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Abstract

This paper considers the impact of using the regularisation techniques for the
analysis of the (extended) skew normal distribution. The models are estimated using
Maximum Likelihood and compared to OLS based LASSO and ridge regressions
in addition to non- constrained skew normal regression. The LASSO is seen to
shrink the model’s coefficients away from the unconstrained estimates and thus
select variables in a non- Gaussian environment.

1 Introduction & Motivation

Variable selection is an important issue for many fields. It is also noticeable that not all
data conforms to the standard of normality. This paper addresses the issue raised by
Biihlmann [2013] of the lack of non-Gaussian distributions using regularisation methods.
Within the statistics literature there are many applications of penalised regressions.
There are other fields such as finance and econometrics where these approaches are
less common. This paper extends this to consider situations where shrinkage of the
coefficients might be helpful and one has an a priori expectation of non-normality in the
data.

Variable selection is an important part of the modelling process. A number of ap-
proaches such as stepwise regression or subset regression have previously been used
with metrics such as Aikake Information Criteria (Akaike [1974]) used as the decision
criterion. There are well documented problems with these approaches. The use of reg-
ularised regressions mitigate these problems. The coefficients are shrunk towards zero,
which creates a selection process.

In the majority of cases, the use of the regularisation techniques are based upon
Gaussian distributed errors and Ordinary Least Squares. Though in many cases this
is sufficient, there are many cases such as those in finance where normality is not an
appropriate assumption. This paper looks to add to the regularisation literature by
extending the Least Absolute Shrinkage & Selection Operator (henceforth LASSO (Tib-
shirani [1996]) to accommodate shrinkage within the higher moments via the use of the
extended skew normal based regression model (Adcock & Shutes [2001] & Shutes [2004]).
The method proposed here uses the technique of the LASSO, i.e. the introduction of
£1 norms, but in contrast to the literature based on Gaussian regression, further norms



are introduced on the skewness parameters. This will imply that in addition to the
variable selection made via the standard approach the method also performs a selection
of non-normality as the extra parameters control the skewness and kurtosis.

The rest of the paper is organised as follows. A consideration of the extended skew
normal and the LASSO is presented with the relevant estimation and an example to
conclude. A standard data set from the machine learning literature, that of diabetes
patients is used (see Efron et al. [2004] where it is more fully described). All estimation
was performed in R [2008] with package Azzalini [2013].

2 Literature Review & Definitions

2.1 Regularization

In many fields, regularisation has a substantial history. In circumstances of ill-formed
problems, such as multi-collinearity or non-full rank in the independent variable matrix,
it is possible to use these approaches. Ridge regression is perhaps the best known
example (for example Hoerl & Kennard [1970]), where the problem of multicollinearity
is dealt with by the imposition of a constraint on the coefficients of the regressions. This
estimator is known to be biased however it is the case that the approach gives estimators
with lower standard errors. The ridge and the LASSO exhibit an equivalence between
the penalty formulation and that of a Lagrangean, with a correspondence between the
Lagrange multiplier and the value of € as shown in Osborne et al. [1999]. The penalised
function for the estimation is given by:

Pr = argmin (¥i—fo - XifT) (Y- Bo- XifT) st fTB<e (1)
= argmin (¥; — o~ X;8")" (¥i — o — Xi8") +v"5
= (XTX +vD) ' XTy

This approach does not perform any form of variable selection as, although it does
shrink coefficients, it does not shrink them to 0. The v parameter! acts as the shrinkage
control with v = 0 being no shrinkage and therefore ordinary least squares. This can
be compared to the Least Absolute Shrinkage & Selection Operator (LASSO). In this
case the penalty is based on the £1 norm rather than the 5 norm of the ridge approach.
Hence the problem becomes:

B = arg mﬂin (Y; = Bo — XzﬂT)T (Y; = Bo— X;B") st |[BI<e (2)

= argmﬂin(Yi—Bo—XzTﬁ)T(Yz‘—ﬁo—XiTﬁ)+VfﬁT|1

!Traditionally the Lagrangean multiplier is denoted ), however due to the use of X as the skewness
parameter in the distribution, the Lagrangean is denoted v throughout this paper.



