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Abstract. In this work, we extend the concept of Fault Tolerant Implementation of Eliaz (2002) to
the concept of Fault Tolerant Implementation in incomplete information environments. In particular, we
work in a domain where information is non-exclusive by choosing a model of pure exchange economy. As
in Eliaz (2002), we suppose the existence of at most k faulty players who do not act in an optimal way,
either because they do not understand the rules of the game or they make mistakes. We develop a new
concept of equilibrium, called k-Fault Tolerant Bayesian Equilibrium (k−FTBE) and a new concept of
implementation, called fault tolerant Bayesian implementation. In model of pure exchange economy, we
show that weak k- Bayesian monotonicity is a necessary condition for the implementation of social choice
correspondences in k−FTBE. We also introduce the no-exclusiveness information condition (k−NEI),
and we show that k-Bayesian monotonicity and k − NEI are sufficient conditions for implementation
when there are at least three players and the number of the faulty players is less then 1

2
n− 1.
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1 Introduction

Because of increased criticism with regard to the confidence of the classical implementation
theory on full rationality, Eliaz, in a recent paper (Review of Economic Studies (2002)) appears
to have tried to provide a partial answer to this criticism. It represents an attempt to incorporate
a model of bounded rationality in the implementation theory.

The standard approach to implementation supposes implicitly that each agent can choose
correctly its most preferred strategy. A question arises on the robustness of the standard models
when there are slight deviations of full rationality.

Eliaz (2002) supposes that all players are not always rational in their behavior. It may be
that there exists a certain number of players who are faulty in the sense that they do not act
in an optimal way because they do not understand the rules of the game or make mistakes.
The planner and the non-faulty players know only that there are at most k faulty players in
the population. However, they know neither the identity of the faulty players nor their exact
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number nor their behavior. Eliaz defined a new concept of equilibrium, called k-Fault Tolerant
Nash Equilibrium (k − FTNE). He showed that weak k-monotonicity is a necessary condition
and that k- monotonicity together the k-no veto power condition are sufficient conditions for
implementation in k − FTNE when there are at least three players and the number of faulty
players is less than 1

2n− 1.

In our work, we extend the concept of this literature in the environments of incomplete
information. We will try at the beginning to define a new concept of Bayesian equilibrium
when there exists at most k faulty players. Our equilibrium will be called, k-Fault Tolerant
Bayesian Equilibrium (k − FTBE). Next, we will define a new concept of implementation in
this equilibrium.

Generally, in environments of incomplete information, it is important to distinguish between
exclusive and non-exclusive information. If information is exclusive, it is impossible to detect
all false states on the part of individuals. If on the other hand information is nonexclusive, no
agent has exclusive private information, i.e., the information of each agent is superfluous in the
sense that it is implied by the collective information of the other agents. In this case, therefore
there are no incentive compatibility constraints.

Postelwaite and Schmeidler (1986), and Palfrey and Srivastava (1987) characterize implementable
social choice rules in the exchange economies in which information is not exclusive. Palfrey and
Srivastava (1989) examine implementation in exchange economies for which the players can
have exclusive information. Jackson (1991) extends these results with either the exclusive or
non-exclusive information in general economic environments.

When information is nonexclusive, the Bayesian monotonicity condition is necessary and
sufficient for the implementation in exchange economies when there are at least three players.
On the other hand, when information is exclusive, the Bayesian monotonicity condition is
insufficient for implementation, but it remains necessary. Palfrey and Srivastava (1989)
show that Bayesian monotonicity and incentive compatibility are two necessary conditions
for Bayesian implementation in exchange economies and they become sufficient with strong
incentive compatibility.

In this work, we will construct a model adapted from those of Postelwaite and Schmeidler
(1986), and Palfrey and Srivastava (1987). The information among the players is asymmetrical
and nonexclusive. We consider the existence at most k faulty players who are nonmajority
among the set of the players. The number and the identity of these faulty players are unknown
either by the planner or by the non-faulty players. It will be a natural extension from the
weak k-monotonicity and k- monotonicity of Eliaz to the weak k- Bayesian monotonicity and k-
Bayesian monotonicity. We show that in the nonexclusive information environment, k-Bayesian
monotonicity is sufficient for the implementation in k − FTBE when there are at least three
players and the number of the players faulty is less than 1

2n− 1 and that the weak k-Bayesian
monotonicity is a necessary condition.

The paper is organized as follows. The model and definitions are laid out in Section 2. In
section 3 and 4, we define new concepts of equilibrium and implementation. Section 5 establishes
the necessary an sufficient conditions for fault tolerant Bayesian implementation. We close with
concluding remarks.
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2 Model and Definitions

Let E be a pure exchange economy in incomplete information environments represented by the
list: {N,S, (Πi, U i, wi, qi(., .))i∈N}, where
N = {1, ..., n} is the set of agents in an exchange economy.
S = {s1, s2, ..., sr} is a finite set of states, each s ∈ S describes the set of agents, their
endowments, and their preferences. We assume that the number of agents and the aggregate
endowment are independent of the state.
Πi: is a partition of S which represents the structure of information of an agent i, the elements
of Πi are called: the events, each event Ei ∈ Πi is a maximal set of states that agent i cannot
distinguish. If the state is s, we suppose that the agent i knows only that the true state lies in
a set Ei(s) ⊂ S.
U i : Rl

+ × S 7−→ R is the utility function of agent i in state s. The set Rl
+ is the non-negative

consumption of the Euclidean space of dimension l, such that l represents the Arrow-Debreu
commodities in the economy. Consumption sets are the nonnegative orthant. The utility
function is assumed to be strictly increasing and bounded below for each s. We normalize
U i(0, s) = 0 for all i and s.
wi(s) : S 7−→ R

l
+: is a function that represents the initial allocation of the agent i. The initial

endowments are elements of Rl
+.

According to the neobayesian paradigm, every economic agent has a (prior) probability
distribution over S defined by qi, and we assume that qi(s) > 0. The conditional (posterior)
probability is given by

qi(t|Ei(s)) =

{
0 if t /∈ Ei(s),

qi(t)
qi(Ei(s))

if t ∈ Ei(s).

qi(t|Ei(s)): means that player i knows his own event, but does not know the events
of the other players. He evaluates the probabilities of these other players that having
several configurations of the events; these evaluations are recapitulated by the measurement
of probability qi.

In complete information environments, an allocation is a distribution of the aggregate
endowments among the agents, i.e., a profile a = (ai)i∈N where ai ∈ R

l
+ for all i ∈ N . The

feasible allocations set is denoted by

A =

{
a ∈ R

l
+ |

∑

i∈N

ai ≤
∑

i∈N

wi

}

Since states are not known, an allocation for agent i is not a point in A, but a social choice
function xi : S → R

l
+ that associates each state of the worlds a commodity vector . An

allocation is also called an allocation rule. The feasible allocations set is given by

A =

{
x ∈ R

l
+ |

∑

i∈N

xi ≤ w̄

}

where w̄ represents the aggregate endowments, w̄ ≫ 0.
Let X = {x : S → A } the set of all social choice functions. A social choice set is a subset

F ⊂ X. In other words, a social choice set is a collection of mapping from a set of states to a
feasible allocation set.
The concept of a social choice set differs from that of a social choice correspondence, i.e., a
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correspondence which associates the states to allocations. But, if the condition of closure 1 is
satisfied, the two concepts become equivalent.

