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Abstract

The paper explores theoretical foundations behind evaluation of probabilistic forecasts. The em-

phasis is on a situation when the forecast examiner possesses only partially the information which

was available andwas used to produce a forecast. We argue that in such a situation forecasts should be

judged by their conditional auto-calibration. Necessary and sufficient conditions of auto-calibration

are discussed and expressed in the form of testable moment conditions. The paper also analyzes

relationships between forecast calibration and forecast efficiency.
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transform; orthogonality condition; scoring rule; forecast encompassing.
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1 Introduction

There is little doubt that it is important for users of economic forecasts to have information on the degree

of forecast uncertainty and probabilities of different scenarios. In general point forecasts give insufficient

information to a user who needs to make a decision. This is the reason for growing popularity of more

complete—probabilistic—forecasts in econometrics.

Real-life forecasts are not perfect and we want to be able to diagnose imperfections in order to im-

prove our forecasting methods. Several procedures were used for testing forecast calibration and effi-

ciency in the literature on probabilistic forecasts. For example, see Kupiec (1995), Diebold, Gunther,

and Tay (1998), Christoffersen (1998), Diebold, Tay, and Wallis (1999), Berkowitz (2001), Clements and

Taylor (2003), Wallis (2003), Engle and Manganelli (2004), Clements (2006), Mitchell and Wallis (2011),

Chen (2011), Galbraith and van Norden (2011), Knüppel (2015) (this list includes closely related litera-

ture on interval/quantile forecasts). However, most of these procedures are applicable only in a narrow

class of forecasting situations, primarily when one-step-ahead forecasts of a time series are made given
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the full previous history of this series. The literature does not provide a comprehensive general picture

of testable implications of forecast calibration/efficiency. Even the conditions under which we can call a

forecast calibrated or efficient are not yet fully understood and formally stated. In this paper we want to

make up for this omission.

Some papers on evaluation of probabilistic forecasts assume that there is a parametric model of the

data which give the correct conditional distribution given information set for some true vector of pa-

rameter values (e.g. Corradi and Swanson, 2006a; Corradi and Swanson, 2006c; Chen, 2011). From this

point of view forecast evaluation is a kind of model evaluation. The probabilistic properties of forecast

evaluation statistics are governed by the model. However, this approach is not applicable when there is

no formal parametric model behind the forecasts. Our view is that requirements to a good probabilistic

forecast should not refer to a “model” or the “true parameters”. It is more realistic to consider forecasting

methods rather than forecasting models (cf. Giacomini and White, 2006). This permits us not to exclude

forecasts which are not based on formal parametric models (e.g. survey forecasts, forecasts utilizing ad

hoc exponential smoothing or neural networks).

In a forecast evaluation situation one should distinguish (at least) two different parties: the fore-

caster and the individual who evaluates the forecast. The later party will be called the examiner here. A

good principle of forecast evaluation, which the examiner could adhere, is to treat forecasts at their face

value, in a black-box manner, without paying attention to their origin. The reason for this is simple. To

test a bricklayer one can give him a trowel and measure the speed and quality of his work. Similarly, a

direct and natural way to evaluate a forecasting technique is to make it being applied to some pertinent

real-life problem and to compare the forecasts with the outcomes. Any extra requirements refer to some-

thing else rather than pure predictive performance. This does not mean that the examiner cannot take

into account more complex considerations (for example, a would-be predictive performance in different

circumstances), but such considerations require proper substantiation.

It is true that many forecasts are based on parametric models and the corresponding parameters

have to be estimated from the data. If this is the case, then a forecasting method includes a model, some

method of parameter estimation (MLE, GMM, etc.), some scheme of utilizing data (like recursive, rolling

estimation, etc.) and other components. A common phenomenon is plain plug-in forecasting when es-

timated parameters are used as the true parameters and parameter uncertainty is neglected. Note that

the black-box approach to forecast evaluation requires that if we want to take into account parameter

uncertainty, then it should be embedded into the forecasts before forecast evaluation as it is not fair to

handicap a forecasting method on the ground of unaccounted parameter uncertainty. For example, if the
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model is a classical linear regression with Gaussian errors then the forecast can be stated as the corre-

sponding scaled and shifted Student’s distribution. For othermodels in general there is no unique natural

way to deal with parameter uncertainty; however, forecasting literature provides many suggestions (e. g,

Cooley and Parke, 1990; Barndorff-Nielsen and Cox, 1996). Of course, parameter uncertainty is an issue

only in the frequentist framework; a typical Bayesian approach is also model-based, but it incorporates

parameter uncertainty in a consistent way.

To catch the idea of the approach employed in this paper consider the example of familiar point fore-

casting under quadratic loss. It is well-known that the conditional mean with respect to an information

set Ψ is the best in mean-square sense of all the Ψ-measurable point forecasts. From the properties of

conditional mean it follows that the efficient forecast must be unbiased and the forecast error must be

uncorrelated with any Ψ-measurable variables. These theoretical properties lead to corresponding test

procedures, for example, Mincer-Zarnovitz-type regression-based tests (Mincer and Zarnowitz, 1969).

This paper applies a similar approach to complete probabilistic forecasts (predictive distributions).

Unlike most of the existing literature (Corradi and Swanson, 2006c is a vivid example) we emphasize the

probability theory basis behind probabilistic forecasting, rather than statistical testing. It turns out that

for many illuminating theoretical results one can treat forecasting as a one-shot activity, rather than

repeated one, which is subject to statistical procedures.

We consider forecasting of some target outcome y which is a real-valued random variable. A com-

plete probabilistic forecasts of y is represented by a random function F̂ defined on the entire real line and

possessing the usual properties of a cumulative distribution function (CDF). To analyze the properties of

a probabilistic forecast it is necessary to consider the joint distribution of the forecast F̂ and the target

outcome variable y specified on a common probability space. Forecast evaluation must rely on some rel-

evant information represented by an information setΨ. FormallyΨ is a sub-σ-algebra in the underlying

probability space.

For a point forecast judged by the quadratic loss it is important to correctly represent the central

point of the conditional distribution of y given the relevant information set, which is achieved when the

forecast coincides with the conditional mean. Similarly, for a probabilistic forecast it is important to be

calibrated (Diebold, Hahn, and Tay, 1999; Gneiting, Balabdaoui, and Raftery, 2007). Calibration means

good conformity between a probabilistic forecast and the actual behavior of the target variable. However,

this idea of conformity is vague and requires an accurate formulation. When evaluating a point forecast

one compares one point to another, which is relatively simple. When evaluating a complete probabilistic

forecast one has to compare a point to a CDF. Moreover, the CDF is random rather than fixed.
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Several differentmodes of calibration were considered in the literature: probabilistic calibration (PIT

uniformity), marginal calibration and ideal calibration with respect to an information set (Gneiting, Bal-

abdaoui, and Raftery, 2007; Gneiting and Ranjan, 2013). Also very popular is the condition of uniformity

and independence of PIT values (Diebold, Gunther, and Tay, 1998; Mitchell and Wallis, 2011).

A fundamental mode of calibration is ideal calibration requiring that F̂ is the conditional CDF of y

given the information setΨ. In a sense, it is comprehensive and underlies the current econometric liter-

ature on probabilistic forecasting with its reliance on model-based forecasts. However, methodological

and practical considerations suggest a different (though closely related) concept of calibration.

The information sets of the forecaster and the forecast examiner can be distinct, say,Ψ∗ andΨ. The

concept of ideal calibration is ambiguous without specifying the information set. The forecast, which

is calibrated with respect toΨ∗, can be miscalibrated with respect toΨ and vice versa. There are many

real-life situations in whichΨ∗ andΨ are not the same. For example, the central bank or the government

can use internal information which is not publicly available. A better informed forecaster can produce

forecasts which are in some sense better than the ideal forecast given examiner’s information set, while

still not fully calibrated. Sometimes partially informed examiner can be able to detect thismiscalibration.

It is also not uncommon for a forecast to include subjective judgment of the forecaster or utilize non-

obvious sources of information. The leading motivating example is that of survey forecasts (like Survey

of Professional Forecasters, see Diebold, Tay, and Wallis, 1999, Clements, 2006, Engelberg, Manski, and

Williams, 2009). As a more exotic example consider a forecaster using sunspot activity to predict stock

prices. One can even recall Roman augurs using observation of birds’ behavior for foretelling. There also

exists a more scientific reason for using extraneous noise, namely, the use of Monte Carlo methods in

estimation and/or prediction.

Therefore, to be comprehensive enough, the theory of forecast evaluation should not exclude the

possibility that a forecaster uses not publicly accessible, non-obvious or irrelevant information, which

is not in the examiner’s information set. Even in the case of academic forecasters, who rely on much

clearer methods and data sources than augurs, an external examiner is not always able to ascertain the

quality and integrity of these methods and sources. In general, an examiner needs procedures which can

convincingly demonstrate imperfections of a miscalibrated forecast irrespectively of its origin.

Our idea is that it is convenient and illuminating to introduce a notion of calibration which explic-

itly takes into account the fact that not only the examiner’s information set, but also the forecast itself

can be the source of information for the forecast examiner. We call this mode of calibration conditional

auto-calibration: forecast F̂ is auto-calibrated if it coincides with the conditional CDF of y given the in-
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formation setΨ and the forecast itself. In the case of point forecasting under quadratic loss a similar idea

can be expressed as follows: a point forecast ŷ is efficient (or rational) if it coincides with the conditional

mean of y given the relevant information setΨ and itself, that is E[y |Ψ, ŷ] = ŷ . Only when the examiner

is fully informed and thus ŷ is Ψ-measurable we can safely condition on the information set alone and

reduce the definition to E[y |Ψ] = ŷ .

For practical reasons it is convenient to express the implications of calibration in the form ofmoment

conditions. Such conditions relate two different kinds of moments: the moments defined on the under-

lying probability space and the moments calculated from the forecast-based probability measures. The

paper states and discusses various necessary and sufficient conditions of calibration and express them in

the form of moment conditions.

If a forecast examiner testsmoment conditions using functions from some inadequately narrow class,

then some aspects ofmiscalibration, which are potentially detectable, cannot be revealed using any func-

tion from the class. Thus, it is important (1) to formulate a comprehensive class of functions producing

moment conditions of auto-calibration, and (2) to find out which contractions of this class seeming rea-

sonable lead to non-comprehensiveness, and which do not. For example, using a general class of func-

tions corresponding to orthogonality conditions does not lead to a loss of comprehensiveness, while other

functions correspond only to conditional marginal or probabilistic calibration, which, even together, do

not entail auto-calibration.

The notion of auto-calibration can be further extended in two important directions. First, for a situ-

ation of sequential time-series forecast evaluation it generalizes to sequential calibration (which can be

compared to the condition of uniformity and independence for PIT values). Second, in a situation, when

several rival forecasts are available, it generalizes to forecast encompassing.

Calibration is a property of probabilistic forecast, which is impersonal and easier to test, but there

are also objectives of a forecast user. It is important to link the notion of calibration with the notion of

forecast efficiency (also called optimality and rationality in different contexts). We call a forecast efficient

if it is a maximizer of a pertinent performance measure (a score calculated according to some scoring

rule). First of all, miscalibration can be an indication of inefficiency. However, one can also formulate

more direct conditions of efficiency and relate them to calibration. Additionally, the sharpness principle

of forecasting conjectured in Gneiting, Balabdaoui, and Raftery (2007) happens to rely on the notions of

scoring rules and auto-calibration.

