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Abstract

We study the decennial log-growth population rate distributions of France (1990-

2009), Germany (1996-2006), Italy (1951-1961, 2001-2011) and Spain (1950-

1960, 2001-2010).

It is obtained an excellent parametric description of these log-growth rates by

means of a modification of the normal distribution in that the tails are mixed by

means of convex linear combinations with exponential distributions, giving rise to

the so called “double mixture exponential normal”.

The normal distribution is not the one empirically observed for the same datasets.
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1 Introduction

The parametric study of the log-growth rates of city size distribution has received tra-

ditionally scarce attention in the Urban Economics literature. However, in recent times

have appeared the studies of Schluter and Trede (2013); Ramos (2015) where the cases

of Germany and the US, respectively, have been treated. In the second of these ref-

erences it has been found that an excellent description of three different types of US

log-growth data is obtained with the so called “double mixture exponential General-

ized Beta 2 (dmeGB2)” distribution. This distribution is the exponential version of the

“dmPGB2” of Ramos and Sanz-Gracia (2015). Since we worked in Puente-Ajovı́n and

Ramos (2015) with population data of four major European countries, namely France,

Germany, Italy and Spain, it seemed to be natural to study the log-growth rates of these

last countries.

However, we have followed in this article a different line of reasoning in order to

obtain the final results. That is, we have tried to check whether the normal distribution

is a good description of the log-growth rates of the cited European countries. If not, try

to modify the normal distribution in a minimal way in order to obtain a good enough

parametric description of the mentioned quantities. For that, we rely on previous stud-

ies stating that the tails of the log-growth distributions (for firm size) are approximately

exponential (Johnson et al., 1995; Stanley et al., 1996; Canning et al., 1998; Bottazzi

and Secchi, 2003, 2011) and we also take the idea of convex linear combinations of

distributions at the tails (Combes et al., 2012) to obtain a distribution that we call “dou-

ble mixture exponential normal (dmen)”. We will see that this parametric model is

not rejected empirically for all of the studied samples, contrary to the ordinary normal

distribution. We also checked the best model of Ramos (2015) and found that for the

studied European countries it does not lead to a real improvement over the dmen, which

means that the log-growth processes of the US and of the studied European countries

do differ in practice.
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The fact that the log-growth size distributions is not normal has implications with

regards to the standard Gibrat’s Law, see Ramos (2015) for details.

We use here part of the same databases of Puente-Ajovı́n and Ramos (2015), see

therein for details, and we show in Table 1 the descriptive statistics of the used data for

France, Germany, Italy and Spain. For France, we have used the last three available

Census. For Germany, only the sample (1996-2006) is used due to the difficulty of

constructing the log-growth rates for other years, since the German urban units do

change notably in other periods due to mergers and/or splits. Out of the samples for

Italy and Spain, we have used the last available ones, and those of mid-century (Italy,

1951-1961; Spain 1950-1960) in which the mean log-growth rates are negative.

[Table 1 near here]

The rest of the article is organized as follows. Section 2 introduces the parametric

distributions used in this paper. Section 3 describes the empirical results obtained.

Finally, Section 4 concludes.

2 Description of the presented distributions

In this section we will introduce the distributions used along the paper1 for the (two

consecutive periods) log-growth rates, denoted by

gi,t = log xi,t − log xi,t−1 ∈ (−∞,∞)

1From a practical point of view, it is our interest in this paper to obtain a very good parametric fit of

the log-growth rate distributions of the studied European countries. For that, we have first tried several dis-

tributions well-known in the economics literature: the normal, the asymmetric exponential power (AEP) of

Bottazzi and Secchi (2011), which generalizes the Laplace distribution of, e.g., Johnson et al. (1995); Stanley

et al. (1996); Canning et al. (1998); Bottazzi and Secchi (2003) and references therein, the α-stable distri-

bution, see, e.g., Zolotarev (1986); Uchaikin and Zolotarev (1999); Gaffeo (2011) and references therein

