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Abstract

A model of firm dynamics is presented in which the growth rate of
knowledge capital is linked to productivity, and productivity fluctu-

ates randomly. The distribution of productivity forms a stable travel-
ing wave, representing a growing economy. Granularity is maintained
by way of spinoffs, resulting in a firm size distribution that rapidly

approaches the Zipf distribution. An unexpected consequence of the
model is that the growth rate is proportional to the log of the num-

ber of firms. The model also implies that specialization is positive for
growth.
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1 Introduction

One of the most striking observations about firm productivity is that it is very
heterogeneous, even within a single industry. The aggregate productivity of
the economy could be increased substantially if resources were reallocated
from less-productive firms to more-productive firms (Restuccia & Rogerson,
2008, Hsieh & Klenow, 2009). Assuming that resources are in finite supply,
it is possible to imagine forces of selection working to realize such a reallo-
cation. For example, high-productivity firms may hire workers more rapidly
than low-productivity firms because the former can more vigorously pursue
“organic growth” strategies than the latter. However in order for this growth
mechanism to be sustainable there must also be firm-level sources of noise
maintaining the dispersion of productivity, else the fuel of selection will be
exhausted.

In this paper, a model of growth is presented in which firms experience
idiosyncratic shocks to productivity in the form of new ideas. Firms are
selected based on how quickly those ideas can be translated into the skills
and knowledge of new employees, or in other words how rapidly knowledge

capital can be accumulated. The growth rate of a firm is an increasing
function of its productivity. Occasionally, workers leave to start their own
spinoff firms, taking knowledge with them. Ideas are nonrival, but it takes
time for them to be copied, and they are confined within firms except when
a spinoff occurs.

The core assumptions of the present model (and similar models) are that
productivity is linked to people’s knowledge, knowledge is subject to random
shocks, and knowledge is copied at a rate that is increasing in its usefulness.
The first two assumptions are straightforward but the third requires elabora-
tion because it can be modeled in different ways. One approach is to assume
passive imitation. In Staley (2011) and Luttmer (2012), people meet ran-
domly and during each meeting the less-productive person copies the ideas
of the more-productive person. This simple rule leads to a selection effect
that favors the most productive ideas.1 Another approach is to assume that
search and imitation activities are costly or risky and that people or firms
rationally decide what portion of their resources to allocate to them (König

1This model is based on models of idea flows developed by Alvarez et al (2008) and
Lucas (2009).
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et al., 2012, Lucas & Moll, 2014, Perla & Tonetti, 2014). In these approaches
there are incentives to imitate and no incentives to be imitated, but there are
also no costs to being imitated. The focus of this paper is on a different type
of knowledge transfer: that between managers (teachers) and laborers (stu-
dents). This type of learning requires that managers work alongside laborers
and actively teach them. Managers also hire new laborers, which leads to
firm growth. What is the incentive for such activity? One answer to that
question, suggested below, leads us in the direction of a new growth model.

Since ancient times the primary mechanism for knowledge transfer was the
master-apprentice relationship. The master was willing to teach the appren-
tice because the apprentice agreed to work for the master for a low wage for
an extended period of time and there were other anti-competitive policies in
place to protect the masters.2 One can think of the present-day manager-
worker relationship as the modern equivalent of the master-apprentice rela-
tionship. Even though the labour market is much freer than it was in past
centuries, knowledge transfer still occurs. According to Lucas (1978) there
are diminishing returns to labor and physical capital due to management’s
finite “span of control”. In a competitive economy this implies that labor
and physical capital do not capture all the output of the firm; the remain-
der is paid to owners and managers. Presumably this remainder can be the
incentive to set up firms and train workers.

In the present model, span of control is captured as follows. There are two
factors of production, labor L and knowledge capital K (a form of intangible
capital), sometimes simply referred to as “capital” or “knowledge” in this
paper. There is no physical capital. Firms combine the two factors according
to Y = F (AK, L), where A stands for productivity, and F is first-order
homogeneous and concave in AK and L separately. The economy is perfectly
competitive. The symbol A can be interpreted as the productivity of a set
of ideas that are shared by the employees of the firm. The symbol K can be
interpreted as a count of blueprints that contain the ideas, and blueprints are
“read” by the employees. It is best to think of knowledge AK as separate
from labor. Firm owners capture the rents from knowledge even though that
knowledge resides in the heads of (some) employees.3

2Smith, 1776, chapter X part II. In the medieval era, associations of masters were called
universities, for example the “University of Taylors”.

3Knowledge capital is similar to organization capital (Prescott & Visscher, 1980). Atke-
son & Kehoe (2005) distinguish organization capital from management expertise. Here I
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Knowledge capital accumulates according to dK/dt = βF , where β is a con-
stant. When labor is held fixed this dynamic process leads to increases in
output that are subject to diminishing returns as in the familiar “learning
curves” described by Arrow (1962). A depreciation term can also be added.
In the present model labor is not held fixed. Firm owners maximize their
return on capital by adjusting the amount of labor. As K becomes larger, L
tends to follow suit. Finally, productivity is subject to geometric Brownian
shocks: ∆A/A ∼ N(µ∆t, σ2 ∆t), which are coordinated across the firm.4

Together these components add up to a model as described in the first para-
graph. The growth rate of each firm depends on its productivity, which
fluctuates randomly.

The case of µ = 0 is of particular interest, because in that case growth is
dependent on random shocks only. If one sets up a simulation of the above
model with some fixed number of firms and sets µ to zero, one typically
observes that the economy grows for a while but then grinds to a halt. What
happens is that one of the firms draws a very large productivity shock and
grows much faster than the others. That firm proceeds to capture most of
the labor force and becomes almost a monopoly. It continues to experience
fluctuating productivity, but the fuel of selection is gone. What is missing
from this model is a mechanism for generating new firms (entrants) and hence
maintaining diversity of innovation shocks.5

There is an economic incentive for workers to leave their places of employment
and set up their own spinoff firms because then they can earn rent on their
previously un-compensated knowledge in addition to the market wage.6 Of
course if everyone decided to become an entrepreneur there would be no
incentive for firms to grow. But most people do not become entrepreneurs.

abstract from this separation and treat knowledge capital as a single entity. One can think
of the rents on knowledge as being split between managers and firm owners (the split is
3:1 in favor of managers according to Atkeson & Kehoe).