We define a faulty player as Eliaz (2002). A player will be called faulty if he does not
act according to incentives. That is, given the strategies chosen by the other players, a faulty
player does not choose a strategy that leads to his most preferred outcome because he does not
understand the rules of the game or he makes errors.

We suppose that there exists in a population N at most k faulty players such that k is a
fixed number. Any subset of these players might play in an unpredictable manner. A non-faulty
player knows that he is non-faulty. But he cannot tell whether another player is faulty or not,
and he does not know the exact number of faulty players in N . He only knows that there cannot
be more than k faulty players in N . A faulty player does not know that it is faulty. The planner
only knows that there can be at most k faulty players. He cannot distinguish among the faulty
players and the non-faulty players in N .

In this work, in addition to uncertainty on the states of nature, we introduce uncertainty on
the nature of the players.

In our incomplete information environment, we suppose that if a player is faulty, he stays
faulty for all states of nature s ∈ S. Let pi : N 7−→ [0, 1] be a distribution of conditional
probability on nature of the players (faulty or non-faulty).

Let M be a random subset of agents such that M ⊆ N . Let M̃ be a random subset of
faulty players such that M̃ ⊆ N and | M̃ |= k̃ with k̃ ≤ k. Let Ñ = N \ M̃ a random subset of
non-faulty players.

Each player believes that he is not faulty and he gives a probability to each other player to
be faulty. Formally, this probability is measured by2

pi(j is faulty|i is non− faulty) =





∑
M̃,|M̃|≤k

p(M̃ |j∈M̃,i/∈M̃)
∑

M̃,|M̃|≤k
p(M̃ |i/∈M̃)

if k > 0,

0 if k = 0.

Because we need a concept of solution as well as results of a mechanism robust to deviations
of faulty players, we define the conditional probability of a player i on the nature of the other
players to be non-faulty by,

pi((j 6= i) ∈ Ñ |i ∈ Ñ) =





1−

∑
M̃,|M̃|≤k

p(M̃ |j∈M̃,i/∈M̃)
∑

M̃,|M̃|≤k
p(M̃ |i/∈M̃)

if k > 0,

1 if k = 0.

where Ñ and M̃ are events, in other words, random variables. A non-faulty player knows the
existence of an event which is constituted of at least n−k players, he knows also its membership
at this event, but, he does not know its members.

pi((j 6= i) ∈ Ñ |Ñ , i ∈ Ñ): means that player i knows the event to which it belongs, but
does not know the memberships of the other players. Therefore, he evaluates the probabilities
of these other players that having two events; these evaluations are summarized by an measure
probability pi.

1See definition in condition 2
2For example, suppose that N = {1, 2, ..., 7} and k = 2. Suppose also that i = 2

is non-faulty and j = 1 is faulty. Therefore, the random subset of faulty players M̃ =
{1}, {3}, {4}, {5}, {6}, {7}, {1, 3}, {1, 4}, {1, 5}, {1, 6}, {1, 7}, {3, 4}, {3, 5}, {3, 6}, {3, 7}{4, 5},
{4, 6}, {4, 7}, {5, 6}, {5, 7}, {6, 7}.Thus, pi(j = 1 is faulty|i = 2 is non− faulty) = 6

21
.
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A player i ∈ N evaluates the expected utility of xi after he uses its probability on nature of
the other players and its probability on the states of nature of the other players by using the
Bayes rule. The expected utility of allocation xi of a player i in state s with | M̃ |≤ k is,

V k
i (x, s) =

∑

t∈Ei(s)

pi(j 6= i ∈ Ñ |Ñ , i ∈ Ñ)qi(t | Ei(s))U i(xi(t), t).

The preference relation Ri is defined on X by xRi(Ei(s))y if and only if,

∑

t∈Ei(s)

pi(j 6= i ∈ Ñ |Ñ , i ∈ Ñ)qi(t | Ei(s))U i(xi(t), t)

≥
∑

t∈Ei(s)

pi(j 6= i ∈ Ñ |Ñ , i ∈ Ñ)qi(t | Ei(s))U i(yi(t), t).

The asymmetrical and symmetrical parts of Ri(Ei(s)) are noted respectively by P i(Ei(s))
and Ii(Ei(s)).

If k = 0, i.e., if all players are non-faulty, then the probability pi(j 6= i ∈ Ñ |Ñ , i ∈ Ñ) = 1.
Thus the expected utility V 0

i (x, s) becomes equivalent to classic expected utility

Vi(x, s) =
∑

t∈Ei(s)

qi(t | Ei(s))U i(xi(t), t).

For the implementation results, we need to put more structure on information in order to
simplify the model. Like Postelwaite and Schmeidler (1986), and also Palfrey and Srivastava
(1987, 1989), we give the following condition,

Assumption 1 (No Redundant States) .
∀M ⊆ N, |M |≥ k + 1, ∀i ∈M, ∀s ∈ S,

⋂
i∈M Ei(s) = {s}.

This condition ensures that any appropriate private information is taken by some agent in
the economy.

Assumption 2 (Closure) .
Denote by Π∗ =

∧
i∈N Πi the finest partition of S which is coarser than Πi for every i ∈ N .

We also call Π∗ the common knowledge partition of S. The element Π∗(s) of Π∗ containing s is
common knowledge at s. An event E is said to be common knowledge at s if Π∗(s) ⊂ E.

We define y to be the common knowledge concatenation of x1 and x2 if y(t) = x1(t) for
t ∈ E and y(t) = x2(t) for t /∈ E. If for any x1, x2 ∈ F , for any E ∈ Π∗, the common knowledge
concatenation y has the property y ∈ F , then F is said to satisfy closure.

Definition 1 (Mechanism) :
A mechanism Γ is an action space M = M 1 ×M 2... ×M n, and a function g : M −→ A. If
M i = Πi for all i, then (M , g) is direct mechanism.

Definition 2 (Pure strategy) :
A pure strategy for an agent i is a mapping σi : Πi →M i.
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For any state s, let σ be a vector of strategies such that σ(E(s)) = (σ1E1(s), ..., σn(En(s)));
σ = (σ1, ..., σn);σ−i = (σ1, ..., σi−1, σi+1, ..., σn) and g(σ) = (g(σ(E(s1))), ..., g(σ(E(sr)))). The
function g(σ) represent the social choice function which results if σ is played.

Definition 3 (Deception) :
A deception for an agent i is a function αi : Πi → Πi.

The name deception is derived from the fact that if αi is interpreted as a strategy in a revelation
mechanism, it indicates the event announced by i a function of the true event. The set of all
deceptions for an individual i is equivalent to the set of all available and possible strategies for i
in a direct mechanism, where the strategy which indicates the truth is quite simply the identity
deception.