The variable selection property is clearly shown graphically in Figure 1 when consid-
ering two parameter estimates, with the LASSO (black) and ridge (red). The estimator
loss functions are shown as ellipses. The point of tangency are the estimates for each

Figure 1: Differences Between LASSO & Ridge Regressions

technique. The LASSO shrinks 1 to 0, whereas the ridge regression approaches it. The
OLS estimator is given as B . The parameter v controls the amount of penalty applied to
the parameters for the LASSO. Fu and Knight [2000] show that under certain regularity
conditions, the estimates of the coefficients are consistent & that these will have the
same limiting distribution as the OLS estimates.

There is a generalisation such that the y-th norm is used. This is the bridge estimator.
The ~-th norm is defined as:

18 1= (181 ®)

This therefore implies that the bridge regression, despite first impressions will not select
variables unless v < 1 in which case the penalty function is non-concave and the estimates
may not be unique, though they may be set at zero. These estimators, LASSO, bridge
and ridge are all forms of Bayesian estimator with priors based on a LaPlace or variants
of this based on a log exponential function.



2.2 The Skew Normal Distribution

The skew skew normal distribution has become increasingly well used within a number
of fields since its initial description by Azzalini [1985]. A particularly attractive feature
of the distribution is that it includes the Gaussian as a limiting case. In its simplest
form the distribution is described by the following density function:

h(y) = 2¢(y) 2 (\y) (4)
—0< A <
—o< Yy <o

with A controlling the degree of skewness of the distribution. The case A=0 will lead to
a standard normal distribution.

Azzalini [1985] & [1986] proposes that the skew normal distribution is best thought
of as a combination of a symmetric element and a skewing element, which is a truncated
normal distribution with mean of 0. This is generalised in Arnold & Beaver [2000] and
Adcock & Shutes [2001] where the truncated normal has a mean of 7. Thus the density
function can be written as:

Flr) = — ¢<”_“>¢)<T\/1+7+A(7”;“>) (5)

(1) w

where ¢ and ® are the probability density and cumulative functions of the normal
distribution respectively.

The application of the LASSO type approach to the skewed family of distributions
is limited. Wu et al. [2012] consider the variable selection problem for the skew normal
family. However they use a fixed but estimated skewness parameter in essence removing
the skewness problem in conjunction with a quadratic expansion of the penalised like-
lihood to give a tractable solution. Their focus is very much on the location and scale
parameters rather than the skewness with a view to modelling the variance as an entity
as well as the mean i.e. regression style models. The penalised likelihood approach used
both in Wu and here is found in Fan and Li [2001]. This allows both the estimation and
standard errors to be estimated despite the singularity introduced by the constraint.

3 Likelihood Functions

In order to use the LASSO style estimators, it is necessary to consider the relevant like-
lihood estimators in light of the constraints. We can think of the constrained likelihood
as having two elements, the objective and the constraint.

The likelihood function of the extended skew normal distribution is somewhat non-



linear. Using the specification above, the likelihood is given by:
1
Gy A wB) = —log(v2r) —log(w) — 55 (6)
+ log <<I> (T\/ 14+ A2+ )\zz)>
—log (®(7)) +v (| Bllr + [ A[x + 1] 7 11h)

w

where z; =

This is the standard log-likelihood function for the extended skew normal with the
addition of the LASSO penally for the coefficients and the skewness parameter.

4 Estimation

For Gaussian based estimations it is possible to leverage the co-ordinate descent approach
to update the estimates of the relevant coefficients until convergence to the LASSO
solution occurs. Assuming uncorrelated predictors, the updating procedure can be based
on the product of the residuals and the relevant predictors and the value of the Lagrange
multiplier. This produces a whole path solution with the different solutions for the
problem providing the starting point for the next optimisation thus reducing the issues
with convergence? and speed. The approach taken here is to use direct estimation of the
likelihood function for the distributions where 7 is unconstrained (the extended skew
normal) and where it is constrained to 7 = 0, the skew normal. Each estimator used
the previous estimate as the starting point of the algorithm to increase the speed of
the estimation. Where X is small, it is sometimes difficult to estimate 7 stably. This is
reflected in a number of the results where the skewness based estimates are rather volatile
and not always non-increasing as one would hope with the LASSO type estimators.

4.1 Estimation with Maximum Likelihood

The procedure uses maximum likelihood optimisation with the penalty parameter based
upon a grid. The value of the penalty was selected using a cross-validation procedure.
Initially the unconstrained maximum likelihood estimation was performed. The results
of this are used as the first estimates for the penalised optimisation. Each optimisation
is used as the next starting point for the following procedure. This speeds up the
estimation.

