0.088
021 (T) 0.900 0.826  0.005 0.079  0.281 0.821  0.002 0.074 0.272

PM, Std, RMSE and MAD are posterior mean, standard deviation, the root of mean squared errors
and the mean absolute deviation errors, respectively.
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(2) Simulation with ¢3 Distribution

Table 4 continued True N =200 N =500

PM Std RMSE MAD PM Std  RMSE MAD
T =0.05
P11 0.900 0.896 0.019  0.019  0.126 0.899 0.015 0.015  0.108
P22 0.900 0.920  0.026  0.028  0.154 0.911  0.018  0.027  0.151
610(7) 1.321 1.358  0.050 0.062  0.232 1.346  0.044  0.051  0.207
611(7) 0.100 0.102  0.002  0.003  0.049 0.101  0.001  0.002  0.038
020(7) -3.359 -3.688  0.013  0.329  0.573 -3.675  0.003  0.317  0.562
621(7) 0.300 0.329  0.002 0.029  0.170 0.327  0.001  0.027  0.164
7 =0.5
P11 0.900 0.896  0.023  0.023  0.139 0.896  0.017  0.017  0.117
P2z 0.900 0.892  0.024 0.025  0.147 0.896 0.018  0.018  0.121
610(7) 2.000 1.999  0.037  0.037  0.173 2.000 0.028  0.028  0.149
611(7) 0.400 0.400  0.008  0.007  0.079 0.400  0.008  0.007  0.076
620(7) -2.000 -2.011  0.058  0.059  0.217 -2.005 0.051  0.051  0.205
621(7) 0.600 0.597 0.014  0.014  0.106 0.601  0.013  0.013  0.106
T =0.95
P11 0.900 0.896  0.030  0.030  0.159 0.888  0.029  0.031  0.159
P22 0.900 0.857 0.013  0.038  0.207 0.865 0.011  0.044  0.188
010(7) 2.679 2.927  0.054  0.249  0.498 2.895  0.022  0.222  0.468
611(7) 0.700 0.645 0.013  0.061  0.246 0.639  0.004 0.056  0.236
620(7) -0.641 -0.607 0.012  0.048  0.219 -0.593  0.008  0.036  0.185
621 (7) 0.900 0.822 0.010 0.079  0.280 0.824 0.012 0.076  0.275

PM, Std, RMSE and MAD are posterior mean, standard deviation, the root of mean squared errors

and the mean absolute deviation errors, respectively.
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Table 4: The Simulation Design 2: Summary Statistics for the Quantile Predictability

Simulated from Normal

Simulated from t3

[0.896,1.087]

[1.081,1.269]

[1.077,1.417]

[0.942,1.066]

[1.115,1.536]

MSQAR MSAR_N MSAR_t MSQAR MSAR_N MSAR,_t
N = 200
T =0.05 1.181 1.465 1.500 1.305 1.480 1.480
[1.028,1.317] [1.288,1.624] [1.320,1.668] [1.124,1.503) [1.249,1.690] [1.277,1.655)
T=0.5 0.531 1.232 1.247 0.536 1.257 1.237
[0.435,0.637] [1.072,1.378] [1.102,1.416] [0.435,0.637) [1.054,1.406) [1.077,1.417)
T=0.95 0.994 1.198 1.223 1.012 1.281 1.274
[0.882,1.112] [1.060,1.315] [1.085,1.342] [0.896,1.112) [1.068,1.487) [1.114,1.478)
N =500
T=0.05 1.166 1.440 1.478 1.297 1.448 1.445
[1.089,1.249) [1.312,1.545] [1.342,1.599] [1.134,1.462) [1.314,1.646) [1.330,1.559)]
=05 0.531 1.218 1.248 0.535 1.248 1.224
[0.435, 0.629] [1.122,1.313] [1.153,1.334] 0.480,0.595) [1.129,1.348] [1.151,1.322
T=0.95 0.984 1.178 1.202 1.007 1.259 1.243

[1.140,1.358]