Suppose that in a direct mechanism, each agent use deception αi, and at state s, each
individual i reports αi(Ei(s)) instead of Ei(s). Following Palfrey and Srivastava (1989), for
each state s, there are two possibilities:
i)
⋂

i α
i(Ei(s)) 6= Ø: In this case, the intersection is a singleton. Thus, the reports of the agents

are called compatible. In this case, the planner cannot tell whether anyone is lying.
ii)

⋂
i α

i(Ei(s)) = Ø: Means that the reports are incompatible. In this case, the planner can
infer that some agent must be lying about his event.

In general, some group of deceptions will lead to compatible reports and some will not. Thus,
the planner can prove effective incentives to prevent any equilibrium which involves incompatible
reports. This allows us to restrict attention to compatible reporting strategies. Formally, we
have the following definition of compatibility:

Definition 4 . A group of deceptions α = (α1, ..., αn), with αi : Πi → Πi, is compatible with Π
if for all (E1, ..., En) such that Ei ∈ Πi for all i,

⋂
iE

i 6= Ø⇒
⋂

i α
i(Ei) 6= Ø.

From assumption 1 and definition 4, we conclude that: ∀M ⊆ N, |M |≥ k+1, ∀i ∈M, ∀s ∈
S, α(s) =

⋂
i∈M αi(Ei(s)) for all α compatible with Π. We also define that: xα(t) = x(α(t)) =

x ◦ α(t), xα = (xα(s1), ..., xα(sr)).

3 k-Fault Tolerant Bayesian Equilibrium (k-FTBE)

A equilibrium can at best describe a certain mode of stable behavior by the players who are
potentially non-faulty. The planner must take into account that the players who prove to be
faulty behave in an unpredictable manner. These players can choose a strategy contrary to
their incentives.

Definition 5 (k-FTBE) : A profile of strategies σ∗ = (σ∗
1, ..., σ

∗
n) is a k-FTBE, if for all

s ∈ S, if no non-faulty player has incentive to deviate unilaterally from his equilibrium strategy
σ∗
i , independently of the identity and the strategies of the faulty players as long as there exists n-

k-1 non-faulty players who continue to play their equilibrium strategy σ∗
N\({i}∪M). Consequently,

for all i ∈ N , we must to have

g(σ∗
i , σ

∗
N\M∪{i}, σM )Ri(Ei(s))g(σi, σ

∗
N\M∪{i}, σM ),

∀σi : Π
i →M

i, ∀σM : ΠM →M
M , ∀M ⊆ N s.t. |M |≤ k

if k = 0, then 0− FTBE is a Bayesian equilibrium.
We denote the set of k − FTBE of the game (M , g) by Bk(s,M , g).
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4 Fault Implementation

We define the set of the strategies which are different at equilibrium strategies, and which are
able to be played by at most k-faulty players by

B(σ∗, k) = {σ′ : Π→M :| {i ∈ N : σ∗
i 6= σ′

i} |≤ k}.

We consider full implementation for non-faulty players, which requires that the sets of the
equilibrium outcomes of the mechanism for these players exactly coincide with the given social
choice set. This does not allow the existence of any undesirable equilibrium in the mechanism.

Definition 6 :
In an economy, a social choice set is (full) implementable in k-FTBE if there is a mechanism
Γ = (M , g) such that:
i) For any x∗ ∈ F , there exists a k-FTBE σ∗ for (M , g) such that g(σ∗) = x∗,
ii) If σ∗ is a k-FTBE for (M , g), then g(σ∗) ∈ F ,
iii) For each σ∗ ∈ Bk(s,M , g), g(B(σ∗, k)) ∈ F .

A social choice set F is implementable in k − FTBE if there exists a mechanism (M , g)
which implements F in this equilibrium.

5 Necessary and sufficient conditions

In this section, we present the necessary and sufficient conditions that characterize the social
choice set that can be implemented in k − FTBE, as long as the number of faulty players is
not a majority.

5.1 Necessity

We begin by the following definition,

Definition 7 (Weak k-Bayesian monotonicity):
A social choice set F is weakly k-Bayesian monotonic if for any deception α compatible with
Π, if whenever x∗ ∈ F and x∗α /∈ F , ∃M ⊆ N, | M |≥ k + 1 et ∃y : S → A such that
∀i ∈ M , there exists an allocation xi ∈ F that satisfy xiRi(α(Ei(s)))y, and for at least one
player j ∈M, yαP

j(Ej(s))xjα. 3

In some mechanism, if an equilibrium outcome lie in a social choice set and this equilibrium
outcome, generated by the group deception, do not, then there are at least k + 1 players, each
of whom previously considered one of the chosen outcomes to be at least as good as some given
outcome, but at least one of these players reversed this relation.

Theorem 1 .
If a social choice set F is implementable in k-FTBE, then F satisfies weak k-Bayesian
monotonicity.

Proof. Let F be a social choice set k−FTBE implementable and x∗ ∈ F . Thus, there exists
a mechanism Γ = (M , g) that implements it and there exists a k − FTBE σ∗ ∈ Bk(s,M , g)
with g(σ∗) = x∗,

3There is a difference between xi and xi. The notation xi means the chosen allocation by the player i while
xi means the part of the player i.
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We suppose that for some deception α compatible with Π, x∗α /∈ F . Suppose that g(σ∗
α) = x∗α.

Since F is implementable in k − FTBE, the profile of strategies σ∗
α cannot be a k − FTBE,

i.e., σ∗
α /∈ Bk(g,M , s). Then, there exist a subset M̃ ⊆ N such that | M̃ |= k̃ ≤ k, a player

j ∈ N \ M̃ , a state s′ and a profile of strategies (σ′
j , σ

′
M̃
), such that:

g(σ′
j , σ

∗
N\(M̃∪{j})

◦ α, σ′
M̃
)P j(Ej(s′))g(σ∗

j ◦ α, σ
∗
N\(M̃∪{j})

◦ α, σ′
M̃
). (1)

We define a profile of constant strategy (σj(E
j(t)), σ

M̃
(Ej(t))) = (σ′

j , σ
′
M̃
) for all t. Then, we

have:
g(σj , σ

∗
N\(M̃∪{j})

◦ α, σ
M̃
)P j(Ej(s′))g(σ∗

j ◦ α, σ
∗
N\(M̃∪{j})

◦ α, σ
M̃
). (2)

If | M̃ |= k̃ < k. Let M̃k ⊆ N \ {j} such that: M̃ ⊆ M̃k, | M̃k |= k and σ
M̃k =

((σi)i∈M̃ , (σ∗
i )i∈M̃k\M̃

),

Then the equation (2) becomes:

g(σj , σ
∗
N\(M̃k∪{j})

◦ α, σ
M̃k)P

j(Ej(s′))g(σ∗
j ◦ α, σ

∗
N\(M̃k∪{j})

◦ α, σ
M̃k). (3)

Since σ∗ ∈ Bk(g,M , s), then each i ∈ M̃k ∪ {j} satisfies:

g(σ∗
i , σ

∗
N\(M̃k∪{j})

, σ
(M̃k∪{j})\{i}

)Ri(α(Ei(s)))g(σ∗
j , σ

∗
N\(M̃k∪{j})

, σ
M̃k). (4)

We define
yα = g(σj , σ

∗
N\(M̃k∪{j})

◦ α, σ
M̃k), and

xjα = g(σ∗
j ◦ α, σ

∗
N\(M̃k∪{j})

◦ α, σ
M̃k), the equation (3) becomes: yαP

j(Ej(s′))xjα

We define xi = g(σ∗
i , σ

∗
N\(M̃k∪{j})

, σ
(M̃k∪{j})\{i}

) , y = g(σ∗
j , σ

∗
N\(M̃k∪{j})

, σ
M̃k) and M = (M̃k ∪

{j}), then the equation (4) becomes: xiRi(α(Ei(s)))y ∀i ∈ M . From the definition of
B(σ∗, k), it follows that : xi ∈ g(B(σ∗, k)) for all i ∈ M . By the part (iii) of the definition of
implementation (Definition 6), we have xi ∈ F for all i ∈ M , and by consequent, F is weakly
k-Bayesian monotonic. Q.E.D.

