
Munich Personal RePEc Archive

Alternative versions of the global

competitive industrial performance

ranking constructed by methods from

social choice theory

Subochev, Andrey and Zakhlebin, Igor

National Research University Higher School of Economics

25 July 2014

Online at https://mpra.ub.uni-muenchen.de/67462/

MPRA Paper No. 67462, posted 28 Oct 2015 23:53 UTC



Alternative versions of the global competitive industrial performance ranking 

constructed by methods from social choice theory
1
 

 

Andrey Subochev
2
, Igor Zakhlebin

3
 

 

Abstract: The Competitive Industrial Performance index (developed by experts of the UNIDO) 

is designed as a measure of national competitiveness. Index is an aggregate of eight observable 

variables, representing different dimensions of competitive industrial performance. Instead of 

using a cardinal aggregation function, what CIP’s authors do, it is proposed to apply ordinal 

ranking methods borrowed from social choice: either direct ranking methods based on the 

majority relation (e.g. the Copeland rule, the Markovian method) or a multistage procedure of 

selection and exclusion of the best alternatives, as determined by a majority relation-based social 

choice solution concept (tournament solution), such as the uncovered set and the minimal 

externally stable set. The same method of binary comparisons based on the majority rule is used 

to analyse rank correlations. It is demonstrated that the ranking is robust but some of the new 

aggregate rankings represent the set of criteria better than the original ranking based on the CIP. 
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1 Introduction 

 

National competitiveness is broadly defined as an ability of a national economy to 

produce goods and services that meet the requirements set by international competition, while 

citizens enjoy a standard of living that is both improving and sustainable (Tyson, 1992). 

Although no general consensus on how to determine national competitiveness has been reached, 

it is agreed that this is not a self-contained concept. In order to measure it one has to define a set 

of factors such that their values either determine the level of national competitiveness or are 

determined by it. Once this set of factors has been defined, the measurement of national 

competitiveness becomes a problem of multiple criteria aggregation. 

This paper deals with Competitive Industrial Performance Index (CIP), presented in 

UNIDO’s Competitive Industrial Performance Report 2012/2013. The CIP Index is based on 

eight factors grouped into three sets called dimensions. Index value is a product of six values: 

two arithmetic means of two pairs of factors, which form the second dimension, and values of 

the other four factors. In this paper we do not question either definition of competitiveness, 

proposed by authors of the report, nor their choice of its observable correlates. We are interested 

in how the aggregation is performed. 

The method of aggregation adopted by the authors of the CIP is theoretically problematic. 

Since the aggregation formula itself and the values of weights (factors for summations and 

powers for multiplication) are not unique, their choice have to be justified. It is extremely 

difficult if not altogether impossible to justify one’s choices when the resulting variable is not 

directly observable and measurable. We have no such justification for the problem under 

consideration, therefore we cannot be sure that calculation of the CIP index presented in the 

report is a correct aggregation procedure yielding meaningful results. A cardinal value of this 

index will not tell us anything about performance of a given country if we do not compare it with 

other countries’ values. The differences or proportions of index values across countries or over 
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time have no evident interpretation as well. The only use we can make of the index is to order 

countries with respect to their CIP values in a given year. 

As a partial solution to the problem of interpretation of cardinal values as well as another 

way to test the robustness of the ranking based on the CIP index we propose to apply ordinal 

ranking methods. We borrowed them from social choice theory since it is possible to frame any 

multi-criteria decision problem as a social choice problem. Eight industrial competitiveness 

factors are regarded as criteria. Countries are ranked by their values of each factor first, then 

eight factor-based-rankings are aggregated by the simple majority rule. The result of the 

aggregation is a binary relation. It tells us which country from a given pair is better than the other 

one with respect to majority of criteria. This majority relation is, generally, nontransitive. 

Therefore, in order to obtain a ranking we need to apply either a direct ranking method based on 

the majority relation (e.g. the Copeland rule) or a multistage procedure of selection and 

exclusion of the best countries, as determined by a majority relation-based social choice solution 

concept (tournament solution), such as the uncovered set and the minimal externally stable set. 

The aims of the paper are the following. First, we use ordinal methods of aggregation to 

produce alternative versions of the CIP ranking. Then we employ rank correlation analysis in 

order to compare these new rankings and the original one to test the robustness of the CIP 

ranking. 

The scheme of the research partially replicates that of our previous work on aggregate 

rankings of academic journals (Aleskerov et al., 2011, Aleskerov et al., 2013, Aleskerov et al., 

2014). 

The text is organized as follows. In Section 2 the original formula of the CIP Index is 

described. In Section 3 definitions are given for two majority relation-based ranking methods 

(the Copeland rule and Markovian method) and for three social choice solution concepts known 

as tournament solutions (the uncovered set, the minimal externally stable set, and the weak top 

cycle). The sorting procedure based on a tournament solution is formally described in this 
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Section. The values of correlation measures for both aggregate rankings and single-factor-based 

rankings are presented in Section 4. Section 5 contains formal comparison of rankings based on 

their correlation. Interpretation of the results and suggestions for further research are presented in 

Conclusion. 

 

2 Competitive Industrial Performance Index 

 

The Competitive Industrial Performance (CIP) index is a composite indicator proposed 

by experts of the United Nations Industrial Development Organization (UNIDO). It was first 

published in Industrial Development Report 2002/2003. Since then it has undergone two 

revisions. 

The authors of the report define competitiveness as “the capacity of countries to increase 

their presence in international and domestic markets whilst developing industrial sectors and 

activities with higher value added and technological content dealing with international and 

domestic market shares and degree of industrialization” (UNIDO, 2013). In its present form, the 

CIP index is an aggregate of eight observable variables, which represent different aspects of 

industrial performance. The factors are grouped into three sets or dimensions: 

Dimension I. Capacity to produce and export manufactures. It is measured by  

1. MVApc – manufacturing value added per capita; 

2. MXpc – manufactured exports per capita; 

Dimension II. Technological deepening and upgrading. It is composed of 

Subdimension IIa. Industrialization intensity. It is measured by 

3. MHVAsh – medium- and high-tech manufacturing value added share in in 

total manufacturing value added; 

4. MVAsh – manufacturing value added share in total GDP;  

Subdimension IIb. Manufactured Exports Quality. It is measured by 
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5. MHXsh – medium- and high-tech manufactured exports share in total 

manufactured exports; 

6. MXsh – manufactured exports share in total exports; 

Dimension III. World impact. It is measured by 

7. ImWMVA – impact of a country on world manufacturing value added, as 

measured by a country’s share in world MVA; 

8. ImWMT – impact of a country on world manufactures trade, as measured by a 

country’s share in world manufactured exports. 

Two pairs of indicators (MVApc, MXpc and MHXsh, MXsh) are aggregated into two 

larger indicators by taking their arithmetic mean. The resulting CIP Index value is a product of 

these six factors and can be written as follows: 

𝐶𝐼𝑃 = 𝑀𝑉𝐴𝑝𝑐 ∙𝑀𝑋𝑝𝑐 ∙
!"#$%!!!"#$!

!
∙
!"#$!!!"#!

!
∙ 𝐼𝑚𝑊𝑀𝑊𝐴 ∙ 𝐼𝑚𝑊𝑀𝑇 (1) 

A ranking is an ordered set of positions occupied by alternatives compared (in our case – 

countries). A rank is a number of a position. A position in an ordering can be occupied by several 

countries, it is said then that such countries have coinciding ranks. Positions are ordered from 

‘best’ to ‘worst’, with their ranks increasing. In the present paper we use data provided for the 

year 2010 in Competitive Industrial Performance Report 2012/2013 (UNIDO, 2013). First, 

countries are ranked in descending order by the values of each of eight basic indicators of 

UNIDO model. Then eight resulting rankings are aggregated into a single one. Countries’ ranks 

in all rankings considered are presented in Table 6 in Appendix. 