Entry values in this table is mean absolute deviation error (MADE) across 200 replications. Values in parentheses are the 5%

and 95% quantiles of MADEs across 200 replications. MSAR N and MSAR_t represent the MSAR model estimated by normal

and student-t distributions, respectively.
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Table 5: The MSQAR Model Estimation Results

Monthly S&P 500

Weekly S&P 500

7=005 7=025 7=05 7=07 7=0.95 T=005 7=025 7=05 7=07 71=0.95
P11 0.902 0.925 0.985 0.987 0.842 0.850 0.868 0.985 0.947 0.787
(0.018) (0.055) (0.010) (0.009) (0.016) (0.017) (0.034) (0.011) (0.102) (0.019)
[1.440] [-0.447] [-0.405] [0.062] [-0.274] [0.631] [0.065] [1.273] [0.685] [-1.832]
D22 0.572 0.625 0.914 0.917 0.381 0.389 0.641 0.945 0.880 0.415
(0.045) (0.063) (0.043) (0.039) (0.066) (0.046) (0.037) (0.027) (0.146) (0.044)
[-0.685] [-0.570] [-2.405] [-0.483] [-0.244] [-0.276] [0.446] [-0.803] [0.568] [-0.509]
010(T) -4.121 -0.114 1.045 3.522 4.971 -1.619 -0.039 0.346 1.066 1.647
(0.089) (0.051) (0.064) (0.062) (0.063) (0.039) (0.041) (0.040) (0.132) (0.035)
[-2.444] [-0.464] [0.648] [-0.108] [0.836] [-0.322] [-0.747] [-1.678] [0.723] [-1.007]
011(T) 0.084 0.035 0.026 -0.087 -0.082 0.085 0.015 0.035 -0.025 -0.032
(0.042) (0.026) (0.027) (0.031) (0.042) (0.036) (0.026) (0.022) (0.081) (0.020)
[1.835] [-0.307] [-0.518] [0.008] [0.064] [-0.328] [1.246] [-0.788] [-0.616] [-0.126]
020 (T) 1577 -3.978 -2.124 5.784 12.05 -5.865 -1.952 -0.094 2.422 4.851
(0.147) (0.047) (0.318) (0.174) (0.200) (0.094) (0.040) (0.147) (0.147) (0.080)
[-0.478] [0.101] [-1.615] [-0.212] [0.169] [-0.296] [1.404] [0.965] [-0.835] [-0.665]
021(T) 0.378 0.115 0.085 0.042 0.032 0.207 0.010 0.016 -0.196 -0.251
(0.039) (0.045) (0.048) (0.054) (0.046) (0.038) (0.017) (0.056) (0.069) (0.018)
[-0.224] [-0.342] [0.889] [0.395] [0.621] [0.317] [0.348] [0.124] [0.617] [0.538]

Values in parentheses are numerical standard errors and the Geweke (1992) test statistic in square brackets. The test

distribution for Geweke (1992) statistic is standard normal distribution.



Table 6: The Marginal Likelihoods and Bayesian Factors (BF)

T =0.05 T=0.25 T=0.5 T =0.7 T =0.95
Monthly S&P 500
QAR -3829.97 -3324.14 -3165.05 -3200.57 -3600.99
MSQAR -3418.9 -3205.14 -3117.42 -3142.66 -3328.27
BF: MSQAR/QAR >150 >150 >150 >150 >150
Weekly S&P 500
QAR -8773.94 -7359.17 -6953.43 -7095.96 -8246.85
MSQAR -7983.84 -7165.84 -6842.68 -6923.00 -7371.30
BF: MSQAR/QAR >150 >150 >150 >150 >150
Table 7: Violation Ratios
T =0.05 T=0.25 T=0.5 T=0.75 T=0.95

