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Abstract

Differences-in-Differences (DID) is one of the most widely used identification strategies in applied eco-
nomics. However, inference in DID models when there are few treated groups is still an open question. We
show that usual inference methods used in DID models might not perform well when there are few treated
groups and residuals are heteroskedastic. In particular, when there is variation in the number of observations
per group, we show that inference methods designed to work when there are few treated groups would tend
to (under-) over-reject the null hypothesis when the treated groups are (large) small relative to the control
groups. This happens because larger groups would have lower variance, generating heteroskedasticity in the
group x time aggregate DID model. We provide evidence from Monte Carlo simulations and from placebo
DID regressions with the American Community Survey (ACS) dataset to show that this problem is relevant
even in datasets with large number of observations per group. Then we derive alternative inference methods
that provide accurate hypothesis testing in situations of few treated groups and many control groups in the
presence of heteroskedasticity (including the case of only one treated group). The main assumption is that
we know how the heteroskedasticity is generated, which is the case when it is generated by variation in the
number of observations per group. Finally, we also show that an inference method for the Synthetic Con-
trol Estimator proposed by Abadie et al. (2010) can correct for the heteroskedasticity problem, and derive
conditions under which this inference method provides accurate hypothesis testing.
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1 Introduction

Differences-in-Differences (DID) is one of the most widely used identification strategies in applied economics.

However, inference in DID models is complicated by the fact that residuals might exhibit intra-group and

serial correlations. Not taking these problems into account can lead to severe underestimation of the DID

standard errors, as highlighted in Bertrand et al. (2004). Still, there is yet no unified approach to deal with

this problem. As stated in Angrist and Pischke (2009), “... there are a number of ways to do this [deal with

the serial correlation problem], not all equally effective in all situations. It seems fair to say that the question

of how best to approach the serial correlation problem is currently under study, and a consensus has not yet

emerged.”

One of the most common solutions to this problem is to use the cluster-robust standard errors (CRSE)

due to Liang and Zeger (1986) at the group level.12 By clustering at the group level, we allow for unrestricted

correlation in the within group residuals. More specifically, we allow not only for correlation in the residuals

of observations in the same group x time, but also for correlation in the residuals of observations in the same

group at different time periods.3 One important advantage of the CRSE is that it allows for unrestricted

heteroskedasticity. The variance of the DID estimator can be divided into two components: one related to

the variance of the treated groups and another one related to the variance of the control groups. CRSE

take heteroskedasticity into account by essentially estimating the standard errors separately for the treated

and for the control groups. Bertrand et al. (2004) show that CRSE and pairs-bootstrap at the group level

work well when the number of groups is large. When there are only a small number of groups, it might still

be possible to obtain tests with correct size even with unrestricted heteroskedasticity, especially when there

is not much imbalance in the number of treated and control groups (Cameron et al. (2008), Brewer et al.

(2013), Imbens and Kolesar (2012), Bell and McCaffrey (2002), and Ibragimov and Mller (2013)). However,

these inference methods will eventually fail when the proportion of treated groups goes to zero or one, even

if there are many groups in total (MacKinnon and Webb (2015b) and Brewer et al. (2013)). The problem

is that, with a small number of treated groups, the variance component related to the treated group would

be severely underestimated. In the polar case where there is only one treated group, the estimate of this

component would be identical to zero.4

1In typical applications the label “group” stands for states, counties or countries. More generally, we refer to group as the
unit level that is treated. We will assume throughout that residuals of individuals within a group can be correlated while
residuals of individuals in different groups are uncorrelated.

2For example, Bedard and Do (2005), Choi (2011), and Pettersson-Lidbom (2012).
3Wooldridge (2003) provides an overview of cluster-sample methods in linear models. The author shows that when the

number of groups increases and the groups sizes are fixed, the theory is well developed.
4Another alternative presented by Bertrand et al. (2004) is to collapse the pre and post information. This approach would
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An alternative when there are few treated groups is to use information from the control groups in order to

estimate the component of the variance related to the treated groups. Donald and Lang (2007) deal with the

case when the number of treated and control groups are small. They use small sample inference procedures

under the assumption that residuals in the group x time DID aggregate model are normal, homoskedastic,

and serially uncorrelated. Conley and Taber (2011) provide an interesting inference method to take both

intra-group and serial correlations into account when the number of treated groups is small, but the number

of control groups is large. The main idea of their method is to use information on the residuals of the control

groups to estimate the distribution of the DID estimator under the null. Residuals-bootstrap provides

another alternative when there are few treated clusters (Cameron et al. (2008)). In residuals-bootstrap,

we hold the treatment variable constant throughout the pseudo-samples, while resampling the residuals,

so that we guarantee that every pseudo-sample will have the same number of treated groups. A crucial

assumption for all these methods is that the variance is homoskedastic, so that we can use information on

the variance of the control group to assess the variance of the treated group. However, this homoskedasticity

assumption might be very restrictive in DID applications. In particular, residuals in the group x time DID

aggregate model should be inherently heteroskedastic when there is variation in the numbers of observations

used to calculate each group x time averages. In a recent paper, MacKinnon and Webb (2015a) propose

an alternative method for the case of few treated groups under heteroskedasticity. Their main idea is a

permutation test where they compare t-statistics calculated using CRSE. This method works well when

there are enough treated and control groups. However, it will fail when there are very few treated groups. In

particular, their method will be almost the same as Conley and Taber (2011) method when there is only one

treated group. The main problem with this method is that the CRSE will be underestimated when there

are very few treated groups.