Section 2 analyzes in detail the notion of calibration and characterize it by moment conditions. Cal-

ibration testing is not of primary interest in this paper; however, the last subsection of the section gives
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a reader basic ideas about relevant statistical procedures. Section 3 discusses forecast efficiency from

the point of view of proper scoring rules and analyzes the links between calibration and efficiency. Sec-

tion 4 provides illustrative examples. Section 5 concludes. Theorems and a technical counterexample are

placed in Appendix A.

2 Forecast calibration

2.1 Basic definitions

In a typical forecast evaluation situation we have a sequence of predictive distributions F̂1, . . . , F̂N (in

the form of CDFs) and a sequence of points y1, . . . , yN corresponding to actual realizations of the target

variable. The task is to compare one to the other and make a conclusion about the conformity between

the two (i. e. about forecast calibration). Attached to each forecast-outcome pair F̂i , yi there is the in-

formation setΨi which is relevant for this pair and can be used by the forecast examiner for evaluation

purposes.

As an example consider one-year-ahead forecasts of the Swedish CPI inflation which were published

by the Riksbank (figure 1). The forecasts are in the form of two-piece normal distribution. The actual

inflation is shown by triangles. Behind each forecast is the information used by the Riksbank to obtain it.

An external forecast examiner cannot know all this information. He can only use the information which

was potentially accessible to the Riksbank’s staff, such as any official statistics published before the date

of forecast issue.

The current paper approaches to the task of calibration testing from the fundamentals. Before con-

sidering any applied procedures for calibration testing, which contrast forecasts with outcomes, we give

a formal definition of calibration for a one-shot forecasting situation (a single forecast-outcome pair).

Then the definition is rendered into testable conditions. Finally, such conditions form the basis for sta-

tistical procedures for observed sequences of forecast-outcome pairs.

We start by defining ideal calibration for a target variable y , a CDF-valued variable F̂ (forecast) and an

information setΨ.1 Assume thatΨ includes all the relevant informationwhich can be used. The intuition

is that for a given information set Ψ the ideally calibrated forecast, first, is based only on Ψ without

employing any other information (formally, the forecast F̂ isΨ-measurable) and, second, fully utilizesΨ.

1The concept of ideal calibration with respect to an information set is quite natural and is implicit in the literature on proba-

bilistic forecasting, albeit, possibly, in a non-direct fashion—like “conditional density governing a series”, “true data generating

process” in Diebold, Gunther, and Tay (1998). Explicit definitions can be found in Tsyplakov (2011) and Gneiting and Ranjan

(2013). It is also similar to the definition of interval forecast efficiency with respect to an information set in Christoffersen

(1998).
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Figure 1: Riksbank’s one-year-ahead CPI inflation forecasts. The forecasts are for the specified dates. Left

graphs show the forecasts in the form of probability density function, right ones—the same forecasts

in the form of cumulative distribution functions. Actual outcomes of the CPI inflation are marked by

triangles.

In other words, it is the best achievable forecast among forecasts based on Ψ (see subsection 3.1 for a

formal discussion). Here and below we use F to denote the (conditional) distribution function of y .

Definition 1. A forecast F̂ is ideally calibrated given Ψ if it is the conditional distribution function of y

givenΨ, that is, F̂ (q) = F(q|Ψ) for q ∈R.

If the forecaster possesses some information which is not available to the examiner, then the ex-

aminer can potentially derive some new information from the forecast itself.2 Thus, in this case the

information set relevant to forecast evaluation combines the examiner’s prior information with the in-

formation delivered by the forecast, and we can state that forecast F̂ is calibrated from the examiner’s

point of view if it coincides with F(·|Ψ, F̂ ), which is the conditional distribution function of y given Ψ

and F̂ . In the following definition and below σ(·) is an operator which combines information sets and
2The use of information contained in the forecast itself to define calibration is not new to the literature (cf. Lichtenstein,

Fischhoff, and Phillips, 1982; Galbraith and van Norden, 2011), but existing analysis is mostly limited to the case of the trivial

Ψ and dichotomous target variable. Lichtenstein, Fischhoff, and Phillips (1982), p. 307: “Formally, a judge is calibrated if, over

the long run, for all propositions assigned a given probability, the proportion true equals the probability assigned.” Bröcker

(2009) considers a more general case of a discrete target variable with a finite support; he uses an alternative term “reliability”.
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random elements into a properly constructed information set (the generated σ-algebra).

Definition 2. A forecast F̂ is conditionally auto-calibrated given Ψ if it is ideally calibrated with respect

to σ(Ψ, F̂ ), that is, F̂ (q) = F(q|Ψ, F̂ ) for q ∈R.

By definition any auto-calibrated forecast is ideally calibratedwith respect to an appropriate informa-

tion set. Moreover, aΨ-measurable forecast, which is auto-calibrated givenΨ, must be ideally calibrated

given Ψ. Conversely, it can be stated that any forecast, which is ideally calibrated with respect to some

information setΨ∗ includingΨ, is auto-calibratedwith respect toΨ (Theorem 7). Therefore, if F̂ is auto-

calibrated givenΨ1 andΨ1 is a “richer” information set thanΨ2 (that is,Ψ1 contains all the information

ofΨ2 andmaybe some additional useful information; formally,Ψ2 ⊆Ψ1), then it is auto-calibrated given

Ψ2. In particular, conditional auto-calibration implies unconditional auto-calibration (auto-calibration

with respect to the trivial information set).

Of course, one can base the theory of forecast evaluation on the definition of ideal forecast calibra-

tion. However, it is more clear and natural to concentrate on the property of conditional auto-calibration

instead. Themain cause for introducing this alongwith ideal calibration is that if forecaster’s information

set is not known to the examiner, the later has no way to verify that the forecast is ideally calibrated with

respect to this information set. Hence the examiner in fact can only test auto-calibration (with respect

to his own information set).

As discussed below, in general it is not sufficient to use popular conditions of PIT uniformity and

lack of correlation between functions of PIT values and some observable variables based on Ψ to test

calibration. Thus, a partially informed examiner confronted with a black-box forecast has to use specific

instruments and construct peculiar variables based on both F̂ and Ψ, which can be used in calibration

testing.

Even if the forecast under examination is known to beΨ-measurable, these specific instruments can

be utilized with benefit, because for the examiner it might not be clear how the forecast is constructed

from Ψ. Moreover, even if the forecast is not a black-box one, these specific instruments can be useful,

because at the technical side a forecast F̂ is not a finite-dimensional variable which is a typical object

of analysis in econometrics. There are specific aspects of using CDF-valued variables, and we illustrate

these in examples below.

A final remark is pertinent here. It goes without saying that adequate choice of information set is

crucial for testing calibration in applications. If an examiner wants to evaluate a forecast, then he must

consider informationΨ which is available at the time the forecast was made. Further, judgments about
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Figure 2: Forecasts of the mean (a) and mean square (b) derived from the Riksbank’s inflation forecasts

compared to the actual outcomes.

forecaster’s rationality can only be based on the information known to be available to this forecaster.

2.2 General moment conditions of forecast calibration

The definition of conditional auto-calibration with respect to an information set, although methodolog-

ically appealing, is too abstract. For the purpose of forecast evaluation one would like to have some

functions of y , which are directly observable and could be compared to something, which is based on the

forecast and the information contained in Ψ. In the case of point forecasting we can directly compare

the forecasts and the actual realizations of y . One would like to have something similar in the case of

probabilistic forecasting.

We start by noting that any predictive distribution F̂ can be readily used to produce a point forecast

of y . Such a forecast is given by the corresponding mean, that is,

mean(F̂ ) =
ˆ ∞

−∞
tdF̂ (t ).

This is a reasonable forecast since under assumption of conditional auto-calibration F̂ is the conditional

distribution function of y givenΨ and F̂ and thusmean(F̂ ) is the corresponding conditional mean. Then

for a series of predictive distributions we can obtain a series of point forecasts. The series can be directly

compared to a series of corresponding actual realizations of the target variable y using some statistical

procedure. Figure 1(a) plote such series for the Riksbank’s inflation forecasts mentioned above.
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This observation is rather trivial. However, note further, that the same procedure can be applied to

any suitable function of y . For example, we can calculate the theoretical mean of y2 implied by F̂ and

use it as a point forecast for y2. See figure 1(b), which compares the forecasts of squared inflation to the

actual squared inflation.

Continuing this line of reasoning, if F̂ is a good predictive distribution for y , then it should be able

to predict the behavior of g (y, w, F̂ ), where g is some function and w is some Ψ-measurable random

element. We can treat F̂ and w as fixed, since they are assumed to be already known at the forecasting

time, and use the expectation of g under the assumption that y is distributed according to F̂ , as our

forecast of g . Such a forecastmust coincidewith the conditional expectation in the underlying probability

space, because under conditional auto-calibration F̂ is the conditional CDF of y givenΨ and F̂ .3 That is,

E[g (y, w, F̂ )|Ψ, F̂ ] =
ˆ ∞

−∞
g (t , w, F̂ )dF̂ (t ). (1)

By the law of iterated expectations this suggests a very general type of moment conditions of calibration:

Eg (y, w, F̂ ) =Eĝ (w, F̂ ), where ĝ (w,F ) =
ˆ ∞

−∞
g (t , w,F )dF (t ), (2)

for any g and anyΨ-measurable w . Here we use F̂ to obtain a prediction ĝ of function g and the expec-

tation of this prediction must be the same as the actual expectation of g .

In fact, these are themost generalmoment conditions of calibration, since they enclose all the aspects

of a forecasting situation: the target variable, the forecast and the information set. As discussed below,

they are not only necessary, but also sufficient for conditional auto-calibration (see subsection 2.5). The

moment conditions of this kind can be a basis for statistical procedures implementing calibration testing

(see subsection 2.8).

Conditions (2) use a rather general class of functions g . It is both theoretically and practically in-

teresting to find out whether some natural contractions of this class can lead to a loss of sufficiency or

not. Dropping w from g produces a condition of unconditional auto-calibration, which in general is not

sufficient for conditional auto-calibration. Dropping F̂ from g , that is, letting g = n(y, w), produces a

condition of conditional marginal calibration. In the density forecasting situation dropping y and F̂ from

g and replacing them by the PIT variable F̂ (y), that is, letting g = c(F̂ (y), w), produces a condition of

conditional probabilistic calibration. Next subsection discusses the two concepts of calibration, proba-

bilistic and marginal calibration. Subsection 2.4 discusses orthogonality conditions, which are produced

3Cf. Theorem 6.4 (disintegration theorem) in Kallenberg (2002), p. 108.
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by letting g = r (y, F̂ )a(w, F̂ ). In subsection 2.5 it is explained that probabilistic and marginal calibration

given Ψ are not sufficient for auto-calibration given Ψ, while general orthogonality conditions are suf-

ficient. We can even replace g in (2) by g = r (y, F̂ )w , g = m(y)a(w, F̂ ) or g = k(F̂ (y))a(w, F̂ ) without

losing comprehensiveness.

2.3 Conditional probabilistic and marginal calibration

Probabilistic calibration (PIT uniformity) Consider a situationwhen forecasts are such that their

values have a constant support [a,b] with possibly infinite bounds, continuous and strictly increasing

over [a,b]. (The target variable y is implicitly assumed to have the required conditional CDFs with simi-

lar properties). We loosely call this setting a density forecasting situation. For a random variable y with

the cumulative distribution function F the probability integral transform (PIT) value is defined as F (y).

It has the U [0,1] distribution if F is continuous. In the same manner one can define the PIT value for

a probabilistic forecast F̂ as F̂ (y).4 The PIT value F̂ (y) is a random variable which, given the forecast,

carries the same information as the target variable y . This is true in a density forecasting situation irre-

spective of the forecast F̂ . (While this property seems very natural, its proof requires somemanipulations

of σ-algebras; see Theorem 6 in Appendix.)