 

3 Aggregate rankings constructed by ordinal methods borrowed 

from social choice 

 

Ranking of countries by values of a set of indicators is a multi-criteria evaluation 

problem. A common solution to a multi-criteria evaluation problem is to calculate a weighted 
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sum of criteria values for each alternative and then rank alternatives by the value of the sum. As 

far as the order of alternatives is concerned, multiplying powers of criteria values is equivalent to 

weighted summation of their logarithms, weights being equal to powers. However, this approach 

has two fundamental deficiencies related to its cardinal nature. First, to obtain meaningful results 

one needs to be sure that it is theoretically possible and meaningful to perform the operation of 

summation and subtraction on the values of criteria or their logarithms in a given case since it is 

not, generally, possible. Second, the choice of weights (or powers) needs to be justified. 

Operations in formula (1) are mathematically correct, but their results are meaningless by 

themselves. Only their binary comparisons make sense. The choice of weights is based on the 

Laplace principle, evidently. Therefore we propose to apply purely ordinal ranking methods in 

order to test the robustness of the global ranking presented in UNIDO’s report. We borrowed 

them from social choice theory since it is possible to frame any multi-criteria decision problem 

as a social choice problem (Arrow, Raynaud, 1986). 

 

3.1 Basic notions 

 

One of the main objectives of social choice theory is to determine what alternatives will 

be or should be chosen from all feasible alternatives on the basis of preferences that voters (i.e. 

individual participants in a collective decision-making process) have concerning these 

alternatives. It is possible to transfer social choice methods to a multi-criteria setting if one treats 

a ranking based on a certain criterion as a representation of preferences of a certain voter (or an 

expert). In our case, the set of rankings based on corresponding industrial performance factors is 

treated as a profile of preferences of eight virtual voters/experts. 

Let A, |A|=m, m≥3, denote the general set of feasible alternatives; let N, |N|=n, n≥2 denote 

a group of experts making a collective decision by vote. A decision is a choice of certain 

alternatives from A. Preferences of a voter i, i∈N, with regard to alternatives from А are revealed 

through pairwise comparisons of alternatives and thus are modelled by a binary relation Pi on A, 

Pi ⊆ A×A: if comparing an alternative x with an alternative у a voter i prefers x to y, then the 

ordered pair (x, у) belongs to the relation Pi, (x, у) ∈ Pi; it is also said that x dominates y with 
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respect to Pi, xPiy. If a voter is unable to compare two alternatives or believes they are of equal 

value, we will presume that he is indifferent regarding the choice between them, i.e. (x, у)∉Pi & 

(y, x)∉Pi. 

If chooser’s preferences are known and a choice rule (a mapping of the set of binary 

relations on A onto the set of nonempty subsets of А) is given, then it is possible to determine 

what alternatives should be the result of his choice. Thus the social choice problem can be solved 

if one: 1) knows individual preferences, 2) defines a binary relation µ, µ⊆A×A that models 

collective preferences (i.e. collective opinion with regard to alternatives from A), and 3) 

determines a choice rule S(µ, A): {µ}→2A\∅, also called a solution. Probably the most popular 

method to construct µ from individual preferences is to apply the majority rule. In this case, µ is 

called a majority (preference) relation: x dominates y via µ if the number of voters who prefer x 

to y is greater than the number of those who prefer у to x, xµy⇔|N1|>|N2|, where N1={i∈N| xPiy}, 

N2={i∈N| yPix}. 

The choice of this particular rule of aggregation is prescribed by the social choice theory 

since the majority rule, and this rule only, satisfies several important normative conditions (see 

Aizerman, Aleskerov, 1983), such as independence of irrelevant alternatives, Pareto-efficiency, 

neutrality (equal treatment of alternatives), and anonymity (equal treatment of voters), which 

hold in our case as well. Moreover, in a multi-criteria setting the application of this rule allows 

one to obtain aggregated evaluations of alternatives without recourse to arithmetic operations on 

criteria, and consequently removes the problem of their theoretical justification. 

We would like to test the robustness of the model with respect to change of aggregation 

method. Therefore we will choose weights on the basis of the principle of equal treatment of 

factors. In the original formula six factors are treated as being of equal importance since they 

have the same power. Four of this factors (MVApc, MXpc, ImWMVA and ImWMT) are 

independent indicators. Therefore we should presume they must have the same weight. Two of 

this factors are arithmetic means of another two indicators, consequently all indicators, which are 
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grouped in pairs (i.e. MVApc, MXpc and MHXsh, MXsh), are supposed to be of the same 

importance. Since pairs of these indicators are equal in importance with other four factors, we 

have to assume that the authors of the CIP index suppose that any unpaired indicator is twice as 

important as any paired one. We reflect this difference in importance by giving 1 vote to a virtual 

voter representing a paired indicator and 2 votes to a voter representing an unpaired one. 

It follows from the definition that any µ is asymmetric, (x, y)∈µ ⇒ (y, x)∉µ. If the 

following holds x≠y ∧ (x, y)∉µ ∧ (y, x)∉µ, then alternatives x and y are tied, and both ordered 

pairs belong to a set of ties τ, τ⊆A×A, (x, y)∈τ & (y, x)∈τ. It is evident that a set of ties τ is an 

irreflexive and symmetric binary relation. 

For computational purposes a majority relation µ is represented by a majority matrix 

M=[mxy], defined in the following way: 

mxy=1 ⇔ (x, y)∈µ or mxy=0 ⇔ (x, y)∉µ. 

A matrix T=[tij] representing a set of ties τ is defined in the same way. 

To define several choice rules we will also need the notions of the lower section, the 

upper section and the horizon of the alternative x. The lower section of an alternative x is the set 

L(x) of all alternatives dominated by х via µ, L(x)={y| xµy}, the upper section of x is the set D(x) 

of all alternatives that dominate х via µ, D(x)={y| yµx}, the horizon of x is the set H(x) of all 

alternatives that tie х, H(x)={y| yτx}. 

 

3.2 The Copeland rule 

 

A majority relation quite often happens not to be a ranking itself since it is generally 

nontransitive. That is, a majority relation often contains cycles. For instance, there are often 

alternatives x, y and z such that xµy and yµz and zµx (a 3-step µ-cycle: x is majority preferred to 

y, which is majority preferred to z, which is majority preferred to x). This result is known as the 
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Condorcet paradox. In order to check if majority relation in our case is transitive or not and to 

evaluate how nontransitive it is, we calculate the number of 3-step µ-cycles, 4-step µ-cycles and 

5-step µ-cycles for our set of countries. This can be done by raising a majority matrix M to the 

power of 3, 4 and 5, correspondingly. When k equals 3, 4 or 5, the number of k-step µ-cycles qk 

is equal to the trace (the sum of all diagonal entries) of the matrix M
k
 divided by k: qk = 

!"(𝐌!)

!
 

(Cartwright, Gleason, 1966). Numbers of cycles for each k are given in Table 1. 

Table 1. Numbers of 3-, 4- and 5-step cycles in µ  

 Number of cycles 

3-step cycles 638 

4-step cycles 5928 

5-step cycles 52754 

 

As we see, the Condorcet paradox occurs in our case. In order to bypass the nontransitivi-

ty problem, several ranking methods have been proposed. Probably the simplest one is the 

Copeland rule (Copeland, 1951). The idea of this method is the following: the greater the number 

of alternatives that are worse than a given one, the better this alternative is; and it is determined 

through pairwise comparisons (based on a majority relation) whether a given alternative is either 

better or worse than another one. Alternatively, it could be put that an alternative is good if the 

number of alternatives that are better is small. Finally, one can combine these two principles.  