In this paper, we first show that usual inference methods used in DID models might not perform well

when the number of treated groups is small. Methods that allow for unrestricted heteroskedasticity do not

work because the component of the variance related to the treated groups would be underestimated. Also,

alternative methods that use information from the control groups will not work properly in the presence of

heteroskedasticity. In the particular case in which there is variation in the number of observations per group,

these methods would tend to (under-) over-reject the null hypothesis when the number of observations of

the treated groups is (large) small relative to the number of observations of the control groups. The main

take care of the auto-correlation problem. However, in order to allow for heteroskedasticity, one would have to use robust
standard errors. In this case, this method would also fail when there are few treated groups.
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idea is that variation in the number of observations per group would invalidate the assumption that residuals

are i.i.d. across groups, because larger groups would have lower variance. The intuition of this result was

already exposed in Assuncao and Ferman (2015) in an application of Conley and Taber (2011) method.5

Here we formalize this idea and derive conditions under which this problem would be more or less relevant.

In particular, we show that this problem becomes more severe when the intra-cluster correlation is smaller

and when there are fewer observations per group. Then we provide evidence from Monte Carlo simulations

and simulations with real datasets to show that this problem can be relevant even in datasets with very large

number of observations per group. This happens because when the intra-cluster correlation goes to zero,

increasing the number of observations per group has little impact on the heteroskedasticity. Therefore, a

large number of individual observations per group should not be a reasonable justification for the assumption

that group x time averages have homoskedastic residuals (which is one of the justifications used by Donald

and Lang (2007), pp. 224).

We then derive alternative methods for inference when there are only few treated groups (including the

case of only one treated group) that take into account the fact that residuals are inherently heteroskedastic

when there is variation in the number of observations per group. The main assumption is that we know

how the heteroskedasticity is generated, which is the case when it is generated by variation in the number of

observations per group. Under this assumption, we can re-scale the residuals of the control groups using the

(estimated) structure of the heteroskedasticity in a way that allows us to use this information to derive the

distribution of the residuals for the treated groups. Our simulations show that these corrections imply in

hypothesis testing with correct sizes when the number of control groups is large. We also provide a refinement

of our method using residuals-bootstrap on a pivotal statistics with our heteroskedasticity correction that

provided more accurate hypothesis testing when the number of control states is not that large (for example,

with 1 treated and 24 control states) in our simulations.

Finally, we show that Synthetic Control, an alternative estimation method for the case of one treated

group proposed by Abadie et al. (2010), can provide accurate hypothesis testing even in presence of het-

eroskedasticity. This happens because, under some circumstances, one of the inference methods proposed

in Abadie et al. (2010) turns out to correct for the presence of heteroskedasticity by using information from

5Assuncao and Ferman (2015) exclude the comparison of placebo estimates when the placebo treated group is much smaller
than the original treated group. As stated in Assuncao and Ferman (2015), “One important caveat with this method [Conley
and Taber (2011)] is that the number of observations in each treatment group × year cell in the placebo regressions will not
be the same as in the original regression. This is particularly important when the number of observations in the treatment
group is small relative to the control group. In this case, increasing the number of observations in the treatment group would
reduce the variance of the estimator even if we hold the number of observations constant. If this correction is not used, then a
placebo estimator using a state with few observations as the treatment group would have a much higher variance than our actual
estimator, while a placebo estimator using a large state as the treatment group would tend to underestimate this variance.”
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the pre-treatment period. We derive the conditions under which this method provides accurate hypothesis

testing. One important scenario that Abadie et al. (2010) does not correct for heteroskedasticity (and our

method does) is when there is only one pre-treatment period.

The remainder of this paper proceeds as follows. In Section 2 we present our base model. We briefly

explain the necessary assumptions in the existing inference methods, and explain why heteroskedasticity

usually invalidates inference methods designed to deal with the case of few treated groups. Then we derive

alternative inference methods that are valid in this scenario, and present the conditions under which the

inference method for Synthetic Control proposed by Abadie et al. (2010) provide accurate hypothesis testing

in the presence of heteroskedasticity. In Section 3 we perform Monte Carlo simulations to examine the

performance of existing inference methods and to compare that to the performance of our corrected inference

methods. In Section 4 we compare the different inference methods by simulating placebo laws in a real dataset

with a large number of observations: the American Community Survey (ACS). We conclude in Section 5.

2 Empirical Model

2.1 A Review of Existing Methods

We consider a group x time DID aggregate model:

Yjt = αdjt + θj + γt + ηjt (1)

where Yjt represents the outcome of group j at time t; djt is the policy variable, so α is the main parameter

of interest; θj is a time-invariant fixed effects for group j, while γt is a time fixed effect; ηjt is a group x

time random variable that might be correlated over time, but uncorrelated across groups. Depending on the

application, groups might stand for, for example, states, counties, countries, and so on. We assume that djt

is nonstochastic.