The quantity F̂ (y) is the one that is used most often for calibration diagnostics in econometrics; e.g.

Diebold, Gunther, and Tay (1998); Mitchell and Wallis (2011); Chen (2011). Probabilistic calibration is a

mode of calibration based on these PIT values. The term “probabilistic calibration” for the condition of

PIT uniformity was suggested in Gneiting, Balabdaoui, and Raftery (2007); see also the reformulation of

this definition in Gneiting and Ranjan (2013).5 Here we introduce a conditional version of this mode of

calibration.

Definition 3. A forecast F̂ is probabilistically calibrated givenΨ if F̂ (y)|Ψ∼U [0,1].

This condition can be decomposed into two conditions, namely, that, first, PIT values F̂ (y) are un-

conditionally distributed asU [0,1] and, second, F̂ (y) andΨ are independent.

Unconditional PIT uniformity can be assessed, for example, with the help of a histogram of the PIT

values on the [0,1] interval. The histogram should be almost flat (e.g. Diebold, Gunther, and Tay, 1998).

4The notion of PIT can be extended to arbitrary real-valued distributions by introducing randomization (e.g. Ferguson, 1967;

Brockwell, 2007). One can extend the results of the current paper in this direction, but we prefer not to do so in order to keep

the exposition more transparent.
5The definitions of probabilistic and marginal calibration proposed in Gneiting, Balabdaoui, and Raftery (2007) are formu-

lated from a prequential perspective due to Dawid (1984) for sequences of forecasts. In Gneiting and Ranjan (2013) the one-shot

view on the forecasting theory is employed, similar to that of the current paper.
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In Wallis (2003) a corresponding formal goodness-of-fit test is proposed. See also Knüppel (2015), where

a family of useful tests of unconditional probabilistic calibration is proposed.

It can be seen that the concept of probabilistic calibration is closely connected to interval forecast-

ing and quantile forecasting (e.g. value-at-risk forecasting).6 For a forecast F̂ we can define the corre-

sponding α-quantile forecastQα = F̂−1(α). Under correct calibration the probability that F̂ (y) does not

exceed α should be equal to α. Consequently the probability that y does not exceed Qα should also be

equal to α.

More generally under conditional probabilistic calibration in a density forecasting situation we have

for any suitable function c and anyΨ-measurable w

Ec(F̂ (y), w) =E

ˆ 1

0

c(p, w)d p. (3)

This condition is not only necessary, but also sufficient, which can be seen from setting c(p, w) = I{p ≤

α}w and using indicator random variables for events A ∈Ψ asw : w = I A .
7 Note that moment conditions

(3) are weaker than the general moment conditions of conditional auto-calibration (2).

Further references and examples of moment conditions of probabilistic calibration can be found in

subsection 2.4 and in Chen (2011).

Marginal calibration The concept of probabilistic calibration implicitly assumes a situation when

probabilities are fixed while the bounds are reported by the forecaster. A reversed situation is when

bounds are fixed while the forecaster reports probabilities as in the Survey of Professional Forecasters.

A calibrated forecast must supply probabilities which are in accordance with the true ones. Probabilities

for all possible bounds are summarized by a CDF. Thus, another mode of calibration is defined in terms of

CDFs. The definition is given in Gneiting, Balabdaoui, and Raftery (2007) and reformulated in Gneiting

and Ranjan (2013). Again, here we provide a conditional version of this definition.

Definition 4. A forecast F̂ is marginally calibrated givenΨ if E(F̂ (q)|Ψ) = F(q |Ψ) for q ∈R.

Similarly to conditional probabilistic calibration conditional marginal calibration can be character-

ized by moment conditions, which are weaker than the general moments conditions of conditional auto-

calibration (2). If a forecast F̂ is marginally calibrated with respect toΨ, then for any function n and any

6 That is why the literature in this area such as Kupiec (1995), Christoffersen (1998), Lopez (1998), Clements and Taylor

(2003), Engle and Manganelli (2004) can be considered as a part of the literature on probabilistic forecasting.
7Recall that by definition x̂ is the conditional expectation of x given Ψ, if x̂ is Ψ-measurable and E[(x − x̂)I A] = 0 for any

A ∈Ψ. If E[(I{F̂ (y) ≤α}−α)I A] = 0 for any real α ∈ [0,1] and any A ∈Ψ, then the conditional probability of F̂ (y) ≤α givenΨ

is α and thus by Definition 3 forecast F̂ is probabilistically calibrated givenΨ.
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Ψ-measurable w it satisfies

En(y, w) =En̂(F̂ , w), where n̂(F, w) =
ˆ ∞

−∞
n(t , w)dF (t ) (4)

(see Theorem 9). That is, conditional marginal calibration implies that the prediction n̂ produced from F̂

is an unbiased forecast of n. This condition is not only necessary, but also sufficient, which can be seen

from setting n(y, w) = I{y ≤ q}w , n̂ = F̂ (q)w and using indicator random variables for events A ∈Ψ as

w : w = I A .
8

In particular, for n = y we obtain the condition of mean unbiasedness of F̂ : Ey = mean(F̂ ). Gneit-

ing, Balabdaoui, and Raftery (2007) propose a diagnostic diagram for unconditional marginal calibration

based on binning and application of the condition EI{y ∈ (a,b]} = E[F̂ (b)− F̂ (a)] to the bins. Note also

that figure 1 above can be considered as an illustration of a testing procedure for marginal calibration.

Theorem 8 states that both probabilistic and marginal calibration given Ψ are implied by auto-

calibration given Ψ.9 However, as we show below (subsection 2.5), even together probabilistic and

marginal calibration are not sufficient for auto-calibration with respect to the same information set.

Hence, calibration tests based on (3) and (4) can be incomplete as tests of conditional auto-calibration.

2.4 Orthogonality conditions of calibration

From the theory of point forecasting it is known that the expectation conditional on information setΨ is

the forecast which is optimal in mean-square sense among the forecast based onΨ (e.g. Bierens, 2004,

pp. 80–81). This forecast satisfies orthogonality conditions: the prediction error is uncorrelated with

any random variable based on Ψ.10 There are also extensions to the case of general loss functions (e.g.

Granger, 1999). In Mitchell and Wallis (2011) an idea was put forward that calibration of probabilistic

forecasts can be tested by verifying similar orthogonality conditions. It can be demonstrated that this

idea lends itself to further generalization.

By letting g = r a in the general moment conditions of calibration (2) we obtain the following general

orthogonality conditions of calibration:11 if a forecast F̂ is conditionally auto-calibrated with respect to

8If E[(I{y ≤ q}− F̂ (q))I A] = 0 for any real q and any A ∈Ψ, then E[(I{y ≤ q}− F̂ (q))|Ψ] = 0 and by Definition 4 forecast F̂ is

marginally calibrated givenΨ.
9Gneiting and Ranjan (2013) observe that the ideally calibrated forecast is both (unconditionally) marginally calibrated and

probabilistically calibrated.
10These conditions were utilized in the rational expectations literature. Shiller (1978), p. 7: “. . .Expected forecast errors

conditional on any subset of the information available when the forecast was made, are zero. . . Hence, the forecast error . . . is

uncorrelated with any element of It [the set of public information available at time t ]”.

The term “orthogonality conditions” is known from the GMM literature (cf. Hansen, 1982).
11Note that any random variable A which is measurable with respect to σ(Ψ, F̂ ) can be represented as A = a(w, F̂ ) for some

function a, where w is aΨ-measurable variable.
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Ψ, then for any functions r and a and anyΨ-measurable w it satisfies

E[(r (y, F̂ )− r̂ (F̂ ))a(w, F̂ )] = 0, where r̂ (F ) =
ˆ ∞

−∞
r (t ,F )dF (t ). (5)

According to these conditions a point forecast of r derived from a probabilistic forecast F̂ must be un-

biased and the corresponding forecast error must not be correlated with any function of aΨ-measurable

w and the forecast F̂ . In practice one can represent a CDF F in function a(w,F ) by some characteristics

of the corresponding distribution such as the mean, median or interquartile range.

An example of this type of orthogonality conditions can be found in Clements (2006), where in the

context of evaluating the SPF probabilistic forecasts it was noted that E[(I − p)p] = 0, where I is an

indicator variable for the event that y is in some interval and p is the predicted probability of this event.

Mincer and Zarnowitz (1969) regressions correspond to r = y and a = mean(F̂ ).

Note that conditional probabilistic and marginal calibration can also be characterized by orthogo-

nality conditions, but these conditions are less general. Under conditional probabilistic calibration with

respect to Ψ for any function k(p) defined on the [0,1] interval as its argument and any Ψ-measurable

w we must have

E

[(

k(F̂ (y))−
ˆ 1

0

k(p)d p

)

w

]

= 0. (6)

Similarly under conditional marginal calibration with respect to Ψ for any function m(y) any Ψ-

measurable w we must have

E
[(

m(y)−m̂(F̂ )
)

w
]

= 0, where m̂(F ) =
ˆ ∞

−∞
m(t )dF (t ). (7)

As an example of orthogonality conditions for probabilistic calibration consider an autoregression

from Berkowitz (2001). See also a regression from subsection 4.3 of Christoffersen (1998) used for test-

ing conditional coverage of an interval forecast. A similar regression representing orthogonality con-

ditions for marginal calibration can, for example, be found in Clements (2006). Ordinary orthogonality

conditions for point forecasts can be considered in many cases as conditions of orthogonality between

y −mean(F̂ ) and w and thus also relate to marginal calibration.

2.5 Sufficient conditions of calibration

In some sense general moment conditions (2) are complete. That is, it can be proved (see discussion of

conditions (8) and (9) below) that the requirement that they are satisfied for any g and anyw is sufficient
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for conditional auto-calibration. (In the same sense conditions (3) and (4) are sufficient for conditional

probabilistic and marginal calibration respectively.) However, it is tempting to narrow these general mo-

ment conditions somehow. Both theoretically and practically interesting question is how “narrow” one

can be in calibration testing without a fundamental sacrifice of comprehensiveness.

We have already seen (Theorem 8) that auto-calibration given Ψ implies both probabilistic and

marginal conditional calibration givenΨ. Probabilistic calibration andmarginal calibration are different

concepts. Neither of them generalizes the other one. Counterexamples12 for a density forecasting sit-

uation can be found in Gneiting, Balabdaoui, and Raftery (2007) (Examples 3, 5, 6) and in Mitchell and

Wallis (2011) (combined and unfocused forecasts in the AR(2) example). See also Forecast C in Example 2

below.13

It can be seen that neither probabilistic, nor marginal calibration given Ψ is sufficient for auto-

calibration given Ψ. Example 10 in the Appendix demonstrates that even when a forecast is simulta-

neously (unconditionally) probabilistically and marginally calibrated, it can fail to be auto-calibrated.

Of course, if we do not want to assume that the forecast examiner is only partially informed, then the

distinction above is not important. If aΨ-measurable forecast F̂ is either marginally calibrated or (in a

density forecasting situation) probabilistically calibrated with respect to Ψ, then F̂ is ideally calibrated

with respect toΨ (see Theorem 11).