4Why would a person or firm allow productivity to fall? I don’t know, but according
to Harberger (1998) it is a frequent occurrence. It is assumed that if productivity falls, a
firm will lay off workers but keep ‘AK’. One interpretation is that worker’s knowledge is
very inhomogeneous and the least knowledgeable are the first to be sacked.

5In Staley (2011) and Luttmer (2012) diversity is maintained because each person is
an independent generator of productivity shocks.

6This is consistent with Klepper & Sleeper (2005), who have studied spinoffs in the laser
industry. They say “...nearly all the spinoffs initially produced lasers that their parents
had previously produced.”
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In designing a specific model for spinoffs we can be guided by empirical
observation. Of primary relevance is that both entering firms and existing
firms are small. The present model assumes that all new firms are individual
proprietorships (L = 1) and that L = 1 is the minimum amount of labour
required to run a firm. When the optimal employment size of a firm falls
below 1, the firm exits. Finally, the spinoff rate is determined via a simple
rule for the formation of spinoff capital: dKspinoff/dt = εβF . That is, some
fixed percentage ε of newly produced blueprints gets spun out to new firms.
The rate of spinoffs is determined by the rate of growth of the parent firm,
which seems consistent with Klepper & Sleeper (2005) and Franco & Filson
(2006), who find that the spinoff rate is primarily a function of parental
success rather than parental size.

Simulation and analysis shows that with the addition of the spinoff mech-
anism described above, the growth rate of GDP per capita converges to a
steady value and the distribution of firm size rapidly converges to Zipf’s law,
consistent with observation (Axtell, 2001). Zipf’s law for firms states that
the proportion of firms having size greater than s is proportional to 1/s. The
reason that the model exhibits this behavior is that the assumptions of firm
growth are similar to those used by Gabaix (1999) in his explanation for why
city size follows Zipf’s law: the distribution of relative shocks is independent
of size (Gibrat’s law) and there is a lower-bound on size.7

One characteristic of the present model ensures rapid convergence to Zipf’s
law and so is worth mentioning. Stochastic productivity shocks translate
into shocks to size and also into shocks to the growth rate of size due to more
rapid accumulation of knowledge. So if a firm gets a large positive produc-
tivity shock it grows faster than other firms for a period of time. Given that
wages are increasing over time the firm does not stay on the rapid growth
path forever (that would require a never-ending series of positive productiv-
ity shocks), but this high-growth period helps to generate the extreme size
skewness implied by Zipf’s law.8

7The empirical evidence for Gibrat’s law is mixed. Stanley et al (1996) report that firm
growth volatility declines with size. Audretsch et al (2004) report that when services are
included in the sample Gibrat’s law attains a higher standing.

8This mechanism of fast convergence to Zipf is similar to Luttmer (2011), who describes
a model of growth based on the accumulation of organization capital where there are two
modes, one high-growth and the other low-growth, and the probability per unit time of
transitioning from the former to the latter is constant.
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The maintenance of dispersion of productivity is manifest as a stable traveling

wave, similar to that seen in the model of Staley (2011) and Luttmer (2012).9

This traveling wave can be pictured as a graph showing the density of firms
as a function of log-productivity. The wave maintains its shape (the product
of a Bessel function and an exponential function) and moves to the right
at a constant speed g, which is the growth rate of the economy. The value
of g is related to the shape of the traveling wave, which is not completely
constrained by the model. So it seems that any growth rate is possible!
However there is one value of g that is stable, and that is the value that is
selected.

The analysis required to determine the stable growth rate involves investi-
gating the behavior of the right tail of the productivity distribution where
stochastic effects are important.10 There is a transition region where the
deterministic traveling wave, representing many firms, gives way to a proba-
bility distribution of individual firms experiencing random innovations. Sta-
bility requires that this transition be smooth (no kinks or jumps). When
there is a large number of firms this stability requirement means that the
traveling wave must have a very long low-density right tail, which is consis-
tent with a high growth rate. Conversely, when there is a small number of
firms the shape of the traveling wave must be less spread out, which implies
a lower rate of growth.

It turns out that the growth rate is proportional to the log of the number
of firms, which is in turn proportional to the log of the number of workers.
This so-called scale effect is quite modest, but may have bearing on changes
in growth rates over time.11 For example, a back-of-the-envelope calculation
suggests that this scale effect can account for just under half of the increase
in the growth rate in the United States since the 1800s.

The growth rate is also proportional to the variance of productivity shocks,

9In physics and chemistry, these kinds of traveling waves appear in reaction-diffusion
systems. A representative text is Grindrod (1996). See also Whitham (1974).

10Fisher, a biophysicist, discusses traveling waves of fitness seen in microbial populations
and offers the amusing analogy of the random snuffing of an exploring dog’s nose: “The
balance between the irregular snuffling and the inertial motion of the body determine the
overall speed; yet, as the owner of a large, headstrong dog knows, predicting its speed is
very hard!” (Fisher, 2011).

11Jones (1999) provides a review of scale effects in various models of endogenous growth.
The scale effect described by Staley (2011) is bounded from above.
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which suggests a role for specialization. If firms do not specialize they perform
many tasks, which diversifies the productivity shocks, but leads to firm-level
variances that are low relative to an economy containing specialist firms. Spe-
cialization allows the economy to capitalize on positive productivity shocks
wherever they arise in the production chain. The possible link between spe-
cialization and growth has garnered little attention in modern growth theory
(Stigler, 1976) with one exception being the attempt of Romer (1987) to link
increasing returns to specialization. The framework of random productivity
shocks and selection offers one avenue to explore this relationship. Finally,
the growth rate is increasing and convex in the share of knowledge capital.

The present model falls under the umbrella of growth models emphasizing
heterogeneous productivity and knowledge diffusion. Recent examples are
Luttmer (2007, 2011, 2012a,b, 2014), Lucas (2009), Staley (2011), Alvarez et
al (2012), König et al (2012), Lucas & Moll (2014), Perla & Tonetti (2014)
and Perla et al (2015). The closest to the present effort is Luttmer (2014),
who introduces a tuition schedule into a model of stochastic shocks and
imitation. In the present model the compensation for teaching comes instead
from ownership of intangible capital. This gives rise to a selection mechanism
based on “organic growth”, which recalls the work of Nelson & Winter (1982).
There are also similarities between the present model and Luttmer (2011),
who models the distribution of firm sizes also based on the accumulation of
intangible capital. Whereas Luttmer’s model has two growth modes, fast and
slow, the present model has a continuum that reflects random productivity
shocks.