There are N1 treated groups and N0 control groups. Let’s assume that djt changes to 1 for all treated
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groups starting after date t∗. In this case, the DID estimator will be given by:

α̂ =
1

N1

N1∑

j=1

[
1

T − t∗

T∑

t=t∗+1

Yjt −
1

t∗

t∗∑

t=1

Yjt

]
−

1

N0

N∑

j=N1+1

[
1

T − t∗

T∑

t=t∗+1

Yjt −
1

t∗

t∗∑

t=1

Yjt

]

= α+
1

N1

N1∑

j=1

[
1

T − t∗

T∑

t=t∗+1

ηjt −
1

t∗

t∗∑

t=1

ηjt

]
−

1

N0

N∑

j=N1+1

[
1

T − t∗

T∑

t=t∗+1

ηjt −
1

t∗

t∗∑

t=1

ηjt

]

= α+
1

N1

N1∑

j=1

Wj −
1

N0

N∑

j=N1+1

Wj (2)

where Wj =
1

T−t∗

∑T

t=t∗+1 ηjt −
1
t∗

∑t∗

t=1 ηjt.

It is clear from equation 2 that consistency of α̂ will depend on both N1 → ∞ and N0 → ∞. As shown in

Conley and Taber (2011), if the number of treated groups (N1) and the number of periods (T ) are fixed, then

the DID estimator is unbiased. However, this estimator is not consistent, since the first term, 1
N1

∑N1

j=1 Wj ,

would not converge to zero when N0 → ∞.

The variance of the DID estimator, under the assumption that ηjt are independent across j, will be given

by:

var(α̂) =

[
1

N1

]2 N1∑

j=1

var(Wj) +

[
1

N0

]2 N∑

j=N1+1

var(Wj) (3)

Note that the variance of the DID estimator is the sum of two components: the variance of the treated

groups comparison and the variance of the control groups comparison. We allow for any kind of auto-

correlation between ηjt and ηjt′ .

When there are many treated and control groups, Bertrand et al. (2004) suggest that CRSE at the

group level works well, as this method allows for unrestricted auto-correlation in the residuals ηjt, and for

heteroskedasticity in the residuals. The CRSE has a very intuitive formula in the DID framework:6

v̂ar(α̂)
Cluster

=

[
1

N1

]2 N1∑

j=1

Ŵ 2
j +

[
1

N0

]2 N∑

j=N1+1

Ŵ 2
j (4)

where Ŵj =
1

T−t∗

∑T

t=t∗+1 η̂jt −
1
t∗

∑t∗

t=1 η̂jt.

With CRSE we calculate each component of the variance of the DID estimator separately. In other

words, we use the treated groups residuals to calculate the component related to the treated groups, and

6The clustered-robust variance matrix was developed by Liang and Zeger (1986). We can think of this method as a
generalization of the heterocedasticity-robust variance matrix due to White (1980).
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the control groups residuals to calculate the component related to the control groups. While CRSE are very

appealing when there are many treated and many control groups, equation 4 makes it clear why it becomes

unappealing when there are few treated groups. In the extreme case when N1 = 1, we will have Ŵ 2
1 = 0 by

construction. Therefore, the variance of the DID estimator would be severely underestimated (MacKinnon

and Webb (2015b)). The same problem applies to other clustered standard errors corrections such as BRL

(Bell and McCaffrey (2002)). Finally, it is also problematic to implement heteroskedasticity-robust bootstrap

methods such as pairs-bootstrap and wild bootstrap when there are few treated groups. In pairs-bootstrap,

there will be a high probability that the bootstrap sample will not include a treated unit. In wild bootstrap,

the idea is to generate variation in the residuals of each j by randomizing whether its residual will be η̂jt or

−η̂jt. However, if we go again to the extreme case with only one treated, then Ŵ1 = 0. Therefore, the wild

bootstrap would not generate variation in the treated group.

It is clear then that the inference problem in DID models with few treated groups lies essentially on how

to estimate the component of the DID estimator variance related to the treated group using η̂jt. Alternative

methods use information on the control groups residuals in order to estimate the component of the variance

related to the treated groups. These methods, however, rely on specific assumptions on the residuals. Donald

and Lang (2007) assume that the group x time residuals are normal, homoskedastic, and serially uncorrelated.

Under these assumptions, the variance of α̂ becomes:

var(α̂) =
1

NT

σ2
η

p(1− p)
(5)

where var(ηjt) = σ2
η and p is the proportion of treated groups. Therefore, under these assumptions, one could

easily recover the variance of α̂ by estimating σ2
η using the estimated residuals η̂jt. As suggested by Donald

and Lang (2007), if NT is small, then one should compare the test statistic t = α̂/
√
var(α̂) to the student-t

distribution instead of calculating the critical values based on the normal distribution. The assumption

that residuals are serially uncorrelated, however, might be unappealing in DID applications (Bertrand et al.

(2004)).

