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Abstract

This paper provides a Bayesian algorithm to efficiently estimate non-linear/non-Gaussian

switching state space models by extending a standard Particle Markov chain Monte Carlo (PM-

CMC) method. Instead of iteratively running separate PMCMC steps, the proposed particle

Gibbs sampler generates continuous-state and discrete-regime indicator variables together from

their joint smoothing distribution in one Gibbs block. The proposed Bayesian algorithm that is

built upon the novel idea of ancestor sampling is robust to small numbers of particles. Moreover,

the algorithm is applicable to any switching state space models, regardless of the Markovian

property. The difficulty in conducting Bayesian model comparisons is overcome by adopting

the Deviance Information Criterion (DIC). For illustration, a conventional regime switching

stochastic volatility model is generalized to encompass the regime-dependent leverage effect and

is applied to Standard and Poor’s 500 and NASDAQ daily return data. The resulting Bayesian

posterior estimates based on the proposed method indicate that the stronger (weaker) financial

leverage effect is associated with a high (low) volatility regime.
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1 Introduction

The dynamics of many economic and financial time series often dramatically change, in associ-

ation with important economic events, such as economic policy changes, economic recessions, and

financial crises. Since the seminar article by Hamilton (1989), numerous studies have statistically

handled such abrupt changes in fundamental economic structures. In particular, linear/Gaussian

switching state space models (LG-SSSMs) have been of great use in the economic literature due to

their flexibility in encompassing a broad range of economic models1. However, though LG-SSSMs

have been proved to be quite useful in the literature, they have some drawbacks. Most importantly,

they impose linearity and Gaussianity assumptions that are too restrictive to handle fundamen-

tally non-linear economic variables with non-Gaussian innovations. On this ground, it is important

to develop an efficient method to estimate the novel class of non-linear/non-Gaussian switching

state space models (NLG-SSSMs), and this paper attempts to achieve this goal by extending the

standard Particle Markov Chain Monte Carlo method (PMCMC) by Andrieu et al. (2010).

A main difficulty in estimating NLG-SSSMs is that latent continuous-state and discrete-regime

indicator variables that drive a dynamic system usually have high dimensions and complicated

dependence patterns. Consequently, no closed-form expression exists in most cases for the posterior

distributions of unknown parameters. The PMCMC method is an simulation-based algorithm

which numerically approximates the posterior distributions of interest using random samples called

‘particles’. The method employs a sequential Monte Carlo (SMC) algorithm, also known as a

particle filter, to construct proposal kernels for an MCMC sampler. In this paper, I particularly

focus on developing an efficient particle Gibbs (PG) sampler for NLG-SSSMs, which is one kind of

the PMCMC method described by Andrieu et al. (2010). Another important class of the PMCMC

method, a particle marginal Metropolis-Hastings (PMMH) sampler, may be easily derived based

on the results provided in this paper.

The standard PG sampler by Andrieu et al. (2010) is first extended to accommodate regime

changes in a non-linear dynamic system. This basic algorithm is treated as a benchmark PG

algorithm throughout this paper. A modified sequence Monte Carlo (SMC) method is derived to

1See Fruhwirth-Schnatter (2006), Kim and Nelson (1999), and Giordani et al. (2007) and references therein.
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incorporate a regime indicator variable, which targets the joint smoothing distribution of the whole

sequence of the continuous state and the regime indicator variables. However, the approximate

joint smoothing distribution obtained by the proposed SMC method is unreliable, which in turn

produces MCMC output that mixes poorly. This problem is mainly caused by path degeneracy.

Path degeneracy refers to a phenomenon by which most of particle trajectories tends to collapse

to a single path as the SMC is operated forward in time. Andrieu et al. (2003) and Driessen

and Boers (2005) documented that when a dynamic system depends on dramatic regime changes,

path degeneracy becomes more severe. While increasing the number of particles can mitigate path

degeneracy, it may induce huge computation costs because the modified SMC is to be performed

at every MCMC iteration.

I introduce an alternative PG sampler that is robust to path degeneracy building on the idea of

Whiteley (2010). In the proposed sampler, I implicitly incorporate additional backward recursion

to the modified SMC method by employing ancestor sampling as described by Lindsten and Schon

(2012) and Lindsten et al. (2014). The ancestor sampling step is designed to increase the number

of unique particles by re-shuffling the previous particle trajectories in an existing particle swarm.

By preventing path degeneracy, the PG with ancestor sampling therefore significantly improves

the approximation of the joint smoothing distribution of xt and st. As a result, the proposed PG

sampler achieves satisfactory mixing with a reasonably small number of particles.

An important feature of the proposed PG sampler with ancestor sampling is to sequentially

generates the continuous state and the discrete regime indicator variables together from their joint

smoothing distribution, in contrast to the conventional approaches, which iteratively run separate

PMCMC steps. The joint sampling can be effectively done in one Gibbs block by exploiting the

hierarchical structure of NLG-SSSMs. Properly designed MCMC kernels in the new approach target

the joint posterior distribution. Therefore, the dependence between the continuous-state and the

discrete-regime indicator variables does not affect the mixing properties of the resulting sampler.

A prominent example in which the continuous state and the discrete regime indicator variables are

perfectly correlated is provided by the Bayesian change-point models in Pesaran et al. (2006) and

Koop and Potter (2007). One may use a Gibbs sampling approach in which the continuous state
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is generated in one Gibbs block conditional on the regime indicator variable and then the regime

indicator variable is generated in another block conditional on the continuous state. However, this

sampling scheme does not converge to the correct stationary distribution as it is degenerate for the

change-point models.

Also, I note that the proposed PG sampler is a multi-move sampler in terms of the regime

indicator variable. The theoretical results by Liu et al. (1994) and Scott (2002) suggest that a single-

move sampler produces highly autocorrelated MCMC outputs for the regime indicator variable and

other model parameters. Kim and Kim (2014) also empirically showed that a single-move sampler

is undesirable in the sense that it fails to converge to a correct stationary distribution when the

regime indicator variable is highly persistent or has absorbing states. The proposed PG sampler

in this paper is completely free from those problems caused by a single-move sampling approach.

Furthermore, the proposed method can be easily applied to general NLG-SSSMs regardless of the

Markovian property.

There are several works in the literature related to this paper. For instance, Flury and Shephard

(2011) developed a PMCMC algorithm using a Particle Marginal Metropolis-Hastings (PMMH)

approach and apply it to three popular economic models. Even though a PMMH algorithm can

be developed for Bayesian inference of NLG-SSSMs based on the results presented in section 2,

convergence of their sampler may be very slow especially without a large number of particles2.

Of cause, one may achieve satisfactory convergence by increasing the number of particles, which is

computationally very demanding for complex dynamic models. Moreover, since a PMMH algorithm

often employs random walk proposals in generating model parameters, many of candidates will be

wasted due to low acceptance probabilities.

Nonejad (2014) recently proposed a PMCMC method based on a Gibbs sampling approach to

estimate a special class of NLG-SSSMs that this paper handles. The proposed method is imple-

mented by first drawing a continuous state variable, say xt, given a regime indicator variable st and

then drawing the regime indicator variable st without conditioning on xt in the second step. The

2Pitt et al. (2012) provided theoretical results on the important trade-off between the convergence performance

and a number of particles used by a PMMH algorithm.
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second step of the algorithm generates st simply by replacing the true likelihood with the approx-

imate likelihood using a SMC method to integrate out xt. However, because the approximation

errors generated by a SMC method are completely ignored, the errors will introduce some bias by

propagating through the resulting MCMC sampler. Song (2014) developed a PMMH algorithm by

exploiting the partially linear structure of a switching state space model and incorporating Kim’s

(1994) approximate filtering and smoothing algorithms. An efficient PG algorithm was also pro-

posed by Whiteley et al. (2010) to estimate linear/Gaussian SSSM. While the existing algorithms

are potentially very useful for many applications, they are either computationally inefficient or not

directly applicable to this article because the empirical models of U.S. stock returns in Section 4

involve fully non-linear transition and measurement equations and the regime indicator variable is

indeed highly persistent in actual data.

Importantly, Mendes et al. (2014) suggested a general PMCMC scheme by properly combining

PMMH and PG methods. More specifically, PG steps are employed to generate the model param-

eters that are only weakly correlated with the latent states and then, separate PMMH steps are

performed for posterior simulation on the model parameter that are strongly correlated with the

state variables. With the proposed PG algorithm in this paper, one may be able to easily obtain a

further advanced PMCMC scheme for many NLG-SSSMs following Mendes et al. (2014).

For empirical illustration, I investigate the relationship between volatility and return in the U.S.

stock markets in the presence of regime switching by employing the econometric tool developed.

A conventional regime switching stochastic volatility (RS-SV) model is generalized to encompass

regime-dependent leverage effect and is applied to S&P 500 and NASDAQ daily return data. The

main idea behind this modeling approach is that when a leverage ratio which represents a firm’s

financial status is high, the firm becomes more venerable to a shock to its equity return. Because

a high leverage ratio is typically associated with high stock volatility, in times of high return

volatility, the response of volatility to a return shock should be larger than in normal times with

relatively lower return volatility. This asymmetric response of volatility across different volatility

regimes is the empirical feature that the proposed SV model is intended to capture. Some recent

works such as Bandi and Renò (2012) and Yu (2012) provided empirical evidence of time-varying
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leverage effect. Especially, Bandi and Renò (2012) theoretically illustrated this mechanism and

developed a non-parametric estimation method for time-varying leverage effect. Building upon

what has been suggested in the literature, this paper provides a new regime switching SV model

with regime-dependent leverage effect to further investigate this important empirical issue.

The new RS-SV model is applied to daily stock returns from the first week of January 1975

to the first week of August 2015. The Bayesian posterior means of the correlation parameters

turn out to be significantly different across high- and low-volatility regimes, which we originally

conjecture. In particular, the Bayesian estimates indicate that the stronger (weaker) leverage effect

is associated with a high (low)-volatility regime. Based on the Deviance Information Criterion

(DIC) by Spiegelhalter et al. (2002), it is shown that the models with the regime-dependent

leverage effect are always preferred to those with the constant leverage effect, regardless of the

number of regimes. This empirical results are consistent with the time-varying leverage effect in

the U.S. stock market described by Bandi and Renò (2012).

The organization of the paper is given as follows. In Section 2, I introduce model specification

and derive a modified sequential Monte Carlo algorithm for a general NLG-SSSM. Section 3 provides

details of the proposed PG sampler and a model selection criterion. The performance of the

new algorithm is also illustrated using simulated data. In Section 4, I demonstrate the proposed

technique on data from the U.S. stock market. Concluding remarks are provided in Section 5.

2 Model Specification and Particle Filtering

2.1 Model Specification

Non-linear/non-Gaussian Switching State-Space Models (NLG-SSSM) are a class of models in

which the structure and the parameters of a non-linear state-space model switch according to

discrete latent processes3. A state space model consists of the measurement equation F (.) and the

transition equation H(.):

yt = Fs0:t(x0:t, ǫt) (1)

3The class of Switching State-Space Models is also referred to as Jump Markov Systems in the literature.
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xt = Hs0:t(x0:t−1, ut)

where the dynamic system is observed over a time interval t = 1, 2, ..., T ; xt ∈ X is the unobserved

state vector; Yt ∈ Y is the observation vector; x0:t = {x0, x1, ..., xt}, and s0:t = {s0, s1, ..., st};

and ut and ǫt are identically distributed random variables with zero means and are not serially

correlated4. The properties of the state space model such as dimensions, functional forms, and

model parameters shift over time according to a set of discrete latent variables s0:t = {s0, s1, ..., st}.

The NLG-SSSM is parameterized by unknown parameters βst , subject to the discrete latent variable

st. The latent variable st follows a K-state first-order Markov switching process with the following

transition probabilities:

p(st = j|st−1 = k) = πkj ,

K
∑

j=1

πkj = 1, i, k = 1, 2, ...,K. (2)

The model parameters under K-regimes and the transition probabilities are denoted by θ =

{β1, β2, ..., βK, π} ∈ Θ. The hierarchical structure of the non-linear/non-Gaussian SSSM specified

by equations (1) and (2) is the main difference from that of a canonical non-linear/non-Gaussian

state-space model with discrete states. The distributions of the initial states are associated with

the prior densities gθ(x0, s0) = gθ(x0|s0)gθ(s0). Note that the above NLG-SSSM does not possess

the Markovian property. Although the measurement and transition equations often depend on just

a few latent states in practice, I adhere to the general model specification throughout this paper

for generality of exposition.

Our primary concern in this article is to perform Bayesian inference in an NLG-SSSM. The two

sets of latent variables x0:T = {x0, x1, ..., xT}, s0:T = {s0, s1, ..., sT} and the model parameters θ

are treated as unknowns and jointly estimated based on the posterior density given as:

p(θ, x0:T , s0:T |Y1:T ) ∝

[ T
∏

t=1

fθ(yt|x0:t, s0:t)gθ(xt|x0:t−1, s0:t)gθ(st|st−1)

]

gθ(x0|s0)gθ(s0)π(θ) (3)

where fθ(.) and gθ(.) denote probability densities associated with equations (1) and (2), given θ;

π(θ) is the prior density of θ. Because the posterior is not available in closed form, Bayesian

inference is often infeasible without simulation-based methods.
4The functions F (.) and H(.) can contain additional exogenous variables, but potential exogenous variables are

omitted for notational simplicity.
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2.2 Particle Filtering for a Non-linear/Non-Gaussian SSSM

To develop an efficient particle Gibbs algorithm, it is crucial to sample from the joint smoothing

distribution of the latent state variables conditional on y1:T = {y1, y2, ..., yT}. First, consider the

following useful decomposition of the joint filtering density pθ(x0:t, s0:t|y1:t):

pθ(x0:t, s0:t|y1:t) = pθ(xt, x0:t−1, st, s0:t−1|yt, y1:t−1)

=
pθ(yt, xt, x0:t−1, st, s0:t−1|y1:t−1)

pθ(yt|y1:t−1)

=
fθ(yt|x0:t, s0:t)gθ(xt|x1:t−1, s0:t)gθ(st|st−1)

pθ(yt|y1:t−1)
pθ(x0:t−1, s0:t−1|y1:t−1).