In the present model, entrants are important for maintaining diversity but
they are not individually more innovative than incumbents. However since
there are many more small firms than large firms, radical innovations are
more likely to come from small firms. In “Schumpeterian” models of growth
(for example Aghion & Howitt, 1992), the image is of small firms discovering
new products, or discovering new ways to improve productivity, and displac-
ing large incumbents in the marketplace. In the present model the same thing
happens only slower: it takes time for the small victors to accumulate suffi-
cient knowledge capital to affect the market. Chatterjee & Rossi-Hansberg
(2012) describe a model in which spinoffs are key to generating productiv-
ity improvements. In their model a person comes up with a new idea and
decides whether to sell it to their current employer or start a new firm. In
contrast, the present model assumes that the person launching a spinoff is
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merely taking a copy of an already existing idea in order to profit from the
knowledge capital associated with it.

The remainder of the paper is organized as follows. Section 2 describes
the model, including the traveling-wave solution, the firm-size distribution,
and the stochastic behavior at the frontier of knowledge. In Section 3, a
calibration is undertaken. The focus is on the spinoff rate, the volatility of
firm growth rates, and the share of knowledge capital in output. A predicted
autocorrelation effect for growth rates is discussed, and the predicted scale
effect is explored in some detail. Section 4 concludes. An appendix includes
the derivation of the formula for the growth rate.

2 The Model

2.1 The Basic Setup

The output of firm i is
Yi = (AiKi)

α
L1−α

i , (1)

where Ai, Ki and Li are productivity, knowledge capital, and labor respec-
tively.

Given a market wage w, each firm chooses Li to maximizes profit πi =
Yi − wLi given Ai and Ki. The optimum labor for firm i is

Li = AiKi

(

1 − α

w

)
1

α

(2)

There is a fixed quantity of labor L that is supplied inelastically. The wage
that clears the labor market is obtained by summing Equation (2) over all
firms and rearranging:

w = (1 − α)

(∑

i AiKi

L

)α

. (3)
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The dynamics of this economy is described by the following three equations:

dKi

dt
= βYi − δKi, (4)

dAi = Ai (µdt + σdzi) , (5)

dL

dt
= nL, (6)

Equation (4) captures learning by doing and includes a depreciation term
δKi. Equation (5) describes random innovation, where dzi ∼ N(0, dt) and
draws are uncorrelated across firms. In Equation (6), n is the population
growth rate. The model can be simplified by setting δ, µ and n to zero, which
is useful in keeping the number of parameters manageable when calibrating
to data, but for now we retain these parameters for completeness.

The focus of attention is on finding a balanced growth path, in which case
the growth rates of the major variables including w are constant. Following
standard procedures we can write down the relationships between the various
growth rates, which is useful in determining the next step in the analysis.
Summing Equation (4) over i and dividing by K (total capital), the growth
rate of K is gK = βĀα(L/K)1−α−δ, where Ā is the capital-weighted average
productivity. The quantity gK is constant on a balanced growth path, so
from observation of the right hand side of this expression we must have
0 = αgĀ +(1−α)(n− gK ), where gĀ is the growth rate of Ā. From Equation
(3) we have gw = α(gĀ + gK − n). Combining these two expressions, we
obtain the following useful relationship between growth rates

gw =
α

1 − α
gĀ = gK − n. (7)

Our primary interest is in determining gw so Equation (7) tells us that we
must find the growth rate of average productivity. An expression for gĀ can
be derived from Equations (1) - (5) assuming there is sufficient granularity
of firms that the stochastic shocks in (5) wash out:

gĀ = µ + β

(

1 − α

w

)
1−α

α VarA

Ā
, (8)

where VarA is the variance of productivity. But from (7), w
1−α

α must be linear
in Ā. Hence on a balanced growth path the relative variance of productivity
VarA/Ā2 must be constant. The image of a traveling wave comes to mind.
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It will prove useful to express the equations of the model in terms of the rent
on capital, which is firm-dependent:

ri ≡
∂Yi

∂Ki
= αAi

(

1 − α

w

)
1−α

α

. (9)

From the above equation and (7) and (8) it can be seen that if a firm does not
innovate, the rent will decay exponentially at a rate that is greater than µ due
to the increasing market wage. So if a firm wants to maintain a given level
of profitability it must generate a constant stream of positive productivity
shocks in excess of drift µ.12

We can now rewrite the capital accumulation equation (4) in terms of ri as

dKi

dt
=

(

β

α
ri − δ

)

Ki, (10)

which implies that the growth rate of total capital is

gK =
β

α
r̄ − δ. (11)

The capital-weighted average rent r̄ can be expressed as

r̄ = αĀ

(

1 − α

w

)
1−α

α

. (12)

From Equations (7) and (12), we can see that r̄ is constant on the balanced
growth path. So {ri} must be the set of de-trended productivities. From
Equation (5) the dynamic equation for ri is

dri

ri
=

(

µ − 1 − α

α
gw

)

dt + σdzi, (13)

where gw = β
α

r̄ − δ − n, which is obtained from substituting Equation (11)

into (7). Finally, defining K̃i to be the proportion of total knowledge capital
allocated to firm i, ie K̃i ≡ Ki/K, we have13

dK̃i

dt
=

β

α
(ri − r̄) K̃i, where r̄ =

∑

i

K̃iri, (14)

12The Red Queen said to Alice “Now, here, you see, it takes all the running you can do,
to keep in the same place.” (Carroll, 1871).

13Equation (14) is the replicator equation used in evolutionary game theory (Taylor &
Jonker, 1978, Schuster & Sigmund, 1983).
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As we shall see, Equations (13) and (14) describe the dynamics of a traveling
wave.

2.2 Spinoffs

As mentioned in the Introduction, sustained growth is only possible in the
current model if there is a diversity of productivity shocks. If a single firm
takes over, capturing all the knowledge rents available in the economy, growth
will stop. In the real world the distribution of firm size is very skewed, with
a huge number of small firms, a lot of medium size firms, and a few large
firms. Remarkably, the observed size distribution almost exactly matches
Zipf’s law : the proportion of firms having an employee count greater than s
is approximately a/s where a is a constant (Axtell, 2001). The corresponding
density function is a/s2. The goal of this section is to augment the model
described in the previous section with a model of firm entry based on spinoffs

such that Zipf’s law is satisfied.