Conley and Taber (2011) provide an interesting alternative inference method that allows for unrestricted

auto-correlation in the residuals. The main idea of their method is to use information on the residuals of the

control groups to estimate the distribution of the DID estimator under the null. In the simpler case with

only one treated group, α̂ − α would converge to W1 when N0 → ∞. In this case, they use {Ŵj}
N0+1
j=2 (a

linear combination of the control group residuals) to construct the distribution of W1. While Conley and
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Taber (2011) relax the assumption of no auto-correlation, it requires that residuals are i.i.d. across groups

(as do Donald and Lang (2007)), so that {Ŵj}
N0+1
j=2 approximates the distribution of W1 when N0 → ∞.

Finally, residuals-bootstrap methods resample the residuals while holding the regressors constant through-

out the pseudo-samples. Therefore, it is possible that a treated group receives the residuals of a control group.

While this helps when there are only few treated groups, a crucial assumption is that the residuals are ho-

moskedastic. It is important to note that bootstrap alternatives with asymptotic refinements that focus on

pivotal test statistics would not work well in situations of few treated groups. This happens because these

methods require a consistent estimator of the variance. However, with N1 fixed, the heteroskedasticity-robust

methods to estimate the variance would not work properly.

2.2 The Heteroskedasticity Problem

As seen in Section 2.1, CRSE in DID models with few treated groups severely underestimate the variance of

α̂. Alternative methods such as Donald and Lang (2007), Conley and Taber (2011) and residuals-bootstrap

require strong distributional assumptions on the residuals. In particular, they require homoskedasticity. In

this section, we show that these methods might not perform well in the presence of heteroskedasticity. In

particular, we show that group x time DID aggregate models will be inherently heteroskedastic when there

is variation in the number of observations per group and derive the implications of this heteroskedasticity

for these inference methods.

We start with an individual level DID model:

Yijt = αdjt + θj + γt + νjt + ǫijt (6)

where Yijt represents the outcome of individual i in group j at time t; νjt is a group x time random effect

(possibly correlated over time), and ǫijt is an individual level residual. The main feature that defines a

“group” in this setting is the assumption that residual (νjt+ ǫijt) of two individuals in the same group might

be correlated, while residuals of individuals in different groups are uncorrelated. For ease of exposition, we

assume that ǫijt are all uncorrelated, while allowing for unrestricted auto-correlation in νjt. However, our

corrections will require weaker assumptions in the residuals, as will be presented in Section 2.3.

In this case, when we aggregate by group x time, our model becomes the same as the one in equation 1:

Yjt = αdjt + θj + γt + ηjt (7)
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The important point is that residuals in the group x time aggregate model (ηjt) are heteroskedastic across

j, unless M(j, t) is constant across j. More specifically:

ηjt = νjt +
1

M(j, t)

M(j,t)∑

i=1

ǫijt (8)

where M(j, t) is the number of observations in group t at time t. Therefore, assuming for simplicity that

M(j, t) = Mj is constant across j and T is fixed:

var(Wj) = var

(
1

T − t∗

T∑

t=t∗+1

ηjt −
1

t∗

t∗∑

t=1

ηjt

)

= var


 1

T − t∗

T∑

t=t∗+1

νjt −
1

t∗

t∗∑

t=1

νjt +
1

T − t∗

T∑

t=t∗+1


 1

Mj

Mj∑

i=1

ǫijt


−

1

t∗

t∗∑

t=1


 1

Mj

Mj∑

i=1

ǫijt




 =

= A+
B

Mj

(9)

for constants A and B, regardless of the auto-correlation of νjt. We are assuming so far that we have a

panel of repeated cross-sections, so that ǫijt are not correlated over time. If we had a panel and allow for

the individual level residuals to be auto-correlated, then we would have another term that would depend on

the ǫijt auto-correlation parameter divided by the number of observations, so we would still end up with the

same formula, var(Wj) = A+ B
Mj

.

This heteroskedasticity in the residuals of the aggregate model implies that, when the number of obser-

vations in the treated groups are (large) small relative to the number of observations in the control groups,

we would (overestimate) underestimate the component of the variance related to the treated group when we

estimate it using information from the control groups. This implies that inference methods that do not take

that into account would tend to (under-) over-reject the null hypothesis when the number of observations of

the treated groups is (large) small.

Note that, if A > 0, this would not be a problem when M(j, t) → ∞. In this case, var(Wj) → A for all

j. In other words, when the number of observations in each group x cell is large, then the correlated part of

the residual would dominate. In this case, if we assume that the group x time random effect νjt is i.i.d., then

var(Wj)
var(W ′

j
) → 1, which implies that control groups residuals would be a good approximation for the distribution

of the treated groups residuals even when the number of observations in each group is different. This is one

of the main rationales used in Donald and Lang (2007) to justify the homoskedasticity assumption in the
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aggregate model.

However, an interesting case occurs when A = 0. In this case, even though var(Wj) → 0 for all j when

Mj → ∞, the ratios
var(Wj)
var(Wj′ )

would remain constant (unless
Mj

Mj′
→ 1), which implies that the aggregate

model would still be heteroskedastic even asymptotically. Therefore, Conley and Taber (2011), Donald and

Lang (2007), and residuals-bootstrap methods would tend to (under-) over-reject the null hypothesis when

the number of observations of the treated groups are (large) small relative to the number of observations

of the control groups even when there is a large number of individual observations, unless the intra-group

correlation is large.