Formally, the Copeland aggregate ranking is an ordering of the alternatives by their score 

s(x) (called the Copeland score), as given by one of the following formulae: 

Version 1. s1(x)=|L(x)|-|D(x)| 

Version 2. s2(x)=|L(x)| 

Version 3. s3(x)=|A|-|D(x)| 

All three versions yield the same result when there are no ties. Vectors s1, s2 and s3 of 

scores, which are attributed to countries according to these versions, are computed by the 

formulae: s2=M⋅a, s3=(I-M
tr
)⋅a, s1= s2 + s3 - m⋅a, where I and a denote, correspondingly, the 

matrix and the vector, which entries and components are all equal to 1. 
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Example 1. Let us consider how the second version of the Copeland rule ranks countries 

in the following example. Let us assume that there are m=5 countries, A={x1, x2, x3, x4, x5}, and 

n=3 factors generating three rankings. Let countries be ordered x1>x2>x3>x4>x5 by the 1
st
 factor, 

x4>x5>x2>x3>x1 by the 2
nd

 factor, x5>x3>x1>x2>x4 by the 3
d
 factor. The majority matrix М and the 

Copeland score (cardinality of the lower section) of a given country are presented in Table 2. 

Table 2. Majority matrix and the Copland score in Example 1 

Majority matrix M 
Cardinality of the lower section |L(x)| 

x1 x2 x3 x4 x5 

x1 0 1 0 1 0 2 

x2 0 0 1 1 0 2 

x3 1 0 0 1 0 2 

x4 0 0 0 0 1 1 

x5 1 1 1 0 0 3 

According to the second version of the Copeland rule, the aggregate ranking contains 

three ranks: 1) x5; 2) x1 - x2 - x3; 3) x4. 

 

3.3 A sorting procedure based on tournament solutions 

 

In order to construct a ranking, we can also use solutions to the problem of optimal social 

choice. Let us consider the following iterative procedure. A solution concept S(µ, A) is a choice 

correspondence that determines a set B(1) of those alternatives from a set A that are considered to 

be the best with respect to collective preferences expressed in a form of a majority relation µ: 

B(1)=S(µ, A). Alternatives from B(1) are of ‘prime quality’ choices comparing with all other 

alternatives. Let us exclude them and repeat the sorting procedure for the set A\B(1). Then a set 

B(2)=S(µ, A\B(1))=S(µ, A\S(µ, A)) will be determined. This set contains second best choices – they 

are worse than alternatives from B(1) and better than options from A\(B(1)∪B(2))). After a finite 

number of selections and exclusions, all alternatives from А will be separated by classes 

В(k)=S(µ, A\(B(k-1)∪B(k-2)∪...∪B(2)∪B(1))) according to their ‘quality’, and these classes define the 

ranking we are looking for. 
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In this study, we use two tournament solutions: the uncovered set and the externally 

stable set. The first solution is based on the following idea: let us make the notion of majority 

preferences stronger, so it becomes always possible to choose undominated alternatives
4
. That is, 

when the set of undominated alternatives of µ is empty, let us select undominated alternatives of 

a special subset α of µ, α⊆µ. The subrelation α is defined in the following way. It is said that an 

alternative x covers y, xαy, if x µ-dominates both y and all alternatives, which are µ-dominated 

by y: xαy ⇔ (xµy ∧ ∀z∈A (yµz ⇒ xµz)) (Miller, 1980). That is, the majority of voters strongly 

prefer x to y when 1) they prefer x to y, and 2) there is no alternative z, such that it is strictly less 

preferable than y and at least as preferable as x. The best alternatives are those not covered (not 

dominated with respect to α) by any other alternatives. Their set is called the uncovered set
5
 UC. 

The uncovered set is always nonempty due to the transitivity of the covering relation α. 

Instead of choosing ‘strong’ candidates as is the case with the uncovered set, it is possible 

to choose candidates from a ‘strong’ group. The second solution is based on this idea of choosing 

from a set endowed with some ‘good’ properties. A set ES is externally stable if for any 

alternative x outside ES there exists an alternative y in ES that is more preferable for the majority 

of voters than x: ∀x∉ES ∃y: y∈ES ∧ yµx (von Neumann, Morgenstern, 1944). An externally 

stable set is minimal if none of its proper subsets is externally stable. An alternative is optimal if 

it belongs to at least one minimal externally stable set MES, therefore the tournament solution is 

the union of all such sets, which is likewise denoted as MES (Subochev, 2008; see also, 

Aleskerov, Subochev, 2013)
6
. MES is always nonempty. 

                                                
4
 Due to the Condorcet paradox, the set of alternatives undominated via the majority relation itself (the so-called 

core) may (and almost always will) be empty. 

5
 There exist alternative definitions of the covering relation and, consequently, of the uncovered set. They are 

listed in Aleskerov, Subochev (2013). 

6
 Minimal externally stable set was introduced in Subochev (2008) as a version of another tournament solution – 

minimal weakly stable set (MWS) introduced in Aleskerov and Kurbanov (1999). Therefore in Subochev (2008) and 

in Aleskerov, Subochev (2009) this solution concept is called the second version of the minimal weakly stable set 
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When UC (or MES) is determined for the initial set of countries, the countries comprised 

by this set receive the first (best) rank. After that, these countries are excluded from the general 

set A and the procedure repeats iteratively, as it was explained in the beginning of this section. 

The uncovered set and the union of minimal externally stable sets can be calculated 

through their matrix-vector representations given in Aleskerov, Subochev (2009; 2013). These 

representations use the matrices M and T defined in Subsection 3.1. 

 

3.4 The Markovian method 

 

Finally, we would like to apply a version of a ranking called the Markovian method, since 

it is based on an analysis of Markov chains that model stochastic moves from vertex to vertex via 

arcs of a digraph representing a binary relation µ. The earliest versions of this method were 

proposed by Daniels (1969) and Ushakov (1971). References to other papers can be found in 

Chebotarev, Shamis (1999). 

To explain the method let us consider its application in the following situation. Suppose 

alternatives from A are chess-players. Only two persons can sit at a chess-board, therefore in 

making judgments about players’ relative strength, we are compelled to rely upon results of 

binary comparisons, i.e. separate games. Our aim is to rank players according to their strength. 

Since it is not possible with a single game, we organize a tournament. 

Before the tournament starts we separate patently stronger players from the weaker ones 

by assigning each player to a certain league, a subgroup of players who are relatively equal in 

their strength. To make the assignments, we use the sorting procedure described in the previous 

subsection. The tournament solution that is used for the selection of the strongest players is the 

weak top cycle WTC (Ward, 1961; Schwartz, 1970, 1972, 1977; Good, 1971; Smith, 1973). It is 

                                                                                                                                                       
and is denoted as MWS

II
. The version of the uncovered set we use here is denoted as UC

II
 in the aforementioned 

texts. 
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defined in the following way. A set WTC is called the weak top cycle if 1) any alternative in 

WTC µ-dominates any alternative outside WTC: ∀ x∉WTC, y∈WTC ⇒ yµx, and 2) none of its 

proper subsets satisfies this property. 

The relative strength of players assigned to different leagues is determined by a binary 

relation µ, therefore in order to rank all players all we need to know is how to rank players of the 

same league. Each league receives a chess-board. Since there is only one chess-board per league, 

the games of a league form a sequence in time. 