The following model is motivated partially by empirical observation, and
partially by the theoretical framework of Gabaix (1999), who describes how
a Zipf distribution arises from random growth and a lower bound on size.
No attempt is made to link entry and exit to the rational behavior of firms.

Entry . According to Klepper & Sleeper (2005) and Franco & Filson (2006),
the rate of spinoffs of new firms is a function of parental success, which
presumably correlates with growth. Accordingly, let us assume that some
portion ε of newly-formed knowledge capital (gross of depreciation) is spun
out to new firms. Further assume that new firms are individual proprietor-
ships (L = 1). This assumption is partially consistent with Klaesson &
Karlsson’s study of Swedish firms (Klaesson & Karlsson, 2014, figure 5.3),
which shows that the size distribution of entrants is very skewed towards
single proprietorships. Finally, let us assume that the amount of capital in a
startup is inferred from Equation (2) using Li = 1. The implicit assumption
is that the number of blueprints taken by the entrepreneur from the parent
firm is equal to the average number of blueprints per person in that firm.

Exit . A realistic model of firm dynamics should include an exit mechanism.
Let us assume that when the optimum amount of labor falls below 1 the
firm exits and all knowledge capital is lost. The owner then enters into the
labor market. This simple-minded model of exit implies a lot of churn in
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the small-firm segment of the economy, consistent with observation. This
mechanism also enforces a lower bound, as in Gabaix (1999).

It is useful to write down an expression for the rate of entry, since that is
an observable quantity, hence useful for calibration purposes. Starting from
Equation (10) and converting to labor flows using (2) and (9), the number
of single-employee spinoff firms produced by firm i per unit time is

dNi spin

dt
= ε

1 − α

α

β

α

r2
i Ki

w
.

To get the total spinoff rate for the economy, we must sum the above expres-
sion over i, which leaves us with an expression containing the second moment
of {ri}, which we will label M2. Recall that on the balanced growth path
r̄ =

∑

i riK̃i is stationary. Using (13) and (14) we can write down an expres-
sion for the change in r̄ over time that contains the quantity M2. Setting
the change in r̄ equal to zero we obtain an expression for M2 that can be
combined with other equations in Section 2.1 to obtain

1

L

dNspin

dt
= ε

{gw

α
+ δ + n − µ

}

. (15)

The rate of spinoffs can be expressed as a percentage of the number of firms
NF by multiplying both sides of (15) by L/NF .

2.3 Simulation of the Model

A simulation exercise shows that with the addition of the above mechanisms
of entry and exit something close to a Zipf distribution for employment size
is observed for the entire population of firms (see Figure 1). Convergence
to Zipf is rapid, which means that the largest firms spend time on very fast
growth tracks.14 In Figure 1 the largest firm (extreme bottom-right point) is
39 years old and has 1.49 million employees. The average growth rate since
birth of the largest twenty-five firms is 17.6% per annum and their average
age is 56 years. These large firms manage to stay on high-growth tracks for a
long time before getting bumped to a different (usually slower) growth track.

14This is consistent with observation. See Luttmer (2011) for a discussion of what is
takes to produce a Zipf distribution.
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The simulation exercise also shows that productivity forms a traveling wave,
so the distribution over r is stationary. The shape can be seen in Figure 2.
Note that the Zipf distribution for firm size is observed not just for the whole
population of firms but for each small range of r. Imagine if you will a group
of firms satisfying Zipf’s law residing within the thin column shown in Figure
2. The firm-size distribution is Zipf within each such column, suggesting that
the density of firms can be factored as ρ(r)/s2 where ρ(r) is the density over
rent and s is employment size.

The above factorization implies Gibrat’s law, which is often taken as a start-
ing point in devising mechanisms to explain the observed Zipf distribution.
Gibrat’s law states that the distribution of growth rates is independent of
size. To see the connection between factorization and Gibrat’s law, recall
from Equation (14) that any firm in a given column will grow (both labor
and capital) at the steady rate β/α(r − r̄). We can think of a column as a
growth track. So the factorization implies that we have the same firm-size
distribution on each growth track. This in turn implies that the distribution
of growth rates is independent of size.

Finally, the simulation shows that the market wage w grows geometrically
at a constant rate. The spinoff mechanism described in the previous section
prevents any single firm from taking over the economy, hence the fuel of
selection is never exhausted.

2.4 Analytic Solution

Let P (r, K̃, t) be the density of firms as a function of rent r, capital K̃ and
time t. That is, the proportion of firms earning rent between r and r + dr
and having capital between K̃ and K̃ + dK̃ at time t is P (r, K̃, t) dr dK̃.
Ignoring the spinoff mechanism for now, Equations (13) and (14) imply the
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following partial differential equation for P :15

∂P

∂t
= − ∂

∂k̃

[

k̃
β

α
(r − r̄)P

]

−
[

µ − 1 − α

α

(

β

α
r̄ − δ − n

)]

∂

∂r
(rP ) +

σ2

2

∂2

∂r2

(

r2P
)

,

(16)

where

r̄(t) =

∫

∞

0

∫

∞

0

P (r, K̃, t)r dr dK̃.

If we focus our attention on the part of the size distribution where s > 1,
we can incorporate the spinoff mechanism by replacing β with β(1 − ε) in
Equation (4). Then we can simply absorb the factor (1−ε) into β, and so no
real change to the model description in Section 2.1 is required, and Equation
(16) remains valid.

To begin our analysis, we first show that a Pareto distribution for size is
consistent with Equation (16). It is readily verified that Equation (16) is
satisfied by P (r, k̃, t) = Cρ(r, t)/k̃θ, where C and θ are constants and ρ(r, t)
satisfies16

∂ρ

∂t
= DI + DII , (17)

where

DI = (θ − 1)
β

α
[r − r̄] ρ,

DII = −
[

µ − 1 − α

α
gw

]

∂

∂r
(rρ) +

σ2

2

∂2

∂r2

(

r2ρ
)

.
(18)

The differential equation has been divided into two pieces DI and DII for the
purposes of discussion below. We will be most interested in the stationary
solution DI +DII = 0 because that solution represents a de-trended traveling
wave.

15The multidimensional version of the Fokker-Planck equation can be used to derive
this differential equation. See the Wikipedia page on “Fokker-Planck equation”, and scroll
down to the section entitled “Many dimensions”. If one defines the vector X to be (k̃, r)⊤,
the two-by-two diffusion matrix D contains zeros everywhere except for the bottom-right
corner, which contains r2σ2.