(4)

Note the joint smoothing density pθ(x0:T , s0:T |y1:T ) of our interest can be obtained according to the

recursive structure in equation (4) as t = T . While evaluating the exact joint filtering density is a

very difficult task because of analytically non-tractable pθ(x0:t−1, s0:t−1|y1:t−1) and fθ(yt|y1:t−1), we

can properly approximate the joint filtering density in equation (4) using random samples called

‘particles’. Gordon et al. (1993) originally developed a particle filtering method to recursively

approximate a filtering density of continuous latent state variables. It is worth mentioning that

the standard particle filter described by Gordon et al. (1993) can be considered a special case of

the popular auxiliary particle filter of Pitt and Shephard (1999). These particle filters are also

known as sequential Monte Carlo (SMC) methods. In this section, the standard particle filters are

extended and applied to obtain the approximate joint filtering and smoothing densities of xt and

st in a NLG-SSSM.

Let {X0:t, S0:t} = {x
(i)
0:t, s

(i)
0:t}

N
i=1 denote a set of particles, in which N represents the total number

of particles. The N particles are generated from the following importance distribution in an SMC

method for a NLG-SSSM:

q(x0:t, s0:t) = q(xt|x0:t−1, s0:t)q(st|x0:t−1, s0:t−1)q(x0:t−1, s0:t−1) (5)

where q(.)’s denote importance densities possibly depending upon y1:t. Equation (5) implies that

new states {x
(i)
t , s

(i)
t } are sequentially generated from q(st|x0:t−1, s0:t−1) and q(xt|x0:t−1, s0:t) con-

ditional on the corresponding past sequence {x
(i)
0:t−1, s

(i)
0:t−1} from q(x0:t−1, s0:t−1) for i = 1, 2, ..., N .

By combining the new particles at time t with the old particle paths at time t−1, we obtain a new
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set of particle trajectories {X
(i)
0:t, S

(i)
0:t} = {x

(i)
0:t, s

(i)
0:t}

N
i=1. A candidate distribution to generate new

particles at time t is referred to as an incremental importance distribution.

As an importance distribution is usually not identical to the target distribution, we need to

correct the corresponding approximations by imposing importance weights to generated particles

as:

ω
(i)
t =

pθ(x
(i)
0:t, s

(i)
0:t|y1:t)

q(x
(i)
0:t, s

(i)
0:t)

=
fθ(yt|x

(i)
0:t, s

(i)
0:t)gθ(x

(i)
t |x

(i)
0:t−1, s

(i)
0:t)gθ(s

(i)
t |s

(i)
t−1)

pθ(yt|y1:t−1)q(x
(i)
t |x

(i)
0:t−1, s

(i)
0:t)q(s

(i)
t |x

(i)
0:t−1, s

(i)
0:t−1)

pθ(x
(i)
0:t−1, s

(i)
0:t−1|y1:t−1)

q(x
(i)
0:t−1, s

(i)
0:t−1)

∝
fθ(yt|x

(i)
0:t, s

(i)
0:t)gθ(x

(i)
t |x

(i)
0:t−1, s

(i)
0:t)gθ(s

(i)
t |s

(i)
t−1)

q(x
(i)
t |x

(i)
0:t−1, s

(i)
0:t)q(s

(i)
t |x

(i)
0:t−1, s

(i)
0:t−1)

ω
(i)
t−1

∝ ω̄
(i)
t ω

(i)
t−1

(6)

for i = 1, 2, ..., N . The first term ω̄
(i)
t in equation (6) is called an incremental importance weight.

Suppose that the estimate of the importance weight ωt−1 at t − 1 is available and is denoted by

ω̂t−1. Then, because the importance weight ω
(i)
t is only proportional to ω̄

(i)
t ω

(i)
t−1 due to the unknown

normalizing constant pθ(yt|y1:t−1), our estimate of the importance weight ω
(i)
t at t is obtained as:

ω̂
(i)
t =

ω̄
(i)
t ω̂

(i)
t−1

∑N
j=1 ω̄

(j)
t ω̂

(j)
t−1

through self-normalization. Moreover, we can approximately evaluate the likelihood function as:

p̂θ(y1:t) =

t
∏

l=1

p̂θ(yl|yl−1) =

t
∏

l=1

N
∑

i=1

ω̄
(i)
l ω̂

(i)
l−1. (7)

The approximate likelihood value obtained running a SMC procedure is a key ingredient for a

PMMH algorithm and some model comparison criteria.

It is well know that a filtering algorithm without a re-sampling step seriously suffers from weight

degeneracy. Weight degeneracy represents a phenomenon that most of the particles trajectories

{X0:t−1, S0:t−1} = {x
(i)
0:t, s

(i)
0:t}

N
i=1 diverge from their true latent states over time, increasing the

variance of importance weights, and all importance weights eventually converge to zero except only

one weight. Following the conventional approach by Gordon et al. (1993) and Pitt and Shephard
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(1999) to prevent weight degeneracy, I include a re-sampling step in which N random particles

{x̃
(i)
0:t, s̃

(i)
0:t}

N
i=1 are re-drawn from the existing particles {x

(i)
0:t, s

(i)
0:t}

N
i=1 with the normalized importance

weight {ω̂
(i)
t }N

i=1. The role of the additional re-sampling step is to replicates probable particles with

high importance weights. In contrast, it eliminates unlikely particles with low importance weights to

avoid path degeneracy. Because the re-sampling step allows us to obtain equally weighted particles

approximately distributed from pθ(x0:t, s0:t|y1:t), a new set of weights {ω̃
(i)
t = 1

N }N
i=1 is assigned

to the re-sampled particles {x̃
(i)
0:t, s̃

(i)
0:t}

N
i=1. In what follows, I provide the summary of the SMC

algorithm for a NLG-SSSM.

Algorithm 1-1: Sequential Monte Carlo (SMC)

i) Draw {s
(i)
0 }N

i=1 from q(s0) and draw {x
(i)
0 }N

i=1 from q(x0|s
(i)
0 ). Save the normalized importance

weights {ω̂
(i)
0 =

ω̄
(i)
0

PN
j=1 ω̄

(i)
0

}N
i=1 where ω̄

(i)
0 =

pθ(x
(i)
0 |s

(i)
0 )pθ(s

(i)
0 )

q(x
(i)
0 |s

(i)
0 )q(s

(i)
0 )

.

• Iterate step ii), iii), and vi) for t = 1, 2, ..., T .

ii) Resample N particles {x̃
(i)
0:t−1, s̃

(i)
0:t−1}

N
i=1 from {x

(i)
0:t−1, s

(i)
0:t−1}

N
i=1 with probability {ω̂

(i)
t−1}

N
i=1

and assign new importance weights {ω̃
(i)
t−1 = 1

N
}N

i=1. Rename the particles {x̃
(i)
0:t−1, s̃

(i)
0:t−1}

N
i=1

into {x
(i)
0:t−1, s

(i)
0:t−1}

N
i=1 and the importance weights {ω̃

(i)
t−1}

N
i=1 into {ω

(i)
t−1}

N
i=1.

iii) Draw {s
(i)
t }N

i=1 from g(s
(i)
t |x

(i)
0:t−1, s

(i)
0:t−1) and draw {x

(i)
t }N

i=1 from g(x
(i)
t |x

(i)
0:t−1, s

(i)
0:t). Set {x

(i)
0:t}

N
i=1 =

{x
(i)
0:t−1, x

(i)
t }N

i=1 and {s
(i)
0:t}

N
i=1 = {s

(i)
0:t−1, s

(i)
t }N

i=1.

vi) Calculate the unnormalized weights ω̄
(i)
t ω̂

(i)
t−1 =

fθ(yt|x
(i)
0:t,s

(i)
0:t)pθ(x

(i)
t |x

(i)
0:t−1,s

(i)
0:t)pθ(s

(i)
t |s

(i)
t−1)

q(x
(i)
t |s

(i)
0:t−1,s

(i)
0:t)q(s

(i)
t |x

(i)
0:t−1,s

(i)
0:t−1)

ω̂
(i)
t−1 and

obtain the normalized weights ω̂
(i)
t =

ω̄
(i)
t ω̂

(i)
t−1

PN
j=1 ω̄

(j)
t ω̂

(j)
t−1

for i = 1, 2, ..., N .

In fact, the estimate ω̂t−1 is always 1
N

for all time periods after re-sampling. Thus, one may

safely ignore ω̂
(i)
t−1 in calculating the normalized weights as ω̂

(i)
t =

ω̄
(i)
t

PN
j=1 ω̄

(j)
t

. In the proposed SMC

procedure, the importance sampling is repeatedly operated at each time period to generate various

particle realizations {x
(i)
0:T , s

(i)
0:T}

N
i=1 from pθ(x0:T , s0,T |y1:T ). The target joint smoothing density is

approximated by:

pθ(x0:T , s0,T |y1:T ) ≈

N
∑

i=1

ω̂
(i)
T δ

{x
(i)
0:T ,s

(i)
0:T }

(x0:T , s0:T ) (8)

where δ
{x

(i)
0:T ,s

(i)
0:T }

(x0:T , s0:T ) denotes a Dirac measure which imposes a unit probability mass on each
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particle trajectory in {x
(i)
0:T , s

(i)
0:T}

N
i=1. Accordingly, we can draw random samples from {x

(i)
0:T , s

(i)
0:T}

N
i=1

with the normalized weight {ω̂
(i)
T }N

i=1 to simulate from the joint smoothing distribution pθ(x0:T , s0,T |y1:T ).

Algorithm 1-2: Forward Filtering for pθ(x0:T , s0:T |y1:T )

• Run Algorithm 1-1 (SMC algorithm) and save the particle set {x
(i)
0:T , s

(i)
0:T}

N
i=1 along with

the normalized importance weights {ω̂
(i)
T }N

i=1 at time T .

i) Draw {x̃
(j)
0:T , s̃

(j)
0:T}

M
j=1 from {x

(i)
0:T , s

(i)
0:T}

N
i=1 according to the normalized importance weights

{ω̂
(i)
T }N

i=1.

2.3 Importance Distribution

When re-sampling xt and st in the SMC procedure, we inevitably discard many past particle

trajectories in {x
(i)
0:t, s

(i)
0:t}

N
i=1, decreasing the number of unique particles at each time period. Conse-

quently, the resulting particle paths in {x
(i)
0:T , s

(i)
0:T}

N
i=1 at the terminal time period become sharing

just a few common ancestors. This phenomenon called ‘path degeneracy’ results in a poor ap-

proximation of the joint smoothing density pθ(x0:T , s0:T |y1:T ). Andrieu et al. (2003) and Driessen

and Boers (2005) empirically demonstrated the path degeneracy problem gets worse when a dy-

namic system is subject to a discrete regime-indicator variable. Importantly, we will see that the

path degeneracy seriously deteriorates mixing of a PMCMC sampler. Even if an increase in the

number of particles can mitigate path degeneracy, huge computation costs are required when it is

implemented in a PMCMC algorithm.

Andrieu et al. (2003) and Driessen and Boers (2005) emphasized that the incremental im-

portance distributions q(xt|x0:t−1, s0:t) and q(st|x0:t−1, s0:t−1) in equation (5) should be carefully

designed to closely approximate the target joint filtering and smoothing densities to avid path de-

generacy. Following Pitt and Shephard (1999), we consider the following incremental importance

distribution that takes all available information on y1:t into account:

q(xt, st|x0:t−1, s0:t−1) = pθ(xt, st|x0:t−1, s0:t−1, y1:t)pθ(yt|x0:t−1, s0:t−1, y1:t−1) (9)

in generating the new states {x
(i)
t , s

(i)
t }. The first component can be decomposed into two parts:

pθ(xt, st|x0:t−1, s0:t−1, y1:t) = pθ(xt|x0:t−1, s0:t, y1:t)pθ(st|x0:t−1, s0:t−1, y1:t),

10



where:

pθ(st|x0:t−1, s0:t−1, y1:t) =
pθ(st, yt|x0:t−1, s0:t−1, y1:t−1)

pθ(yt|x0:t−1, s0:t−1, y1:t−1))

∝ pθ(st, yt|x0:t−1, s0:t−1, y1:t−1)

= pθ(yt|x0:t−1, s0:t, y1:t−1)pθ(st|x0:t−1, s0:t−1, y1:t−1)

∝ pθ(yt|x0:t−1, s0:t, y1:t−1)gθ(st|st−1).