From these arguments it can be seen that both marginal and probabilistic calibration with respect to

σ(Ψ, F̂ ) are equivalent to auto-calibration given Ψ. Thus, sufficient conditions of marginal and proba-

bilistic calibration with respect toσ(Ψ, F̂ ) are sufficient conditions of auto-calibration. Marginal calibra-

tionwith respect toσ(Ψ, F̂ ) can be expressed in terms of orthogonality conditions between I{y ≤ q}−F̂ (q)

and any function a(w, F̂ ) of aΨ-measurable w and forecast F̂ (for any real q and any a). Similarly (in a

density forecasting situation) probabilistic calibration with respect to σ(Ψ, F̂ ) can be expressed in terms

of orthogonality conditions between I{F̂ (y) ≤ p}−p and any a(w, F̂ ). Hence, we have two different suf-

ficient moment conditions of auto-calibration with respect toΨ:

E[(I{y ≤ q}− F̂ (q))a(w, F̂ )] = 0 (8)

12One can easily generate other counterexamples. In theory an arbitrary forecast can be readily recalibrated (that is, modified

to improve calibration) to achieve either probabilistic ormarginal calibration relative toΨ. IfG(p) is the conditional distribution

function of PIT values F̂ (y) givenΨ, thenG(F̂ (·)) is a probabilistically recalibrated version of F̂ (·). Similarly F̂ (H−1(F(·|Ψ))) is

its marginally recalibrated version, where F(·|Ψ) is the conditional CDF of y and H(q) =E(F̂ (q)|Ψ). In general, so recalibrated

imperfect forecast is either probabilistically or marginally calibrated, but not both.
13Probabilistic and marginal calibration are also distinct concepts for discrete y assuming more than two values; see an

example in Table 2 of Gneiting and Ranjan (2013).
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for any real q , any a and anyΨ-measurable w and (in a density forecasting situation)

E[(I{F̂ (y) ≤ p}−p)a(w, F̂ )] = 0 (9)

for any p ∈ [0,1], any a and anyΨ-measurable w .

Theorem 12 states less obvious sufficient moment conditions of conditional auto-calibration:

E[(r (y, F̂ )− r̂ (F̂ ))w] = 0, (10)

for any r and any Ψ-measurable w . These are also orthogonality conditions, where orthogonality is

between prediction errors of r (y, F̂ ) andΨ-measurable variables.

Orthogonality conditions (8), (9) and (10) are not the narrowest sufficient conditions of conditional

auto-calibration, as one can further contract the class of functions a and r , but we stop here, because

further contraction could be of little practical significance.14

2.6 Sequential auto-calibration

Consider a sequence F̂t of h-step-ahead probabilistic forecasts of a univariate time series yt , t = 1,2, . . .

in a recursive setting. The examiner’s information set available for evaluating F̂t , which we denote Ψt ,

should include information on available previous values of the series and previously issued forecasts. We

assume that all forecasts F̂1, . . . , F̂t are already known at time t −h and thus

σ(y1, , . . . , yt−h , F̂1 . . . , , F̂t−1) ⊆Ψt .

This suggests the following definition.

Definition 5. A sequence of forecasts F̂t , t = 1, . . . ,T in a recursive h-step density forecasting situ-

ation is sequentially auto-calibrated if each forecast F̂t is conditionally auto-calibrated with respect to

(y1, , . . . , yt−h , F̂1 . . . , , F̂t−1).

If a sequence of one-step density forecasts of a time series yt , t = 1, . . . .,T is made from the full

history of the same series, then calibration is frequently judged by analyzing the resulting series of PIT

values

F̂t (yt ), t = 1, . . . .,T.

14For example, in (8) and (9) we can use indicator variables a = I A for A ∈σ(Ψ, F̂ ).
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It is assumed that a sequence of such forecasts is calibrated if and only if the PIT values F̂t (yt ) are inde-

pendent and distributed asU [0,1] (cf. Diebold, Gunther, and Tay, 1998). We will call this the uniformity

and independence condition:

(F̂1(y1), . . . , F̂T (yT )) ∼U [0,1]T . (11)

The condition is very popular in the density forecast evaluation literature; e.g. Dawid (1984), Diebold,

Gunther, and Tay (1998), Berkowitz (2001), Mitchell and Wallis (2011), Chen (2011). Mitchell and Wallis

(2011) even call this “complete calibration”. However, this is in fact not an independent mode of calibra-

tion. It can be a necessary condition of sequential auto-calibration or a sufficient condition of sequential

ideal calibration or completely irrelevant depending on the situation.

Condition (11) should be primarily considered as a necessary condition of sequential auto-calibration

in a specific setting. If in a recursive one-step-ahead density forecasting situation forecasts F̂t , t =

1, . . . ,T are sequentially auto-calibrated, then according to Theorem 13 (11) must hold. This is a gen-

eralization of Proposition in Diebold, Gunther, and Tay (1998), p. 867 in the spirit of partial information

approach of the current paper.

For a recursive one-step-ahead density forecasting situation an interesting question is whether the

uniformity and independence condition (11) is sufficient for sequential auto-calibration. In general the

answer is negative. However, when we are sure that the forecaster uses only the previous history to

produce forecasts, then conditioning on the previous history of yt is equivalent to conditioning on the

previous history of PIT values F̂t (yt ) and, hence, the uniformity and independence condition is suffi-

cient not only for sequential auto-calibration, but for sequentially ideal calibration. That is, according to

Theorem 14 under (11) each F̂t is ideally calibrated given (y1, , . . . , yt−1).

When forecasts are not measurable with respect to σ(y1, . . . , yt−1), uniformity and independence is

not sufficient; it does not indicate a sequence of calibrated forecasts. Although for multistep forecasts,

which are based only on (y1, . . . , yt−h), the uniformity and independence condition is sufficient for se-

quentially ideal calibration, it is not very useful since in general independence does not hold anyway.

It can be additionally noted that for forecasts using real-time data subject to revisions the condition of

independence of PIT values can be completely irrelevant.

The condition of serial independence of PIT values, which is a part of (11), can be expressed with the

help of orthogonality conditions. For example, any function k of a the PIT value for moment t must be
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uncorrelated with any function k2 of lagged PIT values:

E

[(

k(F̂t (yt ))−
ˆ 1

0

k(p)d p

)

k2(F̂t−s(yt−s))

]

= 0, s = 1,2, . . . (12)

Under uniformity and independence a series of transformed PIT values k(F̂t (yt )), t = 1, . . . ,T also must

be i. i. d. and hence serially uncorrelated. Therefore, we can use autocorrelation functions of the PIT

values and their transformations to test sequential auto-calibration of recursive forecasts as proposed in

Diebold, Gunther, and Tay (1998). When the uniformity and independence condition is not applicable, we

can still employ similar orthogonality conditions provided that we use onlyΨt -measurable PIT variables

for conditioning. For example, in the case of h-step-ahead forecasting we can use (12) for s ≥ h. In the

case of real-time forecasting if some preliminary estimates of yt−s , say y∗
t−s , are observed at the time

when the forecast is made, then we can use (12) with yt−s , replaced by y∗
t−s .

In general there is no need to rely only on orthogonality conditions based on PIT values. Other con-

ditions can be more suitable in many forecasting situations. It should be emphasized in particular that

even though F̂t−h+1(yt−h+1), . . . , F̂t−1(yt−1) cannot be used for conditioning purposes in evaluation of

h-step-ahead forecast of yt , various functions of forecasts F̂t−h+1, . . . , F̂t can.

2.7 Forecast encompassing

Next we consider forecast encompassing as an example and extension of conditions of general type (2).

The idea is to verify calibration of one forecasting method against another one.

Suppose that we want to test whether F̂1 is calibrated and F̂2 is an alternative forecast. Forecast

examiner can use an information setΨ and information contained in forecast F̂2 for forecast evaluation

purposes. Then for two forecasts F̂1, F̂2 under the assumption that F̂1 is auto-calibrated with respect to

σ(Ψ, F̂2) we have for any g and anyΨ-measurable w

Eg (y, w, F̂2) =E

ˆ ∞

−∞
g (t , w, F̂2)dF̂1(t ). (13)

This can be called a forecast encompassing condition. The idea of applying encompassing principle to

forecasts is due to Chong and Hendry (1986). The principle states that “models which claim to congru-

ently represent a data generation processmust be able to account for the findings of rivalmodels” (Chong

and Hendry, 1986, p. 676).

We can note here that full probabilistic forecasts are particularly suited for application of the en-

compassing principle since they provide complete distribution functions, so that given one probabilistic
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forecast we can derive forecast of any calibration-related characteristics of another probabilistic forecast.

Another form of forecast encompassing contrasts results of one forecast with results of another one.

The idea is that a calibrated forecast F̂1 must be able to explain the differential in some function g for

forecasts F̂1 and F̂2. When F̂1 is well-calibrated we have

E[g (y, w, F̂2)− g (y, w, F̂1)] =E

[ˆ ∞

−∞
g (t , w, F̂2)dF̂1(t )−

ˆ ∞

−∞
g (t , w, F̂1)dF̂1(t )

]

. (14)

The two forms of forecast encompassing conditions, (13) and (14), roughly correspond to FE(2) and FE(3)

regressions in Clements and Harvey (2010) where forecast encompassing is applied to probability fore-

casts of 0/1 events. More generally, one can put F̂1 and F̂2 into the moment function in a non-separable

way (see, for example, (20) below).

2.8 A general idea of moment-based calibration testing

As calibration tests in the existing literaturemostly pertain to a situation when one-step-ahead forecasts

of a time series are made given the full previous history of this series, these tests often rely on the unifor-

mity and independence condition (11). Moreover, under this assumption any functions of PIT values are

also independent and have known distribution; for example, this is true of the tick (indicator) variables

for interval/quantile forecasts. Therefore, under the uniformity and independence the distribution of

the vector of observations is fully known, which facilitates construction of the corresponding tests. For

example, likelihood ratio tests are often used (e.g. Kupiec, 1995; Christoffersen, 1998; Berkowitz, 2001;

Clements and Taylor, 2003).

In general, we do not know the complete distribution of observations. The conditional distribution

of a single yi given Ψi and F̂i is under the null of conditional auto-calibration with respect to Ψi fully

described by the forecast F̂i . However, to design tests we have to make assumptions on the dependence

structure in the observations i = 1, . . . , N .

Given a moment condition of calibration one can replace theoretical moments by sample ones based

on a series of forecasts and outcomes of the target variable and see how far the result is fromwhat should

be in theory. This allows to develop various types of diagnostic tests for forecast calibration. In Chen

(2011) it is observed that many of the tests of calibration/efficiency developed in the literature fall within

this approach.

Suppose that in theory the expectation of d must be zero under the null of calibration: Ed = 0. (Typ-

ically d = g − ĝ as defined in (2).) We can obtain the values of d for a series of realizations of predictive
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distributions F̂1, . . . , F̂N and a series of outcomes y1, . . . , yN and calculate the corresponding sample mo-

ment d̄ =
∑N

i=1 di /N . If d̄ is far from zero, then we can conclude that the forecast is miscalibrated.

Note that in order to test the moment conditions of calibration it is not necessary to assume that the

data are described by some parametric model and that forecasts follow that model. Under appropriate

assumptions on the distribution of the sequence of di , discussion of which is beyond the limits of this

paper, we can use the usual t-ratios d̄/se(d̄).15 Themost subtle aspect here is adequate calculation of the

standard error se(d̄) for dependent di . Figure 2 illustrates that for multistep forecasts the di series can be

strongly autocorrelated. In Example 1 below the usual heteroskedasticity and autocorrelation consistent

(HAC) standard errors are used. If this is done correctly and the series of forecasts is well-calibrated, then

this statistic is asymptotically distributed as N (0,1). In order to reduce size distortion in finite samples

and/or increase power we can use the fact that under the null of calibration not only conditional means,

but also conditional variances of are known. This knowledge can be utilized in the formula for se(d̄).