16If θ is dependent on r the solution does not factorize, which violates Gibrat’s law, so
we assume that θ is a constant.
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Before going further into the derivation of the solution, it will be useful to
gain some intuition around the origin of the Pareto distribution for size.17

Here we will refer to employment size rather than capital, but recall that
employment is linear in capital for given r, so if employment size follows a
Pareto distribution with exponent θ, so must capital.

All firms start with size s = 1. In steady state the density of firms at s = 1
must be constant, and this is the result of offsetting flows of entry, exit and
growth (firms leaving the starting blocks after they are born). Let us label
the last quantity η, so at any given time the number of firms starting to grow
from size s = 1 is equal to η. Size grows as

s = egt (19)

where g = β/α (r − r̄) as in the above discussions. Now consider the small
group of firms having size between s and s + ds. Differentiating (19) we
have dt = ds/(sg). So all the firms with size between s and s + ds must
have originated from a pool of new firms of count η ds/(sg). Let us also
assume that firms get bumped off the growth track at some hazard rate h
due to stochastic productivity shocks. Call the density of firms f(s). Then
the number of firms between s and s + ds must be

f(s)ds = η
ds

sg
e−ht,

where t can be obtained from (19). Substituting for t we have

f(s) =
η

g
s−(1+h/g). (20)

Referring back to the assumed form of the solution P (r, k̃, t) = Cρ(r, t)/k̃θ,
we must have h/g = θ − 1. From (18) it is apparent that DI = (θ − 1)g
and DII = −h, the latter because DII captures the changes in density due
to stochastic deviations in r (changes in the growth path). The stationary
solution DI + DII = 0 is indeed consistent with h/g = θ − 1.

The above reasoning tells us that the size distribution is Pareto, but it doesn’t
tell us anything about the value of the exponent θ. To get θ we must look at
the problem in a different way. Consider the case where the size of the labor

17This explanation is inspired by similar arguments in Simon (1955), Krugman (1996),
Gabaix (1999) and Luttmer (2011).
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force is fixed (the case of a growing labor force will be discussed below). Then
the distribution of the growth rate must have a mean of zero. According to
Gabaix (1999), the assumption of a zero mean, coupled with a lower bound
on size, leads to Zipf’s law (θ = 2).18

It is often pointed out that a Zipf distribution implies an infinite mean. It is
true that if we have a continuum of firms the average firm size is

∫

∞

1

1

s2
sds = ∞.

However in a finite economy the largest firm must have a finite size, so the
average must also be finite. Appendix A derives some expressions relating
the number of firms NF , and the size of the largest firm smax, to the size of
the labor force L. The conclusion is that the log of the number of firms is
linear in the log of total labor and smax = NF .

In the above, the assumption was that the total size of the labor force was
fixed. In reality the population and labor force L grow slowly. Since the log
of the number of firms is proportional to the log of L, then for small ranges
of L the growth rate of firms will be very close to that of labor. In simulation
exercises it is indeed observed that NF grows almost exactly in parallel with
L. So we can assume for the purposes of the size distribution that population
growth is like having a sequence of static labor forces. Therefore Gabaix’s
proof of Zipf’s law still holds for a growing population.

The remaining task is to determine the distribution of rent ρ(r). Since we
are interested in the stationary solution we can set the left hand side of (17)
to zero, set θ = 2, and rewrite the partial derivatives as ordinary derivatives
(ρ is now a function of r only):

0 = r2 d2ρ

dr2
+ ar

dρ

dr
+ (br + c)ρ, (21)

18Gabaix’s basic proof of the Zipf law assumes random shocks (see page 744), but the
proof also works if there is a cross-sectional dispersion of growth rates, as in our model. On
page 744, Equation (4), the assumption that the distribution of shocks is independent of
size is necessary to show that Zipf’s law is satisfied for zero-mean shocks. This is consistent
with our approach of factoring the solution such that the size distribution is independent
of the growth track.
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where

a = 4 +
2

σ2

[

1 − α

α
gw − µ

]

, (22)

b =
2

σ2

β

α
, (23)

c = 2 +
2

σ2

[

1 − α

α
gw − µ

]

− 2

σ2
(gw + δ + n) . (24)

The solution is19

ρ(r) = B r
1−a

2 Jγ

(

2
√

br
)

, (25)

where Jγ is an order-γ Bessel function of the first kind, B is a normalizing
constant, and

γ =
√

(1 − a)2 − 4c. (26)

The shape of ρ can be seen in Figure 2.

Finally, it is worth mentioning that if one abstracts from knowledge capital,
the distribution of total factor productivity is Pareto. This can be seen from
Equations (1) and (2). If labor is Zipf distributed, so must be AiKi. If we
absorb (AiKi)

α into Bi and write Yi = BiL
1−α
i , {Bi} must follow a Pareto

distribution with exponent 1/α.

2.5 Growth Rate

The focus of this section is on determining the unique stable growth rate
gw consistent with stochastic behavior at the the frontier of knowledge.20 It
will be necessary to make some approximations in order to get a tractable

19See Polyanin & Zaitsev (2003), p. 228, Equation 132. There is a second solution
in Polyanin & Zaitsev that contains a Bessel function of the second kind, Yγ , but this
solution blows up at the origin so has been excluded (see Abramowitz & Stegun, 1964, p.
438, Figure 10.2).

20The mathematical techniques used in this section are described in Tsimring et al
(1996), Brunet & Derrida (1997) and Staley (2011). Hallatschek (2011) describes a promis-
ing new technique that has not been applied to the present growth model. These methods
are inspired by Fisher (1937), who analyzed the stochastic properties of fitness distribu-
tions to determine the stable speed of advance of a gene over a geographical area.
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formula for gw. The following formula turns out to be quite dependable for
δ = n = µ = 0, and 0 < α < 0.25:

gw = c
α

1 − α
σ2 lnL, (27)

where c = 0.455, which is obtained from a linear regression of simulation
results (see Figure 3). The scale effect is evident from the lnL factor. This is
highlighted in Figure 4 (recall from Equation (A.3) that lnL is proportional
to lnNF ). The remainder of this section lays out the analytical justification
for Equation (27). Details are contained in Appendix B.

The growth rate formula assumes that δ = n = µ = 0. By setting µ = 0 we
are describing a model of random innovation and selection, with no exogenous
growth. The parameter δ is set to zero because it is unclear how to calibrate
it. The population growth rate n is set to zero because a simulation exercise
shows that the growth rate is quite insensitive to that parameter and the
growth rate formula is vastly simplified if n = 0.