(10)

The validity of going from the second line to the third line is that all the past information on y1:t−1,

and x0:t−1 is not relevant for st conditional on st−1. The density pθ(yt|x0:t−1, s0:t, y1:t−1) is given

by:

pθ(yt|x0:t−1, s0:t, y1:t−1) =

∫

fθ(yt|x0:t, s0:t, y1:t−1)pθ(xt|x0:t−1, s0:t, y1:t−1)dxt

Finally, the second term in (9) is given by:

pθ(yt|x0:t−1, s0:t−1, y1:t−1) =
∑

st

pθ(yt|x0:t−1, s0:t, y1:t−1)gθ(st|st−1)

Note that pθ(yt|x0:t−1, s0:t, y1:t−1) is not analytically tractable in general and thus, the density

should be approximated to construct the incremental importance density in equation (9).

Wan and van der Merwe (2001) advocated using a unscented Kalman filter (UKF) in a SMC

procedure especially when it is not possible to directly draw latent states from an importance

distribution. To build an importance distribution closer to a target distribution, their approach is

to transform a non-linear/non-Gaussian dynamic system into an approximate linear one through a

UKF. Similarly, we can adopt the modified UKF by Andrieu et al. (2003) to obtain an approximate

importance distribution in equation (9) to partially resolve path degeneracy in a NLG-SSSM.

The critical problem of this approach, however, is that the modified UKF for a NLG-SSSM

should be run for each particle at every time period, which exponentially increases computing time

for the algorithm. I confirm via a set of simulations that the computational costs of sampling from

the importance distribution in (9) far exceed its benefits from partially solving path degeneracy,

especially when it is incorporated in a PMCMC sampler. For this reason, we exploit the transition

densities associated with equations (1) and (2) and ignore information in y1:t as:

q(xt|x0:t−1, s0:t) = gθ(xt|x0:t−1, s0:t),

q(st|x0:t−1, s0:t−1) = gθ(st|st−1).
(11)
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in constructing importance distributions for xt and st. The incremental importance distributions

in equation (11) are employed in forward filtering for all simulations and applications throughout

this paper.

Instead of improving the importance distributions of xt and st used in forward filtering, we can

effectively address the problem of path degeneracy by implicitly complementing forward filtering

with additional backward smoothing for a NLG-SSSM. Based on the idea of Godsill et al.(2004), an

SCM algorithm with additional backward simulation can substantially alleviate path degeneracy by

shuffling existing particle trajectories backward in time. The advantage of this approach lies on the

fact that it exploits all the generated particles through forward filtering rather than discarding them.

This important feature of a backward smoothing algorithm is the key to successfully developing an

efficient PG sampler in the next section.

3 Particle Markov Chain Monte Carlo Methods for a non-linear/non-

Gaussian SSSM

3.1 Artificial target distribution

This section introduces a Gibbs sampling method to draw x0:T and s0:T from their joint smooth-

ing distribution. The main difficulties in deriving a proper Gibbs sampler are that the joint smooth-

ing distribution shows complex patterns of dependence among the latent variables, and sampling

{x0:T , s0:T} directly from the joint smoothing distribution is not possible in general as a result of

non-linearity and non-Gaussianity. To resolve these problems, I adopt a PG sampling approach to

estimate a NLG-SSSM following Andrieu et al. (2010) and illustrate that the proposed PG sampler

performs well in practice. Like any other Gibbs samplers, unnecessary accept/reject steps are not

required, which produces mixing properties that are better than those of PMMH samplers.

To make a valid particle Gibbs sampler, I use an artificial target distribution Φ(.) that contains

all of the randomness generated by the SMC method in Algorithm 1-1. To design the artificial

target distribution Φ(.), consider the so-called ancestor index a
(i)
t ∈ {1, 2, ..., N} which represents

12



the index variable of the ancestor at time t − 1 for i-th particles {x
(i)
t , s

(i)
t }:

At = {a
(i)
t }N

i=1.

For example, if x
(5)
t−1 and s

(5)
t−1 are drawn in the re-sampling step for generating x

(i)
t and s

(i)
t , the index

variable becomes a
(i)
t = 5. Using the ancestor index, entire particle trajectories can be constructed

by tracing back to their ancestral lineages recursively:

x
(i)
0:t = {x

(a
(i)
t )

0:t−1, x
(i)
t } = {x

(a
(a

(i)
t

)

t−1 )

0:t−2 , x
(a

(i)
t )

t−1 , x
(i)
t } = ...

s
(i)
0:t = {s

(a
(i)
t )

0:t−1, s
(i)
t } = {s

(a
(a

(i)
t

)

t−1 )

0:t−2 , s
(a

(i)
t )

t−1 , s
(i)
t } = ...

for i = 1, 2, ..., N . Using the ancestor index variables, the density of the SMC in Algorithm 1-1 is

given by:

Φ(X0:T , S0:T , A1:T |θ) =

N
∏

i=1

q(x
(i)
0 |s

(i)
0 )q(s

(i)
0 )

T
∏

t=1

[ N
∏

i=1

ω̄
(i)
t−1

∑

j ω̄
(j)
t−1

q(x
(i)
t |x

(a
(i)
t )

0:t−1, s
(i)
0:t)q(s

(i)
t |x

(a
(i)
t )

0:t−1, s
(a

(i)
t )

0:t−1)

]

=

N
∏

i=1

q(x
(i)
0 |s

(i)
0 )q(s

(i)
0 )

T
∏

t=1

[ N
∏

i=1

Mθ
t (a

(i)
t , x

(i)
t , s

(i)
t )

]

.

(12)

where the transition kernel Mθ
t (a

(i)
t , x

(i)
t , s

(i)
t ) in equation (12) is defined as follows:

Mθ
t (a

(i)
t , x

(i)
t , s

(i)
t ) =

ω̄
(i)
t−1

∑

j ω̄
(j)
t−1

q(x
(i)
t |x

(a
(i)
t )

0:t−1, s
(i)
0:t)q(s

(i)
t |x

(a
(i)
t )

0:t−1, s
(a

(i)
t )

0:t−1),

and X0:T = {x
(i)
0:T}

N
i=1; S0:T = {s

(i)
0:T}

N
i=1; A1:T = {a

(i)
1:T}

N
i=1; q(.) denote importance densities that

may depend on y1:t. The incremental importance weight ω̄
(i)
t is given by:

ω̄
(i)
t =

fθ(yt|x
(i)
0:t, s

(i)
0:t)pθ(x

(i)
t |x

(i)
0:t−1, s

(i)
0:t)pθ(s

(i)
t |s

(i)
t−1)

q(x
(i)
t |x

(i)
0:t−1, s

(i)
0:t)q(s

(i)
t |x

(i)
0:t−1, s

(i)
0:t−1)

.

for i = 1, 2, ..., N . I note that the normalized importance weight ω̂
(i)
t =

ω̄
(i)
t ω̂

(i)
t−1

P

j ω̄
(j)
t ω̂

(j)
t−1

with which a
(i)
t+1

is generated can be simplified to ω̂
(i)
t =

ω̄
(i)
t

P

j ω̄
(j)
t

because we assign 1
N

to ω̂
(i)
t−1 after the resampling

step in Algorithm 1-1. The incremental importance weight ω̄
(i)
t is directly used in stead of ω̂

(i)
t in

equation (12).
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Now, let K ∈ {1, 2, ..., N} be the index of a fixed reference trajectory. For example, if we gen-

erate a single reference trajectory {x
(10)
0:T , s

(10)
0:T } from the joint smoothing distribution in Algorithm

1-2, the index variable assumes K = 10. We can keep track of its ancestral lineage based on the

ancestor indice At = {a
(i)
t }N

i=1 for t = 1, 2, ..., T . For the fixed reference trajectory, an additional

index bt is introduced to describe the each particle in the reference trajectory for t = 1, 2, ..., T .

The reference trajectory x
(K)
0:T and s

(K)
0:T are equivalent represented with the index variable bt as:

x
(b0:T )
0:T = {x

(b0)
0 , x

(b1)
1 , ..., x

(bT−1)
T−1 , x

(bT )
T }

s
(b0:T )
0:T = {s

(b0)
0 , s

(b1)
1 , ..., s

(bT−1)
T−1 , s

(bT )
T }

According to the definition of bt, bt can be rewritten in terms of the ancestor index as bt = K for

t = T and bt = a
(bt+1)
t+1 for t = 0, ..., T − 1. We often use K to denote the entire reference particle

path and bt to denote its individual component. The introduced indices are all auxiliary variables

generated by the SMC procedure and will play a key role later in deriving valid MCMC transition

kernels.

Finally, the remaining latent states generated by the SMC procedure except the reference tra-

jectory with the index K or the sequence of indices b0:T = {b0, b1, ..., bT} are denoted by X
(−b0:T )
0:T

and S
(−b0:T )
0:T . Now, we can easily determine the conditional density of the SMC algorithm given a

reference trajectory x
(b0:T )
0:T and s

(b0:T )
0:T as follows:

Φ(X
(−b0:T )
0:T ,S

(−b0:T )
0:T , A

(−b1:T )
1:T |θ, x

(b0:T )
0:T , s

(b0:T )
0:T , b0:T)

=
Φ(X0:T , S0:T , A1:T |θ)

q(x
(b0)
0 |s

(b0)
0 )q(s

(b0)
0 )

∏T
t=1

[

ω̄
(bt)
t−1

P

j ω̄
(j)
t−1

q(x
(bt)
t |x

(b0:t−1)
0:t−1 , s

(b0:t)
0:t )q(s

(bt)
t |x

(b0:t−1)
0:t−1 , s

(b0:t−1)
0:t−1 )

]

=
N
∏

i=1
i6=b0

q(x
(i)
0 |s

(i)
0 )q(s

(i)
0 ) ×

T
∏

t=1

[ N
∏

i=1
i6=bt

Mθ
t (a

(i)
t , x

(i)
t , s

(i)
t )

]

(13)

Following Andrieu et al. (2010). the extended target density to construct valid MCMC kernels is
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defined by:

Φ(θ, X0:T , S0:T , A1:T , K) ≡ Φ(θ, x
(b0:T )
0:T , s

(b0:T )
0:T , b0:T)Φ(X

(−b0:T )
0:T , S

(−b0:T )
0:T , A

(−b0:T )
1:T |θ, x

(b0:T )
0:T , s

(b0:T )
0:T , b0:T)

≡
1

NT+1
p(θ, x

(b0:T )
0:T , s

(b0:T )
0:T |y1:T )

×

N
∏

i=1
i6=b0

q(x
(i)
0 |s

(i)
0 )q(s

(i)
0 ) ×

T
∏

t=1

[ N
∏

i=1
i6=b0

Mθ
t (a

(i)
t , x

(i)
t , s

(i)
t )

]

(14)

where X0:T = {x
(b0:T )
0:T , X

(−b0:T )
0:T }; S0:T = {s

(b0:T )
0:T , S

(−b0:T )
0:T }; K ∈ {1, 2, ..., N} is the index of a

reference trajectory. I develop an efficient particle Gibbs sampler in this section to estimate a

NLG-SSSM by targeting the extended target distribution in equation (14). As theoretically shown

by Andrieu et al. (2010), the new extended target distribution Φ(.) admits the original posterior

p(θ, x0:T , s0:T |y1:T ) as a marginal. Therefore, a valid multi-step Gibbs sampler can be designed

based on Φ(.) to make reliable Bayesian inference in NLG-SSSMs.

3.2 Benchmark Particle Gibbs Sampler

We are interested in sampling from p(θ, x0:T , s0:T |y1:T ) based on a Particle Gibbs (PG) sampler.

By building a multi-stage Gibbs sampler including the auxiliary variables, I provide details of the

benchmark PG sampler which is a direct extension of the standard PG sampler by Andrieu et

al. (2010). The first step of the benchmark PG sampler is to sample the index K of a reference

trajectory. This is exactly the same as drawing one particular particle path from all generated

particle trajectories by the SMC method in Algorithm 1-1. The conditional density for K is given

by:

Φ(K = k|θ, X0:T , S0:T , A1:T ) =
w̄

(k)
T

∑N
j=1 w̄

(j)
T

(15)

based on the following Proposition 1.

Proposition 1 The conditional Φ(K|θ, X0:T , S0:T , A1:T ) under the target Φ(θ, X0:T , S0:T , A1:T , K)

is proportional to the importance weight at T :

Φ(K|θ, X0:T , S0:T , A1:T ) ∝ w̄
(K)
T .
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The proof of Proposition 1 is based on Andrieu et al. (2010) and given in the Appendix B. According

to Proposition 1, it is straightforward to sample K from its conditional distribution in equation

(15).

As the second step, we sample θ based on a partially collapsed Gibbs step which marginalize

unnecessary random variables before conditioning in drawing θ. As shown by van Dyk and Park

(2008), this approach does not violate the invariance of the corresponding sampler. Under the

extended target distribution, the conditional distribution for θ is given by:

Φ(θ|x
(b0:T )
0:T , s

(b0:T )
0:T , b0:T ) = p(θ|x

(b0:T )
0:T , s

(b0:T )
0:T , y1:T ) (16)

Note that in practice, sampling θ from p(θ|x0:T , s0:T , y1:T ) is so much simpler than sampling θ

conditional only on y1:T , For instance, the transition probabilities for st can be easily generated

from the beta distributions when using conjugate priors. When non-conjugate priors are used

or conditional posteriors do not belong to well-known distributions for some parameters, we can

employ Metropolis-Hastings algorithms within a Particle Gibbs sampling approach conditional on

x
(b0:T )
0:T , s

(b0:T )
0:T . I assume that sampling θ from its conditional distribution under Φ(.) is straight-

forward by either using conjugate priors or Metropolis-Hastings algorithms given x
(b0:T )
0:T , s

(b0:T )
0:T

throughout this paper.