Estimation was performed using a maximum likelihood approach with the nuisance
parameter, v being based on a grid in the first case and then cross validation being
used to optimise the choice of this parameter. Using the non-constrained maximum
likelihood estimates as the initial points to aid in convergence, the estimations were
performed with a transformation of the parameter v to exp(v). This leads to more

2 As noted in Azzalini and Capitanio [1999] the likelihood function of the skew normal is not convex
in its standard form.



satisfactory convergence of the algorithms and allowed a greater range of the parameter
than a simple linear constraint would allow.

The estimation of v used a 10-fold cross-validation over an identical grid of v pa-
rameter values. The CV errors are calculated off the hold-out sample of this, with the
v selected by the min+1S.E. rule of thumb being used as a fixed parameter within the
final, whole sample estimation. Thus the process involves sampling in order to estimate
the nuisance parameter, with that value then being used to select the model using the
whole data set.

The results of the estimations are presented graphically using the logarithm of the
penalty and the coefficients as a proportion of the unconstrained maximum likelihood
value 3.

5 Data & Maximum Likelihood Estimation Results

Two data sets are included to demonstrate the technique. These are the diabetes data set
(from Efron et al. [2004]) with the second being a simulated dataset. The diabetes data
relate the progress of diabetes over a year to the age, weight, BMI, sex, blood pressure
and six serum measurements. There are 442 observations. The data are standardised to
have 0 mean and an unit #2-norm. Though this is not a p >> n situation, it serves to
demonstrate the technique and places this approach in the corpus of penalised regression.

This is supplemented with a set of simulations based on 10 variables with 10000 and
1000 observations each. Fifty different sets of data are used to demonstrate the properties
of the estimation. This is demonstrated using the mean coefficients and standard error
of these, as well as the median and 25th and 75th quantiles of the estimates.

5.1 Simulated Data

Fifty simulated data sets of both 1000 and 10000 observations were created with specific
seeding points to ensure reproducibility. These contained 10 independent variables. The
data generating process was identical for all of the simulations (81 < 0, B2 < 0, 53 > 0
and f5 > 0 are all non-zero). The estimates are reported as a proportion of the full
Maximum Likelihood estimators. In each case, the inter-quartile range and median are
plotted in the first graph and the mean of the estimators is plotted in the second. These
demonstrate the important variables in the data generating process clearly.

Those variables that are included in the data generating process are stable around
the MLE coefficients (qv. Figures 2a and 4a), whereas those omitted from the data
generating process are restricted and converge to zero (Figure 2a & 4a ) and have a
mean of zero (Figures 2b & 4b). These have a wider dispersion than the variables
included in the data generating process.

Results for both the lengths are similar in substance, though the dispersion is higher
in the smaller data sets. In both cases the skewness parameters (A and 7) converge

3This may be substituted for the maximum value in some cases, e.g. where the Maximum Likelihood
estimator is not available.



to zero as the penalty increases even though the actual value is not zero (Figures 3a
and 5a with mean values shown in Figures 3b and 5b). This is in part due to the non-
linearities associated with the likelihood function. The instability that this creates gives
a median value of zero. The model is penalising the asymmetry and removing it from
the regression in these cases.

Figure 2: Paths of LASSO Coefficients for the Skew Family of Distributions for the
Simulated Data

(a) LASSO Regression Coefficients (3) of Variables(b) Mean LASSO Regression Coefficients (3) of Vari-
by v (N=10000) ables by v (N=10000)
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Figure 3: Skewness Parameter Estimates
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5.2 Diabetes Data Results

The results are presented with skew normal (7 = 0) and extended skew normal (7 < 0),
Gaussian LASSO and Ridge regressions in Table 1. The Maximum Likelihood approach
used a grid of Lagrange multipliers and the coefficients from each of these values are
recorded. These are presented graphically in Figures 6a and 6b with the coeflicients



Figure 4: Paths of LASSO Coefficients for the Skew Family of Distributions for the
Simulated Data

(a) LASSO Regression Coefficients () of Variables(b) Mean LASSO Regression Coefficients () of Vari-
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Figure 5: Skewness Parameter Estimates
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presented as a proportion of the unconstrained maximum likelihood estimates®. As
can be seen the estimates converge to zero as the penalty increases. A number of
coeflicients were somewhat unstable for the skew normal, though this is less problematic
for the extended skew normal estimations. This is due to the relative smoothness of
the likelihood functions under specific conditions (examples are given in Azzalini and
Capitanio [1999]).