We will work with the de-trended productivity distribution ρ(r), which is
the density of firms with respect to knowledge rent (Figure 2). We will
ignore the firm-size distribution because it has no bearing on the growth
rate. It is assumed that the distribution can be divided into two portions:
a deterministic traveling-wave portion called ρI(r) that describes the body
of the distribution, and a portion called ρII(r), which describes stochastic
behavior at the sparsely populated frontier (far right) of the distribution.
It will useful to work with the variable z = 2

√
br in order to simplify the

algebra. Using the density-transformation formula ρ(z) = ρ(r) dr/dz we can
rewrite Equation (25) as

ρI(z) =
B

2b
z2−aJγ(z), (28)

where B is a normalization constant and a, b and γ are given by Equations
(22), (23) and (26) respectively.

In the stochastic far-right tail, our focus is on the region of the probability
distribution where the portion of firms is close to 1/NF where NF is the
number of firms. The density in this region represents potential fluctuations
of r beyond the frontier, where there are no firms yet, hence no firm growth.
The differential equation governing behavior in this region can be obtained
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by dropping the first term in (17) (here we are reverting back to r-space
momentarily):

∂ρII

∂t
= −

(

µ − 1 − α

α
gw

)

∂

∂r
(rρII) +

σ2

2

∂2

∂r2

(

r2ρII

)

. (29)

The above formula describes simple geometric Brownian motion with a lower
bound (the interface with region I), similar to the dynamics discussed in the
previous section. We are interested in the stationary solution so we can guess
that it takes the form rb. Substituting this form into (29) and converting to
the variable z we have

ρII(z) = Az5−2a, (30)

where A is a constant.

We assume that region I meets region II at some point zc. We have 4 un-
knowns: gw, zc, and the constants A and B. We also have the following four
equations:

ρI(zc) = ρII(zc), (31)

ρ′

I(zc) = ρ′

II(zc), (32)
∫

∞

zc

ρII(z)dz =
1

NF

, (33)

∫ zc

0

ρI(z)dz = 1 − 1

NF
. (34)

The first equation says that there should be no jump in density at the bound-
ary zc. The second says that there should be no kink. These two conditions
are required to ensure that no terms in (29) blow up at the boundary, which
would lead to instability. The third condition is just the definition of zc. The
last condition can be used to determine the normalization constant B (which
may be a function of other parameters).

It should be noted that the form of the density in (28) is actually quite strange
due to the presence of the Bessel function. The body of the Bessel function
is bell-shaped, starting with a value of zero at the origin and reaching a value
of zero again at some point z0 (the first zero of the Bessel function). But
then it oscillates much like a trigonometric function, taking on both positive
and negative values as one moves to the right. Density functions are not
supposed to have negative values. But as it turns out the connection point
zc lies to the left of z0, as shown in the Appendix.
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From Equation (31) we get

ρII(z) = ρI(zc)

(

z

zc

)5−2a

. (35)

Substituting this expression into (33) we obtain

ρI(zc)
zc

2a − 6
=

1

NF
. (36)

Substituting from (28) and taking logs we then obtain

(a − 3) ln zc + ln(2a − 6) − ln

[

B

2b
Jγ(zc)

]

= lnNF . (37)

In order to proceed further we need to resort to approximation, and the
details are contained in Appendix B. But even without going through all
that algebra we can guess what the growth rate formula should look like.
Noting that the logarithmic function has the effect of killing variability we
expect the first term of (37), which is linear in (a − 3), to dominate the
behavior of the left hand side. So we can guess that a ≈ a1 lnNF + a2 where
a1 and a2 are constants. Substituting for a using Equation (22), assuming
µ = 0, and taking into account (A.3), we obtain Equation (27) apart from
an additional constant term that turns out to be very small.

3 Testing the Model

In this section the growth rate formula (Equation 27) is tested on U.S. data
for the twentieth century, and the scale effect is tested on U.S. data going
back to 1820. In addition, a predicted autocorrelation effect for firm-level
growth rates is discussed.

There are four numbers in the the growth formula: the growth rate gw, the
share of knowledge capital (or span of control parameter) α, the volatility of
productivity shocks σ and the scale factor lnL. The quantities gw and lnL
are easily determined, there are estimates of α available in the literature, and
the parameter σ can be estimated using data on firm growth rates. So we
have enough material to test the growth formula.
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Let us equate the growth rate gw with the geometric average growth rate of
GDP per capita in the United States from 1900-2000. According to Maddison
(2009) this value is gw = 0.194 per annum. Similarly, let us set the scale factor
lnL to be the average log labor over the twentieth century. This can be
estimated using Maddison’s population data assuming a labor participation
rate of one half (roughly today’s value). This leads to lnL = 18.169, which
corresponds to a geometric average labor force of 77.8 million.

The remaining two parameters are α and σ. Figure 5 shows how σ varies
with α given the above values of gw and lnL.

Let us next consider the span of control parameter α. Atkeson & Kehoe
(2005) suggest a value of 0.15 but they are working in an economy in which
there is physical capital as well as intangible capital, and the share of phys-
ical capital is 0.199. We need to adjust Atkeson & Kehoe’s span-of-control
parameter so that it can be applied to our economy, which has no physical
capital. To do so we scale their value by the factor 1/(1 − 0.199), which im-
plies α = 0.187. This adjustment can be derived assuming a Cobb-Douglas
production function and perfectly elastic capital, and working through the
algebra to eliminate physical capital from the production function.

As an aside we can now use the value of α to calibrate the spinoff parameter
ε. This parameter does not enter into the formula for the growth rate so
is not really necessary for this section, but was required in order to run the
simulations, such as used to determine the constant in Equation (27). From
Equation (15) we have

Spinoff Rate = ε
gw

α

L

NF
.

According to Luttmer (2007, page 1132) the entry rate in the U.S. is 0.116
per anum. Let us assume that all entries are spinoffs. The labor force L
in 1990 is 143,280,000 and the number of firms NF is 5,697,759.21 Using
gw = 0.194 and α = 0.187 in Equation (15) we get ε = 0.045. If we use
instead the value of L/NF = 15 as suggested by Table 1, we get ε = 0.075.
The value ε = 0.05 was used in the simulation studies.

According to the growth formula (and see Figure 5) α = 0.187 implies σ =
0.1. To test this prediction, we can look to the data on firm growth rates.