The conditional distribution for the third step of the benchmark PG sampler is given by

Φ(X
(−b0:T )
0:T , S

(−b0:T )
0:T , A

(−b1:T )
1:T |θ, x

(b0:T )
0:T , s

(b0:T )
0:T , b0:T) in equation (13). To achieve this goal, we em-

ploy a so-called conditional SMC algorithm. Simply speaking, the conditional SMC method is an

algorithm that generates new N − 1 particle paths with the reference trajectory {x
(b0:T )
0:T , s

(b0:T )
0:T }

fixed throughout the sampling process. As a matter of convenience, we set an alternative index

sequence for the reference particle path as b0:T = {N, N, ..., N}. This is because the index sequence

b0:T is just a convenient tool to locate each particle in the reference trajectory in the particle swarm

and thus their actual values do not matter at all in the conditional SMC procedure. The following

algorithm summarizes the conditional SMC method used in our benchmark PG sampler.

Algorithm 2-1: Conditional Sequential Monte Carlo (CSMC)

i) Draw {s
(i)
0 }N−1

i=1 from q(s0) and draw {x
(i)
0 }N−1

i=1 from q(x0|s
(i)
0 ) sequentially. Set {x

(N)
0 , s

(N)
0 } =
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{x
(b0)
0 , s

(b0)
0 }. Save the normalized importance weights {ω̂

(i)
0 =

ω̄
(i)
0

PN
j=1 ω̄

(i)
0

}N
i=1 where ω̄

(i)
0 =

pθ(x
(i)
0 |s

(i)
0 )pθ(s

(i)
0 )

q(x
(i)
0 |s

(i)
0 )q(s

(i)
0 )

.

• Iterate step ii), iii), and vi) for t = 1, 2, ..., T .

ii) Draw ancestor indices {a
(i)
t }N−1

i=1 with probability {ω̂
(i)
t−1}

N
i=1. Draw {s

(i)
t }N−1

i=1 from q(s
(i)
t |x

(a
(i)
t )

0:t−1, s
(a

(i)
t )

0:t−1)

and {x
(i)
t }N−1

i=1 from q(x
(i)
t |x

(a
(i)
t )

0:t−1, s
(a

(i)
t )

0:t−1, s
(i)
t ) sequentially.

iii) Set a
(N)
t = N and {x

(N)
t , s

(N)
t } = {x

(bt)
t , s

(bt)
t }. New trajectories are set by x

(i)
0:t = {x

(a
(i)
t )

0:t−1, x
(i)
t }

and s
(i)
0:t = {s

(a
(i)
t )

0:t−1, s
(i)
t } for i = 1, 2, ..., N .

vi) Calculate the unnormalized weights: ω̄
(i)
t =

fθ(yt|x
(i)
0:t,s

(i)
0:t,y1:t−1)pθ(x

(i)
t |x

(a
(i)
t

)

0:t−1 ,s
(i)
0:t)pθ(s

(i)
t |s

(a
(i)
t

)

t−1 )

q(x
(i)
t |x

(a
(i)
t

)

0:t−1 ,s
(i)
0:t)q(s

(i)
t |x

(a
(i)
t

)

0:t−1 ,s
(a

(i)
t

)

0:t−1 )

.

and obtain the normalized weights: ω̂
(i)
t =

ω̄
(i)
t

PN
j=1 ω̄

(i)
t

for i = 1, 2, ..., N .

Note that sampling ancestor indices {a
(i)
t }N−1

i=1 in step ii) is equivalent to re-sampling N−1 particles

{x̃
(i)
t−1, s̃

(i)
t−1}

N−1
i=1 from {x

(i)
t−1, s

(i)
t−1}

N
i=1 with probability {ω̂

(i)
t−1}

N
i=1. This completes the benchmark

PG sampler for a NLG-SSSM. The summary of the benchmark PG algorithm is given by the

following.

Algorithm 2-2: Benchmark PG for a Non-linear/non-Gaussian SSSM

Choose θ arbitrarily and draw {X0:T , S0:T , A1:T} by running Algorithm 1-1 (SMC algo-

rithm): {X0:T , S0:T , A1:T} ∼ Φ(X0:T , S0:T , A1:T |θ)

• Iterate step i), step ii), and step iii) for r = 1, 2, ..., R.

i) Draw K ∈ {1, 2, ..., N} (a reference trajectory) from: K ∼ Φ(K|θ, X0:T , S0:T , A1:T )

And set {x
(b0:T )
0:T , s

(b0:T )
0:T } = {x

(K)
0:T , s

(K)
0:T }.

ii) Draw θ from: θ ∼ Φ(θ|x
(b0:T )
0:T , s

(b0:T )
0:T , b0:T)

iii) Draw {X
(−b0:T )
0:T , S

(−b0:T )
0:T , A

(−b1:T )
1:T } by running Algorithm 2-1 (CSMC algorithm) from:

{X
(−b0:T )
0:T , S

(−b0:T )
0:T , A

(−b1:T )
1:T } ∼ Φ(X

(−b0:T )
0:T , S

(−b0:T )
0:T , A

(−b1:T )
1:T |θ, x

(b0:T )
0:T , s

(b0:T )
0:T , b0:T)

And set X0:T = {X
(−b0:T )
0:T , x

(b0:T )
0:T }, S0:T = {S

(−b0:T )
0:T , s

(b0:T )
0:T }, A1:T = {A

(−b1:T )
1:T , b0:T−1}.

In the summary, the variable K represents the index of a reference particle trajectory and R is the

total number of MCMC iterations.

17



Many papers such as those by Whiteley (2010), Fredrik and Schon (2012), and Whiteley et al.

(2011) recognize that a standard PG sampler by Andrieu et al. (2010) seriously suffers from poor

mixing due to path degeneracy. Moreover, Andrieu et al. (2003) and Driessen and Boers (2005)

showed that the path degeneracy problem becomes much serious with the presence of a regime

indicator variable in a dynamic system. In section 3.6, we will see that the benchmark PG sampler

indeed produces unsatisfactory performance when it is applied to a NLG-SSSM. To address the

issues regarding path degeneracy and poor mixing, I introduce an improved PG sampler in the next

section.

3.3 Proposed Particle Gibbs Sampler

The approximate joint smoothing distribution of xt and st obtained using the SMC algorithm

in Algorithm 1-1 is unreliable due to path degeneracy. As the SMC procedure is performed forward

in time, the number of unique particles significantly decreases as we discard many past particle

trajectories in the re-sampling step. Consequently, the particles set {x
(i)
0:t, s

(i)
0:t}

N
i=1 share just a few

common ancestors, which inevitably leads to a poor approximation of the joint smoothing distri-

bution pθ(x0:T , s0:T |y1:T ). Godsill et al.(2004) originally addressed the problem of path degeneracy

by complementing forward filtering with additional backward smoothing. A backward smoothing

algorithm allows us to exploit all of the generated particles at each time instead of wasting them.

This important feature of backward smoothing provides a successful way to develop an efficient PG

sampler.

A PG sampler with ancestor sampling (PGAS) developed by Fredrik and Schon (2012) and

Lindsten et al. (2014) implicitly incorporates the backward simulation by updating particle trajec-

tories forward in time. In this section, I propose a PGAS sampler for a NLG-SSSM that targets

the extended target distribution in equation (14) to resolve path degeneracy and improve mixing

of the resulting MCMC chain based on the works of Fredrik and Schon (2012) and Lindsten et al.

(2014). The main difference between the proposed PG sampler and the benchmark PG sampler is

in the treatment of the index variables b0:T−1 = {b0, b1, ..., bT−1} of a reference trajectory. While

the benchmark PG sampler keeps a particular reference trajectory fixed at each MCMC iteration,
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the proposed PG sampler constructs a new particle trajectory by drawing the ancestor indices

bt−1(= a
(bt)
t ) for t = 0, 1, ..., T . For instance, if bt−1 = 5 is drawn in a supplementary procedure,

we accordingly set a new reference trajectory as x
(b0:t)
1:t = {x

(b0:t−2)
1:t−2 , x

(bt−1=5)
t−1 , x

(bt)
t }. This additional

step to update the indices b0:T−1 has a similar effect to that of backward recursion, which will be

shown in Corollary 1.

The first and second steps of the proposed PGAS sampler are the same as those of the benchmark

PG sampler. The index of a new reference trajectory is sampled among {X0:T , S0:T , A1:T}, which

contains a previously accepted reference trajectory. Based on Proposition1 , K is drawn according

to the importance weight ω̄
(i)
T at T . As before, we assume that sampling θ is straightforward either

using conjugate priors or Metropolis-Hastings algorithms targeting the conditional in equation (16).

Based on partially collapsed Gibbs steps and the extended target density in equation (14), we

have the following conditional to generate particles given a reference trajectory for t = 0:

Φ(X
(−b0)
0 , S

(−b0)
0 |θ, x

(b0:T )
0:T , s

(b0:T )
0:T , b0:T) =

N
∏

i=1
i6=b0

q(x
(i)
0 |s

(i)
0 )q(s

(i)
0 ) (17)

and, for t = 1, 2, ..., T :

Φ(X
(−bt)
t ,S

(−bt)
t , A

(−bt)
t |θ, X0:t−1, S0:t−1, A1:t−1, x

(bt:T )
t:T , s

(bt:T )
t:T , bt−1:T )

= Φ(X
(−bt)
t , S

(−bt)
t , A

(−bt)
t |θ, X

(−b0:t−1)
0:t−1 , S

(−b0:t−1)
0:t−1 , A

(−b1:t−1)
1:t−1 , x

(b0:T )
0:T , s

(b0:T )
0:T , b0:T )

=
Φ(X

(−b0:t)
0:t , S

(−b0:t)
0:t , A

(−b0:t)
0:t |θ, x

(b0:T )
0:T , s

(b0:T )
0:T , b0:T )

Φ(X
(−b0:t−1)
0:t−1 , S

(−b0:t−1)
0:t−1 , A

(−b0:t−1)
0:t−1 |θ, x

(b0:T )
0:T , s

(b0:T )
0:T , b0:T)

=

N
∏

i=1
i6=bt

ω̄
(i)
t−1

∑

j ω̄
(j)
t−1

q(x
(i)
t |x

(a
(i)
t )

0:t−1, s
(a

(i)
t )

0:t−1, s
(i)
t )q(s

(i)
t |x

(a
(i)
t )

0:t−1, s
(a

(i)
t )

0:t−1) =

N
∏

i=1
i6=bt

Mθ
t (a

(i)
t , x

(i)
t , s

(i)
t )

(18)

Equations (17) and (18) show that we can draw {X
(−b0)
0 , S

(−b0)
0 } from q(x

(i)
0 |s

(i)
0 )q(s

(i)
0 ) and then

draw {X
(−b0:t)
0:t , S

(−b0:t)
0:t , A

(−b1:t)
1:t } from the combination of the re-sampling weight and the importance

distributions, Mθ
t (a

(i)
t , x

(i)
t , s

(i)
t ).

Lastly, the transition kernel to produce a new ancestor index bt−1(= a
(bt)
t ) is given in Proposition

2.

Proposition 2
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The conditional Φ(bt−1|θ, X0:t−1, S0:t−1, A0:t−1, x
(bt:T )
t:T , s

(bt:T )
t:T , bt:T ) under Φ(θ, X0:T , S0:T , A1:T , K) is

proportional to the following backward kernel at t − 1:

Φ(bt−1|θ,X0:t−1, S0:t−1, A0:t−1, x
(bt:T )
t:T , s

(bt:T )
t:T , bt:T )

∝

[ T
∏

l=t

fθ(yl|x
(b0:l)
0:l , s

(b0:l)
0:l )gθ(xl|x

(b0:l−1)
0:l−1 , s

(b0:l)
0:l )gθ(s

(bl)
l |s

(bl−1)
l−1 )

]

ω̂
(bt−1)
t−1 .

Thus, we draw bt−1 (= a
(bt)
t ) ∈ {1, 2, ..., N} with the following probability:

ω̃
(i)
t−1|T

=
ω̄

(i)
t−1|T

∑N
j=1 ω̄

(j)
t−1|T

(19)

where

ω̄
(i)
t−1|T

=

[ T
∏

l=t

fθ(yl|x
(b0:l)
0:l , s

(b0:l)
0:l )gθ(xl|x

(b0:l−1)
0:l−1 , s

(b0:l)
0:l )gθ(s

(bl)
l |s

(bl−1)
l−1 )

]

ω̂
(bt−1)
t−1 .

Appendix B provides the proof of Proposition 2 based on Lindsten et al. (2014). I note, in a special

case, that the backward kernel in Proposition 2 is equivalent to that of backward simulation given

in Appendix A.

Corollary 1

For a Markov state space model, the conditional Φ(bt−1|θ, X0:t−1, S0:t−1, A0:t−1, x
(bt:T )
t:T , s

(bt:T )
t:T , bt:T)

is proportional to the backward kernel used in backward simulation:

Φ(bt−1|θ,X0:t−1, S0:t−1, A0:t−1, x
(bt:T )
t:T , s

(bt:T )
t:T , bt:T )

∝ fθ(yt|x
(bt)
t , s

(bt)
t )gθ(xt|x

(bt−1)
t−1 , s

(bt)
t )gθ(s

(bt)
t |s

(bt−1)
t−1 )ω̂

(bt−1)
t−1

Given the kernel of the backward simulation in Appendix A and the special dependence structure

of a Markov state space model, the proof of Corollary 1 is straightforward. I therefore skip the

proof for brevity. Based on the derived MCMC kernels, a modified conditional SMC with ancestor

sampling is introduced, which is crucial for implementing the proposed PG sampler with ancestor

sampling.