(the calculations for the α-stable distribution have been performed using the STABLE software of Ro-

bust Analysis Inc., see http://www.robustanalysis.com/) the generalized hyperbolic distribution

(Barndorff-Nielsen (1977); Barndorff-Nielsen and Halgreen (1977); Barndorff-Nielsen and Stelzer (2005)),

the normal-Laplace distribution of Reed (2003); Reed and Jorgensen (2004); Manas (2009) and the (non-

standardized) Student-t distribution, see, e.g., Johnson et al. (1995) and references therein. The results for

the distributions, which are not those with the best performance, and not presented here are available from

the authors upon request.
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where xi,t is the population of city i at time t. When a fixed t is taken we will simply

write g ∈ (−∞,∞) for the variable of all log-growth rates of the cross-sections taken.

2.1 Normal distribution

Firstly, we recall the normal distribution for the log-growth rates g. The probability

density distribution (pdf) and cumulative distribution function (cdf) are, respectively,

fn(g, µ, σ) =
1

√
2πσ

exp

(

−
(g − µ)2

2σ2

)

cdfn(g, µ, σ) =
1

2

(

1 + erf

(

g − µ
√
2σ

))

(1)

where µ is real and σ > 0 are the mean and the standard deviation of the variable g

according to this distribution. Also, erf is the error function associated to the standard

normal distribution.

2.2 The double mixture exponential normal (dmen)

For our new distribution “double mixture exponential normal (dmen)” we first define

some basic functions which will be employed by the former.

Then, let us consider

u(g, ζ) = exp(−ζg)

l(g, ρ) = exp(ρg)

The function u(g, ζ) will model the decreasing exponential part of the upper tail of our

new distribution, where ζ > 0, and l(g, ρ) corresponds to the increasing exponential

lower tail, with ρ > 0. The functions u, l are not normalized at this stage like in

Ioannides and Skouras (2013); Ramos (2015). Note that if the variable x follows a

Pareto distribution and y = lnx, then y follows an exponential distribution.
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The new distribution we introduce here, has two tails which are exponential with a

convex linear combination mixture of normal, and body of this last type. The switch

between the tails and the body occurs at two exact thresholds ǫ (lower tail-body) and

τ > ǫ (body-upper tail). For the lower tail, the combining coefficient will be denoted

by ν ∈ (0, 1), and by θ ∈ (0, 1) for the upper tail. We require continuity of the

density function at the threshold points and overall normalization to one. They are also

imposed equal weight of the distributions of the mixing at the tails, like in Ioannides

and Skouras (2013), in order that the parameters ν, θ control the proportion of each

component of the combination in the lower (resp. upper) tail.

The resulting composite density is given by:

fdmen(g, ρ, ǫ, ν, µ, σ, τ, ζ, θ)

=























b2[(1− ν) d2 fn(g, µ, σ) + ν e2 l(g, ρ)] g < ǫ

b2 fn(g, µ, σ) ǫ ≤ g ≤ τ

b2[(1− θ) c2 fn(g, µ, σ) + θ a2 u(g, ζ)] τ < g

where the constants are given as follows:

d−1

2
= 1− ν +

exp(−ρǫ) ν ρ cdfn(ǫ, µ, σ) l(ǫ, ρ)

fn(ǫ, µ, σ)

e−1

2
=

(1− ν) exp(ǫρ)

ρ cdfn(ǫ, µ, σ)
+

ν l(ǫ, ρ)

fn(ǫ, µ, σ)

c−1

2
= 1− θ +

ζ θ exp(τζ) (1 − cdfn(τ, µ, σ))u(τ, ζ)

fn(τ, µ, σ)

a−1

2
=

(1 − θ) exp(−τζ)

ζ (1− cdfn(τ, µ, σ))
+

θ u(τ, ζ)

fn(τ, µ, σ)

b−1

2
= e2

exp(ǫρ)

ρ
+ cdfn(τ, µ, σ)− cdfn(ǫ, µ, σ) +

a2

ζ exp(τζ)

This distribution depends on eight parameters (ρ, ǫ, ν, µ, σ, τ, ζ, θ) to be estimated

below by Maximum Likelihood (ML). It can be deduced as a limiting case (McDonald,

1984; McDonald and Xu, 1995) of the theoretical model proposed in Ramos (2015),
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see also Ramos and Sanz-Gracia (2015).