Players who participate in a game are chosen in the following way: a player who has been 

declared a (current) winner in the previous game remains at the board, her rival is randomly 

chosen from the rest of the players, among whom the loser of the previous game is also present. 

In a given league, all probabilities of being chosen are equal. If a game ends in a draw, the 

previous winner, nevertheless, loses her title and it passes to her rival. Therefore, despite ties 

being allowed, there is a single winner in each game. It is evident that the strength of a player 

can be measured by counting a relative number of games, in which he has been declared a 

winner (i.e. the number of his wins divided by the total number of games in a tournament). 

In order to start a tournament we need to decide who is declared a winner in a fictitious 

‘zero-game’. However, the longer a tournament goes (i.e. the greater the number of tournament 

games is), the smaller is the influence of this decision on the relative number of wins of any 

player. In the limit when the number of games tends to infinity relative numbers of wins are 

completely independent of who had been given ‘the crown’ before the tournament started. 

Instead of calculating the limit of the relative number of wins, one can find the limit of 

the probability a player will be declared a winner in the last game of the tournament since these 

values are equal. We can count the probability and its limit using matrices M and T defined 

above. 

Suppose we somehow know the relative strength of players in each pair of them. Also, 

suppose this strength is constant over time and is represented by binary relations µ and τ. 



 14	  

Therefore, if we know µ and the names of the players who are sitting at the chess-board, we can 

predict the result of the game: the victory of x (if xµy), the victory of y (if yµx) or a draw (if xτy). 

Let p
(k)

 denote a vector, i-th component pi
(k)

 of which is the probability a player number i 

is declared the winner of a game number k. Two mutually exclusive situations are possible. The 

first case – the player number i is declared the winner in both the previous game (game number 

k-1) and the current game. She can be declared the winner in the game number k if and only if 

her rival (who has been chosen by lot) belongs to the lower section of i. The probability that the 

i-th player was declared the winner in the game number k-1 is pi
(k-1)

, the probability of her rival 

being in L(i) equals 
!!(!)

!!!
, where s2(i) is the Copeland score (the 2

nd
 version), s2(x)=|L(x)|. Thus, 

the probability of the i-th player being declared the winner in game number k is 𝑝
!

(!!!)
∙
!!(!)

!!!
. 

The second case – the player number i is declared the winner in the current game, but not 

in the previous one. He can be declared the winner in game number k if and only if 1) he has 

been chosen by lot as a rival to the winner in the game number k-1, the probability of which 

equals 
!

!!!
; and 2) if the (k-1)-th winner is in the lower section or in the horizon of the i-th 

player, a probability of which equals 𝑚!" + 𝑡!" ∙ 𝑝
!

(!!!)!

!!! .
7
 Thus the probability pi

(k)
 can be 

determined from the following equation: 

𝑝
!

(!)
= 𝑝

!

(!!!)
∙
!! !

!!!
+

!

!!!
∙ 𝑚!" + 𝑡!" ∙ 𝑝

!

(!!!)!

!!!  (2) 

Formula (2) can be rewritten in a matrix-vector form as: 

p(!) = W∙p(!!!) =
!

!!!
∙ M+ 𝐓+ 𝐒 ∙p(!!!) (3) 

The matrix S=[sij] is defined as sii=s2(i) and sij=0 when i≠j. 

Consequently, passing the title of the current winner from player to player is a Markovian 

process with the transition matrix W. 

We are interested in the vector p=lim!→! p
(!). It is not hard to prove that no matter what 

                                                
7
 Here notations m, mij, tij are those introduced in Subsection 3.1. 
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the initial conditions are (i.e. what the value of p
(0)

 is), the limit vector is an eigenvector of the 

matrix W corresponding to the eigenvalue λ=1 (see, for instance, Laslier (1997)). Therefore p is 

determined by solving the system of linear equations W⋅p=p. To rank players in a league, one 

needs to order them by decreasing values of pi. Since we have pre-sorted players using WTC, 

none of the components pi is equal to zero (Laslier, 1997). 

Ranks of the countries in the six aggregate rankings are given in Table 6 in Appendix. 

 

4 Correlations 

 

The number of the alternative’s position in a ranking is a rank variable. Therefore, to 

evaluate the (in)consistency of two rankings, one needs to apply ranking measures of correlation. 

We use two related but not identical measures based on the Kendall distance: the Kendall rank 

correlation index τb (Kendall, 1938) and the share of coinciding pairs r. 

To remind the reader what the Kendall distance is, let us consider a pair of countries and 

compare their positions in two rankings. If a country is placed above the second one in the first 

ranking, but at the same time it is placed below the other one in the second ranking, then this pair 

of countries counts as an inversion. The Kendall distance between two rankings is the number of 

inversions N- (a number of unordered pairs of objects ranked inversely in two ranking). 

Correspondingly, the greater the number of inversions is, the farther apart (i.e. the more 

disparate) the rankings are. The Kendall rank correlation coefficient τb depends on the Kendall 

distance in the following way: 

τb=
!!!!!

(!!!!)∙(!!!!)
 (3) 

Here N+ is the number of coinciding pairs, which are not ties, i.e. such country pairs, 

where one country is placed above the second one in both rankings; n1 is the number of pairs, 

where both countries have the same rank in the first ranking; n2, correspondingly, is the number 
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of pairs, where both countries have the same rank in the second ranking. Obviously,  

N+ + N- = N - n1 - n2 + N0, where N0 is the number of pairs tied in both rankings. 

The share of coinciding pairs r is a percentage of pairs ranked in the same way in both 

rankings,   𝑟 = 100 ∙
!!!!!

!
. This measure has a simple probabilistic interpretation. If we know 

that alternative x is ranked above alternative y in ranking R1 and guess that in ranking R2 they are 

placed in the same order, then r is the probability that our prediction is correct. When r=50%, 

probability of being right equals probability of being wrong, which means two rankings do not 

correlate. 

The main difference between τb and r is that the latter ‘punishes’ rankings containing too 

many ties, while the former does not. Values of τb and r for the eight factor-based and aggregate 

rankings are given in Table 3. 

Table 3. Values of correlation measures 
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Kendall's τb 

MVApc 1,000 0,767 0,476 0,318 0,465 0,365 0,510 0,553 0,715 0,718 0,715 0,723 0,714 0,691 0,714 

MXpc 0,767 1,000 0,487 0,289 0,466 0,421 0,440 0,576 0,704 0,716 0,716 0,716 0,706 0,689 0,709 

MHVAsh 0,476 0,487 1,000 0,319 0,471 0,399 0,517 0,578 0,595 0,637 0,633 0,643 0,654 0,635 0,633 

MVAsh 0,318 0,289 0,319 1,000 0,319 0,381 0,436 0,422 0,440 0,456 0,455 0,458 0,471 0,476 0,448 

MHXsh 0,465 0,466 0,471 0,319 1,000 0,354 0,422 0,470 0,529 0,559 0,563 0,556 0,576 0,571 0,556 

MXsh 0,365 0,421 0,399 0,381 0,354 1,000 0,289 0,370 0,430 0,476 0,472 0,482 0,492 0,472 0,485 

ImWMVA 0,510 0,440 0,517 0,436 0,422 0,289 1,000 0,808 0,732 0,701 0,703 0,701 0,717 0,720 0,679 

ImWMT 0,553 0,576 0,578 0,422 0,470 0,370 0,808 1,000 0,833 0,801 0,805 0,798 0,808 0,801 0,774 

CIP 0,715 0,704 0,595 0,440 0,529 0,430 0,732 0,833 1,000 0,930 0,926 0,925 0,907 0,877 0,888 

Cop. (1) 0,718 0,716 0,637 0,456 0,559 0,476 0,701 0,801 0,930 1,000 0,979 0,982 0,937 0,897 0,921 