5.2 Sufficiency

In this subsection, we state and prove our second main result. We begin by introducing the
following condition,

Definition 8 (k-Bayesian monotonicity (k −BM)) :
A social choice set F is k- Bayesian monotonic if for all α compatible with Π such that x ∈ F ,
if xα /∈ F , then ∃M ⊂ N and y : S → A such that | M |≥ k + 1, each i ∈ M satisfies
xRi(αi(Ei(s)))y ∀s ∈ S and at least one player j ∈M satisfies yαP

j(Ej(s))xα.

Observation 1: If social choice set is k- Bayesian monotonic, it is also weakly k- Bayesian
monotonic.

Observation 2: If k = 0, 0-Bayesian monotonicity is quite simply the classical Bayesian
monotonicity which is defined by Postlewaite and Schmeider (1986), and Palfrey and Srivastava
(1987). Thus, we conclude that k-Bayesian monotonicity implies Bayesian monotonicity.

Assumption 3 (k-Non-Exclusive Information (k −NEI)) :
Let n ≥ 3. ∀M ⊆ N, |M |≥ k + 1, ∀i ∈M, ∀s ∈ S,

⋂
j∈M\{i}E

j(s) = {s}.
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This condition requires that if there are M agents in the economy such that M ⊆ N ,
|M |≥ k + 1, then, each group M − 1 agents have complete information collectively.

Theorem 2 :
Let n ≥ 3, k + 1 < n

2 and F 6= Ø. If a social choice set F satisfies k-BM and k-NEI, then
F is implementable in k-FTBE.

where F 6= Ø mean that x ∈ F ⇒ xi(s) 6= 0 for all i,s .

a) Definition of the mechanism4

If k = 0, then our mechanism becomes quite simply the mechanism of Postelwaite and
Schmeidler (1986). Thus, we study the case where k > 0. We construct the following mechanism
which to implement F in k − FTBE.

Let M i = Πi ×X × N, where
Πi: Represent the information of an agent,
X : The set of the all feasible allocation rules,
N : The set of non-negative integer,

and M = M 1 ×M 2 × ...×M n.
The outcome function g : M −→ A is defined by the four following rules:

Rule 1: If for a set M of at least n− k agents agree on a state s such that
⋂

i∈M Ei = {s}
and announce (Ei, x, 0), such that x ∈ F , then g(m) = x(s).

Rule 2 : If for some set M of k faulty players and for some one τ non faulty player, the
other n − k − 1 agents announce (E(s), x, 0) such that x ∈ F ,

⋂
i∈M\{τ}E

i = {s}, where
|M |= n− k and the set of k + 1 announce (E(s), y, 1) 6= (E(s), x, 0), then:

g(m) =

{
y(s) if xRi′(α(Ei′(s)))y, ∀i′ ∈ (M ∪ {τ}), ∀s ∈ S, s.t.

⋂
i∈M\{τ}E

i = {s},

x(s) if yP i′(α(Ei′(s)))x, ∃i′ ∈ (M ∪ {τ}), ∃s ∈ S, s.t.
⋂

i∈M\{τ}E
i = {s}.

Rule 3 : 3-a): If at most n − k agents are in disagreement about the same sate such that⋂
i∈M Ei = Ø or ∃i ∈M with |M |≤ n− k, such that n 6= 0 or xi 6= x, then: g(m) = 0.

3-b): If for all sets constituted of k faulty agents and of a non-faulty agent, says τ , the
other n − k − 1 agents are in disagreement about the same state, i.e., there exists at least an
agent τ̂ ∈ Ñ\{τ} who does not agree on the state, therefore (

⋂
i∈M\(τ∪τ̂}E

i(t))
⋂
E τ̂ = Ø with

|M |= n− k, or, (xτ̂ , nτ̂ ) 6= (x, o), then: g(m) = 0.

Rule 4 : In the all other cases,

gi(m) =

{
xj

∗
(s) if nj∗ ≥ ni ∀i ∈ N,

0 otherwaise.

where xj
∗
= w

l , such that l is number of the players having the greatest integer.

b) Explanation of the mechanism

4Our mechanism is adapted to those of Postelwaite and Schmeidler (1986), Palfrey and Srivastava (1989) in
the incomplete information environments and to that of Eliaz (2002) in complete information.
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In the above mechanism, each message of an agent contains: a report concerning its own
event 5, an allocation rule and an integer number.

Initially, in rule 1, if the reports of the non-faulty players agree on a state s and if these
players request the same allocation rule and zero, then we would prefer that this rule is the
outcome independently of the behavior of the faulty players. Since we have at least a group of
n− k non-faulty players, rule 1 guarantees the determination of the outcome.

The rule 2 studies how us should proceed if there exist exactly a set of k + 1 players which
deviates and sends a message which contains y ∈ F and the number ”1”, whereas the others
(N − k − 1 players) request the same allocation x ∈ F , an event and zero. If this last group
which constitutes the majority agrees on a allocation rule, the outcome should be to determine
by the group of k + 1 players (the minority) only if it is truthful. This condition is met only
if the minority prefers x at its own report for all its possible types, it obtains its will and the
result will be y(s). In the contrary case, the choice of minority must be neglected.

The rule 3 studies two situations. The first, when at least n− k players are in disagreement
on the same state. second situation, when for any set of k+1 players, the others n−k−1 are in
disagreement on the same state. In these situations, there are some messages of disagreement
where the planner cannot detect the player who ”causes” this disagreement, thus, each player
is severely punished and it receives zero.

When the majority of the players are in disagreement among them selves, there is no
possibility of checking which is truthful and which is not. Consequently, we would like to
prevent the strategies of disagreement which bring undesirable equilibrium outcomes. whenever
the majority choose different strategies, the rule 4 guarantees that there is one player with an
incentive to deviate. This player reports the highest integer and receives all the resources.

Lemma 1 :
If a profile of strategies σ is a k − FTBE for the mechanism Γ, then, ∀s ∈ S, the equilibrium
outcomes g(σ(E(s))) come from rule 1.