An extension to the multivariate case—simultaneous testing of several moment conditions—is

straightforward and is familiar from the GMM framework: a t-ratio is replaced by a quadratic form (J-

statistic) and the distribution is chi-square. Testing of orthogonality conditions sometimes could be

conveniently done by means of F -statistics and Wald statistics from auxiliary regressions (with robust

covariance matrices if needed).

3 Forecast efficiency

3.1 Forecast efficiency, proper scoring rules and ideal calibration

Calibration is one important aspect of probabilistic forecasting and another is forecast efficiency. When

forecasts are in the form of distribution functions it is natural to base discussion of forecast efficiency on

the notion of a proper scoring rule. A scoring rule is a function S(F, y) of a CDF F and an outcome value y

used to judge the accuracy or success of full probabilistic forecasts. If F̂1, . . . , F̂N is a series of realizations

of predictive distribution functions, and y1, . . . , yN is a series of realized outcomes, then the average score

is given by
N
∑

i=1
S(F̂i , yi )/N . It is assumed that a more accurate/successful forecast has a higher average

score.

Not any arbitrary scoring rule is suitable for forecast evaluation. The general requirement is that

scoring rules used for forecast evaluation must be proper. One can define the expected score function as

15For example, for the rolling forecasting scheme the idea of Giacomini andWhite (2006) can be used (see Comment 6 there).
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the expected score of F2 given that y is distributed as F1:

S(F2,F1) =
ˆ ∞

−∞
S(F2, t )dF1(t ).

(Note the overloaded notation used.) By definition, if the scoring rule S is proper, then the expected score

is maximized with respect to F2, when F2 coincides with F1:

S(F1,F1) =
ˆ ∞

−∞
S(F1, t )dF1(t ) ≥ S(F2,F1) =

ˆ ∞

−∞
S(F2, t )dF1(t ),

and it is strictly proper (within a suitable class of distributions), if the inequality is strict for F2 6= F1.

(Both F1 and F2 are non-random CDFs in these definitions.) Proper scoring rules are known to encourage

truthful forecast statement: if a forecast is assessed according to a proper scoring rule, then the fore-

caster cannot expect to benefit by cheating and reporting forecast distributions which he believes to be

incorrect.

A detailed review of this topic can be found in Gneiting and Raftery (2007) and Bröcker and Smith

(2007). Economic applications of scoring rules can be found in Diebold and Rudebusch (1989), Corradi

and Swanson (2006b), Clements and Harvey (2010), Boero, Smith, and Wallis (2011), Diks, Panchenko,

and van Dijk (2011), Mitchell and Wallis (2011), Lahiri and Yang (2015).

The notion of a proper scoring rule is closely related to maximization of expected utility or mini-

mization of expected loss by a forecast user. Indeed, define a scoring rule S as the utility of an outcome

y under the best action

S(F, y) = u(y, a(F )),

where the best action a(F ) is given by (e.g. Pesaran and Skouras, 2002)

a(F ) ∈ argmax
a

ˆ ∞

−∞
u(t , a)dF (t ).

Such a utility-based scoring rule is proper since

S(F1,F1) =
ˆ ∞

−∞
u(t , a(F1))dF1(t ) ≥

ˆ ∞

−∞
u(t , a(F2))dF1(t ) = S(F2,F1)

(cf. Diebold, Gunther, and Tay, 1998, Gneiting and Raftery, 2007). Maximization of expected utility

provides economic foundation for the theory of evaluation of probabilistic forecasts, but one can abstract

from this and focus instead on proper scoring rules.
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In our analysis we can allow the scoring rule to depend on some additional variable w , which repre-

sents the environment conditions at the moment, when the forecast is made, and which can effect the

efficiency of the forecasts: S = S(F, y ; w). If Ψ is the relevant information set, then one can use a Ψ-

measurable random variable here. However, we prefer to economize on notation and hide the additional

variables.

An important property of an ideally calibrated forecast is that it achieves themaximumexpected score

if the scoring rule used is proper. Diebold, Gunther, and Tay (1998), p. 866: “. . . If a forecast coincides

with the true data generating process, then it will be preferred by all forecast users, regardless of loss

function”. See also Granger and Pesaran (2000). Formally, for any proper scoring rule S the forecast,

which is ideally calibratedwith respect toΨ, attains the highest expected score among theΨ-measurable

forecasts. Indeed, if F̊ = F(·|Ψ) is the ideal forecast and F̂ is anotherΨ-measurable forecast

E(S(F̊ , y)|Ψ) =
ˆ ∞

−∞
S(F̊ , t )dF̊ (t ) = S(F̊ , F̊ ) ≥ S(F̂ , F̊ ) =

ˆ ∞

−∞
S(F̂ , t )dF̊ (t ) =E(S(F̂ , y)|Ψ)

and (by the law of iterated expectations)

ES(F̊ , y) ≥ES(F̂ , y).

Thus, when a forecast is ideal with respect toΨ, it can be called efficient or optimal. Under appropriate

additional conditions the inequality here is strict if the scoring rule S is strictly proper and the alternative

forecast is not ideal (Holzmann and Eulert, 2014).

Therefore, if a forecast is not auto-calibrated givenΨ, which is signaled by a violation of some nec-

essary moment condition, then it is not ideally calibrated given Ψ and F̂ and there is a potential for its

improvement with the help of the information contained in Ψ and F̂ . An improvement is measured by

an increase in the mean score.

On the other hand, if Ψ∗ is the information set containing all available information and Ψ ⊆ Ψ
∗,

then an efficient forecast based on Ψ
∗ must be ideally calibrated given Ψ

∗ and thus auto-calibrated

given Ψ as long as the scoring rule used is strictly proper. Such forecast would not be dismissed by the

auto-calibration criterion. If the scoring rule used is proper, but not strictly proper, then there can be

miscalibrated forecasts among efficient ones, but the forecast, which is ideally calibrated given Ψ
∗, is

still efficient and auto-calibrated.

Subject to these reservations, it can be said that in a certain sense the concept of calibration is in-

trinsically based on proper scoring rules and score maximization.
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3.2 Moment conditions of forecast efficiency

We can use the first order conditions of score maximization to derive moment conditions of efficiency.

Consider a CDF-to-CDF transformation T (F, w,δ) depending on a real vector of parameters δ and an

additional variable w . We require that F = T (F, w,0). Suppose that F̂ is an efficient forecast and Ψ is

the relevant information set. The transformation T can produce a family of forecasts F̂δ = T (F̂ , w,δ)

parametrized by δ, which includes the efficient forecast F̂ with δ = 0. If ES(F̂δ, y) is differentiable as a

function of δ, then we must have

d

dδ
ES(F̂δ, y)

∣

∣

∣

δ=0
= 0.

Under appropriate regularity conditions the differentiation and expectation operations are interchange-

able and we obtain the following moment conditions:

E
d

dδ
S(F̂δ, y)

∣

∣

∣

δ=0
= 0. (15)

By the same logic assuming that S is proper we must have for an arbitrary non-random CDF F

ˆ ∞

−∞

d

dδ
S(Fδ, t )

∣

∣

∣

δ=0
dF (t ) = 0,

where

Fδ = T (F, w,δ),

since the maximum of
´∞
−∞ S(Fδ, t )dF (t ) = 0 is achieved at δ= 0.

It can be seen that efficiency conditions (15) can be considered as auto-calibration conditions of

general type (2) with

g =
d

dδ
S(Fδ, y)

∣

∣

∣

δ=0
.

The idea here is that we can extend a forecast F̂ in a parametric way (irrespectively of a possible

parametric model on which F̂ could be based) and then derive moment conditions, which follow from

the the first-order conditions of efficiency. It turns out, that these moment conditions are at the same

time necessary conditions of auto-calibration.
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Location A simple transformation of a CDF is a shift by w ′δ where w is a real vector (which would

typically include a constant element 1):

Fδ(y) = F (y −w ′δ). (16)

For example, consider a density forecast with log-density

ℓ̂(y) = log F̂ ′(y)

and the logarithmic scoring rule

S(F, y) = logF ′(y).

In this case (necessary) moment conditions of forecast efficiency are given by

E[−ℓ̂′(y)w] = 0,

where w is aΨ-measurable vector.

Scale Another simple transformation is scaling of CDF F around some central point c(F ). Natural cen-

tral points are the median c = F−1(1/2) and the mean c = mean(F ):

Fδ(y) = F ((y − c(F ))exp(−w ′δ)+ c(F )). (17)

For the logarithmic scoring rule the corresponding conditions of forecast efficiency are given by

E[(−ℓ̂′(y)(y − c(F̂ ))−1)w] = 0.

Inverse normal transform: location and scale Alternatively, we can employ transformations based

on the inverse normal transform (INT) of CDF F defined as Φ−1 ◦F , where Φ(·) is the standard normal

CDF:

Fδ(y) =Φ(Φ−1(F (y))−w ′δ)

and

Fδ(y) =Φ(Φ−1(F (y))exp(−w ′δ)).
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These transformations correspond to the location and scale and give the following conditions of forecast

efficiency with the logarithmic scoring rule:

E[INTw] = 0

and

E[(INT2 −1)w] = 0,

where INT = Φ
−1(F̂ (y)). It can be seen that the two conditions are orthogonality conditions for prob-

abilistic calibration of type (6). This demonstrates that some known calibration tests based on PIT and

INT values (e.g. Berkowitz, 2001) can be motivated by their connection with forecast efficiency.

Note, that a forecast calibration test is similar in structure to an ordinary model diagnostic test.

That is, upon rejection of the null of calibration we do not necessary have a well-defined alternative

forecasting method to be applied instead of the rejected one. However, forecast efficiency tests based on

parametric extensions of the evaluated forecast introduced here provide us with a direction of reasonable

model modification. If an efficiency test diagnoses miscalibration, we could estimate the corresponding

parameters by maximizing the average score and replace the rejected forecast by the recalibrated one.

3.3 Calibration, efficiency and sharpness

Another link between calibration and efficiency is provided by the sharpness principle of probabilistic

forecasting.

Forecast sharpness is a characteristic which reflects the degree of forecast definiteness, concentration

of the forecast distribution (Murphy and Winkler, 1987; Gneiting, Balabdaoui, and Raftery, 2007). Users

can prefer sharp forecast as they are more definite and informative. However, forecast sharpness can be

deceptive and it is not a good idea tomake choice between forecasts solely on the basis of their sharpness.

In Gneiting, Balabdaoui, and Raftery (2007) a conjecture called “the sharpness principle” was put

forward, which states that the problem of finding a good forecast can be viewed as the problem of max-

imizing sharpness subject to calibration. It can be shown that the conjecture is actually true provided

that a vague “calibration” notion is replaced by (conditional or unconditional) auto-calibration.16

First, for a proper scoring rule S(F,F ) can be viewed as a measure of sharpness of a distribution F .

For a proper scoring rule−S(F,F ) is a concave17 function of F and thus, according to DeGroot (1962), can

16See Bröcker (2009) for an alternative interpretation of this principle.
17Function S(F1,F2) is linear in the second argument. Therefore S(Fα,Fα) =αS(Fα,F1)+(1−α)S(Fα,F2) ≤αS(F1,F1)+(1−

α)S(F2,F2) for Fα =αF1 + (1−α)F2 and α ∈ [0,1].
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be viewed as a measure of uncertainty of a probability distribution with CDF F ; see also Bröcker (2009).

For the logarithmic scoring rule −S(F,F ) is the familiar Shannon’s entropy measure.

Second, for a forecast which is auto-calibrated we have ES(F̂ , y) = ES(F̂ , F̂ ), i. e. the expected score

of such a forecast equals its expected sharpness. The fact follows from (2) for g = S(F, y). If, as suggested

above, the score can depend on an additionalΨ-measurable variable w , then we have to replace uncon-

ditional auto-calibration by auto-calibration with respect to w orΨ to obtain ES(F̂ , y ; w) =ES(F̂ , F̂ ; w).