21See http://www.dlt.ri.gov/lmi/pdf/usadj.pdf for labor force statistics and Luttmer
(2007) footnote on page 1 for the number of firms.
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From Equations (2), and (4) - (6), the relative change in labor for firm i is

dLi

Li
=

{

β

α
(ri − r̄) − 1 − α

α
gw

}

dt + σdzi, (38)

so the parameter σ can be directly compared to the volatility of firm growth
rates over time.22 Several recent estimates of firm-growth volatilities are
given in Davis et al (2007). They report values for public firms between 0.09
and 0.13 covering the years 1955 to 2000, which are close to our prediction of
σ = 0.1. However when they include private firms the values range between
0.1 and 0.2. These volatilities are computed for firms with at least ten years of
consecutive observations. When short-lived firms are included in the sample,
the volatilities become even larger. The average is about 0.45 for the whole
dataset and about 0.275 if exiting firms are excluded. In conclusion, the
volatility prediction of the present model is only consistent with data on
long-lived public firms.

It is possible that there is a size effect at work here. Public firms tend to
be larger than private firms, and short-lived firms are overly represented
by very small firms. Stanley et al (1996) report that small firms are much
more volatile than large firms. So the present model may only be valid for
large firms, meaning either that the model fails for small firms or that the
excess volatility of small-firm growth rates is driven by factors other than
productivity changes.

Equation (38) also implies positive autocorrelation for firm growth rates,
which is highest when ri is large. The challenge in testing this prediction is
that ri is unobservable. One might proxy large ri with large size, since large
firms must have been on a high growth track for some time. Pursuing this
line of thought, a prediction of the model is that large firms should exhibit
positive autocorrelation in growth rates. This pattern is indeed observed by
Coad (2007) and Coad & Hölzl (2009). However those authors also report
negative autocorrelation for small firms, which is not seen in the present
model.

There are several ways that one might test the predicted scale effect. Cross-
country studies, cross-industry studies, and historical studies come to mind.

22One must be careful not to use cross-sectional dispersion measures as shown in Davis
et al (2007). These are always higher than volatility measures and are probably reflecting
inhomogeneity of firm-level volatility rates (for example by size as reported by Stanley et
al, 1996) and possibly autocorrelation of firm growth rates.
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The last choice is arguably the cleanest because one does not have to worry
about the many factors that can affect growth rates across different jurisdic-
tions. The present approach is to use data on the U.S. economy going back to
1820 and assume that the only thing that has changed over that long period
of time has been the size of the labor force. So the model is very simple:

gw = C lnL,

where L is the labor force and C is calibrated by dividing the growth rate
during the twentieth century by the average log labor force during the twen-
tieth century. Figure 6 shows the resulting growth rate by decade vs the
actual growth rate.23 The predicted growth rate during the the nineteenth
century is 17.3% versus an actual growth rate of 14.7%. So the scale effect
accounts for 43% of the increase in growth rate over the last two centuries.
The calculation was repeated for the nonagricultural sectors only (assuming
that economic growth is driven by non-agricultural industries only), which
resulted in a slightly lower prediction for the 19th century: gw = 16.8%.24 In
that case the scale effect accounts for half of the increase in growth rate over
the last two centuries.

Finally, we can use the scale effect to extrapolate from the current U.S.
economy. If population continues to grow at the current rate of about 1%
per year, the predicted growth rate of GDP per capita in the year 2115 will be
2.1% per annum. The effect of globalization can also be inferred. If the whole
world were to become a single economy similar to the U.S. with a population
of 7 billion (22 times the population of the U.S. today), the growth rate of
per-capita GDP would be about 2.4% per annum. The scale effect is very
modest.

23This calculation takes into account that the labor participation rate was lower in the
19th century than in the 20th century. For example in 1830 it was 32% compared to 46%
today (Broadberry & Erwin, 2006). Population numbers are from Maddison (2009).

24The non-agricultural sector in 1830 was only 35% compared to 98% today (Carter,
2005).
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4 Conclusion

A model of firm dynamics has been presented based on the accumulation of
knowledge capital, which is a source of profits and a driver of firm growth. It
is assumed that knowledge is disseminated from the “top” and is subject to
random shocks that affect the productivity of the entire firm. This dynamic
process leads to aggregate growth based on random innovation and selection.

To maintain granularity in this economy a model of spinoffs has been in-
cluded, which leads to a Zipf distribution of firm size consistent with obser-
vation. A salient feature of the model is that convergence to Zipf is rapid,
reflecting the existence of rapid “growth tracks”.

The distribution of productivity forms a traveling wave, representing a grow-
ing economy. The speed of this wave is determined by a combination of
stochastic behavior at the frontier of knowledge and inertial drag in the
body of the distribution caused by a finite speed of selection. Using tools
developed in the biophysics community it has been found that the speed of
the traveling wave is proportional to the log of the size of the economy. This
behavior implies a modest scale effect that may have bearing on the slow
acceleration of growth seen in historical data.

The model implies that the volatility of firm growth rates is around 10% per
annum, consistent with data for large firms but not for small firms. Likewise,
the predicted positive autocorrelation of growth rates is consistent with data
for large firms but not for small firms. These two observations imply that
the model is breaking down for small firms. One interpretation is that there
are factors other than productivity affecting the size of small firms that have
not been captured in the present model.

Finally, it was mentioned in passing that the model implies a connection
between specialization and growth. This connection should be present in
any model based on random innovation and selection, and is worth pursuing
due to its potential to link economic growth with markets and trade.
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A Zipf’s Law in a Finite Economy

Define NF to be the number of firms, L to be the size of the labor force, and
smax to be the size of the largest firm. Let G(s) = 1/s be the proportion of
firms with size greater than or equal to s. G is only defined between 1 and
smax. We have the following

G(smax) = 1/NF ,

∫ smax

1

sf(s) ds = L, where f(s) ≡ −dG

ds
.

These equations imply

smax = NF , (A.1)

NF ln(NF ) = L, (A.2)

Equation (A.1) says that there are as many employees in the largest firm as
there are firms. Equation (A.2) can be used to infer the number of firms
given L using an iterative procedure. Table 1 lists the values of NF for a
range of values of L. The third column lists the corresponding average size.
Apparently the function NF (L) is slightly convex, and the elasticity is nearly
constant. We can use linear regression to derive the following handy formula
(R2 = 0.9987 based on the data in Table 1):

lnNF ≈ 0.8917 lnL − 0.7594. (A.3)

B An Approximation for the Growth Rate

The purpose of this appendix is to use some approximations to justify Equa-
tion (27). The stating point for this derivation is Equation (37). We need to
use Equations (32) and (34) to eliminate the rest of the unknowns.