The path of the regression coefficients are given in Figure 6a and 6b using a grid-
based path. These are given as a proportion of the unconstrained estimates (with a sign
modification to aid visualisation). These diagrams show the variable selection ability of
the LASSOs.

The LASSO parameter, v is selected using the 10-fold cross validation. Using the
rule of thumb that one should maximise the cross validated parameter within a standard
error (Breiman et al. [1984]) of the MSE of the minimum, the optimal value of In(v) is
-3.4 for the skew normal and -3.6 for the extended version as is shown in Figure 7a &
b respectively. The relevant v parameters are shown in Figures 6a & 6b as the vertical
dashed line. These results demonstrate that there is variable selection under both the
skew normal and the extended skew normal LASSOs. The regression coefficients have a
similar path for each of the distributions, though not identical.

The selection implies that the variables 2, 3, 4, 7 and 9 are to be included in the skew
normal model model with the other coefficients being less than 1% of their standard MLE
estimate with variable 10 also included in the ESN LASSO as in the case of the Gaussian
LASSO. The skew normal LASSOs do not include variable 5 unlike the standard LASSO.

The parameters associated with the skewness, A and 7, are estimated from the like-
lihood function. These are presented below in Figure 8a & 8b. What is immediately
obvious is that the skewness parameter under the non-extended formulation is erratic,
whereas under the extended form there is more direct convergence.

The underlying distributions with A & 7 at the cross validated parameter value of v
is shown in Figure 9. As can be seen, the distributions are very similar. The ratio of the
extended to unextended variants has a range of 5% and has a maximum difference in the
tails. This is to be expected as the extended skew normal’s extra parameter does allow
control over the tails of the distribution. Further the large 7 and small A are tantamount
to a near normal result.

The OLS ridge regression shrinks the coefficients towards 0 however this is not as
extreme as that of the LASSO in both the Gaussian and non- Gaussian scenarios. The
(leave one out) cross validated LASSO Gaussian coefficients are also given in Table
1. These were estimated using glmnet (Friedman et al. [2010]). The penalty for the
ridge regression is selected using the approach of Cule and De Iorio [2012] based on
cross-validation. There is more shrinkage under the skew normal approaches to the
LASSO. Thus the skew normal creates a more parsimonious regression but the skewness
parameters are non-zero. There is therefore a trade-off between a more parsimonious

4Given that the LASSO parameter is re-parameterized as exp”, the unconstrained optimum is given
as a small step away from the start of the grid search in order to demonstrate the shrinkage across the
range.



Figure 6: Path of LASSO Coefficients for the Skew Family of Distributions

(a) Path of Skew Normal LASSO Regression Coefficients (8) by v
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Figure 7: Cross Validation Results for the Selection of v, the LASSO parameter for Skew
and Extended Skew Normal

(a) Cross Validation of Skew Normal LASSO

HIIHII |
5
m12000-
kel
2
©
=]
o
0
c
O
o
s
f=4
g
@ 8000 -
e
S
2
0
0
Q
o
4000 4
1 1 1 1 1 1 1 1 1 1 1
5.0 45 -4.0 3.5 -3.0 -2.5 2.0 15 1.0 0.5 0.0
log(v)
(b) Cross Validation of Extended Skew Normal LASSO
i
i
i e TR
! e ‘lll
;
i
8000 !
;
5 i
o ;
i i i
° ! "
Q 1
g : /
o 1 I
@ i
c i
3 i
< 6000 ; '{
c
2 ; /
o 1
2 i
: e ’
') !
8 i
o i
40004 :
; ¥
1 “"'
T
TR __.“““uulm.““lll
1 1 1 I 1 1 1 1 1 1 1 1
-5.0 -45 -4.0 -3.5 -3.0 -25 -2.0 -1.5 -1.0 -05 0.0
log(v)

11



regression and a parsimonious distribution. The skew parameters are acting to counter-
act the variable not included.