It follows that auto-calibrated forecasts can be compared on the basis of the levels of their expected

sharpness. Sharpness is no more a deceptive characteristic when only auto-calibrated forecasts are con-

sidered. The ideally calibrated forecast given Ψ
∗ is the sharpest of all Ψ∗-measurable forecasts, which

are auto-calibrated givenΨ⊆Ψ
∗, because it is characterized by the greatest expected score.

Another intuitively expected property of well-calibrated forecasts is that the more complete infor-

mation has the forecaster, the sharper is the forecast which he can potentially produce. Let F̊1 = F(·|Ψ1)

be the ideal forecast based onΨ1 and F̊2 = F(·|Ψ2) the ideal forecast based onΨ2, whereΨ1 is a “richer”

information set thanΨ2 (Ψ2 ⊆Ψ1). Then

ES(F̊1, y) =ES(F̊1, F̊1) ≥ES(F̊2, y) =ES(F̊2, F̊2)

with strict inequality if F̊1 6= F̊2 almost surely and S is strictly proper. See Holzmann and Eulert (2014) for

a proof. Similar results for the discrete outcome case can be found in DeGroot and Fienberg (1983) and

Bröcker (2009). A corollary is that a forecast, which is auto-calibrated givenΨ, can never be less efficient

than the ideally calibrated forecast givenΨ.

We can further study the relationship between the expected score and the expected sharpness for

forecasts lacking conditional auto-calibration. Let d denote a divergence indicator (generalized distance)

between two non-random CDFs F1 and F2 defined as

d(F2,F1) = S(F1,F1)−S(F2,F1).

The divergence d(F2,F1) is non-negative, if the rule S is proper. It is zero, when the two distributions

coincide. For the logarithmic scoring rule d is the Kullback–Leibler distance. Let F̊ = F(·|Ψ, F̂ ) be the

conditional CDF of y givenΨ and F̂ , which can be considered as a “fully recalibrated” version of forecast

F̂ givenΨ. Since ES(F̂ , y) = ES(F̂ , F̊ ), the expected score of a (possibly miscalibrated) forecast F̂ can in

26



general be decomposed as follows:

ES(F̂ , y) =ES(F̊ , F̊ )−Ed(F̂ , F̊ ). (18)

The first term can be interpreted as the expected sharpness of the fully recalibrated version of F̂ , while

the second term relates to the divergence between F̂ and F̊ , i. e. it is a measure of miscalibration of

forecast F̂ with respect to the information contained in itself and Ψ. An unconditional version of this

partitioning for the dichotomous outcomes and the Brier score was developed in Sanders (1963). Bröcker

(2009) extended it to the case of an arbitrary finite-support discrete distribution and arbitrary proper

scoring rules.

The principle of maximizing sharpness subject to calibration which was considered here is difficult to

apply in practice, because achieving perfect (unconditional or conditional) auto-calibration of a forecast

may prove too challenging. However, this principle provides a useful insight into the essence of proba-

bilistic forecasting. In particular, it is clear that the advantage of using proper scoring rules for forecast

comparison is that they provide the right balance of sharpness and calibration. If other—not proper—

scoring rules were used for forecast evaluation, then the forecaster would have an incentive to report

miscalibrated (for example, too sharp) forecasts.

3.4 Predicted efficiency conditions

Finally in this section we consider calibration conditions, which relate to forecast efficiency indirectly,

through the use of proper scoring rules.

As was already noted above, the expected sharpness of an auto-calibrated forecast equals its expected

score. In general if F̂ is auto-calibrated given Ψ, then from (2) with g = S(F, y)a(w,F ) we have that for

any function a(w,F ) and anyΨ-measurable w

E[(S(F̂ , y)−S(F̂ , F̂ ))a(w, F̂ )] = 0. (19)

An interesting extension of this idea is to use forecast encompassing conditions based on predicted

efficiency. If F̂1 is auto-calibrated given σ(Ψ, F̂2), then F̂1 should be able to give conditionally unbiased

prediction of the score of F̂2. That is, from (2) with g = S(F2, y)b(w,F1,F2) we have for any function b

and anyΨ-measurable w that

E[(S(F̂2, y)−S(F̂2, F̂1))b(w, F̂1, F̂2)] = 0. (20)
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One can also implement encompassing on the bases of the score differential between F̂1 and F̂2. Uncon-

ditional encompassing for score differential parallels the generalization of the likelihood ratio test for

non-nested models developed in Cox (1961), Cox (1962).

4 Examples

4.1 Example 1, evaluation of the Swedish Riksbank’s inflation forecasts

Our first example illustrates the use of location and scale tests based on forecast efficiency conditions

introduced in subsection 3.2. We want to evaluate the Swedish Riksbank’s forecasts of CPI inflation,

which were already used above as illustrations of density forecasts.

Sweden’s central bank (Riksbank) started to publish its density forecasts of inflation in June 1998.

The forecasts are in the form of two-piece normal distribution. The target variable is the yearly CPI

inflation. We evaluate only one-year-ahead forecasts. There are 64 forecasts available for evaluation for

the period 1999–2015. They were issued 4 times a year with approximately quarterly frequency. Note

that the forecasts before 2007 are conditional, assuming a predetermined trajectory of the repo rate.

Nevertheless, in this forecast evaluation example we take them “as is”, thus representing a point of view

of a user, who considers the possibility of using the forecasts in the unmodified form. Additional details

about the Riksbank’s forecasts can be found in Appendix C.

The Riksbank’s forecasts are aimed to provide an informational support to the bank’s inflation tar-

geting policy. The target was fixed at 2% yearly inflation, initially with ±1 percentage point tolerance

interval. Subsequently the tolerance interval was abandoned as unrealistic. However, the interval from

1% to 3% of yearly inflation can still be considered as a good reference for evaluation of the monetary

policy. That is, inflation outside this interval is an important warning to the monetary authorities.

To take into account this background, one can build efficiency test on a specific proper scoring rule,

which puts more weight to the areas outside the 2±1% band. Two varieties of suitable scoring rules can

be found in Diks, Panchenko, and van Dijk (2011). These scoring rules modify the ordinary logarithmic

score by a weighting function γ(y) (0 ≤ γ(y) ≤ 1), which is chosen in such a way, that it emphasizes

certain areas of the target variable range. We choose one of the rules of Diks, Panchenko, and van Dijk

(2011), the generalized censored likelihood (GCsL) scoring rule, defined as

S(F, y) = γ(y) logF ′(y)+ (1−γ(y)) log

(ˆ ∞

−∞
(1−γ(t ))dF (t )

)

.
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Figure 3: The weighting function γ(y) for evaluation of the Riksbank’s inflation forecasts.

The formulas for the location and scalemoment function corresponding to theGCsL score are given is

Appendix B. The weighting function γ(y) used is constructed in such a way, that the “dangerous” regions

outside the 2±1% band have higher weight (figure 3):

γ(y) = 0.25+
0.75

1+exp(5(y −1))
+

0.75

1+exp(5(3− y))
.

The test statistics below areWald statistics from the regressions corresponding to the orthogonality con-

ditions. Newey–West covariance matrices with 4 lags are used throughout.

Location test 1 Our first test is an unconditional location test based on transformation (16) withw = 1.

It gives χ2
1 = 1.55 with a p-value of 21%.

Location test 2 The next test is a conditional location test. The conditioning variables are the mean of

the Riksbank’s forecast and a point forecast of Swedish inflation ŷNIER produced by the National Institute

of EconomicResearch (NIER; the details are inAppendixC). Since the available history ofNIER’s forecasts

starts from 2001, there are only 53 observations. The test is again based on transformation (16) with

w = (1,mean(F̂ ), ŷNIER). It gives χ2
3 = 5.08 with a p-value of 17%.

Scale test 1 A scale test can be based on transformation (17) with c =µ (the mode of F̂ ). The uncondi-

tional test (with w = 1) gives χ2
1 = 1.78 with a p-value of 18%.

Scale test 2 Finally, we run a conditional scale test using the scale of the predictive distribution itself as

the conditioning variable. The test is again based on transformation (17) with c =µ and w = (1, ln(σ̂2)),

where σ̂2 is the variance of the predictive distribution F̂ . It gives χ2
1 = 1.89 with a p-value of 39%.

We are not able to find any signs ofmiscalibration in the Riksbank’s forecasts. Both unconditional and

conditional location and scale tests do not revealmiscalibration at the 15% significance level. Alternative

NIER’s forecasts does not seem to provide information, which can lead to significant improvement. The
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conclusion is limited by using the one year horizon and a peculiar weighting function related to inflation

targeting.

Note that the tests used here refer to orthogonality conditions of general type (10) and are not re-

ducible to conditional marginal or probabilistic calibration.

4.2 Example 2, pitfalls of uniform and independent PIT values

Consider the following artificial example, which highlights problems with the uniformity and indepen-

dence condition. Starting from y0 ∼ N (0,1) define yt for t ≥ 1 recursively:

yt =µt +ǫt ,

µt =Φ
−1({KΦ(yt−1)})

p
1−λ.

where Φ(·) is the standard normal CDF, {·} is the fractional part, K is a large integer, ǫt ∼ N (0,λ) is an

independent Gaussian white noise series, and λ ∈ (0,1).

We assume that the relevant information set for the forecast at time t ≥ 1 isΨt =σ(y0, y1, . . . , yt−1).

Three different forecasts are considered.

Forecast A: N (µt ,λ). This forecast reflects the data-generating process and is ideally calibrated with

respect toΨt .

Forecast B: N (0,1). This forecast corresponds to the unconditional distribution of yt and is uncondi-

tionally auto-calibrated. PIT values of this forecast are dependent. However, the data-generating

process incorporates a highly non-linear transformation, which disguises the dependence. For

large K it is impossible to find any traces of serial dependence in the series of the PIT values for

Forecast B by the means of PIT-based tests ordinarily used for forecast evaluation.

Forecast C: N (µt +ξt ,λ+β), where ξt is an independent Gaussian white noise ξt ∼ N (0,β). Forecast C

is based on Forecast A, but contains additional noise. It has PIT valuesΦ((ǫt −ξt )/
√

λ+β), which

are distributed as U [0,1] and independent. Moreover, PIT values are distributed as U [0,1] con-

ditionally on Ψt (that is, probabilistically calibrated given Ψt ). However, Forecast C is not auto-

calibrated with respect toΨt , since it is not marginally calibrated givenΨt .

Here we have two forecasts with uniform and independent PIT values and one forecast with uniform

PIT values and a non-obvious dependence in PIT values. We can run a battery of tests for PIT uniformity
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and independence such as those listed in Chen (2011) andMitchell andWallis (2011). However, the result

of such exercise is foreseeable so we skip it.

The example is artificial and is not directly related to real forecasting problems, but it is suggestive.

Although from the point of view of the usual tests of uniformity and independence all the three forecasts

look indistinguishably perfect, they are different in terms of efficiency.

For example, the expected logarithmic score of a single forecast of yt is given by α− log(λ)/2 for

Forecast A, α for Forecast B and α− log(λ+β)/2 for Forecast C, where α = −(log(2π) + 1)/2. Thus,

forecast B is dramatically worse than A for λ ≪ 1 and C is dramatically worse than A for β ≫ λ. This

observation allows to make three important conclusions.

First, this example in general shows that the uniformity and independence condition is unreliable. A

forecast, which seems perfect when evaluated by uniformity and independence tests can in fact be very

poor in terms of efficiency.