2.3 Corrected Inference Method

As discussed in Section 2.1, the main challenge in estimating the variance of α̂ when there are few treated

groups is how to estimate the component related to the treated groups. CRSE estimate this component

of the variance without using information from the control groups. While this approach has the appealing

property of allowing for unrestricted heteroskedasticity in the residuals, it is unfeasible when the number of

treated groups is small. On the other extreme, other methods method surpass the problem of few treated

groups by using information from the control groups. The problem with these approaches is that they require

that residuals are homoskedastic.

In this section, we derive inference methods that use information from the control groups to estimate

the variance of the treated groups while allowing for heteroskedasticity. The main assumption is that we

know how the heteroskedasticity is generated, which is the case when heteroskedasticity is generated by

variation in the number of observations per group. Under this assumption, we can re-scale the residuals

of the control groups using the (estimated) structure of the heteroskedasticity in a way that allows us to

use this information to derive the distribution of the residuals for the treated groups. While we motivate

our methods based on heteroskedasticity generated by variation in the number of groups, it is important to

note that our methods are more general. The main assumption will be that we know the structure of the

heteroskedasticity.

We derive first an extension of Conley and Taber (2011) method that corrects for heteroskedasticity.

For ease of exposition, we consider the simpler case with only j = 1 treated, although our methods can be

extended for any number of treated groups. In Theorem 1 in Appendix A, we show that, if we knew the

variance of each random variable Wj , then we could re-scale each observed Ŵj by W̃j = Ŵj

√
var(W1)
var(Wj)

so

that all W̃j have the same variance as W1, and use Conley and Taber (2011) approach with the re-scaled
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residuals. The main assumption we need is that {ηj1, ..., ηjT } is independent across j and have the same

distribution up to the variance parameter. We also assume that var(Wj) is a function that depends only on

Mj , G(Mj). Our proposed inference methods consist in estimating the variance of Wj as a function of the

number of observations in group j (Mj), and then re-scaling the residuals used to estimate the distribution

of W1. Therefore, given an estimate Ĝ(M), one would simply have to calculate W̃j = Ŵj

√
Ĝ(M1)

Ĝ(Mj)
, and then

reject the null if the point estimate α̂ is (lower) greater than the (5th) 95th percentile of the distribution of

{W̃j}
N0+1
j=2 , for a test with 10% significance level.7 In Theorem 2 in Appendix A, we show that this approach

works asymptotically when N0 → ∞ if we have a consistent estimator for G(M).

We propose a consistent estimator for function G(M) using group x time aggregate data. We assume

that var(Wj) = A + B
Mj

, for constants A and B. The structure of the residuals we assumed in Section 2.2

imply this structure. However, this assumption is more general. In particular, it is important to note that

we do not have to make any assumption on the auto-correlation of ηjt. Given this assumption, we can run

a regression of Ŵ 2
j on 1

Mj
and a constant, and then use the predicted Ĝ(Mj). We show in Theorem 3 in

Appendix A that this estimator is consistent. Note that we do not need individual level data to apply this

method, provided that we have information on the number of observations that were used to calculate group

x time averages.

One important point is that this method should only provide an accurate hypothesis testing procedure

when N0 is large enough. Therefore, we consider a pivotal test statistics and use residuals-bootstrap with

our heteroskedasticity correction to recover its distribution, which should provide a better finite sample

approximation as suggested in the literature (see Davison and Hinkley (1997), Cameron et al. (2008), and

Cameron and Miller (2015)). To calculate the pivotal statistic, we use the finite N0 formula for var(α̂),

which is given by:

var(α̂) = var(W1) +
1

(N0)2

N0+1∑

j=2

var(Wj)

= G(M1) +
1

(N0)2

N0+1∑

j=2

G(Mj) (10)

Given our estimates α̂ and Ĝ(), we calculate ŝ = α̂√
v̂ar(α̂)

and use bootstrap to approximate this distri-

bution. More specifically, we calculate from the aggregate DID regression the predicted values of Yjt and ηjt,

7If we want a test with the null H0 : α = α0, we would simply have to compare α̂ − α0 (instead of α̂) to the distribution

{W̃j}N0+1
j=2 .
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so that we can calculate ▽Ŷj = 1
T−t∗

∑T

t=t∗+1 Ŷjt −
1
t∗

∑t∗

t=1 Ŷjt and Ŵj = 1
T−t∗

∑T

t=t∗+1 ηjt −
1
t∗

∑t∗

t=1 ηjt.