Proof. Let σ be a k − FTBE for the mechanism Γ. Let us show that ∀s ∈ S, the
equilibrium outcomes g(σ(E(s))) come from rule 1. Suppose not. Therefore, ∃s ∈ S such
that the equilibrium outcomes g(σ(E(s))) do not come from rule 1. Then, there exists three
cases to be considered:

Case 1. ∃s ∈ S and there is a set of k + 1 players such that the equilibrium outcomes
g(σ(E(s))) come from rule 2. In this case the n− k− 1 players are an agreement on same triple
(E(s), x, 0) and the set of k+1 (minority) announce different triple (E(s), y, 1) such that y 6= x.

Since n ≥ 3 and k + 1 < n
2 , ∃j ∈ N \ (M ∪ {τ}) where τ ∈ Ñ , such that: gj(σ(E(s))) < w̄.

(1)
But, the player j can move from rule 2 to rule 4 by changing its integer to higher integer.

We define for this player the vector:

σ̃j(Ej(t)) =

{
(Ej(s), x, nj) si t ∈ Ej(s),
σj(Ej(t)) si t /∈ Ej(s).

where nj > ni, ∀i 6= j, ∀t ∈ S. We define also σ̃(E(s)) = (σ−j , σ̃j)(E(s)). Therefore, the
outcomes g(σ̃(E(s))) come from rule 4. Thus, gj(σ̃(E(s))) = xj

∗
= w̄. From inequality (1), we

have: gj(σ̃(E(s))) > gj(σ(E(s))).
Now, we consider all t ∈ Ej(s) and we show that gj(σ̃(E(t))) ≥ gj(σ(E(t))).

5As in the case of the mechanism in complete information, the players who report an event as if they report
a subset of possible preference profiles, thus, all players are invited to indicate that they know about the others,
as well as they know about them selves.
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α) If g(σ(E(t))) comes from rule 1 and if we suppose that x ∈ F for at least n− k players,
then gj(σ(E(t)) = xj(t). Therefore, g(σ̃(E(t))) comes from rule 4, thus, gj(σ̃(E(t)) = xj

∗
(t) ≥

gj(σ(E(t)), in this case j receives w̄ and there is at least as well off.
β) If g(σ(E(t))) comes from rule 2 where there exists a minority of players constituted of

k-faulty players and one non-faulty player, says τ , then the equilibrium outcomes g(σ̃(E(t)))
come from rule 4 because nj > ni for all i ∈ N , in this case j obtains w̄ and there is at least as
well off.

γ) If g(σ(E(t))) comes from rule 3, then gj(σ(E(t)) = 0, thus, j can not possibly be worse
off.

δ) If g(σ(E(t))) come from rule 4, then g(σ̃(E(t))) comes from rule 4, in this case j obtains
w̄ and there is at least as well off.

Therefore, if for some s, g(σ(E(s))) comes rule 2, σ cannot be an equilibrium, a contradiction.
Case 2. ∃s ∈ S such that the equilibrium outcomes g(σ(E(s))) come from rule 3. In this

case, there exists j such that gj(σ(E(s)) = 0. We define σ̃j and σ̃ = (σ−j , σ̃j) as in case 1. We
can show easily that the player j is strictly better off by using σ̃j .

Case 3. ∃s ∈ S such that the equilibrium outcomes σ(E(s)) come from rule 4. We define
σ̃j and σ̃ = (σ−j , σ̃j) of the same way for some player j and we show that j is strictly better
off by using σ̃j .

Thus, σ cannot be a equilibrium.

c) Proof of the theorem.

Step 1: We show that ∀x ∈ F , the strategies vector σ∗
i = (Ei(s), x, 0), ∀i ∈ N and ∀s ∈ S

is a k − FTBE.

Let x ∈ F for some E(s) ∈ Π. Suppose that all players use the strategies vector σ∗
i =

(Ei(s), x, 0) for all i ∈ N and for all s ∈ S. Let us show that the profile de strategy σ∗ =
(σ∗

1, σ
∗
2, ..., σ

∗
n) is a k−FTBE of game (g, S), i.e., ∀M ⊆ N such that |M |≤ k, ∀σi : Π

i →M i

and ∀σM : ΠM →MM , g(σ∗
i , σ

∗
N\{M}∪{i}, σM )Ri(Ei(s))g(σi, σ

∗
N\{M}∪{i}, σM ).

To verified that σ∗ is effectively a k − FTBE of M , we consider an unilateral deviation by
non-faulty player, i.e., ∃M ⊆ N such that | M |≤ k, ∃τ ∈ N , ∃στ : Πτ → M τ and ∃σM :
ΠM → MM , such that:g(στ , σ

∗
N\{M}∪{τ}, σM )P τ (Eτ (s))g(σ∗

τ , σ
∗
N\{M}∪{τ}, σM ). We show that

this deviation is not profitable.
We define the deviation of player τ at state s by: στ (E

τ (s)) = (Eτ (s), x′, n′) 6= (Eτ (s), x, 0).
There is three cases to consider:

Case 1: For all i ∈ N\M with | N\M |= n−k, if x′ 6= x, n′ = 1 and
⋂

i∈N\(M∪{τ})E
i 6= Ø,

the equilibrium outcomes g(στ , σ
∗
N\M∪{τ}, σM ) come from rule 2. Thus, if for all i ∈ (M ∪

{τ}), for all s ∈ S, xRi(α(Ei(s)))y, then, by rule 2, g(στ , σ
∗
N\M∪{τ}, σM ) = y. Therefore,

g(σ∗)Rig(στ , σ
∗
N\M∪{τ}, σM ). If there is i ∈ (M ∪ {τ}) and s ∈ S such that yP i(α(Ei(s)))x,

then, by rule 2, g(στ , σ
∗
N\M∪{τ}, σM ) = x. Therefore, g(σ∗)Iig(στ , σ

∗
N\M∪{τ}, σM ), (by the

k −NEI condition, the incentive constraints are not posed in pure exchange economies).

Case 2: For all i ∈ N\M with | N\M |= n−k, if (x′, n′) 6= (x, 0) or
⋂

i∈N\(M∪{τ})E
i = Ø,

the equilibrium outcomes g(στ , σ
∗
N\M∪{τ}, σM ) come from rule 3−b. Therefore, g(στ , σ

∗
N\M∪{τ}, σM ) =

0 and the player τ receives 0. Thus, the player τ submit (Eτ (s), x, 0) instead of (Eτ (s), x′, n′).

Case 3: For all i ∈ N\M with | N\M |= n − k, if
⋂

i∈N\M Ei = Ø, then, we apply rule

(3-a), the player τ receives 0. Thus, the player τ submit (Eτ (s), x, 0) instead of (Eτ (s), x′, n′).
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From cases 1, 2 and 3, we conclude that σ∗ is a k − FTBE.

Step 2: We show that if σ∗ is a k − FTBE, then:
1) x∗ = g(σ∗) ∈ F .
2) ∀σ ∈ B(σ∗, k), g(σ) ∈ F .

Sub-step 2.1: We show that if σ∗ is a k − FTBE, then x∗ = g(σ∗) ∈ F .