Cop. (2) 0,715 0,716 0,633 0,455 0,563 0,472 0,703 0,805 0,926 0,979 1,000 0,959 0,936 0,899 0,905 

Cop. (3) 0,723 0,716 0,643 0,458 0,556 0,482 0,701 0,798 0,925 0,982 0,959 1,000 0,935 0,896 0,933 

UC 0,714 0,706 0,654 0,471 0,576 0,492 0,717 0,808 0,907 0,937 0,936 0,935 1,000 0,915 0,913 

MES 0,691 0,689 0,635 0,476 0,571 0,472 0,720 0,801 0,877 0,897 0,899 0,896 0,915 1,000 0,878 

Markovian 0,714 0,709 0,633 0,448 0,556 0,485 0,679 0,774 0,888 0,921 0,905 0,933 0,913 0,878 1,000 

Percentage of coinciding pairs (r) 

MVApc 100 88,36 73,80 65,89 73,27 68,24 74,89 77,13 85,66 85,77 85,32 85,59 81,77 78,78 85,72 

MXpc 88,36 100 74,32 64,46 73,30 71,02 71,43 78,25 85,11 85,65 85,34 85,23 81,38 78,70 85,44 

MHVAsh 73,80 74,32 100 65,91 73,55 69,93 75,23 78,33 79,65 81,68 81,22 81,57 78,84 76,10 81,65 

MVAsh 65,89 64,46 65,91 100 65,96 69,02 71,23 70,55 71,92 72,67 72,33 72,40 69,96 68,49 72,37 

MHXsh 73,27 73,30 73,55 65,96 100 67,68 70,53 72,98 76,36 77,82 77,73 77,27 75,10 73,03 77,80 

MXsh 68,24 71,02 69,93 69,02 67,68 100 63,89 68,00 71,42 73,63 73,19 73,60 71,01 68,33 74,24 

ImWMVA 74,89 71,43 75,23 71,23 70,53 63,89 100 89,46 85,86 84,28 84,08 83,89 81,49 79,73 83,34 

ImWMT 77,13 78,25 78,33 70,55 72,98 68,00 89,46 100 90,98 89,29 89,22 88,77 85,97 83,62 88,13 

CIP 85,66 85,11 79,65 71,92 76,36 71,42 85,86 90,98 100 96,24 95,75 95,56 91,14 87,68 94,34 
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Cop. (1) 85,77 85,65 81,68 72,67 77,82 73,63 84,28 89,29 96,24 100 98,40 98,40 92,65 88,66 95,91 

Cop. (2) 85,32 85,34 81,22 72,33 77,73 73,19 84,08 89,22 95,75 98,40 100 96,95 92,59 88,68 94,80 

Cop. (3) 85,59 85,23 81,57 72,40 77,27 73,60 83,89 88,77 95,56 98,40 96,95 100 92,38 88,62 96,06 

UC 81,77 81,38 78,84 69,96 75,10 71,01 81,49 85,97 91,14 92,65 92,59 92,38 100 89,08 91,45 

MES 78,78 78,70 76,10 68,49 73,03 68,33 79,73 83,62 87,68 88,66 88,68 88,62 89,08 100 87,72 

Markovian 85,72 85,44 81,65 72,37 77,80 74,24 83,34 88,13 94,34 95,91 94,80 96,06 91,45 87,72 100 

 

All eight basic single-indicator-based rankings correlate positively with respect to both 

measures (τb>0; r>50%). Their correlation is moderately strong (τb>0,3; r>65%) in most cases. It 

is very strong (τb>0,75; r>85%) in two cases: {ImWMT, ImWMVA}, {MVApc, MXpc}. This is 

because national manufacturing value added and manufactured exports correlate strongly. 

Direct observations of values in Tables 3 also confirm natural expectations: all aggregate 

rankings, both old one and new ones, are better correlated with the set of eight single-indicator-

based rankings than the latter with each other. 

Original CIP ranking correlate strongly and positively with all new aggregate rankings, 

the lowest level of contradictions being 3,76% (with the 1
st
 version of the Copeland rule), the 

highest – 12,32% (with the ranking based on MES). The pair {CIP, MES} demonstrated the 

lowest correlation among all pairs of all aggregate rankings according to both measures. 

Therefore we can use values of τb and r for this pair in order to evaluate robustness of CIP. We 

may conclude that strong (τb>0,75; r>85%) correlation of these two ranking support the claim 

that the CIP ranking is robust. 

One can observe that values of r for pairs of aggregate rankings vary greater than their 

values of τb. This difference between two measures can be explained as follows: the scales of 

rankings produced by sorting contain too few grades as compared to scales of other rankings, 

consequently rankings based on UC and MES contain significantly more ties than other rankings. 

As a result, values of r for pairs containing either of this two rankings are lower, since this 

measure (unlike τb) ‘punishes’ rankings containing too many ties: being a tie in a ranking based 

on UC or MES, a pair most probably will not be a tie in another ranking and so it will not 

contribute to the numerator of r, while r’s denominator remains constant across all pairs. 
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5 Formal comparison of rankings 

 

Let us employ the same method of binary multi-criteria comparisons to analyze rankings 

more formally. The problem of aggregation can be reformulated as a choice of a single object 

representing a given group of objects. In our case we need to choose a ranking that will represent 

the set of eight single-indicator-based rankings {Pi}, i=1÷8. We have fifteen candidates: seven 

aggregate rankings and eight initial rankings. Let us use the same idea of binary multi-criteria 

comparisons and majority relation in order to determine the best representations. 

Let us say that ranking R1 represents single-indicator-based ranking Pi better than ranking 

R2 does if R1 is better correlated with Pi than R2. If Pi represents preferences of voter i then we 

may suppose that R1 represents i’s preferences better than R2 does, so voter i will most likely 

vote for R1 against R2, when they are compared. Then R1 should be considered a better 

representative for the set of rankings {Pi} than R2 if R1 is better correlated with (is closer to) a 

(weighted) majority of rankings from this set than R2 is. Let us remind the reader that weight vi 

(the number of votes that voter i has) reflects relative importance attributed to the corresponding 

aggregated variable i. In our case, the vector of weights/votes is v=(2, 2, 1, 1, 1, 1, 2, 2). 

Each ranking R is characterized by 8-component vector c(R), its i-th component being the 

value of a given correlation measure for this ranking and corresponding single-indicator-based 

ranking Pi: either ci(R) = τb(R, Pi) or ci(R) = r(R, Pi). We perform binary comparisons of vectors 

c(R) and define a majority relation on the set of twelve rankings in the following way: R1 µ R2 ⇔ 

V1>V2, where V1= 𝑣!{!|!! !! !!!(!!)}
 , V2= 𝑣!{!|!! !! !!!(!!)}

. 

Table 4 contains results of binary comparisons based on measures τb and r. The first 

number in a cell equals 1 if the ranking of the row correlates with eight single-factor rankings 

better than the ranking of the column with respect to a given measure of correlation. It equals 0 
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otherwise, that is the first numbers are majority matrices’ entries. The second number (in 

brackets) is a number of those initial rankings that are closer to the ranking of the row than to the 

ranking of the column with respect to a given measure of correlation. 