Algorithm 3-1: CSMC with Ancestor Sampling (CSMC-AS)
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i) Draw {s
(i)
0 }N−1

i=1 from q(s0) and draw {x
(i)
0 }N−1

i=1 from q(x0|s
(i)
0 ) sequentially. Set {x

(N)
0 , s

(N)
0 } =

{x
(b0)
0 , s

(b0)
0 }. Save the normalized importance weights {ω̂

(i)
0 =

ω̄
(i)
0

PN
j=1 ω̄

(i)
0

}N
i=1 where ω̄

(i)
0 =

gθ(x
(i)
0 |s

(i)
0 )gθ(s

(i)
0 )

q(x
(i)
0 |s

(i)
0 )q(s

(i)
0 )

.

• Iterate step ii), iii), and vi) for t = 1, 2, ..., T .

ii) Draw ancestor indices {a
(i)
t }N−1

i=1 according to probability {ω̂
(i)
t−1}

N
i=1. Draw {s

(i)
t }N−1

i=1 from

q(s
(i)
t |x

(a
(i)
t )

0:t−1, s
(a

(i)
t )

0:t−1) and {x
(i)
t }N−1

i=1 from q(x
(i)
t |x

(a
(i)
t )

0:t−1, s
(a

(i)
t )

0:t−1, s
(i)
t ) sequentially.

iii) Draw bt−1(= a
(bt)
t ) with probability ω̃

(i)
t−1|T

in equation (19). Set a
(N)
t = bt−1 and {x

(N)
t , s

(N)
t } =

{x
(bt)
t , s

(bt)
t }. The trajectories are set by x

(i)
0:t = {x

(a
(i)
t )

0:t−1, x
(i)
t } and s

(i)
0:t = {s

(a
(i)
t )

0:t−1, s
(i)
t } for

i = 1, 2, ..., N .

vi) Calculate the unnormalized weights ω̄
(i)
t ω̂

(i)
t−1 =

fθ(yt|x
(i)
0:t,s

(i)
0:t)gθ(x

(i)
t |x

(a
(i)
t )

0:t−1 ,s
(i)
0:t)gθ(s

(i)
t |s

(a
(i)
t )

t−1 )

q(x
(i)
t |x

(a
(i)
t )

0:t−1 ,s
(i)
0:t)q(s

(i)
t |x

(a
(i)
t )

0:t−1 ,s
(a

(i)
t )

0:t−1 )

ω̂
(i)
t−1.

and obtain the normalized weights: ω̂
(i)
t =

ω̄
(i)
t ω̂

(i)
t−1

PN
j=1 ω̄

(j)
t ω̂

(j)
t−1

for i = 1, 2, ..., N .

It is worth pointing out that sampling ancestor indices {a
(i)
t }N−1

i=1 in step ii) is equivalent to re-

sampling N − 1 particles {x̃
(i)
t−1, s̃

(i)
t−1}

N−1
i=1 from the existing set {x

(i)
t−1, s

(i)
t−1}

N
i=1 with probability

{ω̂
(i)
t−1}

N
i=1. The summary of the proposed PG with ancestor sampling to estimate a NLG-SSSM is

given below.

Algorithm 3-2: PGAS for a Non-linear/non-Gaussian SSSM

Choose θ arbitrarily and draw {X0:T , S0:T , A1:T} by running Algorithm 1-1 (SMC algo-

rithm) from: {X0:T , S0:T , A1:T} ∼ Φ(X0:T , S0:T , A1:T |θ)

• Iterate step i), step ii), and step iii) for r = 1, 2, ..., R.

i) Draw K ∈ {1, 2, ..., N} (a reference trajectory) from: K ∼ Φ(K|θ, X0:T , S0:T , A1:T )

And set {x
(b0:T )
0:T , s

(b0:T )
0:T } = {x

(K)
0:T , s

(K)
0:T }.

ii) Draw θ from: θ ∼ Φ(θ|x
(b0:T )
0:T , s

(b0:T )
0:T , b0:T)

iii) Draw {X
(−b0)
0 , S

(−b0)
0 } and {bt−1(= a

(bt)
t ), X

(−bt)
t , S

(−bt)
t , A

(−bt)
t } for t = 0,1,...,T by running

Algorithm 3-1 (CSMC-AS algorithm).

where X0:t = {x
(b0:t)
0:t , X

(−b0:t)
0:t }; S0:t = {s

(b0:t)
0:t , S

(−b0:t)
0:t }; A1:t = {A

(−b1:t)
1:t , b0:t−1}; K represents the

index of a reference particle trajectory; R is the total number of MCMC iterations. The proposed
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PGAS sampler allows a reference trajectory to change its ancestry as we run the conditional SMC

with ancestor sampling in the forward direction. This approach is more robust to path degeneracy

because all the generated particles are fully utilized as in backward simulation to approximate the

joint smoothing distribution of xt and st. As a result, it enables a faster-mixing MCMC kernel

than the benchmark PG sampler.

3.4 Bayesian Model Comparisons: Deviance Information Criterion

Despite of considerable progress in the Bayesian Statistics literature over the last few decades,

Bayesian model comparisons still remain a computationally very difficult task especially when

comparing complex hierarchical models that contains many unknown variables. To resolve this

problem, the Deviance Information Criterion (DIC) was developed as the Bayesian counterpart of

the Akaike information Ceriterion (AIC) by Spiegelhalter et al. (2002). This new model selection

criterion has been gaining more and more popularity allowing applied researchers to enjoy the

benefits of its computational simplicity. To formally carry out Bayesian model comparisons on

completing switching state space models, I adopt DIC which is defined by:

DIC = Eζ|y1:T
[−2lnf(y1:T |ζ)] + 2{lnf(y1:T |ζ̄) − Eζ|y1:T

[lnf(y1:T |ζ)]} (20)

where y1:T = {y1, y2, ..., yT} represents the entire observation sequence; ζ represents the vector of

the model parameters and the latent variables; and ζ̄ stands for the vector of the posterior means

for ζ. The deviance is defined by D(ζ) = −2lnf(y1:T |ζ) which is frequently used as a measure of

classical model fit. Analogously, the first term of DIC measures Bayesian goodness of fit through

the posterior expectation of the deviance, Eζ|y1:T
[−2lnf(y1:T |ζ)]. And the second term of DIC,

2{lnf(y1:T |ζ̄)] − Eζ|y1:T
[lnf(y1:T |ζ)]}, is included to impose a penalty on model complexity as in

the AIC. This term is called the effective number of parameters and increases as the gap between

the deviance evaluated at ζ̄ and the posterior mean of the deviance gets bigger. A model with a

smaller DIC is more preferred because log likelihood is multiplied by -2.

Once a proposed PG algorithm produces MCMC outputs that are approximately sampled from

the posterior target distribution, all the ingredients in calculating DIC can be easily obtained.
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First, the calculation of the posterior expectation of the deviance is done though the Monte Carlo

integration as:

Eζ|y1:T
[lnf(y1:T |ζ)] ≈

1

R

R
∑

r=1

lnf(y1:T |ζ
(r)),

where ζ(r) stands for the posterior samples at r-th MCMC iteration including the continuous state

xt and the discrete regime state st. Conditional xt and st, evaluating the likelihood function

is trivial. Secondly, we calculate the sample averages of the MCMC samples and evaluate the

deviance at ζ̄ . The effective number of parameters is obtained by simply subtracting 2lnf(y1:T |ζ̄)

by Eζ|y1:T
[2lnf(y1:T |ζ)].

3.5 Implementation of Proposed Particle Gibbs Samplers

In practice, the extended target density in equation (14) and associated backwards kernels

can be simplified according to the structure of a particular NLG-SSSM of interest. This section

provides more details on how the suggested PG algorithm is implemented using a specific example.

We consider the regime switching stochastic volatility (RS-SV) model by So et al. (1998):

Regime Switching Stochastic Volatility Model (RS-SV)

yt = µ + exp(
xt−1

2
)ǫt, ǫt ∼ i.i.d.N (0, 1) (21)

xt = δst + φ(xt−1 − δst−1) + ut, ut ∼ i.i.d.N (0, σ2
u)

where yt is the equity return at time t; xt−1 is the latent log-volatility at time t; and E[ǫtut] = 0.

The current position of xt is given by a function of xt−1, st, and st−1 in the transition equation, and

the observation yt is given by a nonlinear function of xt−1 in the measurement equation. Because

xt and yt depend only on a few past states in such a model structure, the forward kernel used in

Algorithm 1-1 is defined by:

pθ(x0:t, s0:t|y1:t) =
fθ(yt|xt−1)gθ(xt|xt−1, st, st−1)gθ(st|st−1)

pθ(yt|y1:t−1)
pθ(x0:t−1, s0:t−1|y1:t−1). (4′)
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At each time, s
(i)
t and x

(i)
t are sequentially generated using the transition probability in equation

(2) and the transition equation in equation (21). Therefore, the important weight at time t in

equation (6) becomes:

ω
(i)
t ∝

fθ(yt|x
(i)
t−1)gθ(x

(i)
t |x

(i)
t−1, s

(i)
t , s

(i)
t−1)gθ(s

(i)
t |s

(i)
t−1)

gθ(xt|x
(i)
t−1, s

(i)
t , s

(i)
t−1)gθ(s

(i)
t |s

(i)
t−1)

ω
(i)
t−1

= fθ(yt|x
(i)
t−1)ω

(i)
t−1 ∝ ω̄

(i)
t ω

(i)
t−1

(6′)

We obtain the estimate of the importance weight in Algorithm 1-1 as:

ω̂
(i)
t =

ω̄
(i)
t ω̂

(i)
t−1

∑N
j=1 ω̄

(j)
t ω̂

(j)
t−1

=
fθ(yt|x

(i)
t−1)

∑N
j=1 fθ(yt|x

(j)
t−1)

.

where ω̂
(i)
t−1 does not affect the weight estimate at all as ω̂

(i)
t−1 = 1

N
after the re-sampling step. In

fact, there is no need to evaluate any transition densities in Algorithm 1-1. All we need to run

Algorithm 1-1 is to evaluate the likelihood function conditional on x
(i)
t−1 for i = 0, 1, ..., T . Once the

preliminary procedure of Algorithm 3-2 is successfully implemented, we simulate the index K from

its conditional distribution according to the importance weight at the terminal time T .

With no exception, the CSMC-AS algorithm in Algorithm 3-1 becomes substantially simple.

The step iii) of Algorithm 3-2 that requires Algorithm 3-1 is run using the backward kernel in

Proposition 2:

Φ(bt−1|θ, X0:t−1, S0:t−1, A0:t−1, x
(bt:T )
t:T , s

(bt:T )
t:T , bt:T )

∝

[

fθ(yt|x
(bt−1)
t−1 )gθ(x

(bt)
t |x

(bt−1)
t−1 , s

(bt)
t , s

(bt−1)
t−1 )gθ(s

(bt)
t |s

(bt−1)
t−1 )

]

ω̂
(bt−1)
t−1

∝ ω
(bt−1)
t−1|T .

(22)

The index variable bt−1 ∈ {1, 2, ..., N} is therefore easily drawn with the normalized importance

weight in equation (19). Simulating the remaining model parameters from their conditional pos-

terior distributions are straightforward conditional on the latent states. The model parameters

{µ, δ1, δ2, ..., δK, φ} are drawn from multivariate normal distributions and the remaining parameter

σ2
u is drawn from an inverse-Gamma distribution based on conjugate priors. For this simple model,
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we do not need any Metropolis-Hastings algorithm. The PG samplers explained in this section will

be applied for an empirical illustration in section 4 with slight modifications.

3.6 Performance of Proposed Algorithm: Simulation Study

The main goal of this section is to compare the performance of the proposed PG algorithms

in estimating a NLG-SSSM. For this purpose, I simulate the models in (21) for T = 3000 which

is a typical number of observations for daily stock return data. The model is generated with

{µ = 0, δ1 = −1, δ2 = 0.5, φ = 0.9, σ2
u = 0.01, π11 = 0.99, π22 = 0.99} where pjj is the transition

probability for j = 1, 2. The selected parameter values are set similar to Bayesian estimates

obtained by actual daily returns. I run the two PG samplers (Algorithm 2-2, Algorithm 3-2) for

comparison. The numbers of particles used in the benchmark PG and the PGAS samplers are

N = 1, 000, and N = 20, respectively. I keep the latter 40,000 iterations and discard the initial

1,000 iterations as warm up for all simulations. All Bayesian estimates reported in this section are

the averages of 5 simulations.

The inefficiency factor developed by Geweke (1992) is one of the popular measures of MCMC

efficiency. The inefficiency factor is computed by autocorrelations in MCMC draws:

κJ = 1 + 2

J
∑

j=1

ρj

where ρj represents the autocorrelation for lag j. It is designed to quantify how much inefficiency

loss occurs in calculating posterior moments of a model parameter from serially correlated MCMC

draws. Typically, an MCMC sampler with a high value of the inefficiency factor requires a large

number of posterior simulations to get reliable posterior estimates, which induces high compu-

tational costs. I report Geweke’s (1992) inefficiency factor for selected model parameters of the

RS-SV model. The results in Tables 1 illustrate how much efficiently the proposed PG algorithm

performs in estimating the NLG-SSSM compared to the benchmark algorithm.