Let σ∗ be a k − FTBE for the mechanism Γ such that σ∗ is defined by σ∗
i (E

i(s)) =
(Ei(s), x∗, 0) for at least n− k players and for all s ∈ S. By Lemma 1, ∀s ∈ S, the equilibrium
outcome g(σ∗) come from rule 1. Since F satisfies closure, then x∗ ∈ F .

We consider α∗
i (E

i(s)) for all i ∈ N and for all s ∈ S such that α∗ is a deception. Then by
definition of mechanism, g(σ∗) = x∗α∗ . We show that g(σ∗) = x∗α∗ ∈ F .
Suppose not. Therefore, x∗α∗ /∈ F . Since F is k-Bayesian monotonic, ∃M ⊂ N, s ∈ S and
y : S → A such that | M |≥ k + 1, who satisfies x∗Ri(α∗

i (E
i(s)))y for all i ∈ M and ∃j ∈ M

such that yα∗P j(Ej(s))x∗α∗ . Then, by using the strategy σ∗
j , player j does not have better

response when observes Ej(s). Thus, if k player of subset M \ {j} use the strategy σ′ : Π→M

with σ′(α∗(E(s))) = (α∗(E(s)), y, 1) and the remainder of players use the strategy σ∗, then if
at Ej(s), player j reports (α∗

j (E
j(s)), y, 1), it will move from 1 to rule 2 and it will have the

outcome yα∗ . This contradicted our condition which is σ∗ ∈ k − FTBE. Then x∗α∗ ∈ F .

Sub-step 2.2: We show that if σ∗ is a k − FTBE, then ∀σ ∈ B(σ∗, k), g(σ) ∈ F .
Since σ∗ is a k−FTBE for mechanism Γ, then from lemma 1, ∀s ∈ S, the equilibrium outcomes
g(σ∗) come from rule 1. Therefore, we can represent the strategy vector σ∗ in the following
way:
σ∗ = ((E1, x∗, 0), (E2, x∗, 0), ..., (Ej , x∗, 0), ..., (En−k, x∗, 0), (E1, x1,m1), ...,
(Eh, xh,mh), ..., (Ek, xk,mk)) and x∗ = g(σ∗) ∈ F . Let M ⊂ N be a subset of k players. Let
σ ∈ B(σ∗, k), if
σ = ((E1, x∗, 0), (E2, x∗, 0), ..., (Ej , x∗, 0), ..., (En−k, x∗, 0), (E′1, x′1,m′1), ...,
(E′h, x′h,m′h), ..., (E′k, x′k,m′k)), then in this case, the members of subset M deviate in k
positions and them equilibrium outcomes g(σ) come from rule 1, i.e., g(σ) = x∗ ∈ F .
Suppose not. The strategy vector σ∗ is a k − FTBE and ∃σ ∈ B(σ∗, k), g(σ) /∈ F , or quite
simply σ∗ is a k − FTBE and ∃σ ∈ B(σ∗, k) such that the equilibrium outcome g(σ) does not
come from rule 1, then, there exists three cases to considerer:

Case 1: ∃s ∈ S such that the outcome g(σ) comes from rule 4 of mechanism Γ and
g(σ) 6= x∗. Suppose that ∃j ∈ N\M such that gj(σ∗) < w, ∃h ∈M and M ⊆ N\{j}. Let
σ̃ = ((E1, x∗, 0), (E2, x∗, 0), ..., (Ẽj , x̃j , m̃j), ..., (En−k, x∗, 0), (Ẽ1, x̃1, m̃1), ...,
(E′h, x′h,m′h), ..., (Ẽk, x̃k, m̃k)), profile of strategies in which members of subset ({j} ∪ (M\h))
deviate in k positions such that player j announce triple (Ej , x̃j , m̃j) where m̃j > mi

∀i ∈ N\{j} and player h keeps his triple (E′h, x′h,m′h). Thus, σ̃ ∈ B(σ∗, k) and by rule 4,
gj(σ̃) = w > gj(σ∗) at state s.

Now, we consider all t ∈ Ej(s) and we show that gj(σ̃) ≥ gj(σ∗). There is four subcases to
consider:

Subcase 1: If the outcome g(σ(E(t))) comes from rule 1, then g(σ̃(E(t))) comes from rule
4. Therefore, g(σ̃j(E(t))) = w ≥ gj(σ∗(E(t))).

Subcase 2: If the outcome g(σ(E(t))) comes from rule 2, then ∃M ′ ⊂M of k′ players, with
k′ < k et ∃τ ∈ N\M ′ such that the subset (M ′∪{τ}) announce triple (E′, y, 1) 6= (E, x∗, 0), with
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y = x′1 = ... = x′h = ... = x′k and 1 = m′1 = ... = m′h = ... = m′k. Therefore, for j ∈ N\M ′

who announce triple (Ej , x̃j , m̃j) where m̃j > mi ∀i ∈ N\{j}, if j = τ , then g(σ̃(E(t))) comes
from rule 2 and gj(σ̃(E(t))) = gj(σ∗(E(t))).

If j 6= τ , then:

gj(σ∗(E(t))) =

{
yj(t) if xRi′(α(Ei′(t)))y, ∀i′ ∈ (M ′ ∪ {τ}), ∀t ∈ S, t.q.

⋂
i∈N\(M′∪{τ}) E

i = {t},

xj(t) if yP i′(α(Ei′(t)))x, ∃i′ ∈ (M ′ ∪ {τ}), ∃t ∈ S, t.q.
⋂

i∈N\(M′∪{τ}) E
i = {t}.

In this case g(σ̃(E(t))) comes from rule 4 and gj(σ̃(E(t))) = w, by feasibility gj(σ̃(E(t))) ≥
yj(t) or gj(σ̃(E(t))) ≥ xj(t), therefore gj(σ̃(E(t))) ≥ gj(σ∗(E(t))).

Subcase 3: If the outcome g(σ(E(t))) comes from rule 3, then gj(σ(E(t))) = 0. Thus, player
j cannot have a negative result.

Subcase 4: If the outcome g(σ(E(t))) come from 4, then g(σ̃(E(t))) come from rule 4. Thus,
g(σ̃(E(t))) ≥ g(σ∗(E(t))).

Therefore, in case, g(σ̃(E(s)))P j(E(s))g(σ∗(E(s))), a contradiction, because σ∗ is a k −
FTBE.

Case 2: ∃s ∈ S such that the outcome g(σ) come from rule 3 of mechanism Γ and g(σ) 6= x∗,
in this case g(σ) = 0. We have σi = σ∗

i ∀i ∈ N\M . Thus, for a player j ∈ N\M , gj(σ∗) = 0.
Suppose that ∃h ∈M and M ⊆ N\{j}.
Let σ̃ = ((E1, x∗, 0), (E2, x∗, 0), ..., (Ẽj , x̃j , m̃j), ..., (En−k, x∗, 0), (Ẽ1, x̃1, m̃1), ...,
(E′h, x′h,m′h), ..., (Ẽk, x̃k, m̃k)), profile of strategies in which the members of subset ({j} ∪
(M\h)) deviate in k positions such that player j announce triple (Ej , x̃j , m̃j) where m̃j > mi

∀i ∈ N\{j}, player h keeps his triple (E′h, x′h,m′h). Thus σ̃ ∈ B(σ∗, k) and by rule 4, gj(σ̃) =
w > gj(σ∗) at state s.