3 Results

In this Section we recall briefly the empirical results concerning the samples of the four

European countries studied.

We have computed the log-growth rates between each two consecutive cross-sections

of our data. In order to avoid infinite values we have removed the observations for

which at least one of the population values is zero. The descriptive statistics of the data

so obtained is given in Table 2.

[Table 2 near here]

We have estimated the parameters of the distributions by maximum likelihood es-

timation (MLE), using the software MATLABr and MATHEMATICAr. We report

on Table 3 the estimated values of the parameters for the dmen and the corresponding

standard errors (SE) computed according to Efron and Hinkley (1978) and McCullough

and Vinod (2003). The MLE estimators for the normal are exact and equal to the mean

and standard deviation (SD) of the data, see simply Table 2, and to be compared to

those of Table 4, computed according to the dmen for each studied sample. Observe

that these last values are almost identical, meaning that at least the two first moments

of the log-growth rate distributions are accurately described by the new dmen.

[Table 3 near here]

[Table 4 near here]

In order to assess the goodness of fit of the two distributions explicitly shown in

this paper, we use three standard statistical tests: the Kolmogorov–Smirnov (KS) test,

the Crámer–von Mises (CM) test and the Anderson–Darling (AD) test. The results

are shown on Table 5. Very briefly, the normal distribution is strongly rejected always

by the three tests. Meanwhile, the dmen is not rejected in almost 100% of the cases,
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except in the case of France (1990-1999) and the KS test.

[Table 5 near here]

Also, we have computed the Akaike Information Criterion (AIC) and Bayesian or

Schwarz Information Criterion (BIC) (Burnham and Anderson, 2002, 2004), very well

adapted to the maximum likelihood estimation we have performed before, see Table 6.

Even with the dmen having eight parameters instead of two of the normal, the preferred

model amongst these is always the former.

[Table 6 near here]

As a complement of the KS, CM, AD, AIC and BIC criteria, we show in Figure 1

an informal graphical approximation of the obtained fits for the sample of Germany

(1996-2006) and the normal on the one hand and the dmen on the other hand. This

sample has been selected in order to show the extreme difference of the fits of our

studied samples. For the normal (left-hand panel) the fits can be improved notably at

the tails and at the body of the distribution, meanwhile for the dmen (right-hand panel)

and the sample of Germany (1996-2006) the fit is almost perfect both at tails and body,

even accounting for the amplification effect of the discrepancies at the tails (González-

Val et al., 2013). Let us remark that on the plots of the tails the cdf for the lower tail

or 1− cdf for the upper tail are nearly exponential, and therefore the graphs (empirical

of estimated with the dmen) are almost linear, in agreement with previous knowledge

for log-growth of firm sizes (Johnson et al., 1995; Stanley et al., 1996; Canning et al.,

1998; Bottazzi and Secchi, 2003, 2011).

[Figure 1 near here]

4 Conclusions

In the preceding Section we have seen that a very appropriate parametric model for the

log-growth rate distributions of the city size of France, Germany, Italy and Spain is the
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newly introduced (in Subsection 2.2) dmen.

The variances given by the dmen in all of our cases of study are finite, so we have

found an example of distribution for the log-growth rates of city size for the mentioned

European countries, always not rejected empirically and with finite variances. This is

an alternative to the normal distribution.