Second, Forecasts B demonstrates that it can be hard to detect miscalibration when there is a non-

obvious non-linearity. Theoretically one could devise powerful calibration tests for Forecast B, but this

would require understanding of the nonlinear structure of the data-generating process.

Third, Forecasts C demonstrates that the concept of conditional probabilistic calibration is unreliable

when the forecast can include extraneous noise.

4.3 Example 3, combined forecasts, simulation

Our second example relates to calibration testing of combined forecasts. Suppose that y is given by

y = x +ǫ/
p

z,

where x ∼ N (0,1), z ∼ χ2
8/8 (scaled chi-squared distribution) and ǫ ∼ N (0,1) are independent. Also

denote F̂x , F̂z , F̂xz conditional CDFs which correspond to y |x ∼ x + t8 (shifted Student’s distribution),

y |z ∼ N (0,1+1/z) and y |x, z ∼ N (x,1/z).

We run simulations for four forecasts. The first is the equal-weight linear pool18 of two partial con-

ditional CDFs: F̂c = 1
2 F̂x + 1

2 F̂z . The second and third forecasts are recalibrated versions of F̂c . The

recalibration (improving in order to achieve better calibration) is implemented via an INT-based model:

INTc =βx +ξ, Varξ=σ,

18This is a popular method of combining predictive distributions; e. g. Geweke and Amisano (2011), Gneiting and Ranjan

(2013).
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Table 1: Statistics for the forecasts of Example 3

F̂c F̂r 1 F̂r 2 F̂xz

Expected log. score −1.612 −1.596 −1.525 −1.485

Expected sharpness −1.761 −1.616 −1.517 −1.485

Expected miscalibration 0.127 0.111 0.040 0

% best 0 0 1.41 98.59

Test 1, INT⊥1, x 99.68 99.92 4.30 5.11

Test 2, y − ŷ ⊥ 1, x 99.71 99.88 4.99 5.22

Test 3, INT2 −1⊥1 71.35 5.07 4.59 5.06

Test 4, S − Ŝ ⊥ 1, Ŝ 94.03 55.17 54.47 4.66

Test 5, Sx − Ŝx ⊥ 1, Ŝ, Ŝx 100.0 98.06 55.23 4.94

Note: Logarithmic scoring rule is used throughout. The table is based on 10000 simulations. The expected

logarithmic score ES(y, F̂ ) is in the first row. Expected sharpness is ES(F̂ , F̂ ). Expected miscalibration is

Ed(F̂ , F̂xz ) from the decomposition (18). The test statistics are quadratic forms for the moment conditions.

The figures for the tests are rejection frequencies at 5% asymptotic significance level using the corresponding

chi-squared quantiles. The number of observations in the tests is 200.

where INTc =Φ
−1(F̂c (y)) is the inverse normal transform corresponding to F̂c . The recalibrated forecast

is given by F̂r (q) =Φ((Φ−1(F̂c (q))−βx)/σ). Forecast F̂r 1 with β= 0, σ= 0.874 repairs only the incorrect

unconditional dispersiveness of F̂c . Forecast F̂r 2 with β = 0.316, σ = 0.814 also repairs the conditional

location. The parameters are approximations to the corresponding theoretical models. Finally, forecast

F̂xz is known to be conditionally auto-calibrated with respect to σ(x) and can be regarded as a perfectly

recalibrated variant of F̂c (note that σ(F̂c ) =σ(x, z).).

We reproduce a situation where a forecast examiner can observe x, but not z or ǫ. Some forecaster(s)

submitted him forecasts F̂c , F̂r 1 and F̂r 2. (We are adding F̂xz for control purposes.) From examiner’s

point of view the suitable mode of calibration is conditional auto-calibration with respect to Ψ = σ(x).

Five different tests are used, which are based on the following moment conditions.

Test 1 EINT = 0 and E[INTx] = 0, where INT =Φ
−1(F̂ (y)).

Test 2 E[y − ŷ] = 0 and E[(y − ŷ)x] = 0, where ŷ = mean(F̂ ).

Test 3 E[INT2 −1] = 0.

Test 4 E[S−Ŝ] = 0 and E[(S−Ŝ)Ŝ] = 0, where S = S(F̂ , y) and Ŝ = S(F̂ , F̂ ) for the logarithmic scoring rule

S(F, y) = logF ′(y).

Test 5 E[Sx − Ŝx ] = 0, E[(Sx − Ŝx )Ŝ] = 0 and E[(Sx − Ŝx )Ŝx ] = 0, where Sx = S(F̂x , y) and Ŝx = S(F̂x , F̂ ).

Test 1 is a conditional location test based on INT values. Test 2 is a conditional location test based

directly on the target variable. Test 3 is an unconditional scale test based on INT values. Test 4 is a

predicted efficiency test and relates to the condition that the expected score is equal to the expected
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sharpness and can be interpreted as a test of correct sharpness. Finally Test 5 is a forecast encompassing

test against F̂x based on predicted efficiency (see conditions (20)). Tests 1 and 3 relate to probabilistic

calibration given x, Test 2 relates to marginal calibration given x, while Tests 4 and 5 are more general.

Test statistics are quadratic forms based onplain samplemomentswithweightingmatrices calculated

from the corresponding predicted variance-covariancematrices suggested by the forecasts. The statistics

are distributed asymptotically as chi-squared under auto-calibration.

We used simulations with 200 observations. The required moments in intractable cases were calcu-

lated by numerical integration.19 Table 1 shows the results on the expected logarithmic score, expected

sharpness, expectedmiscalibration, comparison of average logarithmic scores and rejection rates for five

calibration tests.

The expected logarithmic score shows the asymptotic potential of a forecast which becomes visible

when the number of observations tends to infinity. When a series of forecasts is not very long, imperfect

forecasts can obtain higher average scores than the ideal forecast. So “% best” row shows the percentage

of experiments in which the corresponding model had the highest average logarithmic score. It can be

seen that better recalibration increases sharpness and reduces miscalibration.

The basic combined forecast F̂c is underdispersed and F̂r 1 corrects this well-known problem (cf.

Gneiting and Ranjan, 2013 where the beta CDF is used for the same purpose). Test 3, indeed, frequently

signals inadequate unconditional dispersiveness in F̂c , while it shows rejection rate close to 5% for the

three recalibrated forecasts.

Recalibration of F̂c for both location and scale produces forecast F̂r 2, which does not show obvious

signs of either probabilistic or marginal conditional miscalibration. However, since it does not coincide

with the ideally recalibrated forecast F̂xz , it cannot be auto-calibrated. Indeed, Test 4 and 5 often signal

miscalibration.

Here partial miscalibration criteria (like tests for conditional probabilistic calibration) are not able

to signal miscalibration in F̂r 2 given x. Even though z is unobservable to the examiner directly, he can

use the characteristics of the forecast itself to detect miscalibration. It can be also seen from this ex-

ample that an encompassing predicted efficiency test can be useful in situations where the direction of

miscalibration is not obvious. If there exists some baseline forecast, then we can use it for miscalibration

diagnostics without additional analysis. Tests 4 and 5 use general moment conditions (2) of forecast cal-

ibration, and they cannot be reduced to testing conditional probabilistic or marginal calibration given x.

19 That is, Eg (y) ≈
´ ymax

ymin
g (t )dF (t ) ≈

∑M
i=1

g (yi −h/2)(F (yi )−F (yi −h)), where h = (ymax − ymin)/M , yi = ymin + i h. We

used ymin =−15, ymax = 15, M = 150 throughout.
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Thus, the concept of conditional auto-calibration can be important in practice, not only in theory.

5 Conclusion

In evaluation of probabilistic forecasts it is desirable to rely on fundamental concepts and theoretical

properties. Some of such concepts and properties were considered in this paper. In particular, before

testing forecast efficiency and calibration it is wise to understand what exactly is tested. Conditional

auto-calibration given an information set is an important fundamental concept which can be used.

The notion of conditional auto-calibration is closely connected to the notion of forecast efficiency,

which in this paper is defined via expected scoremaximization based on a proper scoring rule. While score

maximization can be viewed as the implicit basis of forecast evaluation, conditional auto-calibration is

an empirically relevant substitute condition.

An interesting aspect of connections between calibration and efficiency, which can provide helpful

intuition to a forecast examiner, is the principle of maximizing sharpness subject to calibration. The

concept of auto-calibration helps to derive this principle from expected score maximization.

Forecast efficiency, conditional marginal and probabilistic calibration, conditional auto-calibration

all can be expressed by various moment conditions, including orthogonality conditions. These condi-

tions lead to a general framework for evaluation of probabilistic forecasts. The framework can facilitate

construction of various new tests. This is exemplified by general forecast encompassing tests introduced

in this paper, including tests based on predicted efficiency condition.

The paper highlights the difference between conditional auto-calibration and the less general con-

cepts of conditional probabilistic calibration (PIT uniformity) and conditional marginal calibration. Im-

portantly, our results suggests that a great caution is required when using the condition of uniformity

and independence of PIT values as a definition of ideal calibration or efficiency. The moment conditions

described here can be used to extend forecast evaluation techniques to situations where this uniformity

and independence condition is not necessary or inappropriate.

One can never be sure that a forecast is conditionally auto-calibrated (probabilistically calibrated,

marginally calibrated). All of the theoretical results on sufficient moment conditions of calibration re-

quire the corresponding identities to be satisfied for arbitrary functions and arbitrary conditioning vari-

ables. This observation is closely related to the problem of choosing variables and functions for calibra-

tion testing. There is no guarantee that necessary and sufficient conditions of auto-calibration (8), (9)

or (10) can provide tests with good power. One can only state that an examiner utilizing such narrow
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conditions would not be fundamentally non-comprehensive. Perhaps, some more general tests based on

conditions (2) can be more powerful. However, the choice of test functions can be non-obvious. (Fore-

cast B in Example 2 is an illustration to this problem.)

Our view is that the problem is a fundamental one and there is no universal solution. Forecast eval-

uation is an art in the same sense that forecasting itself is an art. However, one can suggest a possible

broad strategy for a forecast examiner: try to build as good forecast as you yourself can or find some other

good forecast and use this baseline forecast to test forecast encompassing. Encompassing can relate to

a specific aspect like location or scale or be more general, e. g. based on some predicted efficiency con-

ditions. In general it is reasonable to start testing miscalibration in several obvious directions, but to

discover non-obvious miscalibration one has to be creative. Tests for location and scale are construc-

tive and suggest a direction of improvement. However, less specific tests, like tests based on predicted

efficiency conditions, can signal non-obvious miscalibration and can stimulate search in less obvious di-

rections. Even if we do not know immediately what to do with such knowledge of miscalibration, this is

not a good reason to be blind about it.
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Appendix A. Theorems and proofs

Theorem 6. For any forecast F̂ in a density forecasting situation PIT value F̂ (y) is a random variable, which

is measurable with respect to σ(F̂ , y). Moreover, σ(F̂ , y) =σ(F̂ , F̂ (y)).

Proof. Fix some real α ∈ [0,1]. Note that for any real q

(F̂ (y) ≤α) ⊆ (F̂ (q) ≤α)∪ (y ≤ q),

since values of F̂ are non-decreasing functions. Thus we have (F̂ (y) ≤α) ⊆Cα, whereCα =∩q∈Q((F̂ (q) ≤

α)∪(y ≤ q)). Note thatCα ∈σ(F̂ , y), because (F̂ (q) ≤α)∪(y ≤ q) ∈σ(F̂ , y) for each q . If F̂ (y) >α, then by
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continuity of values of F̂ there exists q ∈Q such thatα< F̂ (q) < F̂ (y). Consequently (F̂ (y) >α)∩Cα =;

andCα = (F̂ (y) ≤α). Thus, (F̂ (y) ≤α) ∈σ(F̂ , y) for any realα, which proves that F̂ (y) is measurable with

respect to σ(F̂ , y).