Then we normalize the residuals so that they have variance equal to one,
˜̂
Wj =

Ŵj√
Ĝ(Mj)

. By bootstrap, we

obtain B resamples of the aggregate residuals Ŵj . In each each bth sample, we re-scale the bootstrapped

residual, so that they have the same variance structure as the original sample,
˜̂
W

∗

j,b =
˜̂
W j,b

√
Ĝ(Mj). We

calculate the bootstrap estimate as:

α̂b =

(
▽Ŷ1 +

˜̂
W

∗

1,b

)
−

1

N0

N0+1∑

j=2

(
▽Ŷj +

˜̂
W

∗

j,b

)
(11)

We then re-estimate the G(M) function using the bootstrapped residuals
˜̂
W

∗

j,b, and calculate the boot-

strapped variance of α̂b using formula 10. Our bootstrapped test statistics will be given by:

ŝb =
α̂b − α̂√
̂var(α̂b)

(12)

If s is (greater) lower than the (95th) 5th percentile of the bootstrap distribution, then we reject the null

hypothesis at 10% significance level. We also consider a residual-bootstrap with heteroskedasticity correction

on the parameter α̂.

2.4 Alternative Inference Methods

An alternative inference method for the case of few treated groups under heteroskedasticity was proposed

by MacKinnon and Webb (2015a). Their main idea is a permutation test where they compare t-statistics

(rather than the estimator itself). This method works well when there are enough treated and control groups.

However, it will fail when there are very few treated groups because they need to estimate the variance of

the estimator to construct the t-statistic. The problem is that the heteroskedasticity-robust methods to

estimate the variance would be biased with only a few treated groups. In particular, their method collapses

to Conley and Taber (2011) method when there is only one treated group. The reason is that the CRSE

would assign an estimated variance for the treated group equal to zero, so there would not be much variation

in the estimated variance of the placebo estimators. Therefore, there would be no correction relative to a

permutation test on the estimator itself. In contrast, our method works even when there is only one treated

group.
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2.5 Alternative Estimation Methods - Synthetic Control

The Synthetic Control estimator was proposed by Abadie and Gardeazabal (2003) and Abadie et al. (2010)

to deal with situations where there is only one treated group. This method extends the traditional DID

framework by using a data-driven procedure to construct a suitable comparison group. The main idea is to

use the pre-treatment period to construct a counterfactual for the treated group given by Ŷ N
1t =

∑N0+1
j=2 ω̂jYjt,

where the weights ω̂j are estimated so that the differences between actual and estimated pre-treatment

outcomes (Y1t and Ŷ N
1t ) and covariates (X1t and X̂N

1t ) are minimized.8 In the Synthetic Control approach,

we need to decide which variables we want to include to estimate the weights ω̂j . Particularly important for

our application, one can either include the Yjt for all pre-treatment t, or can leave some of the pre-treatment

Yjt out.

The inference method suggested in Abadie et al. (2010) is a permutation test where we estimate placebo

regressions using each of the control units as a placebo treatment. In essence, this is the same as what

Conley and Taber (2011) method does in the DID framework. However, one important difference relative

to permutation tests on the treatment parameter is that Abadie et al. (2010) suggest that one should look

at the ratio of post/pre-treatment Mean Squared Predicted Error (MSPE). One of their motivations to look

at this ratio is to obviate the necessity of excluding placebo runs that did not provide a good fit prior to

the treatment. For example, if the outcome variable of one placebo group is always lower than the outcome

variables of the other groups, then the estimated counterfactual outcome for this group would always be

atypically higher than the actual outcome, both before and after the treatment. Therefore, when we divide

by the pre-treatment MSPE, we correct for the fact that the Synthetic Control estimators for this placebo

group would always be large.

It turns out that, in some cases, looking at this ratio provides proper hypothesis testing under het-

eroskedasticity. For simplicity, consider that we have 3 periods, two before the treatment and one after the

treatment. Suppose that we construct our Synthetic Control estimator using only the outcome variable in

period 1. Under the Synthetic Control assumptions, when we consider the j unit as the placebo group,

then the difference Yj1 − Y N
j1 will be close to zero, since the weights used to construct Y N

j1 were chosen to

minimize this difference, while Yjt − Y N
jt would be approximately the residual ηjt, for j = 2, 3.9 Therefore,

when we look at the post/pre-intervention RMSE ratio, it will be close to
var(ηj3)
var(ηj2)

. Under our assumption

that {ηjt}
T
t=1 is identically distributed across j up to the variance parameter, this ratio would be constant

8For more details, see Abadie et al. (2010).
9The difference Yj1 − Y N

j1 will not, in general, be identical to zero because we require that Y N
j1 be a convex combination of

the outcomes of the other groups.
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for all j. This is why Abadie et al. (2010) inference method corrects the information from the control groups

residuals so that they become comparable to the treated group residuals.10

However, this approach would not work properly if there is only one pre-treatment period. In this

case, one would have to estimate the weights using the single pre-treatment period, which implies that the

denominator would not be the variance of ηjt. We could still calculate the RMSE ratio, since Yj1 − Y N
j1

will not be identical to zero. However, this division would not re-scale the numerator correctly. The same

problem applies when we have more than one pre-treatment period but include all pre-treatment periods

to estimate the weights. It is also important to note that Abadie et al. (2010) placebo graphical analyses

(Figures 4 to 7 in Abadie et al. (2010)) would still suffer from the heteroskedasticity problem we highlight

in this paper. An easy way to fix to this problem is to divide each placebo estimate by the squared root of

its pre-treatment RMSE and multiply it by the squared root of the the pre-treatment RMSE of the treated

group.