Figure 8: Skewness Parameters for the Skew and Extended Skew Normal

(a) Path of Skewness Parameter X for the Skew(b) Path of Skewness Parameters A & 7 for the
Normal LASSO Extended Skew Normal LASSO
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Table 1: Estimates of the Skew Normal LASSO for Diabetes Data

SN LASSO ESN LASSO ESN MLE SN MLE LASSO Ridge OLS

Coef Coef ESN SE SN SE | CV.LASSO Ridge Ridge SE OLS OLS SE
I 151.487 152.719| 152.138  2.553| 152.133  2.552 152.133| 152.133 NA| 152.133 2.576
051 - -| -6.580 59.923| 10.133 59.191 - -4.816 57.599| -10.012  59.749
Ba -40.484 -105.654 |-237.086 60.687 |-234.654 60.651 -196.053 | -228.124 59.9231-239.819 61.222
Bs 507.480 514.916 | 529.915 65.955| 529.039 65.915 522.070| 515.391 63.156 | 519.840 66.534
B4 213.516 244.548 | 323.484 64.849| 320.971 64.811 296.268 | 316.125 62.340| 324.390 65.422
Bs - -] -64.026 415.98(-101.146 415.433 -102.047(-206.171  102.045|-792.184 416.684
Be - --121.526 338.50| -84.037 338.006 - 13.835 99.620 | 476.746 339.035
B -120.622 -170.463 | -208.798 209.892|-197.840 211.517 -223.271-150.203 91.810| -208.80 211.720
Bs - -| 118.206 160.11| 106.878 160.037 -| 115.787  114.508| 177.064 161.476
Bo 480.669 458.722 | 463.841 171.51| 488.531 171.222 513.684 | 518.312 76.632| 751.279 171.902
B1o - 13.586| 75.179 65.409| 70.653 65.368 53.937| 75.172 63.061| 67.625 65.984
A 0.014 -9.627| -3.807  0.000|-118.631  0.000
o 55.081 55.237| 53.680 1.8192| 53.648 1.816
T 2.710| 10.133  0.000
lp -2444.44 -2434.91 | -2387.62 -2387.43
Key:

ESN LASSO= Estimation of Extended Skew Normal LASSO with coefficients greater than 1% of ESN MLE
SN LASSO= Estimation of Skew Normal LASSO with coefficients greater than 1% of SN MLE
SN MLE= Estimation of Skew Normal by MLE

LASSO= Gaussian based LASSO with penalty parameter estimated using Cross Validation

Ridge= Gaussian based Ridge with penalty parameter estimated using Cross Validation
OLS= Gaussian based regression




5.3 Financial Data

In a number of cases, financial data such as stock returns are seen to be non-normal.
Thus the extended skew normal distribution allows the characterisation of both of the
potentially useful higher moments whilst nesting the normal distribution as a special
case. The example here uses the LASSO to identify the important relationships between
a number of indices. The Shanghai Stock Exchange Index (SSE) and Shenzhen Index
(SZSE) are two of the exchanges in China; neither are completely open to foreign in-
vestors with restrictions being placed on trading in the assets that constitute the indices
Shanghai Stock Exchange [2015]. Though those restrictions might not bind in many
cases, these restrictions might lead to requirement of a replicating portfolio such that
the return on the index might be replicated by other more tradable indices. Using the
LASSO will give the most effective replication- reducing the number of indices invested
in. The indices used as the constituents of the replicating portfolio are the ASX 200, Dow
Jones, CAC 40, FTSE 100, Dax 30, Hang Seng, NASDAQ, KLCI, Nikkei and TATEX
indices.

Following the previous method, an OLS, extended and non-extended skew normal
regression are used as comparisons. Cross-validation was used for the choice of the
v. The approach implicitly ignores any time series issues. The cross validation is the
standard sampling rather than the forecast evaluation approach with a rolling origin.
This allows the demonstration of the LASSO rather than the data’s use for replication.

For the Shanghai index, using OLS, skew normal and extended skew normal ap-
proaches the Hang Seng is highly significant with the Dax and NASDAQ also being
statistically significant. For the Shenzhen only the Hang Seng is statistically significant.
Using 10 fold cross validation, the LASSO for the extended skew normal was estimated
in addition to that of the Gaussian equivalent. The paths are broadly similar in tra-
jectory with the Hang Seng again clearly being the most important index in explaining
the Shanghai index. The skewness and 7 parameters are somewhat volatile. This is
due to the interaction that exists between them in dealing with the estimation of the
likelihood function. Using the critierion that a variable is dropped when it is less than
1% of the unregularised coefficient, the extended skew normal are the CAC, DAX, Hang
Seng, Nikkei and TAIEX,though the CAC and DAX are only marginal in the regression®.
The Gaussian equivalent run though a similar 10 fold cross-validation gives the DAX,
Hang Seng, KL.CI and TAIEX as important variables. It is interesting that the KLCI
is included in the Gaussian and not the skew normal LASSO. The KLCI is marginally
removed from the asymmetric LASSO. The Gaussian model produces a slightly simpler
model. The paths are given in Figure 10a and 10b. This can be compared with the
OLS based LASSO from Figure 10c using glmnet from Friedman et al. [2010], which
uses the coefficients rather than the proportion of the unconstrained coefficient. These
are a simple transformation from one to the other, though the proportions approach is
sometimes simpler to view when the coefficients are widely dispersed.