The PG sampler with ancestor sampling in Algorithm 3-2 exhibits the best performance accord-

ing to the inefficiency factors reported in Table 1. The inefficiency factors obtained based on the

PGAS sampler are substantially smaller than those of the benchmark PG sampler. The relative
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computing times for Algorithm 3-2 with N = 20 is only 0.2481, compared with the benchmark PG

sampler. Figure 1 shows the autocorrelation functions (ACF) for the model parameters δ1 and φ.

The ACFs very quickly drop to zero with the small numbers of particles when Algorithm 3-2 is

applied. In contrast, the benchmark PG sampler in Algorithm 2-2 does not mix well even with

a large number of particles. It is worth mentioning that the ancestor sampling in Algorithm 3-1

significantly improve the mixing speed without explicitly incorporating the observation sequence

y1:t in the importance distributions of xt and st. In many applications, the proposed PG sampler

can be simplified as explained in the previous section and thus does not impose huge computational

costs. Nevertheless, it reduces the ACFs significantly and achieves faster mixing.

4 Empirical Application: Regime-dependent Leverage Effect of

U.S Stock Market

To illustrate the proposed estimation procedure, I estimate an extended version of the regime

switching stochastic volatility (SV) model by So et al. (1998):

yt = µ + exp(
xt−1

2
)ǫt, (23)

xt = δst + φ(xt−1 − δst−1) + ut, (24)




ǫt

ut



 ∼ N (





0

0



 ,





1 ρstσu

ρstσu σ2
u



)

p(st = j|st−1 = k) = πkj ,

K
∑

j=1

πkj = 1, i, k = 1, 2,

where yt is the equity return at time t; xt−1 is the latent log-volatility at time t. We can rewrite

the transition equation in equation (24) as:

xt = δst + φ(xt−1 − δst−1) + σu(ρstǫt +
√

1 − ρ2
st

ηt)

= δst + φ(xt−1 − δst−1) + σuρstexp(−
xt−1

2
)(yt − µ) + σu

√

1 − ρ2
st

ηt

where ηt ∼ i.i.dN (0, 1) and Corr(ǫt, ηt) = 0. According to the above transition equation, it may be

clearly seen that a fall in yt leads to an increase in log-volatility at time t + 1 when ρst is negative.
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In the literature, the empirical evidence of this negative relationship which is often explained by

leverage effect has been firmly established. Especially, Yu (2005) demonstrated that discrete-time

SV models with the leverage effect are theoretically and empirically appealing in capturing dynamic

interaction between stock return and volatility. The regime switching SV model in equations (23)

and (24) is different from canonical SV models in that it accommodates regime-dependent leverage

effect to take into account a possibility that leverage effect varies over time.

There has been efforts to develop an efficient Bayesian method to estimate a SV model with

leverage. Particularly, Omori et al. (2007) approximated the joint distribution of two correlated

shocks in a SV model with ten mixture normal distributions to transform a SV model with leverage

effect into a partially linear state space model5. However, their approach becomes infeasible when

the correlation parameter ρst shifts with unknown timings. Alternatively, one may attempt to use a

single-move algorithm, such as the one adopted by Yu (2012). It is well known that the single-move

approach is difficult to implement with the presence of the very persistent latent regime-indicator

variable, which is often observed in actual data.

Because the existing MCMC algorithms in the literature are not directly applicable in making

Bayesian inference in the proposed SV model, I estimate it by employing the PGAS procedure

discussed in section 3.5. Only slight modifications are made to incorporate the regime switching

correlation parameter ρst . When drawing the variance-covariance matrix of ǫt and ut, I employ

a Metropolis-Hasting algorithm with a candidate multivariate normal distribution. The mean

and covariance matrix of the candidate distribution are found through maximizing the likelihood

function given y1:T , x0:T , s0:T and a positive definite restriction is imposed on the covariance matrix.

To analyze how the leverage effect changes depending on return volatility, the regime switching

SV model is applied to daily S&P 500 and NASDAQ returns from January 2, 1997 to August 5,

2015. The empirical results for the 2-state regime switching model are reported in Table 2 and

Figures 2 and 3. First, Figures 2.A and 3.A. show that the posterior probability of high volatility

regime very sharply changes, leaving a low uncertainty in the timings of regime shifts for S&P 500

5For SV models without leverage, Kim et al. (1998) and Chib et al. (2002) derived an efficient multi-move

algorithm based on data transformation and mixture normal distributions.
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and NASDAQ returns. Second, the posterior means of the regime-dependent correlation parameters

are noticeably different across high- and low-volatility regimes as shown in Figures 2.B and 3.B.

In a low-volatility regime, the posterior mean of the correlation parameter is estimated to be -0.5,

while it is -0.672 in a high-volatility regime for S&P 500 returns. In Table 2, this difference is even

more substantial for NASDAQ returns. The posterior mean of the correlation parameter is -0.269

in the low-volatility regime and -0.653 in the high-volatility regime, respectively. These Bayesian

estimates produce promising evidence for the presence of the regime-dependent leverage effect.

The 3-state regime switching SV model produces similar results, which are shown in Table

3 and Figures 4 and 5. The posterior mean of the correlation parameter for NASDAQ returns is

estimated to be -0.667 in a high-volatility regime, -0.596 in a medium-volatility regime and -0.221 in

a low-volatility regime. For S&P 500 returns, the correlation parameter in a high-volatility regime

cannot be clearly identified due to a small sample size. However, for medium- and low-volatility

regimes where large samples are available, Figure 4.B illustrates a similar point. The posterior

mean of the correlation parameter in a medium-volatility regime is reasonably larger in absolute

value than that in a low-volatility regime.

The first and third columns of Table 4 show DICs for S&P 500 and NASDAQ returns. For

complete comparison, I also consider 2-state and 3-state regime-switching SV models with the

constant leverage effect. Based on DIC, the most preferred model turns out to be the 3-state

regime-switching SV model with the regime-dependent leverage effect. It is also interesting to see

that the 3-state regime-switching SV models are always preferred to the 2-state regime-switching

SV models, regardless of the nature of the leverage effect. A close look at the second and fourth

columns of Table 4 reveals that the models including the regime-dependent leverage effect are

preferred, given the same number of regimes. The empirical analysis conducted in this section

therefore indicates that the time-varying leverage effect in the U.S. stock market is indeed an

important feature and is strongly influence by the long-run mean of the volatility process.

5 Concluding Remarks

In summary, this article has developed a unified Bayesian method to efficiently estimate non-
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linear/non-Gaussian switching state space models based on particle ancestor sampling. In par-

ticular, a special attention has been paid to develop a posterior simulation procedure for the

continuous-state and discrete-regime indicator variables. It has been demonstrated that the pro-

posed algorithm does not require a large number of particles to achieve fast mixing and thus allow

for fast convergence to the posterior distribution, in contrast to the benchmark PG sampler. The

proposed PG sampler is easy to implement in practice and can be applied to models without the

Markovian property. According to a general PMCMC scheme suggested by Mendes et al. (2014),

Particle Marginal Metropolis-Hastings (PMMH) can be incorporated to further improve compu-

tational efficiency when simulating the model parameters that are strongly correlated with latent

state variables. By applying the proposed PG sampler with ancestor sampling to Standard and

Poor’s 500 and NASDAQ daily return data, this article shows that stronger (weaker) leverage effects

are associated with a high (low) -volatility regime within parametric regime-switching stochastic

volatility models.
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A Appendix: Backward Simulation for a NLG-SSSM

A.1 Backward Smoothing for a Non-linear/Non-Gaussian SSSM

Based on the ideas of Godsill et al.(2004), we can effectively resolve the problem of path degen-

eracy by complementing forward filtering with additional backward smoothing for a NLG-SSSM.

Consider the following factorization for backward smoothing:

pθ(x0:T , s0:T |y1:T ) = pθ(xT , sT |y1:T )

T−1
∏

t=0

pθ(xt, st|y1:T , xt+1:T , st+1:T ) (A.1)

Theoretically speaking, the above decomposition implies that one can sequentially generate xT , sT

from pθ(xT , sT |y1:T ) and then xt, st from pθ(xt, st|xt+1:T , st+1:T , y1:T ) for t = T − 1, ..., 1, 0. The

conditional density at time t can be decomposed as:

pθ(xt, st|y1:T , xt+1:T , st+1:T ) = pθ(xt, st|y1:t, yt+1:T , xt+1:T , st+1:T )

=
pθ(yt+1:T , xt, st|y1:t, xt+1:T , st+1:T )

pθ(yt+1:T |y1:t, xt+1:T , st+1:T )

∝ pθ(yt+1:T |y1:t, xt:T , st:T )pθ(xt, st|y1:t, xt+1:T , st+1:T )

= pθ(yt+1:T |y1:t, xt:T , st:T )
pθ(xt, xt+1:T , st, st+1:T |y1:t)

pθ(xt+1:T , st+1:T |y1:t)

∝ pθ(yt+1:T |y1:t, xt:T , st:T )pθ(xt:T , st:T |y1:t)

= pθ(yt+1:T |y1:t, xt:T , st:T )gθ(xt+1:T , st+1:T |xt, st)pθ(xt, st|y1:t)

= pθ(yt+1:T |y1:t, xt:T , st:T )[

T
∏

τ=t

gθ(xτ |xt:τ−1, st:τ )]gθ(st+1|st)pθ(xt, st|y1:t)

(A.2)

using the hierarchical structure of a NLG-SSSM.

As shown in equation (A.2), the smoothing recursion requires the joint marginal filtering density

pθ(xt, st|y1:t). The SMC algorithm introduced in section 2.1 can provide a numerical approximation

of pθ(xt, st|y1:t) as a direct application. The joint marginal density pθ(xt, st|y1:t) is given by:

pθ(x0:t, s0:t|y1:t) =
∑

s0:t−1

∫

pθ(x0:t, s0:t|y1:t)dx0:t−1.
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In practice, integrating over the all the past states can be easily done by simply discarding

{x
(i)
0:t−1, s

(i)
0:t−1}

N
i=1 up to time t − 1 and keeping only {x

(i)
t , s

(i)
t }N

i=1 at time t with the normal-

ized importance weights {ω̂
(i)
t }N

i=1. The saved particles and importance weights approximate the

joint marginal density pθ(xt, st|y1:t) as:

pθ(xt, st|y1:t) ≈
N

∑

i=1

ω̂
(i)
t δ

{x
(i)
t ,s

(i)
t }

(xt, st)

where δ
{x

(i)
t ,s

(i)
t }

(xt, st) is the Dirac measure and ω̂
(i)
t is the normalized weight attached to particles

x
(i)
t and s

(i)
t .

Particles at time t are updated conditional on xt+1:T and st+1:T according to equation (A.2)

using additional importance sampling and re-sampling steps as follows:

pθ(xt, st|xt+1:T , st+1:T , y1:T ) ≈

N
∑

i=1

ω̂
(i)
t|T δ

{x
(i)
t ,s

(i)
t }

(xt, st). (A.3)

The modified importance weight ω̂
(i)
t|T

is defined as:

ω̂
(i)
t|T

=
pθ(yt+1:T |y1:t, x

(i)
t:T , s

(i)
t:T )pθ(x

(i)
t+1:T , s

(i)
t+1:T |x

(i)
t , s

(i)
t ) ω̂

(i)
t

∑N
j=1 pθ(yt+1:T |y1:t, x

(j)
t:T , s

(j)
t:T )pθ(x

(j)
t+1:T , s

(j)
t+1:T |x

(j)
t , s

(j)
t ) ω̂

(j)
t

=
pθ(yt+1:T |y1:t, x

(i)
t:T , s

(i)
t:T )[

∏T
τ=t gθ(x

(i)
τ |x

(i)
t:τ−1, s

(i)
t:τ)]gθ(s

(i)
t+1|s

(i)
t ) ω̂

(i)
t

∑N
j=1 pθ(yt+1:T |y1:t, x

(j)
t:T , s

(j)
t:T )[

∏T
τ=t gθ(x

(j)
τ |x

(j)
t:τ−1, s

(j)
t:τ )]gθ(s

(j)
t+1|s

(j)
t ) ω̂

(j)
t

.

The empirical distribution in equation (A.3) is employed to generate particles {x̃
(i)
t , s̃

(i)
t }M

i=1 sequen-

tially backward in time conditional on {x
(i)
t+1:T , s

(i)
t+1:T}

M
i=1 and y1:T for the backward simulation

procedure.

B Appendix: Proofs

B.1 Proof of Proposition 1

In what follows, the set of the latent variables {xt, st} is denoted by zt for notational simplicity.