Monthly S&P 500

MSQAR 0.994 0.990 0.998 1.007 1.009

MSAR N 2.145 1.421 0.968 0.828 0.833

MSAR t 2.126 1.452 0.965 0.828 0.836

CAViaR 0.993 0.997 0.999 1.001 1.000

Weekly S&P 500

MSQAR 1.014 1.029 1.000 1.009 1.040

MSAR N 2.186 1.211 0.964 0.921 0.947

MSAR t 2.186 1.240 0.963 0.909 0.946

CAViaR 0.990 0.996 1.001 1.001 1.000

The violation ratio is defined as 7/7 where 7 = % ST Iyt < Que(Tly,_1;0(7)) is

the number of quantile exceedances (violations) divided by the evaluation sample size.
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Table 8: Quantile Test Statistics

(48

Monthly S&P 500 Weekly S&P 500

=005 7=02 7=05 7=075 71=095 =005 7=02 7=05 71=075 =0.95
uC
MSQAR 0.966 0.858 0.951 0.694 0.174 0.978 0.666 0.986 0.369 0.785
MSAR N <0.001 <0.001 0322 <0.001 <0.001 <0.001 <0.001 0.041 <0.001 <0.001
MSAR_t <0.001 <0.001 0.266 <0.001 <0.001 <0.001 <0.001 0.085 <0.001 <0.001
CAViaR 0.960 0.957 0.975 0.957 0.960 0.892 0.888 0.972 0.888 0.955
cc
MSQAR 0.051 0.205 0.867 0.840 0.271 0.340 0.323 0.592 0.281 0.214
MSAR N <0.001 <0.001 0509 <0.001 <0.001 <0.001 <0.001 0217  <0.001 <0.001
MSAR_t <0.001 <0.001 0471 <0.001 <0.001 <0.001 <0.001 0.201  <0.001 <0.001
CAViaR 0.152 0.989 0.953 0.225 0.503 0.780 0.801 0.864 0.710 0.240
DQ
MSQAR 0.929 0.922 0.987 0.989 0.977 0.920 0.962 0.978 0.982 0.906
MSAR N 0.770 0.955 0.987 0.973 0.817 0.898 0.943 0.995 0.993 0.977
MSAR_t 0.754 0.945 0.990 0.973 0.822 0.891 0.942 0.995 0.988 0.971
CAViaR 0.945 0.996 0.992 0.934 0.974 0.990 0.948 0.992 0.944 0.979
VQR
MSQAR 0.783 0.240 0.933 0.697 0.819 0.449 0.558 0.717 0.454 0.265
MSAR N 0.047 0.312 0.939 0.146  <0.001 <0.001 <0.001 0.167 <0.001 <0.001
MSAR_t 0.034 0.186 0.940 0.144 0.105 <0.001 <0.001 0.157 <0.001 <0.001
CAViaR 1.000 0.995 1.000 0.999 0.997 0.997 0.968 1.000 0.111 0.948

UC, CC, DQ and VQR represent the unconditional coverage test of Kupiec (1995), the conditional coverage test of Christoffersen (1998),
the dynamic quantile (DQ) test of Engle and Manganelli (2004) using four lags, and the Value-at-Risk model based on quantile regressions

of Gaglianone et al. (2011), respectively. Entries in this table are p-values.
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Figure 1: Posteriors of the Parameter Estimates with the True Parameters Indicated By the Vertical Lines for
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Figure 2: Time Series Data Plots
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Figure 3: Plots for Quantile Parameter Estimates Across 7s

P11 P22 P11 P22
VR 5 - o PRI IEN 5 7, -~
N\ o 4 \ ) IS P
/ . R 7 ° / N B \
~ , \ ~ N ~ 2 \
\ ° ] _ - ~ ° ] /
3 : 21 \
i 1z \
. 0 .
T T T T ° T T T T © T T T T ° T T T T
02 04 0.6 08 0.2 04 06 08 0.2 04 0.6 08 02 04 0.6 08
T T T T
Bior Bi1r Bior Bi1r
-
g IES 1
7 8 - ~ - 0 |
P S - - - - CH RN
- u . o -
10 N\ o SO N\ - N
/ S p . ~
| - n -— .
1 [} o
0 I S
T T T T s T T T T T T T T ' T T T T
02 04 0.6 08 0.2 04 0.6 08 0.2 04 0.6 08 02 04 0.6 08
T T T T
Banr Borr Baor Bo1r
0| " 0
Z r'd o ] P o I
e o |S & -
P g o 7] \ & ” S \
- 4 > i S o o
- - N o M - N
/ S - - _ _ | / 5
- V4 - -
e o -
T © 3
T T T T T T T T T T T T T T T T
02 04 0.6 08 0.2 04 06 08 0.2 04 0.6 08 02 04 0.6 08