We would expect the connection point zc to be very close the first zero of the
Bessel function z0 because we are dealing with a region where ρI is small.
Our first approximation then is to assume that ρI(z) is linear between zc and
z0:

ρI(zc) ≈ ρ′

I(z0) (zc − z0). (B.1)
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L NF Average Firm Size (L/NF )
10 6 1.75
100 30 3.39
1,000 190 5.25
10,000 1,383 7.23
100,000 10,771 9.28
1,000,000 87,848 11.38
10,000,000 739,955 13.51
100,000,000 6,382,029 15.67
1,000,000,000 56,048,388 17.84
10,000,000,000 499,283,712 20.03

Table 1: Number of employees L and number of firms NF according to Equation

(A.2). The Excel Solver was used to determine NF .

From (B.1) and (32) we then get

zc = z0
2a − 5

2a − 4
, (B.2)

which confirms that zc lies to the left of z0.

We now use the following asymptotic form for Jγ(z) for large z near the zero
(Abramowitz & Stegun, 1964, page 364)

Jγ(z) ≈
√

2

πz
cos

(

z − 1

2
γπ − 1

4
π

)

. (B.3)

Using (37), (B.2), along with (B.1) and (B.3) we can eliminate zc to obtain

B

2b

√

2

π
z

7

2
−a

0

2a − 5

(2a − 4)2(2a − 6)
=

1

NF
. (B.4)

To get B/2b we must use Equation (34), which cannot be solved analytically.
When δ + n is small (e.g. on the order of a few percent) the shape of ρI is
very skewed, with a very sharp peak near z = 0. Hence we can concentrate
on the form of the integrand near z = 0. For small z the Bessel function can
be approximated as (Abramowitz & Stegun, 1964, page 360)

Jγ(z) ≈ 1

Γ(γ + 1)

(z

2

)γ

(B.5)
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The integral on the left hand side of (34) is then

I =
B

2b

1

Γ(γ + 1)2γ

∫ z0

0

z2−a+γ dz

=
B

2b

z3−a+γ
0

Γ(γ + 1)2γ(3 − a + γ)
. (B.6)

The above integral is well defined at z = 0, even though the integrand blows
up there, because according to the definitions of a and γ we must have
3 − a + γ > 0.

Setting I = 1 (ignoring the difference between NF and NF − 1) and substi-
tuting B/2b using (B.6) into (B.4) and then taking logs, we have

γ {ln 2 − ln z0 + ln(γ + 1) − 1}

+ ln 2 − 1

2
ln z0 +

1

2
ln(γ + 1) − 1

+ ln(3 − a + γ) + ln(2a − 5) − 2 ln(2a − 4) − ln(2a − 6)

= − ln(NF ) (B.7)

For typical values encountered in this project the quantity in the curly brack-
ets in the first row of (B.7) is negative. So again, remembering that the log
function kills variability, we can guess that γ is approximately linear in lnNF .
From (26) we have (assume µ is zero):

γ =

{

(

1 +
2

σ2

1 − α

α
gw

)2

+
8

σ2
(gw + δ + n)

}
1

2

For values of α less than 0.5, and for small δ and n (a few percent) the first
term under the square root dominates over the second, and we have

2

σ2

1 − α

α
gw ≈ a1 lnNF + a2,

where a1 and a2 are constants (a1 is positive). Given the relation between
lnNF and lnL in Equation (A.3), we finally have

gw ≈ b1
α

1 − α
σ2 lnL + b2,

where b1 and b2 are constants. The regression results shown in Figure 3
indicate that b2 must be close to zero. Given all the approximations that
have been made, it is remarkable that the formula for the growth rate works
as well as it does.
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Figure 1: Zipf’s law for firm size. The x-axis is the natural logarithm of the
number of employees s. The y-axis is the natural logarithm of the proportion of

firms having size greater than s. The dots represent the distribution of firm size
after 100 years of simulation assuming a labor force of 5 million (approximately

three percent of the U.S. labor force), and s = 23 initially for all firms. New
entrants are born with s = 1. The solid line is positioned at a 45-degree angle

and represents Zipf ’s law. The mean squared error between the points and the
45-degree line is 0.06. The corresponding value after one thousand years is 0.006.

Growth parameters used here: Volatility of Productivity σ = 0.1, Capital Share
α = 0.2. Other parameters used here and in subsequent figures: Capital Spinoff

Rate ε = 0.05, Investment Rate β = 0.02, Capital Depreciation Rate δ = 0,
Population Growth Rate n = 0.
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Figure 2: Stationary density of firms with respect to knowledge rent.

Here δ = 0.3. Smaller values of δ lead to more positive skewness (as δ → 0
the mode converges toward zero). The thin column represents a growth track,

within which the density of firms with respect to employment size s is ρ(r)/s2.
The arrows on the right side of the graph represent stochastic productivity shocks

near the sparsely-populated frontier.
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Figure 3: Approximation for the growth rate. The growth rate of the market
wage is approximately linear in α

1−ασ2 lnL. Forty-eight simulation results are

shown, with α ranging between 0.05 and 0.2, σ2 ranging between 0.01 and 0.03,

and L ranging between fifty thousand and fifty million. The slope of the best fit
line (shown as a solid line) is 0.455 with adjusted R2 = 0.973.
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Figure 4: Logarithmic scale effect. The growth rate of the market wage as a
function of the number of firms, based on a simulation of the model. The dashed
line is a best fit. Growth Parameters: σ = 0.1, α = 0.2.
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Figure 5: Calibration to U.S. Growth. The solid line depicts the tradeoff
between α and σ using Equation (27) given two observables for the U.S. economy:
gw = 0.0194 years−1 and LT = 77.8 million (geometric averages over the twentieth

century: Maddison, 2009) . The labor participation rate is assumed to be 0.5
(Bureau of Labor Statistics: http://www.bls.gov/data).
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Figure 6: U.S. Per-Capita Income Growth: 1820-2000. The dashed line

represents the predicted scale effect for the U.S. economy. Sources: Maddison
(2009) for population and income growth rates, Broadberry & Irwin (2006) for

historical labour participation rates.
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