3 Monte Carlo Evidence

In this section we provide Monte Carlo evidence of different hypothesis testing methods in DID. We also

simulate the inference method for Synthetic Control models proposed by Abadie et al. (2010) in Section 3.2.

We assume that the underlying data generating process (DGP) is given by:

Yijt = νjt + ǫijt (13)

In most of the simulations, we estimate a DID model given by equation 6 where j = 1 is treated and

T = 2, and then we test the null hypothesis of α = 0 using different hypothesis testing methods. We consider

variations in the DGP along three dimensions:

1. The number of groups: N0 + 1 ∈ {50, 100, 400}.

2. The intra-group correlation: νjt and ǫijt are drawn from normal random variables. We hold constant

the total variance var(νjt + ǫijt) = 1, while changing ρ =
σ2

ν

σ2
ν+σ2

ǫ
∈ {.01%, 1%, 4%}.

3. The number of observations within group: we draw for each group j the number of observations per

10Note that if we had more than one post period and/or more than one pre period not included in the estimation of ωj , then
the only modification is that we would have the sum of variances of ηij in the numerator and in the denominator. Therefore,
the ratios would remain constant, so that our rationale still applies.
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period from a discrete uniform random variable with range [M,M ] ∈ {[50, 200], [200, 800], [50, 950]}.11

For each case, we simulated 40,000 estimates. Note that we will not include in the simulations methods

that allow for unrestricted heteroskedasticity. As explained in Section 2.1, these methods do not work well

when there is only one treated group. Since the estimated component of the variance related to the treated

group is zero, these methods always severely over-reject the null.12

3.1 Inference in DID Models

We present in Table 1 results from simulations using 400 groups (one treated and 399 controls) for different

numbers of observations per group and for different values of the intra-group correlations. In panel A, we

present results when the number of individual observations per group varies from 50 to 200. Column 1 shows

that average rejection rates for a test with 10% significance using robust standard errors in the individual

level DID regression. The rejection rate for a 10% significance level test is only slightly higher than 10%

when the intra-group correlation is small (10.8% when ρ = 0.01%), but increases sharply for larger values of

the intra-group correlation. Rejection rate is almost 50% when α = 4%.

When we use Conley and Taber (2011) method, average rejection rate for a 10% significance level test is

always around 10% (column 3). However, this average rejection rate hides an important heterogeneity with

respect to the number of observations in the treated group (M1). Column 4 shows the difference in rejection

rates when the number of individual observations in the treated group is above the median compared to the

case when it is below the median. When ρ = 0.01%, the difference in rejection rates is around 11 percentage

points. Therefore, although Conley and Taber (2011) method rejects the null on average in 10% of the cases,

this happens because it over-rejects the null when the treated group is small while it under-rejects the null

when the treated group is large. We show in more detail the relationship between rejection rates and the

number of observations in the treated group in Figure 1.A for the case ρ = 0.01%. Rejection rate is around

22% when the treated group is in the first quintile of number of observations per group, while it is only 4%

when the treated group is in the fifth quintile. Note also that this distortion in rejection rates is not confined

to the extremes of the distribution of group sizes. Rejection rates are 13.5% when the treated group is in the

second quintile of number of observations per group, and 5.2% when it is in the fourth quintile. In columns

5 and 6 we show that Donald and Lang (2007) method suffer from exactly the same problem, despite the

11In the Monte Carlo simulations, we always consider the case M(j, t) = Mj .
12We also do not include MacKinnon and Webb (2015a) method in the simulations because their method collapses to Conley

and Taber (2011) method when there is only one treated group.
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fact that the distributional assumptions in their method are valid in our simulations, except for the fact that

there is variation in the number of observations per group.

As expected, this heterogeneity in rejection rates becomes less relevant when the intra-group correlation

becomes stronger. This happens because the aggregation from individual to group x time averages induces

less heteroskedasticity in the residuals when a larger share of the residual is correlated within group. Still,

when ρ = 4% the difference in rejection rates by number of observations in the treated group remains relevant.

In both Conley and Taber (2011) and Donald and Lang (2007) methods, the difference in rejection rates

when the number of observations in the treated groups is above or below the median is around 2 percentage

points. We present Conley and Taber (2011) rejection rates in more detail for the case ρ = 4% in Figure

1.B. Rejection rates are 11.8% when the treated group is in the first quintile of number of observations per

group, while it is 8.5% when the treated group is in the fifth quintile.

Given that inference using Conley and Taber (2011) and Donald and Lang (2007) methods is problematic

when there is variation in the number of observations per group, we consider our alternative inference methods

that correct for the heteroskedasticity problem in the group x time regression. In columns 5 and 6 of Table 1

we present results from our correction when we estimate the G(M) function using group x time data. We run

an OLS regression of Ŵ 2 on a constant and 1
Mj

, which provide us a consistent estimator of G(M), and then

use

√
Ĝ(M1)

Ĝ(Mj)
to re-scale the residuals Ŵj .