Shenzhen Index is a smaller market than Shanghai. The OLS and skew normal

®Increasing the cut-off to 2.5% removes all the non-Asian indices.
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regressions are run and again the Hang Seng is significant. However the DAX and
NASDAQ are also significant with the extended skew normal and OLS. As before the
ESN and Gaussian LASSOs are estimated. The Gaussian LASSO selects the DAX,
Hang Seng and KLCI, whereas the ESN LASSO selects the FTSE, the Hang Seng and
the TAIEX. The paths are given in Figures 11a- 11c. One can see that there are parallels
between the two LASSOs; the two LASSOs select the Hang Seng (as one would expect),
an European index and an Asian index.

6 Conclusions

The skew normal is an example of a well developed class of asymmetric distributions.
This paper has shown that it is possible to adapt the estimation of regressions based on
this distribution to include a LASSO type penalty. This is seen to shrink the estimates
of regression coefficients and thus perform a variable selection role. This therefore allows
the analysis of data using a non- Gaussian toolbox and thus address the issue raised by
Biithlmann [2013]. Natural extensions from this work include a generalisation from the
skew normal distribution to include other, spherically symmetric distributions. These,
such as the skew Student distribution would increase the application of these approaches
to situations where higher moments are critical such as finance. Further the extension
of the LASSO to its generalisation of the elastic net is also possible as is the Bayesian
estimation using double exponential priors on the regularised coefficients.

The skew normal family of LASSOs will trade off the distribution complexity with the
regression complexity relative to the Gaussian distribution. The skewness parameters
act in the same manner fundamentally as the regression coefficients with the approach
constraining them towards 0 as the penalty increases. Thus the Gaussian and the skewed
variants will converge if the skewness parameters are driven towards 0 relatively soon in
the process.
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Figure 10: Regularised Path for the Shanghai Index

(a) Path of Index Parameters for the Extended Skew
Normal LASSO
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Figure 11: Regularised Path for the Shenzhen Index

(a) Path of Index Parameters for the Extended Skew
Normal LASSO
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31

Table 2: Estimates for Multifactor Models

SSE SZSE SSE SZSE SSE SZSE SSE SZSE

OLS SE OLS SE ESN ESN | LASSO LASSO | ESN LASSO ESN LASSO
7 -0.0001 0.0003 0.0003 0.0004 0.0005 0.0000 | -0.0001  0.0003 -0.0001 0.0003
ASX 200 -0.0555 0.0464 | -0.0485819 0.0592407 -0.0555 -0.0486 - - - -
Dow Jones | -0.1111  0.0819 | -0.1297524  0.1044750 -0.1118 -0.1299 - - - -
CAC 40 0.0614 0.0729 | 0.0611437 0.0930687 0.0612 0.0614 - - -0.0006 -
FTSE 100 | 0.0386 0.0695 | 0.0178131 0.0886362 0.0364 0.0177 - - - -0.0006
DAX 30 -0.1548  0.0708 | -0.1584424 0.0903323 -0.1532 -0.1586 | -0.0134 -0.0106 -0.0025 -
Hang Seng | 0.5393 0.0359 | 0.5520044 0.0457921 0.5367 0.5520 | 0.5105  0.5000 0.5073 0.5094
NASDAQ 0.1333 0.0661 | 0.1575918 0.0843702 0.1341 0.1578 - - - -
KLCI 0.0474 0.0655 | 0.0927831 0.0835566 0.0575 0.0931 | 0.0093  0.0249 - -
Nikkei 225 | 0.0133 0.0301 | -0.0222821 0.0383614 0.0127 -0.0223 - - 0.0005 -
TAIEX 0.0335 0.0403 | 0.0271307 0.0513720 0.0318 0.0270 | 0.0135 - 0.0009 -0.0010
A -0.0905 0.0205 0.0000 0.0002
o 0.0116 0.0148 0.0116 0.0148
T 0.3627 0.0330 -0.0001 0.0001
lp 3681.0020 3386.2805 3646.1410 3363.4005
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