(1) Monthly S&P 500 Returns

(2) Weekly S&P 500 Returns




Figure 4: Plots of Smoothed Probabilities with NBER-dated Business Cycles (shaded areas)

1=0.5

1.0

0.8
|

0.6

0.4

0.2

| MMWMWM N

T T T T
1940 1960 1980 2000

0.0
|

T=0.05

1.0

0.8

0.4

1 LT o

T T T T
1940 1960 1980 2000

36



XS

Figure 5: The Estimated Quantiles for Q,, (7 = 0.05|s; = 1) (top light lines), @y, (7 = 0.05|s;) (dark lines), Q,, (7 = 0.05|s; = 2)(bottom light lines)
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Figure 6: Quantile Monotonicity for Fach Single Regime
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A Filtering and MSQAR Likelihood
The following inference gives the filtering probability as
fj,t\t(T) = Pr(st=jly,, 7:0(7)) = ZPT’ (st = J,st—1 = ilys, 7;O(7))
€S

where > g &jet(7) = 1 and ©(7) = (P(7),05,(7)) is a vector of the parameters with s, € S. The
formulation of filtering probabilities is obtained by Bayes theorem as

() = ZiESpij(T)gi,t71|t71(7')77j,t(7')
gmt( )= [ (yelyt—1,7;0(7)) (A1)

where 7;+(7) is the conditional likelihood as

nit(t) = f(ylst =4, yt-1,7;0(7))
_ T(lg— T)EZCp {_ (yr — Qu, (t]y1-1:0,(7)))

S

= I (e < Qy (Plysos; 0j<7>>>1}

and

Filye-1,7:0(1) = > ) pi(1)& e—1jt—1 () (7)

jes ies

Thus, the relationship between the filtering and prediction probabilities is given by

Eiar1t(T) = Pr(sep1 = jlye, 7:0(7)) = Zpij(T)fi,t\t(T) (A.2)
ies

The inference, similar to Hamilton’s filter (Hamilton, 1994), is performed iteratively for ¢t = 1,...,T
with the initial values, &;ojo(7) for j € S. The sample likelihood for the 7th conditional quantile of y;

is then given by
T

L(©;7) =[] fwlyi—1,7;©(7)) (A.3)

t=1

In addition, following the approach of Kim (1994), this paper estimates smoothing probabilities,
§iyr(T) = Pr (s = ilyr,7;0(7)). Apply the Bayes theorem and the Markov property to yield

_ piPr (st = jly:, 73 O(7))
Pr(sit1 = ilyy, 7;0©(7))

P’I” (St - i|5t+1 = j7 Y, 7, 9(7—))
It is therefore the case that

piilr (st = jlyt, 7, ©(7))

P =j =1 ;O =P =1 ;O A4
r (St Js St+1 Z|yT7 T (T)) r (St-‘rl Z‘}’T, T3 (T)) Pr (3t+1 — i’yt) - @(7_)) ( )
The smoothed inference for date ¢ is the sum of (A.4) over i € S as
. pii Pr(sy = jly, 7;O(7
Eor(®) = 3 Pr(sus = lyr, 7 @(r) LT 2 Ve T ) (45)

= Pr(stp1 = ily:, 7;O(7))

The smoothed probabilities are thus obtained by iterating on (A.5) backward fort =T —-1,T—2,..., 1.
This iteration starts with &; 77 (7) for j € S which is estimated from (A.1) for ¢ =T This algorithm
is valid only when s; follows a first-order Markov chain.
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