However, the dmen is not the only possibility of describing the log-growth rates

of these European countries. If one replaces the normal distribution in the mixing of

the dmen by the logistic distribution (Johnson et al., 1995; Kleiber and Kotz, 2003)

one obtains very similar results in performance and fit. However, what distinguishes

the log-growth rates of the US and that of the studied European countries is that in

the former case the dmeGB2 is more appropriate, but for the latter it is not necessary

to generalize so much the distribution at the body and it is enough to take the normal

distribution or if one prefers, just the logistic. This makes the log-growth process of the

US and Europe (at least of the four major countries studied) different, although the city

size distribution can be described in similar terms (Puente-Ajovı́n and Ramos, 2015;

Ramos and Sanz-Gracia, 2015). These results are somewhat puzzling and deserve a

closer look in further research, maybe taking into account a new look into the economic

urban growth literature, see, e.g., Glaeser et al. (1992); Glaeser and Shapiro (2003);

Glaeser et al. (2006); Glaeser and Redlick (2009); Duranton and Puga (2014).
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Table 1: Descriptive statistics of the data samples used

Sample Obs. Mean SD Min. Max.

France 1990 36,644 1,611 14,157 1 2,175,200

France 1999 36,643 1,679 14,173 1 2,147,857

France 2009 36,674 1,793 14,895 1 2,257,981

Germany 1996 12,309 6,663 44,188 3 3,458,763

Germany 2006 12,309 6,687 44,048 7 3,404,037

Italy 1951 8,100 5,866 31,138 74 1,651,393

Italy 1961 8,100 6,250 39,131 90 2,187,682

Italy 2001 8,100 7,021 39,326 33 2,546,804

Italy 2011 8,094 7,490 41,505 34 2,761,477

Spain 1950 7,901 3,480 26,033 64 1,618,435

Spain 1960 7,910 3,802 33,652 51 2,259,931

Spain 2001 8,077 5,039 43,080 7 2,938,723

Spain 2010 8,114 5,795 47,530 5 3,273,049

Table 2: Descriptive statistics of the log-growth rates for the consecutive samples used

Sample Obs Mean SD Min Max

Fr 1990-1999 36,643 0.046 0.127 -1.386 1.786

Fr 1999-2009 36,643 0.099 0.150 -2.060 2.692

Ge 1996-2006 12,309 0.007 0.112 -0.827 1.006

It 1951-1961 8,100 -0.047 0.161 -0.861 1.873

It 2001-2011 8,081 0.043 0.117 -0.580 3.303

Sp 1950-1960 7,901 -0.053 0.176 -1.360 1.579

Sp 2001-2010 8,074 0.038 0.244 -1.458 3.258
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Table 3: ML estimators and standard errors (SE) for the dmen and the studied log-

growth rate samples. The estimators for the normal distribution are the mean and stan-

dard deviation of the log-growth data, see Table 2

Sample dmen

ρ (SE) ǫ (SE) ν (SE)

Fr 1990-1999 9.590 (0.214) -0.085 (0.004) 0.484 (0.016)

Fr 1999-2009 4.131 (0.205) 0.047 (0.017) 0.041 (0.003)

Ge 1996-2006 10.012 (0.207) 0.031 (0.003) 0.338 (0.020)

It 1951-1961 12.722 (0.631) -0.203 (0.011) 0.371 (0.113)

It 2001-2011 15.239 (0.389) -0.019 (0.004) 0.565 (0.060)

Sp 1950-1960 5.718 (0.404) -0.243 (0.009) 0.349 (0.029)

Sp 2001-2010 7.308 (0.556) -0.292 (0.016) 0.496 (0.059)

µ (SE) σ (SE)

Fr 1990-1999 0.055 (0.001) 0.0981 (0.0005)

Fr 1999-2009 0.108 (0.001) 0.1215 (0.0006)

Ge 1996-2006 -0.005 (0.001) 0.0873 (0.0007)

It 1951-1961 -0.059 (0.002) 0.1420 (0.0014)

It 2001-2011 0.029 (0.001) 0.1005 (0.0011)

Sp 1950-1960 -0.076 (0.002) 0.1140 (0.0013)

Sp 2001-2010 0.015 (0.003) 0.1627 (0.0017)

τ (SE) ζ (SE) θ (SE)

Fr 1990-1999 0.026 (0.001) 8.995 (0.078) 0.572 (0.015)

Fr 1999-2009 0.053 (0.002) 7.151 (0.068) 0.466 (0.013)