Table 4. Binary comparisons of rankings (majority matrices and numbers of ‘wins’) 
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Kendall's τb 

MVApc 0(0) 1(11) 1(10) 1(10) 1(8) 1(7) 0(5) 0(3) 0(1) 0(1) 0(1) 0(1) 0(1) 0(1) 0(1) 

MXpc 0(1) 0(0) 0(4) 0(5) 0(2) 0(1) 0(2) 0(2) 0(1) 0(1) 0(1) 0(1) 0(1) 0(1) 0(1) 

MHVAsh 0(2) 1(8) 0(0) 1(10) 0(2) 0(2) 0(4) 0(1) 0(1) 0(1) 0(1) 0(1) 0(1) 0(1) 0(1) 

MVAsh 0(2) 1(7) 0(2) 0(0) 0(2) 0(2) 0(1) 0(1) 0(1) 0(1) 0(1) 0(1) 0(1) 0(1) 0(1) 

MHXsh 0(4) 1(10) 1(10) 1(10) 0(0) 0(5) 0(6) 0(4) 0(4) 0(4) 0(4) 0(4) 0(4) 0(4) 0(4) 

MXsh 0(5) 1(11) 1(10) 1(10) 1(7) 0(0) 0(6) 0(5) 0(4) 0(4) 0(4) 0(4) 0(4) 0(4) 0(4) 

ImWMVA 1(7) 1(10) 1(8) 1(11) 0(6) 0(6) 0(0) 0(3) 0(2) 0(4) 0(4) 0(4) 0(4) 0(4) 0(4) 

ImWMT 1(9) 1(10) 1(11) 1(11) 1(8) 1(7) 1(9) 0(0) 0(4) 0(4) 0(4) 0(4) 0(4) 0(4) 0(4) 

CIP 1(11) 1(11) 1(11) 1(11) 1(8) 1(8) 1(10) 1(8) 0(0) 0(4) 0(4) 0(4) 0(6) 1(8) 0(6) 

Cop. (1) 1(11) 1(11) 1(11) 1(11) 1(8) 1(8) 1(8) 1(8) 1(8) 0(0) 1(7) 1(7) 0(4) 0(6) 1(11) 

Cop. (2) 1(11) 1(11) 1(11) 1(11) 1(8) 1(8) 1(8) 1(8) 1(8) 0(5) 0(0) 0(5) 0(4) 0(6) 1(10) 

Cop. (3) 1(11) 1(11) 1(11) 1(11) 1(8) 1(8) 1(8) 1(8) 1(8) 0(5) 1(7) 0(0) 0(4) 0(6) 1(10) 

UC 1(11) 1(11) 1(11) 1(11) 1(8) 1(8) 1(8) 1(8) 0(6) 1(8) 1(8) 1(8) 0(0) 1(9) 1(8) 

MES 1(11) 1(11) 1(11) 1(11) 1(8) 1(8) 1(8) 1(8) 0(4) 0(6) 0(6) 0(6) 0(3) 0(0) 1(7) 

Markovian 1(11) 1(11) 1(11) 1(11) 1(8) 1(8) 1(8) 1(8) 0(6) 0(1) 0(2) 0(2) 0(4) 0(5) 0(0) 

Percentage of coinciding pairs (r) 

MVApc 0(0) 1(11) 1(10) 1(10) 1(8) 1(7) 0(5) 0(3) 0(1) 0(1) 0(1) 0(1) 0(1) 0(3) 0(1) 

MXpc 0(1) 0(0) 0(4) 0(5) 0(2) 0(1) 0(2) 0(2) 0(1) 0(1) 0(1) 0(1) 0(1) 0(2) 0(1) 

MHVAsh 0(2) 1(8) 0(0) 1(10) 0(2) 0(2) 0(4) 0(1) 0(1) 0(1) 0(1) 0(1) 0(1) 0(1) 0(1) 

MVAsh 0(2) 1(7) 0(2) 0(0) 0(2) 0(2) 0(1) 0(1) 0(1) 0(1) 0(1) 0(1) 0(1) 0(2) 0(1) 

MHXsh 0(4) 1(10) 1(10) 1(10) 0(0) 0(5) 0(6) 0(6) 0(4) 0(4) 0(4) 0(4) 0(4) 0(5) 0(4) 

MXsh 0(5) 1(11) 1(10) 1(10) 1(7) 0(0) 0(6) 0(6) 0(4) 0(4) 0(4) 0(4) 0(5) 0(6) 0(4) 

ImWMVA 1(7) 1(10) 1(8) 1(11) 0(6) 0(6) 0(0) 0(3) 0(2) 0(4) 0(4) 0(4) 0(5) 0(5) 0(4) 

ImWMT 1(9) 1(10) 1(11) 1(11) 0(6) 0(6) 1(9) 0(0) 0(4) 0(4) 0(4) 0(4) 0(5) 0(6) 0(4) 

CIP 1(11) 1(11) 1(11) 1(11) 1(8) 1(8) 1(10) 1(8) 0(0) 0(4) 0(6) 0(6) 1(12) 1(12) 0(4) 

Cop. (1) 1(11) 1(11) 1(11) 1(11) 1(8) 1(8) 1(8) 1(8) 1(8) 0(0) 1(12) 1(12) 1(12) 1(12) 1(11) 

Cop. (2) 1(11) 1(11) 1(11) 1(11) 1(8) 1(8) 1(8) 1(8) 0(6) 0(0) 0(0) 1(7) 1(12) 1(12) 0(4) 

Cop. (3) 1(11) 1(11) 1(11) 1(11) 1(8) 1(8) 1(8) 1(8) 0(6) 0(0) 0(5) 0(0) 1(12) 1(12) 0(5) 

UC 1(11) 1(11) 1(11) 1(11) 1(8) 1(7) 1(7) 1(7) 0(0) 0(0) 0(0) 0(0) 0(0) 1(12) 0(0) 

MES 1(9) 1(10) 1(11) 1(10) 1(7) 0(6) 1(7) 0(6) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 

Markovian 1(11) 1(11) 1(11) 1(11) 1(8) 1(8) 1(8) 1(8) 1(8) 0(1) 1(8) 1(7) 1(12) 1(12) 0(0) 
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 A binary relation (or its matrix) can be represented by a digraph. Vertices represent 

alternatives, arcs (links with arrows) represent ordered pairs: the alternative, which is represented 

by arc’s starting point, dominates (via relation represented by the digraph) the alternative, which 

is represented by arc’s ending point. Digraphs representing matrices in Table 4 are depicted on 

Figure 1. By convention, if a pair of vertices is not connected it means that the arc begins at the 

higher vertex and goes down. A dashed line without arrow indicates a tie.  

 

In both cases µ is a strict partial order but not a weak order and, consequently it is not a 

ranking itself. We need again somehow to ‘mend’ nontransitive µ in order to get a ranking. First, 

one may note that in both cases µ is very close (with respect to the Kendal distance) to a linear 

order (i.e. a ranking discriminating all alternatives). Therefore we can represent µ by a closest 

linear order. In the first case, when ranking are compared by τb, the linear order at a minimal 

distance from µ is unique. In the second case, there are six closest linear orders, which differ 

only with respect to how they order the triplet {Copeland 2, Copeland 3, CIP} and the pair 

{MES, ImWMT}. In both cases the Kendall distance from µ to closest linear orders equals 0 (i.e. 

           

Figure 1. Ordering of rankings according to τb (a) and r (b). 

a) b) 
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there are no inversions). We may unite six linear orders in a weak order by assigning rank 3 to all 

alternatives from the triplet and rank 5 to MES and ImWMT. Final rankings of ranking are 

presented in Table 5. 