We consider all t ∈ Ej(s). We show in the same way as in case 1 that gj(σ̃) ≥ gj(σ∗)
considering four subcases.

Therefore, in case 2, g(σ̃(E(s)))P j(E(s))g(σ∗(E(s))), a contradiction, because σ∗ is a
k − FTBE.

Case 3: ∃s ∈ S such that the outcome g(σ) come from rule 2 of mechanism Γ and g(σ) 6= x∗,
there exists M ′ ⊂M of k′ players, with k′ < k and ∃τ ∈ N\M ′ such that the subset (M ′ ∪{τ})
announce triple (E′, y, 1) 6= (E, x∗, 0), with y = x′1 = ... = x′h = ... = x′k and 1 = m′1 = ... =
m′h = ... = m′k. Soit σ̃ a profile of strategies in which some player j ∈ N\(M ′ ∪ {τ}) announce
triple (Ej , x̃j , m̃j) where m̃j > mi ∀i ∈ N\{j}. Let h ∈ M ′ a player who keeps his triple
(E′h, x′h,m′h). Thus, the subset of players ({j} ∪M ′\{h}) deviate in k′ positions. Therefore,
σ̃ ∈ B(σ∗, k). We have σi = σ∗

i ∀i ∈ N\(M ′ ∪ {τ}) and σ̃i = σi ∀i ∈ N\({j} ∪M ′\{h}). By
rule 4, gj(σ̃) = w > gj(σ∗) at state s.

As in case 1, for all t ∈ Ej(s), we need to show that gj(σ̃) ≥ gj(σ∗).
Therefore, in case 2, g(σ̃(E(s)))P j(E(s))g(σ∗(E(s))), a contradiction, because σ∗ is a k −

FTBE. Q.E.D.

5.2.1 Applications of k − FTBE implementability

Application 1. An allocation x∗ : S → A is interim no-envy (INe) if for all i, j, s,∑
t∈Ei(s) p

i(j 6= i ∈ Ñ |Ñ , i ∈ Ñ)qi(t | Ei(s))U i(x∗i (t), t) ≥∑
t∈Ei(s) p

i(j 6= i ∈ Ñ |Ñ , i ∈ Ñ)qi(t | Ei(s))U i(x∗j (t), t).

Proposition 1 .
Let 0 ≤ k < n. The interim no-envy INe satisfies k-Bayesian monotonicity.
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Proof. For 0 ≤ k < n, we show that INe satisfies k-Bayesian monotonicity. Let α a
deception compatible with Π. Let x∗ ∈ INe but x∗α /∈ INe.
x∗α /∈ INe implies that there exists i, j, s such that∑

t∈Ei(s) p
i(j 6= i ∈ Ñ |Ñ , i ∈ Ñ)qi(t | Ei(s))U i(x∗jα(t), t) >∑

t∈Ei(s) p
i(j 6= i ∈ Ñ |Ñ , i ∈ Ñ)qi(t | Ei(s))U i(x∗iα(t), t).

Consider the allocation y for all t ∈ S,

yh(t) =





x∗h(t) if h 6= i, j
x∗j (t) if h = i (1)

x∗i (t) if h = j

It is clear that y ∈ A . Thus, we have by construction∑
t∈Ei(s) p

i(j 6= i ∈ Ñ |Ñ , i ∈ Ñ)qi(t | Ei(s))U i(yiα(t), t) >∑
t∈Ei(s) p

i(j 6= i ∈ Ñ |Ñ , i ∈ Ñ)qi(t | Ei(s))U i(x∗iα(t), t). (2)

It remains to show that for 0 ≤ k < n, there exists M ⊆ N with | M |≥ k + 1 such that
M ⊇ {i} and the expected utility for all player i of set M for allocation x∗i at state t′ is greater
than the expected utility for some given allocation yi at state t′. We have x∗ ∈ INe. Thus, by
definition, for all i, j, s,∑

t′∈Ei(s′) p
i(j 6= i ∈ Ñ |Ñ , i ∈ Ñ)qi(t′ | Ei(s′))U i(x∗i (t

′), t′) ≥
∑

t′∈Ei(s′) p
i(j 6= i ∈ Ñ |Ñ , i ∈ Ñ)qi(t′ | Ei(s′))U i(x∗j (t

′), t′). (3)

From (1), we have for all i, j, s′,∑
t′∈Ei(s′) p

i(j 6= i ∈ Ñ |Ñ , i ∈ Ñ)qi(t′ | Ei(s′))U i(x∗i (t
′), t′) ≥

∑
t′∈Ei(s′) p

i(j 6= i ∈ Ñ |Ñ , i ∈ Ñ)qi(t′ | Ei(s′))U i(yi(t
′), t′). (4)

Thus, by taking M ≡ N , we complete the proof. Q.E.D.

Application 2. Let β∗ : S → R+ be a price function such that β∗ 6= 0. Let x∗ be an
allocation rule such that x∗ ∈ A . Let wi be the endowment of each player i ∈ N with wi > 0.
The pair (β∗, x∗) is a Constrained Rational Expectation Equilibrium (CREE) if:

1. β∗(s)x∗i ≤ β∗(s)wi(s) for all s ∈ S and for all i ∈ N ,

2. Measurability of allocation with respect to prices: For each agent i and each t ∈ Ei(s),
β∗(t) = β∗(s)⇒ x∗i (t) = x∗i (s),

3.
∑

t∈Ei(s)

pi(j 6= i ∈ Ñ |Ñ , i ∈ Ñ)qi(t | Ei(s))U i(x∗i (t), t) ≥

∑
t∈Ei(s)

pi(j 6= i ∈ Ñ |Ñ , i ∈ Ñ)qi(t | Ei(s))U i(yi(t), t) for all s ∈ S, for all i ∈ N and all

yi(s) such that yi(s) ≤ w and β∗(s)yi(s) ≤ β∗(s)wi,

4.
∑

i∈N x∗i (s) = w for each s ∈ S.

Proposition 2 .
Let 0 ≤ k < n. The CREE social choice set satisfies k-Bayesian monotonicity.

Proof. For 0 ≤ k < n, we show that CREE satisfies k- Bayesian monotonicity. Let α a
deception compatible with Π. Given some s ∈ S, let s′ = α(s). Let x∗ = (x∗1, x

∗
2, ..., x

∗
i , ..., x

∗
n) ∈

X such that x∗ is an CREE but x∗α is not. Thus, there exists j, s, and an allocation zj with
zj ≤ w such that β∗(α(s))zj ≤ β∗(α(s))wj(α(s)) and
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∑
t∈Ei(s) p

i(j 6= i ∈ Ñ |Ñ , i ∈ Ñ)qi(t | Ei(s))U i(zj , t) >∑
t∈Ei(s) p

i(j 6= i ∈ Ñ |Ñ , i ∈ Ñ)qi(t | Ei(s))U i(x∗jα(t), t). (5)

Define yj as follows:

yj(t
′) =

{
zj if t′ ∈ Ei(s′),
x∗j (t

′) otherwise.