Ge 1996-2006 0.133 (0.004) 8.357 (0.339) 0.534 (0.022)

It 1951-1961 0.124 (0.014) 4.767 (0.306) 0.301 (0.025)

It 2001-2011 0.167 (0.008) 7.326 (0.435) 0.360 (0.028)

Sp 1950-1960 -0.048 (0.012) 5.454 (0.129) 0.507 (0.020)

Sp 2001-2010 -0.062 (0.005) 3.913 (0.068) 0.574 (0.024)

Table 4: Means and standard deviations (SD) according to the estimated dmen and the

studied log-growth rate samples.

Sample Mean SD

Fr 1990-1999 0.046 0.126

Fr 1999-2009 0.099 0.147

Ge 1996-2006 0.007 0.112

It 1951-1961 -0.047 0.160

It 2001-2011 0.043 0.113

Sp 1950-1960 -0.053 0.174

Sp 2001-2010 0.038 0.241
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Table 5: p-values (statistics) of the Kolmogorov–Smirnov (KS), Cramér–Von Mises

(CM) and Anderson–Darling (AD) tests for the used samples and density functions.

Non-rejections are marked in bold

Sample normal

KS CM AD

Fr 1990-1999 0 (0.054) 0 (32.200) 0 (188.373)

Fr 1999-2009 0 (0.051) 0 (29.538) 0 (188.566)

Ge 1996-2006 0 (0.050) 0 (10.045) 0 (64.962)

It 1951-1961 0 (0.038) 0 (3.295) 0 (22.600)

It 2001-2011 0 (0.051) 0 (6.917) 0 (43.700)

Sp 1950-1960 0 (0.086) 0 (19.519) 0 (114.201)

Sp 2001-2010 0 (0.083) 0 (20.033) 0 (118.089)

dmen

KS CM AD

Fr 1990-1999 0.074 (0.008) 0.410 (0.144) 0.348 (1.018)
Fr 1999-2009 0.485 (0.005) 0.444 (0.133) 0.375 (0.967)
Ge 1996-2006 0.865 (0.006) 0.931 (0.040) 0.958 (0.271)
It 1951-1961 0.869 (0.007) 0.832 (0.057) 0.927 (0.315)
It 2001-2011 0.469 (0.010) 0.695 (0.079) 0.739 (0.508)
Sp 1950-1960 0.368 (0.011) 0.423 (0.139) 0.486 (0.793)
Sp 2001-2010 0.838 (0.007) 0.763 (0.068) 0.819 (0.429)

Table 6: Maximum log-likelihoods, AIC and BIC for the used distributions and log-

growth rates samples. The lowest values of AIC and BIC for each sample are marked

in bold

Sample normal

log-likelihood AIC BIC

Fr 1990-1999 23,609 -47,213 -47,196

Fr 1999-2009 17,477 -34,951 -34,934

Ge 1996-2006 9,432 -18,859 -18,845

It 1951-1961 3,322 -6,640 -6,626

It 2001-2011 5,855 -11,705 -11,691

Sp 1950-1960 2,518 -5,031 -5,017

Sp 2001-2010 -80.254 164.508 178.501

dmen

log-likelihood AIC BIC

Fr 1990-1999 25,992 -51,968 -51,900
Fr 1999-2009 20,455 -40,895 -40,827
Ge 1996-2006 10,241 -20,466 -20,407
It 1951-1961 3,702 -7,388 -7,332
It 2001-2011 6,522 -13,028 -12,972
Sp 1950-1960 3,508 -7,000 -6,944
Sp 2001-2010 945.513 -1,875 -1,819
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Figure 1: First row: empirical and estimated normal and dmen ln(cdf) for the lower

tail. Second row: empirical (Gaussian adaptive kernel density) and estimated normal

and dmen density functions. Third row: empirical and estimated normal dmen ln(1 −
cdf) for the upper tail. Both columns: log-growth rates of German Gemeinden 1996-

2006. Empirical in blue, estimated in red in all cases.
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