Table 5. Two rankings of rankings 

Rank 
Ordered by 

τb r 

1 UC Copeland (1) 

2 Copeland (1) Markovian 

3 Copeland (3) 

CIP, Copeland (2), Copeland (3) 4 Copeland (2) 

5 CIP 

6 MES UC 

7 Markovian 
ImWMT, MES 

8 ImWMT 

9 ImWMVA ImWMVA 

10 MVApc MVApc 

11 MXsh MXsh 

12 MHXsh MHXsh 

13 MHVAsh MHVAsh 

14 MVAsh MVAsh 

15 MXpc MXpc 

 

The following observations can be made. In all cases aggregate rankings represent the set 

of single-factor based rankings better than any one of latter do. Therefore replacing eight single-

factor rankings by aggregate rankings is justified. 

The ranking based the 1
st
 version of the Copeland rule in both cases performs better than 

the CIP ranking, but the former correlates with the latter better than any of other aggregate rank-

ing does.  

 

6 Conclusion 

 

The Competitive Industrial Performance index is an aggregate of eight observable 

variables. Its aggregation formula is semi-ordinal. It is cardinal in its form but it is derived from 

a purely ordinal proposition: the value of an aggregate index should be a strongly increasing 

function of each of its factors. Only binary comparisons of these values (and not the values 

themselves or values of their differences or fraction) are meaningful.  
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Therefore it was interesting for us to test the robustness of the final ranking by replacing 

the original aggregation formula with purely ordinal methods. We propose to consider 

aggregation as a multicriteria decision problem and to employ ordinal ranking methods borrowed 

from social choice to solve it. In this paper we apply two direct ranking methods based on the 

majority relation (the Copeland rule and the Markovian method) and a multistage procedure of 

selection and exclusion of the best alternatives, as determined by a majority relation-based social 

choice solution concept (tournament solution), such as the uncovered set and the minimal 

externally stable set.  

The Markovian ranking is characterized by high level of discrimination - it separates all 

135 countries. The sorting by uncovered set and by the minimal externally stable set produced a 

rough division of countries into large groups - both rankings contain only 23 ranks. Intuitively, 

these ‘rough’ orderings seem to be more attractive as representations of relevant differences in 

industrial competitiveness of nations. The ability to produce such ‘rough’ rankings can be con-

sidered as a strength of the approach proposed. 

We use the same method of binary comparisons based on the majority relation to analyse 

rank correlations. The correlation analysis has shown that aggregate rankings are better 

representations for the set single-factor rankings than any one of the set. Therefore, replacing 

single-factor rankings by an aggregate ranking is justified. Though the high level of correlations 

of all aggregate rankings confirms, apparently, that the original version based on the CIP index is 

robust, it has also been demonstrated that some of the new aggregate rankings represent the set 

of criteria better. 

The overall conclusion would be the following. Given the large number of different 

aggregation models and methods and high uncertainty concerning values of their parameters, it 

seems that much deeper theoretical work is needed to clarify what the national competitiveness 

really is and how we should measure it.  
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Appendix 

Table 6. Ranks of countries in single-factor-based and aggregate rankings (countries are 

ordered as in the CIP ranking) 
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sitions in a 

ranking 

135 135 132 133 135 133 99 99 126 117 89 80 23 23 135 

Japan 2 28 6 21 2 14 3 4 1 1 1 1 1 1 1 

Germany 11 9 4 29 8 33 4 2 2 5 4 4 2 2 5 

USA 8 39 9 55 15 52 1 3 3 8 7 6 1 1 8 

South Korea 10 16 8 7 6 1 5 6 4 3 2 3 1 1 4 

Taiwan (China) 7 15 3 6 7 4 10 11 5 2 2 2 1 1 2 

Singapore 1 1 1 14 10 23 28 18 6 4 3 3 1 1 3 

China 54 54 24 2 20 2 2 1 7 9 10 4 2 1 6 

Switzerland 3 5 35 30 9 15 24 16 8 6 5 5 2 2 7 

Belgium 14 2 19 52 31 30 26 9 9 11 8 8 2 3 12 

France 21 23 13 73 14 27 7 5 10 12 9 8 3 3 11 

Italy 22 24 27 53 33 14 8 7 11 16 14 10 4 4 18 

Netherlands 17 6 25 71 30 56 23 8 12 13 11 9 3 3 21 

Sweden 5 7 10 25 25 24 20 21 13 7 6 6 2 2 9 

UK 19 31 20 83 17 47 6 10 14 17 15 11 4 4 14 

Ireland 6 4 2 15 34 13 31 26 15 10 7 7 2 2 10 

Austria 9 8 22 31 22 32 25 24 16 14 12 9 3 3 22 

Canada 20 26 31 78 29 77 13 13 17 23 18 15 5 5 26 

Finland 4 11 14 13 40 17 29 32 18 15 13 10 4 3 16 

Spain 30 32 36 75 26 40 14 14 19 25 18 17 5 5 27 

Czech Republic 27 12 17 8 11 18 38 25 20 18 15 12 4 4 15 

Malaysia 34 27 21 10 16 41 27 17 21 22 17 14 5 5 17 

Mexico 43 44 28 45 4 46 12 12 22 26 19 16 5 5 25 

Thailand 40 40 11 1 19 39 19 19 23 20 16 12 2 1 13 

Denmark 13 10 41 72 37 60 39 31 24 29 22 18 5 4 28 

Poland 33 36 33 17 24 28 22 22 25 28 20 17 6 5 29 

Israel 18 21 5 60 28 3 37 34 26 19 16 11 3 3 24 

Slovakia 25 13 18 9 13 6 48 33 27 21 17 13 5 4 20 

Australia 24 33 54 91 89 89 21 28 28 31 25 20 7 6 30 

Hungary 38 20 7 19 5 31 49 30 29 24 19 14 7 5 19 

Turkey 42 52 42 23 49 29 15 27 30 30 21 19 6 6 34 

Norway 15 22 52 100 36 112 42 43 31 34 27 22 9 6 32 

Slovenia 23 14 12 20 18 19 57 48 32 27 20 16 5 5 23 

Brazil 57 72 34 64 59 72 11 23 33 36 29 24 7 6 35 

Portugal 32 34 55 69 51 22 44 41 34 33 26 22 8 6 44 

Argentina 31 62 45 43 45 84 17 42 35 32 24 21 8 6 38 

Russia 60 57 53 39 79 100 18 20 36 38 30 26 7 6 39 

Saudi Arabia 39 46 23 80 61 116 30 35 37 35 28 23 8 7 40 

Indonesia 77 85 30 11 68 80 16 29 38 38 36 21 8 6 36 

Kuwait 26 25 75 89 103 94 55 46 39 45 35 31 10 7 51 

Belarus 50 41 73 3 54 26 51 47 40 36 28 25 8 6 46 

South Africa 58 58 61 54 43 70 33 37 41 39 31 26 8 6 43 

Luxembourg 16 3 117 113 56 35 77 62 42 48 41 28 10 6 42 

India 103 104 32 51 70 38 9 15 43 42 35 26 7 6 37 
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Philippines 79 79 15 18 3 8 34 38 44 32 23 22 8 5 31 