We thereby proved that σ(F̂ , F̂ (y)) ⊆σ(F̂ , y).

By the same logic in order to prove that σ(F̂ , y) ⊆ σ(F̂ , F̂ (y)) we prove that (y ≤ q) ∈ σ(F̂ , F̂ (y)) for

any q ∈ [a,b), where [a,b] is the region of strict monotonicity of values of F̂ . We similarly note that

(y ≤ q) ⊆ (F̂ (q) ≥α)∪(F̂ (y) ≤α) for any real α since values of F̂ are non-decreasing. Thus (y ≤ q) ⊆ Dq ,

where Dq =∩α∈Q((F̂ (q) ≥α)∪ (F̂ (y) ≤α)), Dq ∈σ(F̂ , F̂ (y)). If y > q for q ∈ [a,b), then F̂ (q) < F̂ (y) and

there exists α ∈Q such that F̂ (q) <α< F̂ (y). This proves thatDq = (y ≤ q) and (y ≤ q) ∈σ(F̂ , F̂ (y)).

Theorem 7. If a forecast F̂ is ideally calibrated with respect to Ψ∗, then it is conditionally auto-calibrated

with respect toΨ for anyΨ⊆Ψ
∗.

Proof. Since σ(Ψ, F̂ ) ⊆Ψ
∗ we have F(q|Ψ, F̂ ) =E[F(q|Ψ∗)|Ψ, F̂ ] =E[F̂ (q)|Ψ, F̂ ] = F̂ (q).

Theorem 8. If a forecast F̂ is conditionally auto-calibrated with respect toΨ, then it is marginally calibrated

givenΨ and (in a density forecasting situation) probabilistically calibrated givenΨ.

Proof. Marginal calibration follows from E(F(q |Ψ, F̂ )|Ψ) = F(q|Ψ) for q ∈R. From (1) for g = I{F (y) ≤ p}

and p ∈R it follows that F̂ (y)|Ψ, F̂ ∼U [0,1], because in a density forecasting situation the corresponding

ĝ is the value of theU [0,1] CDF at p. This entails F̂ (y)|Ψ∼U [0,1] (probabilistic calibration).

Theorem 9. If a forecast F̂ is marginally calibrated given Ψ, then for any n and any Ψ-measurable w it

satisfies

En(y, w) =E

ˆ ∞

−∞
n(t , w)dF̂ (t ).

Proof. Apply the law of iterated expectations to

E(n(y, w)|Ψ) =
ˆ ∞

−∞
n(t , w)dF(t |Ψ) =

ˆ ∞

−∞
n(t , w)dE(F̂ (t )|Ψ) =E

[ˆ ∞

−∞
n(t , w)dF̂ (t )

∣

∣

∣Ψ

]

.

Example 10. The actual distribution of y is described by its conditional distribution given w : F(q |w) =
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F ◦
w (q), where w = 1 or w = 2 with equal probabilities and

F ◦
1 (q) =



































3
2 q, q ∈ [0, 1

4 ],

1
2 q + 1

4 , q ∈ [ 1
4 , 3

4 ],

3
2 q − 1

2 , q ∈ [ 3
4 ,1],

F ◦
2 (q) =



































1
2 q, q ∈ [0, 1

4 ],

3
2 q − 1

4 , q ∈ [ 1
4 , 3

4 ],

1
2 q + 1

2 , q ∈ [ 3
4 ,1].

The forecast F̂ is also based on w : F̂ (q) = Fw (q), where

F1(q) =



































q, q ∈ [0, 1
2 ],

1
2 q + 1

4 , q ∈ [ 1
2 , 3

4 ],

3
2 q − 1

2 , q ∈ [ 3
4 ,1],

F2(q) =


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


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



q, q ∈ [0, 1
2 ],

3
2 q − 1

4 , q ∈ [ 1
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4 ],
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2 q + 1

2 , q ∈ [ 3
4 ,1].

Since 1
2 F ◦

1 (q)+ 1
2 F ◦

2 (q) = 1
2 F1(q)+ 1

2 F2(q) (= q for q ∈ [0,1]) and 1
2 F ◦

1 (F−1
1 (α))+ 1

2 F ◦
2 (F−1

2 (α)) =α, it can

be seen that F̂ is both marginally and probabilistically calibrated. However, σ(F̂ ) =σ(w) and thus for F̂

to be auto-calibrated we must have F̂ = F ◦
w which is not the case here.

Theorem 11. If forecast F̂ is Ψ-measurable and is either marginally calibrated or (in a density forecasting

situation) probabilistically calibrated with respect toΨ, then F̂ is ideally calibrated with respect toΨ.

Proof. For marginal calibration obviously F(q|Ψ) = E(F̂ (q)|Ψ) = F̂ (q). For probabilistic calibration

F(q|Ψ) =E(I{y ≤ q}|Ψ) =E(I{F̂ (y) ≤ F̂ (q)}|Ψ) = F̂ (q).

Theorem 12. If a forecast F̂ satisfies condition

E(r (y, F̂ )|Ψ) =E

[ˆ ∞

−∞
r (t , F̂ )dF̂ (t )

∣

∣

∣Ψ

]

for any r , then it is conditionally auto-calibrated with respect toΨ.

Proof. Let r (y,F ) = I{y ≤ q}a(w,F ), where a is some function with additional variablew playing the role

of a placeholder. For arbitrary q , a and w we must have

E[(I{y ≤ q}− F̂ (q))a(w, F̂ )|Ψ] = 0.

By the substitution property of conditional expectation fixed w here can be replaced by an arbitraryΨ-
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measurable random variable w . Then by the law of iterated expectations

E[(I{y ≤ q}− F̂ (q))a(w, F̂ )] = 0.

Since a here is arbitrary, it follows that

E[I{y ≤ q}− F̂ (q)|Ψ, F̂ ] = 0,

for any q ∈R which is equivalent to F̂ (q) = F(q|Ψ, F̂ ).

Theorem 13. Suppose that in a recursive one-step density forecasting situation each forecast F̂t , t = 1, . . . ,T

is auto-calibrated with respect to Ψt = σ(y1, . . . , yt−1, F̂1,, . . . , F̂t−1).20 Then (p1, . . . , pT ) ∼ U [0,1]T , where

pt = F̂t (yt ).

Proof. By Theorem8we have pt |Ψt ∼U [0,1]. Sinceσ(p1, . . . , pt−1) ⊆Ψt , it follows that pt |p1, . . . , pt−1 ∼

U [0,1]. Using this fact and starting induction from p1 ∼U [0,1] we obtain (p1, . . . , pT ) ∼U [0,1]T .

Theorem 14. Suppose that in a recursive one-step density forecasting situation each forecast F̂t , t = 1, . . . ,T

is Ψt -measurable, where Ψt = σ(y1, . . . , yt−1), and that (p1, . . . , pT ) ∼ U [0,1]T , where pt = F̂t (yt ). Then

each forecast F̂t is ideally calibrated with respect toΨt .

Proof. From (p1, . . . , pT ) ∼U [0,1]T it follows that pt |p1, . . . , pt−1 ∼U [0,1]. In a recursive one-step den-

sity forecasting situation if each F̂t isΨt -measurable we have by inductive application of Theorem 6

σ(p1, . . . , pt−1) =σ(y1, . . . , yt−1) =Ψt

and thus pt |Ψt ∼U [0,1]. By Theorem 11 this means that F̂t is ideally calibrated with respect toΨt .

Appendix B. Location and scale efficiency tests based on the GCsL score

The GCsL scoring rule is defined as

S(F, y) = γ(y) logF ′(y)+ (1−γ(y)) log(I1(F ))

20HereΨ1 is assumed to be the trivial σ-algebra.
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for a weighting function γ(y), where

I1(F ) =
ˆ ∞

−∞
(1−γ(t ))dF (t ).

Following the logic of subsection 3.2, it can be derived, that the location efficiency test corresponding to

the transformation (16) is a test of orthogonality between

−γ(y)ℓ̂′(y)− (1−γ(y))I2(F̂ )/I1(F̂ )

and some conditioning variable w , where ℓ̂(y) is the log-density corresponding to F̂ and

I2(F ) =
ˆ ∞

−∞
(1−γ(t ))ℓ′(t )dF (t ).

Indeed, for Fδ(y) = F (y −w ′δ) and ℓ(y) = log(F ′(y)) we have

S(Fδ, y) = γ(y)ℓ(y −w ′δ)+ (1−γ(y)) log(I1(Fδ)) ,

where

I1(Fδ) =
ˆ ∞

−∞
(1−γ(t ))dF (t −w ′δ) =

ˆ ∞

−∞
(1−γ(t ))exp(ℓ(t −w ′δ))d t .

Since

d

dδ
I1(Fδ) |δ=0=

ˆ ∞

−∞
(1−γ(t ))ℓ′(t )exp(ℓ(t ))d t · (−w) = I2(F ) · (−w),

we obtain

d

dδ
S(Fδ, y) |δ=0= γ(y)ℓ′(y) · (−w)+ (1−γ(y))I2(F )/I1(F ) · (−w).

Similarly a scale efficiency test corresponding to the transformation (17) is a test of orthogonality

between

−γ(y)ℓ̂′(y)(y − c(F̂ ))− (1−γ(y))I3(F̂ )/I1(F̂ )−1

and some variable w , where c(F ) is a central point of F and

I3(F ) =
ˆ ∞

−∞
(1−γ(t ))ℓ′(t )(t − c(F ))dF (t ).

For a numerical integration method needed to calculate I1, I2 and I3 see footnote 19.
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Appendix C. Riksbank’s and NIER’s forecasts of Swedish inflation

The Riksbank’s density forecasts of CPI inflation were prepared four times a year (at approximately quar-

terly frequency) and were published in the bank’s Inflation Report until 2006. Since 2007 they were pub-

lished in Monetary Policy Report three times a year with additional forecasts in Monetary Policy Updates.

We used the April Monetary policy update data to complement the Monetary Policy Report. There was a

one-time shift in publication dates. Also there was a gap due to missing 2006:4 issue of Inflation Report.

In 2004 the definition of the Swedish Consumer price index has changed. We used the old index for the

outcomes of the target variable up to December of 2004 (the data are from the 2004:4 issue of Inflation

Report ). The so called shadow version of CPI was used.

The forecasts were in the form of a two-piece normal distribution with the CDF given by















2σ1

σ1+σ2
Φ

(

y−µ
σ1

)

, y ≤µ,

1− 2σ2

σ1+σ2
Φ

(

− y−µ
σ2

)

, y >µ,

where Φ(·) is the standard normal CDF, µ is the mode of the distribution, σ1 as σ2 are the left and right

scaling parameters. Since 2007 the forecasts were in the form of a symmetric normal distribution (which

is a special case of a two-piece normal with σ1 = σ2). The numerical data for the boundaries of central

predictive intervals and the mode µ can be found on the Riksbank’s web site.21 The parameters σ1, σ2

were recovered from the boundaries and the mode by the nonlinear least squares.

The point forecasts of inflation by the National Institute of Economic Research (used for Riksbank’s

forecasts evaluation) were issued 4 times a year. With each Riksbank’s forecast we associate the nearest

potentially available NIER’s forecast, which correspond to the same target date. The data for the forecasts

issued from 2001 to 2010 are the same as used in NIER (2013) publication. More recent forecasts are

available from the NIER’s website.22

21http://www.riksbank.se.
22http://www.konj.se/757.html.
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