By the hierarchical structure of the model in equation (1), the transition density of zt conditional

on θ is given by gθ(zt|z0:t−1) = gθ(xt|x0:t−1, s0:t)gθ(st|st−1).
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Using the definition of the importance weight in equation (6), we rewrite the posterior density

of the latent states

pθ(z0:t|y1:t) =
pθ(z0:t, y1:t)

pθ(y1:t)

=
1

pθ(y1:t)
pθ(z0)

[ t
∏

l=1

fθ(yl|z0:l)pθ(zl|z0:l−1)

]

=
1

pθ(y1:t)
ω̄0q(z0)

[ t
∏

l=1

ω̄lq(zl|z0:l−1)

]

(B.1)

where ω̄l =
fθ(yl|z0:l)gθ(zl |z0:l−1)

q(zl|z0:l−1)
for l = 1, 2, ..., t. Therefore, for a reference particle trajectory up to

time t, we have

pθ(z
(b0:t)
0:t |y1:t) =

1

pθ(y1:t)
ω̄

(b0)
0 q(z

(b0)
0 )

[ t
∏

l=1

ω̄
(bl)
l q(z

(bl)
l |z

(b0:l−1)
0:l−1 )

]

=
1

pθ(y1:t)

[ t
∏

l=0

N
∑

j

ω̄
(j)
l

]

ω̄
(b0)
0

∑N
j ω̄

(j)
0

q(z
(b0)
0 )

[ t
∏

l=1

ω̄
(bl)
l

∑N
j ω̄

(j)
l

q(z
(bl)
l |z

(b0:l−1)
0:l−1 )

]

=
1

pθ(y1:t)

[ t
∏

l=0

N
∑

j

ω̄
(j)
l

]

ω̂
(b0)
0 q(z

(b0)
0 )

[ t
∏

l=1

ω̂
(bl)
l q(z

(bl)
l |z

(b0:l−1)
0:l−1 )

]

=
1

pθ(y1:t)

[ t
∏

l=0

N
∑

j

ω̄
(j)
l

]

q(z
(b0)
0 )

[ t
∏

l=1

Mθ
s (a

(bl)
l , z

(bl)
l )

]

ω̂
(bt)
t

(B.2)

where Mθ
l (a

(bl)
l , z

(bl)
l ) = ω̂

(bl−1)
l−1 q(z

(bl)
l |z

(b0:l−1)
0:l−1 ) and ω̂

(bl)
l =

ω̄
(bl)

l
PN

j ω̄
(j)
l

. By plugging equation (B.2) in
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the extended target density in equation (14), we have:

Φ(θ, Z0:T , A1:T , K) ≡
1

NT+1
p(θ, z

(b0:T )
0:T |y1:T )

N
∏

i=1
i6=b0

q(z
(i)
0 )

T
∏

t=1

[ N
∏

i=1
i6=bt

Mθ
t (a

(i)
t , z

(i)
t )

]

=
1

NT+1

p(θ)pθ(y1:T )pθ(z
(b0:T )
0:T |y1:T )

p(y1:T )

N
∏

i=1
i6=b0

q(z
(i)
0 )

T
∏

t=1

[ N
∏

i=1
i6=bt

Mθ
t (a

(i)
t , z

(i)
t )

]

∝
1

NT+1
p(θ)pθ(y1:T )pθ(z

(b0:T )
0:T |y1:T )

N
∏

i=1
i6=b0

q(z
(i)
0 )

T
∏

t=1

[ N
∏

i=1
i6=bt

Mθ
t (a

(i)
t , z

(i)
t )

]

=
p(θ)

NT+1

[ T
∏

t=0

N
∑

j

ω̄
(j)
t

] N
∏

i=1

q(z
(i)
0 )

T
∏

t=1

[ N
∏

i=1

Mθ
t (a

(i)
t , z

(i)
t )

]

ω̂
(bT )
T

= p(θ)ẐN
T (θ)Φ(Z0:T , A1:T |θ)ω̂

(K)
T

= p(θ)ẐN
T (θ)Φ(X0:T , S0:T , A1:T |θ)ω̂

(K)
T

(B.3)

where ẐN
T (θ) =

[

∏T
t=0

1
N

∑N
j ω̄

(j)
t

]

and K = bT . Notice that ẐN
T (θ) is the particle estimate of

ZT (θ) = pθ(y1:T ). Therefore,

Φ(K|θ, X0:T , S0:T , A1:T ) ∝ Φ(θ, X0:T , S0:T , A1:T , K) ∝ ŵ
(K)
T .
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B.2 Proof of Proposition 2

The conditional in Proposition 2 is proportional to

Φ(bt−1|θ,Z
(−b0:t−1)
0:t−1 , A

(−b1:t−1)
1:t−1 , z

(b0:T )
0:T , b0:t−2, bt:T )

= Φ(bt−1|θ, Z0:t−1, A1:t−1, z
(bt:T )
t:T , bt:T )

∝ Φ(θ, Z0:t−1, A1:t−1, z
(bt:T )
t:T , bt−1:T )

= Φ(θ, z
(b0:T )
0:T , b0:T )Φ(Z0:t−1,

(−b0:t−1) A
(−b1:t−1)
1:t−1 |θ, z

(b0:T )
0:T , b0:T )

=
1

NT+1
p(θ, x

(b0:T )
0:T , s

(b0:T )
0:T |y1:T )

N
∏

i=1
i6=b0

q(z
(i)
0 )×

t−1
∏

l=1

[ N
∏

i=1
i6=bl

Ml(a
(i)
l , z

(i)
l )

]

=
p(θ|y1:T )

NT+1
pθ(z

(b0:T )
0:T |y1:T )

N
∏

i=1
i6=b0

q(z
(i)
0 )×

t−1
∏

l=1

[ N
∏

i=1
i6=bs

Ml(a
(i)
l , z

(i)
l )

]

=
p(θ|y1:T )

NT+1

pθ(z
(b0:T )
0:T |y1:T )

pθ(z
(b0:t−1)
0:t−1 |y1:t−1)

pθ(z
(b0:t−1)
0:t−1 |y1:t−1)

N
∏

i=1
i6=b0

q(z
(i)
0 ) ×

t−1
∏

l=1

[ N
∏

i=1
i6=bs

Ml(a
(i)
l , z

(i)
l )

]

∝
pθ(z

(b0:T )
0:T |y1:T )

pθ(z
(b0:t−1)
0:t−1 |y1:t−1)

pθ(z
(b0:t−1)
0:t−1 |y1:t−1)

∝

T
∏

l=t

pθ(yl|z
(b0:l)
0:l )pθ(zl|z

(b0:l−1)
0:l−1 ) ω̂

(bt−1)
t−1

(B.4)

because pθ(z
(b0:t−1)
0:t−1 |y1:t−1) ∝ ω̂

(bt−1)
t by equation (B.2) and

pθ(z
(b0:T )
0:T |y1:T )

pθ(z
(b0:t−1)
0:t−1 |y1:t−1)

=
pθ(z

(b0:t−1)
0:t−1 , z

(bt:T )
t:T |y1:t−1, yt:T )

pθ(z
(b0:t−1)
0:t−1 |y1:t−1)

=
pθ(z

(bt:T )
t:T , yt:T |z

(b0:t−1)
0:t−1 , y1:t−1)pθ(z

(b0:t−1)
0:t−1 |y1:t−1)

pθ(yt:T |y1:t−1)pθ(z
(b0:t−1)
0:t−1 |y1:t−1)

∝ pθ(z
(bt:T )
t:T , yt:T |z

(b0:t−1)
0:t−1 )

=

T
∏

l=t

pθ(yl|z
(b0:l)
0:l )pθ(zl|z

(b0:l−1)
0:l−1 )

∝

[ T
∏

l=t

fθ(yl|x
(b0:l)
0:l , s

(b0:l)
0:l )gθ(xl|x

(b0:l−1)
0:l−1 , s

(b0:l)
0:l )gθ(s

(bl)
l |s

(bl−1)
l−1 )

]

.

(B.5)
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In the fourth line of equation (B.5), the irrelevant observation sequence y1:t−1 is dropped. This

completes the proof of proposition 2.
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Table 1. Efficiency Evaluation: Geweke’s (1992) Inefficiency Factor  
 𝑦𝑡 = exp (𝑥𝑡−12 ) 𝜀𝑡,   𝜀𝑡~ 𝑁 (0,1), 𝑥𝑡 = 𝛿𝑠𝑡 +  𝜙(𝑥𝑡−1 − 𝛿𝑠𝑡−1) + 𝑢𝑡 ,   𝑢𝑡  ~ 𝑁 (0, 𝜎𝑢2), [𝜀𝑡𝑢𝑡] ~ 𝑁 ([00] , [1 00 𝜎𝑢2]), Pr[𝑆𝑡 = 𝑗| 𝑆𝑡−1 = i] =  𝜋𝑖𝑗 ,    𝑓𝑜𝑟 𝑖 = 1,2 𝑎𝑛𝑑 𝑗 = 1,2. 

 

 

 

  𝜅𝐽 =  1 + 2 ∑ 𝜌𝑗𝐽
𝑗=1 ,   𝐽 = 2,000 

 

  

PG 

  

PGAS 

 

Model 

Parameters 

 

N = 1000  

  

N = 20 

𝛿1 439.62  22.28 𝛿2 489.25  51.94 𝜙 2287.59  813.05 𝜎𝑢2 3372.89  901.02 𝜋11 7.72  2.14 𝜋22 10.27  3.02 

Relative Computing 

Time 

1  0.2481 

 
Note: 1. The empirical autocorrelation functions are obtained based on 40,000 MCMC iterations. The first 3,000 

iterations are discarded as the burn-in. Running time for the PG sampler is 50901.04sec. 

2. The average of the inefficient factors from 5 simulations are reported.  

3. PG refers to the benchmark PG sampler. 

4. PGAS refers to the proposed PG sampler with ancestor sampling. 

5. PGAS-PR refers to the proposed PG sampler with ancestor sampling and particle rejuvenation. 

 

 

 

 

 

 

 

 

 



Table 2.A  Bayesian Estimation of SV Model with Regime-dependent Leverage Effect for S&P 500: 

2 State Case [Sample: Jan/02/1975 ~ Aug/05/2015] 
 𝑦𝑡 = 𝜇 + exp (𝑥𝑡−12 ) 𝜀𝑡,   𝜀𝑡~ 𝑖. 𝑖. 𝑑. 𝑁. (0,1) 𝑥𝑡 = 𝛿𝑠𝑡 +  𝜙(𝑥𝑡−1 − 𝛿𝑠𝑡−1) + 𝑢𝑡 ,   𝑢𝑡  ~ 𝑖. 𝑖. 𝑑 𝑁 (0, 𝜎𝑢2) 

[𝜀𝑡𝑢𝑡] ~ 𝑁 ([00] , [ 1 𝜌𝑠𝑡𝜎𝑢𝜌𝑠𝑡𝜎𝑢 𝜎𝑢2 ]) 

Pr[𝑆𝑡 = 𝑗| 𝑆𝑡−1 = i] =  𝜋𝑖𝑗 , ∑ 𝜋𝑖𝑗2𝑗=1 = 1,   𝑓𝑜𝑟 𝑖, 𝑗 = 1,2. 
 

Parameters 

 

Prior  

 

 

Posterior 

 
  

Mean 

 

 

SD 

 

Mean 

 

Median 

 

SD 
 

90 % HPDI 𝜋11 0.99 0.01 0.998 0.997 0.001 (0.997 0.999) 𝜋22 0.99 0.01 0.997 0.995 0.001 (0.995 0.999) 𝜇 0 1 0.036 0.024 0.008 (0.024 0.049) 𝛿1 -0.5 0.5 -0.396 -0.444 0.029 (-0.444 -0.350) 𝛿2 0 0.5 0.159 0.108 0.031 (0.108 0.210) 𝜙 0 0.5 0.954 0.945 0.005 (0.945 0.962) 𝜌1 0 2 -0.500 -0.593 0.054 (-0.593 -0.407) 𝜌2 0 2 -0.672 -0.740 0.045 (-0.740 -0.590) σ𝑢2 0.01 0.5 0.010 0.008 0.001 (0.008 0.012) 

 
 

Note: 1.  Burn-in / Total iterations = 5,000 / 25,000 

 2.  S.D. refers to the standard deviations of the posterior distributions. 

 3.  A highest posterior density interval (HPDI) is an interval, the narrowest one possible with a chosen 

probability.   

 

 

 

 

 

 

 

 

 

 

 

 



Table 2.B  Bayesian Estimation of SV Model with Regime-dependent Leverage Effect for 

NASDAQ: 2 State Case [Sample: Jan/02/1975 ~ Aug/05/2015] 
 𝑦𝑡 = 𝜇 + exp (𝑥𝑡−12 ) 𝜀𝑡,   𝜀𝑡~ 𝑖. 𝑖. 𝑑. 𝑁. (0,1) 𝑥𝑡 = 𝛿𝑠𝑡 +  𝜙(𝑥𝑡−1 − 𝛿𝑠𝑡−1) + 𝑢𝑡 ,   𝑢𝑡  ~ 𝑖. 𝑖. 𝑑 𝑁 (0, 𝜎𝑢2) 

[𝜀𝑡𝑢𝑡] ~ 𝑁 ([00] , [ 1 𝜌𝑠𝑡𝜎𝑢𝜌𝑠𝑡𝜎𝑢 𝜎𝑢2 ]) 

Pr[𝑆𝑡 = 𝑗| 𝑆𝑡−1 = i] =  𝜋𝑖𝑗 , ∑ 𝜋𝑖𝑗2𝑗=1 = 1,   𝑓𝑜𝑟 𝑖, 𝑗 = 1,2. 
 