Chile 46 48 71 50 107 88 43 44 45 44 34 30 10 7 59 

Romania 75 45 37 66 32 21 54 39 46 37 30 25 8 6 45 

Lithuania 47 30 74 32 57 36 69 51 47 43 33 29 10 7 50 

New Zealand 29 37 87 70 86 91 52 57 48 50 40 33 12 6 52 

Greece 36 50 78 101 58 58 46 54 49 46 38 29 11 8 48 

Croatia 44 42 40 44 38 20 61 64 50 40 32 27 8 7 49 

Venezuela 51 66 36 41 117 108 36 49 50 48 37 32 10 7 62 

Estonia 45 19 46 49 50 34 82 63 51 42 35 26 10 7 41 

Ukraine 88 59 63 22 47 37 50 40 52 41 32 28 10 6 53 

Vietnam 96 78 66 12 72 68 45 36 53 53 43 34 11 7 66 

Iran 72 86 24 42 81 104 35 45 54 52 42 33 11 7 58 

Costa Rica 41 51 80 24 23 59 60 70 55 47 38 30 8 7 47 

Qatar 28 17 77 130 71 124 78 65 56 60 45 41 11 6 55 

Tunisia 62 53 99 38 46 43 58 58 57 49 39 33 10 6 54 

Bulgaria 69 47 47 48 62 65 70 56 58 51 41 33 11 7 57 

Trinidad and 

Tobago 
52 29 26 103 92 57 84 68 58 55 46 36 12 9 56 

Malta 37 18 16 86 27 9 92 78 59 33 26 22 8 6 33 

Egypt 71 100 56 34 74 76 32 53 60 54 44 35 11 7 68 

Peru 66 75 84 59 124 85 47 50 61 61 48 40 12 7 75 

Colombia 67 93 65 67 60 107 41 59 62 61 47 41 12 7 76 

Iceland 12 35 86 84 44 113 83 90 63 69 53 45 12 7 77 

Morocco 84 81 57 68 55 50 53 57 64 59 45 40 11 6 73 

Hong Kong 

(China) 
64 56 39 132 35 83 66 66 65 57 46 37 11 7 79 

Latvia 63 38 64 96 63 45 85 69 66 59 46 39 11 9 65 

Oman 48 49 79 104 48 122 73 72 67 67 50 44 13 10 80 

Kazakhstan 74 65 106 65 52 118 56 61 68 63 47 43 13 6 78 

El Salvador 59 77 70 16 97 25 65 76 69 62 50 40 11 7 67 

Jordan 68 67 48 40 41 48 73 74 70 58 46 38 11 7 60 

Uruguay 35 74 88 57 85 98 61 81 71 68 51 46 13 9 81 

Pakistan 104 110 51 35 111 44 40 52 72 56 45 37 11 7 69 

Lebanon 56 68 69 99 42 62 72 79 73 65 51 42 11 7 61 

Serbia 99 64 68 46 64 49 81 67 74 66 48 44 11 7 71 

Guatemala 86 84 81 74 88 67 68 71 75 73 54 50 13 7 88 

Bangladesh 107 111 67 37 127 12 46 60 76 66 53 41 12 6 70 

Mauritius 55 55 124 47 131 5 86 88 77 71 58 44 14 11 63 

Sri Lanka 94 89 92 61 113 66 64 71 78 77 59 52 14 10 91 

Syria 90 98 59 58 84 92 62 73 79 74 56 50 14 7 85 

Algeria 100 83 94 116 133 114 59 55 80 79 61 53 14 11 89 

Bosnia and Her-

zegovina 
89 60 43 90 83 61 88 78 81 70 52 48 13 9 83 

FYR Macedonia 70 63 83 33 91 74 88 85 82 72 55 48 13 10 84 

Swaziland 61 61 132 4 69 10 91 91 83 64 49 43 11 10 64 

Botswana 95 43 58 127 125 7 94 75 84 76 63 49 14 11 82 

Ecuador 83 92 102 63 82 117 67 77 85 78 60 53 14 11 93 

Cyprus 49 73 91 114 21 55 88 94 86 73 57 47 14 10 72 

Côte d'Ivoire 106 102 82 36 65 99 75 77 87 80 62 53 12 7 86 

Cambodia 105 97 131 27 118 73 80 77 88 83 66 54 15 13 90 

Honduras 80 106 104 26 73 95 74 89 89 79 61 53 14 12 92 

Bolivia 97 91 116 62 130 96 79 80 90 84 66 56 15 13 94 

Jamaica 81 82 72 108 123 11 89 90 91 81 64 52 14 13 95 

Albania 87 88 85 85 94 54 89 90 92 82 62 55 14 10 103 

Nigeria 125 108 38 125 120 119 63 50 93 88 70 59 15 11 87 

Georgia 102 99 60 88 39 53 91 92 94 84 65 57 15 13 96 

Cameroon 101 113 96 28 108 105 71 89 95 86 69 58 15 13 102 

Armenia 91 101 110 56 78 69 91 93 96 85 67 58 15 13 104 

Paraguay 93 105 89 76 104 119 83 92 97 87 70 58 15 13 98 

Congo 110 76 125 120 1 101 95 83 98 90 70 60 16 14 100 
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Kenya 115 114 119 93 77 86 76 82 99 91 71 62 15 13 97 

Senegal 112 107 76 87 101 64 89 87 99 89 68 61 15 13 108 

Barbados 78 69 29 128 53 16 98 97 100 75 55 51 11 10 74 

Gabon 92 70 113 126 110 121 95 90 100 93 72 63 16 13 109 

Fiji 82 87 112 81 112 82 96 96 101 92 72 62 15 15 106 

Tanzania 116 117 129 92 102 87 75 86 102 96 73 65 16 13 112 

Azerbaijan 109 95 108 129 93 128 91 84 103 94 72 64 16 15 115 

Suriname 76 71 93 94 114 123 97 96 104 94 74 61 16 13 99 

Mongolia 111 80 114 105 132 75 97 89 105 97 73 66 16 15 111 

Panama 73 112 109 117 96 106 83 97 106 95 74 62 16 14 101 

Zambia 117 109 62 93 100 120 91 88 107 95 72 65 16 13 113 

Macao (China) 53 94 122 131 121 93 93 98 108 105 80 70 17 16 118 

Belize 65 90 74 77 134 110 97 98 109 98 76 64 17 15 107 

Moldova 113 103 111 98 105 79 96 94 110 99 75 66 17 15 110 

Tajikistan 108 124 126 5 12 126 91 97 111 104 82 68 17 16 122 

Madagascar 122 118 123 73 128 63 91 93 112 101 77 67 17 15 116 

Kyrgyzstan 118 115 118 82 90 115 96 96 113 103 78 70 18 16 121 

Ghana 123 119 130 106 76 127 90 93 114 106 78 71 17 16 129 

Nepal 127 121 127 110 87 51 91 93 114 103 80 69 17 16 117 

Uganda 124 125 95 109 95 102 87 95 115 102 79 68 17 16 114 

Yemen 121 120 121 118 122 130 88 94 116 107 80 72 17 16 128 

Mozambique 114 127 97 79 115 131 85 97 117 107 81 71 17 16 124 

Saint Lucia 85 96 103 124 67 78 98 99 117 100 78 65 17 15 105 

Cape Verde 98 116 44 102 135 81 98 99 118 107 81 71 19 16 127 

Malawi 128 123 90 97 99 111 95 96 119 108 82 73 19 16 119 

Haiti 120 130 115 95 129 42 94 98 120 111 85 75 19 18 125 

Sudan 119 129 101 112 126 132 80 96 120 110 84 74 19 17 120 

Niger 132 122 49 121 106 71 97 96 121 109 83 73 17 16 123 

Rwanda 126 126 107 115 119 90 96 98 122 113 86 77 20 19 130 

Ethiopia 131 133 98 123 66 129 88 97 123 112 86 76 17 16 126 

CAR 130 131 100 111 116 109 98 99 124 115 87 79 21 21 132 

Burundi 133 134 128 107 80 125 98 99 125 116 88 80 22 22 135 

Eritrea 134 135 105 119 98 103 98 99 126 117 89 80 23 23 134 

Gambia 129 128 120 122 109 97 99 99 126 114 87 78 21 20 131 

Iraq 135 132 50 133 75 133 97 98 126 115 87 79 21 20 133 
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