For all t ∈ Ei(s), yjα(t) = zj . Thus, inequality (5) implies that∑
t∈Ei(s) p

i(j 6= i ∈ Ñ |Ñ , i ∈ Ñ)qi(t | Ei(s))U i(yjα(t), t) >∑
t∈Ei(s) p

i(j 6= i ∈ Ñ |Ñ , i ∈ Ñ)qi(t | Ei(s))U i(x∗jα(t), t).

It remains to show that for k < n, there exists M ⊆ N with |M |≥ k+1 such that M ⊇ {j}
and the expected utility for all player i of set M for allocation x∗i at state t′ is greater than the
expected utility for some given allocation yi at state t′.

Let yi(t
′) =

w−yj(t
′)

n−1 for all i 6= j. It is clair that y(t′) ∈ A for all t′. We have x∗ is an
CREE, thus for all i, s′, and for all yi(s

′) ≤ w such that β∗(s′)yi(s
′) ≤ β∗(s′)wi,∑

t′∈Ei(s′) p
i(j 6= i ∈ Ñ |Ñ , i ∈ Ñ)qi(t′ | Ei(s′))U i(x∗i (t

′), t′) ≥
∑

t′∈Ei(s′) p
i(j 6= i ∈ Ñ |Ñ , i ∈ Ñ)qi(t′ | Ei(s′))U i(yi(t

′), t′).
Thus, by taking M ≡ N , we complete the proof. Q.E.D.

In NEI information structures, the interim no-envy INe and the CREE social choice set
satisfy k-Bayesian monotonicity. Therefore, they are k − FTBE implementable by theorem 2.
Thus, we have the following corollary.

Corollary 1 : Let n ≥ 3 and k + 1 < n
2 . The interim no-envy INe and the CREE social

choice set are k − FTBE implementable by theorem 2.

6 Example and discussion

In following example, we illustrate that there are weakly k-Bayesian monotonic social choice set
which are not Bayesian monotonic. 6

Example 1. N = {1, 2, 3}, k = 1, (pi = 1
3)i=1,2,3, (q

i = 1
2)i=1,2,3, S = {s1, s2, s3, s4}. There

is one good. The endowment of each agent is one for each state of nature. The agents’ partition
are:
Π1 =

{
{s1, s2}, {s3, s4}

}
,

Π2 =
{
{s2, s3}, {s1, s4}

}
,

Π3 =
{
{s1, s3}, {s2, s4}

}
,

The utility functions are as given in the table below
s1 s2 s3 s4

1 6x 6x 3x 3x
2 3x 6x 6x 3x
3 6x 3x 6x 3x

6A social choice set F is Bayesian monotonic if for all α compatible with Π such that x ∈ F , if xα /∈ F ,
then ∃y : S → A such that each i ∈ N satisfies xRi(αi(Ei(s)))y ∀s ∈ S and at least one player j ∈ N satisfies
yαP

j(Ej(s))xα.
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Consider the social choice functions x̃, ỹ et z̃ given in the next tables.
x̃ s1 s2 s3 s4
1 1.5 1 1 0.5
2 0.5 1 1.25 1.25
3 1 1 0.75 1.25

ỹ s1 s2 s3 s4
1 1 1 1.5 0.5
2 1 1.5 1 0.5
3 1 0.5 0.5 2

z̃ s1 s2 s3 s4
1 1.5 1.5 1 0
2 1 1.35 1.35 0.30
3 0.5 0.15 0.65 2.70

Consider a deception α with α(si) = s4, i = 1, ..., 4. It is clear that α compatible with Π.
Consider player 1, 2, and 3 observe respectively events {s1, s2}, {s2, s3} and {s1, s3}. By simple
calculation of the expected utility of allocations x̃i, ỹi and z̃i for each player i in state s and
α(s), we obtain the following tables.

α(Ei(s)) : 1 2 3

z̃ ← 3.00 z̃ ← 2.70 x̃← 1.75
x̃← 2.50 ỹ ← 2.50 ỹ ← 1.50
ỹ ← 2.00 x̃← 2.25 z̃ ← 1.15

Ei(s) : 1 2 3

ỹα ← 1.000 ỹα ← 0.750 z̃α ← 1.425
x̃α ← 0.750 z̃α ← 0.650 ỹα ← 1.250
z̃α ← 0.500 x̃α ← 0.625 x̃α ← 1.125

Consider the social choice set F on ℜ as: F = {x̃α, ỹα, z̃}.
In this example, we have z̃ ∈ F and z̃α /∈ F . For subset M = {1, 2}, the players 1 and 2

preferred z̃ to any other allocation rule in α(Ei(s)). However, in Ei(s) at least one these players
reverse his preference by ranking ỹα at the top. Thus, the social choice set F satisfies weak
k-Bayesian monotonicity.

Now, if all players are non-faulty, then k = 0 and (pi = 1)i=1,2,3. In this case, we have the
following tables.

α(Ei(s)) : 1 2 3

z̃ ← 9.00 z̃ ← 8.10 x̃← 5.25
x̃← 7.50 ỹ ← 7.50 ỹ ← 4.50
ỹ ← 6.00 x̃← 6.75 z̃ ← 3.45

Ei(s) : 1 2 3

ỹα ← 3.000 ỹα ← 2.250 z̃α ← 4.275
x̃α ← 2.250 z̃α ← 1.950 ỹα ← 3.750
z̃α ← 1.500 x̃α ← 1.875 x̃α ← 3.375

Since the ranks of allocation rules do not change, we have the same social choice set F =
{x̃α, ỹα, z̃}. We have x̃α ∈ F . For players 1 and 2, the allocation rules x̃α and x̃ have the same
ranks in Ei(s) and α(Ei(s)). For player 3, the allocation rule x̃α ranked at the bottom in Ei(s)
and the allocation rule x̃ ranked at the top in α(Ei(s)), but x̃ /∈ F . Therefore F does not satisfy
Bayesian monotonicity.

We conclude that there exists the social choice sets which are not Bayesian monotonic,
but they are weak k-Bayesian monotonic. By the same reasoning of example 1, we can also
show there exists the Bayesian monotonic social choice sets wich are not weakly k-Bayesian
monotonic. Thus, there is no logical relationship between Bayesian monotonicity and weak k-
Bayesian monotonicity.

7 Conclusion

We have extended the concept of Fault Tolerant Implementation of Eliaz (2002) to Bayesian
approach. We have characterized Bayesian implementable SCS’s in pure exchange economic
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environments with non-exclusive information when there exists at least k faulty players in the
population. Firstly, we have defined new notions of equilibrium and implementation. Secondly,
we have proved that an extended version of weak k-monotonicity, called weak k-Bayesian
monotonicity, is necessary for implementation. Also, we have showed that an extended version
of k-monotonicity, called k-Bayesian monotonicity together with k−NEI condition is sufficient
for implementation.
In our work, in order to simplify, we have used non-exclusive information. But, there remain
others open questions. For example, first extension not addressed in the paper is the fault
tolerant Bayesian implementation with exclusive information. Second extension not analyzed in
this work is our notion of implementation in more general environments than the pure exchange
setting examined here.
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