Parameters 

 

Prior  

 

 

Posterior 

 
  

Mean 

 

 

SD 

 

Mean 

 

Median 

 

SD 
 

90 % HPDI 𝜋11 0.99 0.01 0.999 0.998 0.001 (0.998 1.000) 𝜋22 0.99 0.01 0.997 0.995 0.001 (0.995 0.999) 𝜇 0 1 0.089 0.077 0.008 (0.077 0.102) 𝛿1 -0.5 0.5 -0.390 -0.443 0.032 (-0.443 -0.337) 𝛿2 0 0.5 0.422 0.308 0.063 (0.308 0.517) 𝜙 0 0.5 0.958 0.947 0.007 (0.947 0.968) 𝜌1 0 2 -0.269 -0.329 0.037 (-0.329 -0.206) 𝜌2 0 2 -0.653 -0.719 0.044 (-0.719 -0.576) σ𝑢2 0.01 0.5 0.012 0.010 0.002 (0.010 0.015) 

 
 

Note: 1.  Burn-in / Total iterations = 5,000 / 25,000 

 2.  S.D. refers to the standard deviations of the posterior distributions. 

 3.  A highest posterior density interval (HPDI) is an interval, the narrowest one possible with a chosen 

probability.   

 

 

 

 

 

 

 

 

 

 

 



Table 3.A  Bayesian Estimation of SV Model with Regime Switching Leverage Effect for S&P 500: 

3 State Case [Sample: Jan/02/1975 ~ Aug/05/2015] 
 𝑦𝑡 = 𝜇 + exp (𝑥𝑡−12 ) 𝜀𝑡,   𝜀𝑡~ 𝑖. 𝑖. 𝑑. 𝑁. (0,1) 𝑥𝑡 = 𝛿𝑠𝑡 +  𝜙(𝑥𝑡−1 − 𝛿𝑠𝑡−1) + 𝑢𝑡 ,   𝑢𝑡  ~ 𝑖. 𝑖. 𝑑 𝑁 (0, 𝜎𝑢2) 

[𝜀𝑡𝑢𝑡] ~ 𝑁 ([00] , [ 1 𝜌𝑠𝑡𝜎𝑢𝜌𝑠𝑡𝜎𝑢 𝜎𝑢2 ]) 

Pr[𝑆𝑡 = 𝑗| 𝑆𝑡−1 = i] =  𝜋𝑖𝑗 , ∑ 𝜋𝑖𝑗3𝑗=1 = 1,   𝑓𝑜𝑟 𝑖, 𝑗 = 1,2,3. 
 

Parameters 

 

Prior  

 

 

Posterior 

 
  

Mean 

 

 

SD 

 

Mean 

 

Median 

 

SD 
 

90 % HPDI 𝜋11 0.98 0.04 0.997 0.996 0.001 (0.996 0.999) 𝜋12 0.01 0.03 0.002 0.001 0.001 (0.001 0.003) 𝜋21 0.01 0.03 0.003 0.001 0.001 (0.001 0.005) 𝜋22 0.98 0.04 0.995 0.993 0.001 (0.993 0.997) 𝜋31 0.01 0.03 0.005 0.001 0.004 (0.001 0.013) 𝜋32 0.01 0.03 0.017 0.007 0.008 (0.007 0.032) 𝜇 0 1 0.035 0.022 0.008 (0.022 0.047) 𝛿1 -0.5 0.5 -0.431 -0.469 0.024 (-0.469 -0.391) 𝛿2 0 0.5 0.065 0.002 0.035 (0.002 0.117) 𝛿3 0 0.5 0.871 0.698 0.116 (0.698 1.088) 𝜙 0 0.5 0.937 0.924 0.009 (0.924 0.951) 𝜌1 0 2 -0.565 -0.645 0.045 (-0.645 -0.499) 𝜌2 0 2 -0.713 -0.790 0.045 (-0.790 -0.636) 𝜌3 0 2 -0.588 -0.802 0.173 (-0.802 -0.221) σ𝑢2 0.01 0.5 0.010 0.007 0.001 (0.007 0.012) 

 

Note: 1.  Burn-in / Total iterations = 5,000 / 25,000 

 2.  S.D. refers to the standard deviations of the posterior distributions. 

 3.  A highest posterior density interval (HPDI) is an interval, the narrowest one possible with a chosen 

probability.   

 

 

 

 



Table 3.B  Bayesian Estimation of SV Model with Regime Switching Leverage Effect for NASDAQ: 

3 State Case [Sample: Jan/02/1975 ~ Aug/05/2015] 
 𝑦𝑡 = 𝜇 + exp (𝑥𝑡−12 ) 𝜀𝑡,   𝜀𝑡~ 𝑖. 𝑖. 𝑑. 𝑁. (0,1) 𝑥𝑡 = 𝛿𝑠𝑡 +  𝜙(𝑥𝑡−1 − 𝛿𝑠𝑡−1) + 𝑢𝑡 ,   𝑢𝑡  ~ 𝑖. 𝑖. 𝑑 𝑁 (0, 𝜎𝑢2) 

[𝜀𝑡𝑢𝑡] ~ 𝑁 ([00] , [ 1 𝜌𝑠𝑡𝜎𝑢𝜌𝑠𝑡𝜎𝑢 𝜎𝑢2 ]) 

Pr[𝑆𝑡 = 𝑗| 𝑆𝑡−1 = i] =  𝜋𝑖𝑗 , ∑ 𝜋𝑖𝑗3𝑗=1 = 1,   𝑓𝑜𝑟 𝑖, 𝑗 = 1,2,3. 
 

Parameters 

 

Prior  

 

 

Posterior 

 
  

Mean 

 

 

SD 

 

Mean 

 

Median 

 

SD 
 

90 % HPDI 𝜋11 0.98 0.04 0.997 0.995 0.001 (0.995 0.999) 𝜋12 0.01 0.03 0.002 0.001 0.001 (0.001 0.004) 𝜋21 0.01 0.03 0.002 0.001 0.001 (0.001 0.004) 𝜋22 0.98 0.04 0.997 0.995 0.001 (0.995 0.998) 𝜋31 0.01 0.03 0.001 0.000 0.001 (0.000 0.003) 𝜋32 0.01 0.03 0.004 0.001 0.002 (0.001 0.006) 𝜇 0 1 0.088 0.076 0.008 (0.076 0.100) 𝛿1 -0.5 0.5 -0.595 -0.654 0.035 (-0.654 -0.538) 𝛿2 0 0.5 -0.092 -0.137 0.028 (-0.137 -0.043) 𝛿3 0 0.5 0.697 0.634 0.038 (0.634 0.758) 𝜙 0 0.5 0.921 0.909 0.007 (0.909 0.933) 𝜌1 0 2 -0.221 -0.313 0.055 (-0.313 -0.131) 𝜌2 0 2 -0.596 -0.674 0.047 (-0.674 -0.513) 𝜌3 0 2 -0.667 -0.757 0.054 (-0.757 -0.580) σ𝑢2 0.01 0.5 0.016 0.013 0.002 (0.013 0.018) 

 

Note: 1.  Burn-in / Total iterations = 5,000 / 25,000 

 2.  S.D. refers to the standard deviations of the posterior distributions. 

 3.  A highest posterior density interval (HPDI) is an interval, the narrowest one possible with a chosen 

probability.   

 

 

 

 



 

Table 4.  Deviance Information Criterion: Bayesian Model Comparison  

 𝐷𝐼𝐶 =  −2𝐸𝜁|𝑌[ln 𝑓(𝑌|𝜁)] +  2 {ln 𝑓(𝑌|𝜁)̅ − 𝐸𝜁|𝑌[ln 𝑓(𝑌|𝜁)]} 

 

 S&P 500 Nasdaq 

 

Model 

 

DIC 

 

 

Ranking 

 

 

DIC 

 

 

Ranking 

 

1 26,088.95 4 27,015.57 4 

2 26,078.41 3 26,992.56 3 

3 26,054.90 2 26,977.52 2 

4 26,044.53 1 26,947.22 1 

 

Note: 1.  Model 1: 2-state Regime Switching SV with Constant Leverage Effect 

     Model 2: 2-state Regime Switching SV with Regime-dependent Leverage Effect 

     Model 3: 3-state Regime Switching SV with Constant Leverage Effect 

     Model 4: 3-state Regime Switching SV with Regime-dependent Leverage Effect 

 

2.  Burn-in / Total iterations = 5,000 / 25,000 

  

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Figure 1. Autocorrelation Functions for Selected Model Parameters: Example 1 [T = 3000] 

 

 
Mean of Log Volatility in Low Volatility Regime (𝛿1) 

 
AR Coefficient (𝜙)  

  

 

Note: 1. The empirical autocorrelation functions are obtained based on 40,000 MCMC iterations. The first 3,000 

iterations are discarded as the burn-in.  

2. The averages of the ACFs calculated from 5 simulations are reported.  

3. PG refers to the benchmark PG sampler. ACF for PG is the black bold line. 

4. PGAS refers to the proposed PG sampler with ancestor sampling. ACF for PGAS is the red dotted line. 

5. PGAS-PR refers to the proposed PG sampler with ancestor sampling and particle rejuvenation. ACF for 

PGAS-PR is the blue dashed line. 

 

 

 

 

 

 

 

 

 

 

 

 



Table 2.A Posterior Estimates of Stochastic Volatility and Regime Probability: 2 State RS-SV with 

Leverage Effect [S&P 500: Jan/02/1975 ~ Aug/05/2015] 
 

 
Posterior Mean of Stochastic Volatility 

 
Posterior Probability of High Volatility Regime 

 

Note: 1. The empirical autocorrelation functions are obtained based on 20,000 MCMC iterations. The first 3,000 

iterations are discarded as the burn-in.  

2. N = 20 particles are used in the proposed PGAS sampler. 

 

 

 

 

 

 

 

 

 

 

 



Table 2.B Posterior Distributions of Regime Switching Parameters: 2 State RS-SV with Leverage 

Effect [S&P 500: Jan/02/1975 ~ Aug/05/2015] 
 

 
Posterior Distributions of 𝜇𝑠𝑡 

 
Posterior Distributions of 𝜌𝑠𝑡 

 

Note: 1. The empirical autocorrelation functions are obtained based on 20,000 MCMC iterations. The first 3,000 

iterations are discarded as the burn-in.  

2. N = 20 particles are used in the proposed PGAS sampler. 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 3.A Posterior Estimates of Stochastic Volatility and Regime Probability: 2 State RS-SV with 

Leverage Effect [NASDAQ: Jan/02/1975 ~ Aug/05/2015] 
 

 
Posterior Mean of Stochastic Volatility 

 
Posterior Probability of High Volatility Regime 

 

Note: 1. The empirical autocorrelation functions are obtained based on 20,000 MCMC iterations. The first 3,000 

iterations are discarded as the burn-in.  

2. N = 20 particles are used in the proposed PGAS sampler. 

 

 

 

 

 

 

 

 

 

 

 



Table 3.B Posterior Distributions of Regime Switching Parameters: 2 State RS-SV with Leverage 

Effect [NASDAQ: Jan/02/1975 ~ Aug/05/2015] 
 

 
Posterior Distributions of 𝜇𝑠𝑡 

 
Posterior Distributions of 𝜌𝑠𝑡 

 

Note: 1. The empirical autocorrelation functions are obtained based on 20,000 MCMC iterations. The first 3,000 

iterations are discarded as the burn-in.  

2. N = 20 particles are used in the proposed PGAS sampler. 

 

 

 

 

 

 

 

 

 

 

 



Table 4.A  Posterior Estimates of Stochastic Volatility and Regime Probability: 3 State RS-SV with 

Leverage Effect [S&P 500: Jan/02/1975 ~ Aug/05/2015] 
 

 
Posterior Mean of Stochastic Volatility 

 
Posterior Probability of Low Volatility Regime 

 

Posterior Probability of Medium Volatility Regime 

 
Posterior Probability of High Volatility Regime 

 
 

Note: 1. The empirical autocorrelation functions are obtained based on 20,000 MCMC iterations. The first 3,000 

iterations are discarded as the burn-in.  

2. N = 20 particles are used in the proposed PGAS sampler. 

 

 

 



Table 4.B Posterior Distributions of Regime Switching Parameters: 3 State RS-SV with Leverage 

Effect [S&P 500: Jan/02/1975 ~ Aug/05/2015] 
 

 
Posterior Distributions of 𝜇𝑠𝑡 

 
Posterior Distributions of 𝜌𝑠𝑡 

 

Note: 1. The empirical autocorrelation functions are obtained based on 20,000 MCMC iterations. The first 3,000 

iterations are discarded as the burn-in.  

2. N = 20 particles are used in the proposed PGAS sampler. 

 

 

 

 

 

 

 

 

 

 

 



Table 5.A  Posterior Estimates of Stochastic Volatility and Regime Probability: 3 State RS-SV with 

Leverage Effect [NASDAQ: Jan/02/1975 ~ Aug/05/2015] 
 

 
Posterior Mean of Stochastic Volatility 

 
Posterior Probability of Low Volatility Regime 

 

Posterior Probability of Medium Volatility Regime 

 
Posterior Probability of High Volatility Regime 

 

Note: 1. The empirical autocorrelation functions are obtained based on 20,000 MCMC iterations. The first 3,000 

iterations are discarded as the burn-in.  

2. N = 20 particles are used in the proposed PGAS sampler. 

 

 

 

 

 

 



Table 5.B Posterior Distributions of Regime Switching Parameters: 3 State RS-SV with Leverage 

Effect [NASDAQ: Jan/02/1975 ~ Aug/05/2015] 
 

 
Posterior Distributions of 𝜇𝑠𝑡 

 
Posterior Distributions of 𝜌𝑠𝑡 

 

Note: 1. The empirical autocorrelation functions are obtained based on 20,000 MCMC iterations. The first 3,000 

iterations are discarded as the burn-in.  

2. N = 20 particles are used in the proposed PGAS sampler. 
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