13 Average rejection rates using our method are only slightly higher

than 10% (ranging from 10% to 10.8%) and, more importantly, rejection rates become homogeneous across

the number of observations in the treated group. The inference method we propose provides a reasonably

accurate hypothesis testing regardless of the value of the intra-group correlation. We present in Figures 1.C

and 1.D rejection rates in more detail using our inference method for the cases ρ = 0.01% and ρ = 4%,

respectively. Rejection rates are always very close to 10% regardless of the quintile of M1.

In panel B of Table 1 we present the simulation results when the number of observations per group

increases from [50, 200] to [200, 800]. We increase the number of observations per group while holding the

ratio between the number of observations in different groups constant. Note that increasing the number of

observations per group worsens the over-rejection problem of inference relying in robust OLS standard errors.

Intuitively, this happens because robust OLS standard errors do not take into account that the increase in the

number of observations are not independent. When we consider Conley and Taber (2011) and Donald and

Lang (2007) methods, increasing the number of observations per group ameliorates the problem of (over-

13In these simulations, we excluded the treated observation from the estimation of G(M) since Ŵ 2
1 = 0 by construction.

Note, however, that this is not crucial, since the estimator of G(M) remains consistent whether or not we include the treated
observation.
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) under-rejecting the null when M1 is (small) large relative to the number of observations in the control

groups. In particular, when ρ = 4% there is no significant difference in rejection rates between those with

M1 above and below the median. However, increasing the number of observations has no detectable effect

when the intra-group correlation is 0.01%. This happens because in this case the individual component of

the residual becomes more relevant. Therefore, the ratio between the variance of W1 and the variance of Wj

becomes less sensitive with respect to the number of observations per group. As explained in Section 2, in

the extreme case with ρ = 0, Conley and Taber (2011) and Donald and Lang (2007) methods would face

this heteroskedasticity problem even when M → ∞.

In panel C of Table 1 we present the simulation results when the number of observations vary from 50

to 950. Therefore, the average number of observations remains constant, but we have more variation in

M relative to the simulation in panel B. As expected, more variation in the number of observations per

group worsens the inference problem we highlight in Conley and Taber (2011) and Donald and Lang (2007)

methods. On the contrary, our proposed inference methods remain accurate irrespective of the variation in

the number of observations per group.

We present in Tables 2 and 3 the simulation results when the total number of groups are, respectively,

100 and 50. Conley and Taber (2011) and Donald and Lang (2007) continue to face a problem of differential

rejection rates when the treated group is small or large. In addition to this problem, Conley and Taber

(2011) method also shows an average rejection rate higher than 10%. Conley and Taber (2011) method has

a rejection rate of around 11% when N = 100 and around 12.5% when N = 50.14 Donald and Lang (2007)

method does not face this additional problem of over-rejection, although it is possible that this happens

because the residuals in our simulations are normally distributed. While our correction method continues to

solve the problem of differential rejection rates irrespectively of N0, we face the problem of higher average

rejection rates as do Conley and Taber (2011). These results highlight the importance of the number of

control groups for our and Conley and Taber (2011) methods, as these results are only valid asymptotically

when N0 → ∞. It is important to note that these methods over-reject the null even for numbers of groups

that are considered large enough in the literature to conduct inference with CRSE (Bertrand et al. (2004),

and Angrist and Pischke (2009)).

We consider, therefore, a pivotal test statistics and use residuals-bootstrap with our heteroskedasticity

correction to recover its distribution, as explained in Section 2.3. While this method also relies on N0 → ∞,

14This problem does not arise because we introduced variation in Mj in our simulations. Conley and Taber (2011) would
continue to face this problem even with constant Mj , which means that all of their assumptions would be valid.
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there is evidence that it should provide a better finite sample approximation (see Davison and Hinkley (1997),

Cameron et al. (2008), and Cameron and Miller (2015)). For the sake of comparison, we start presenting

in Panel A of Table 4 rejection rates for the standard residuals-bootstrap without our heteroskedasticity

correction. Note that it is not possible to bootstrap on a pivotal statistic because the CRSE will not be a

consistent estimator of the variance when there is only one treated. Average rejection rates range from very

close to 10% when N is large, to around 12.5% when N = 25. While these numbers do not look particularly

bad, they hide exactly the same problem as Donald and Lang (2007) and Conley and Taber (2011) methods,

with over-rejection when the treated group is small, and under-rejection when the treated group is large.

We then present in Panel B of Table 4 rejection rates of our residuals-bootstrap inference method with

heteroskedasticity correction but without asymptotic refinement (where we bootstrap the distribution of α̂),

while in Panel C we present rejection rates using a residuals-bootstrap with our heteroskedasticity correc-

tion and with asymptotic refinement (where we bootstrap the distribution of ŝ = α̂/

√
v̂ar(α̂)). Rejection

rates using our inference method with asymptotic refinement are always closer to 10% when compared to

alternative methods. When N = 400, both methods (with and without asymptotic refinement) provide re-

jection rates virtually equal to 10%. For smaller N , there are important improvements in hypothesis testing

when we use the method with asymptotic refinement. When N = 100, rejection rates are around 10.6%

(compared to 11.4% without refinement), when N = 50, rejection rates are around 10.7% (compared to

12.2% without refinement), and when N = 25, rejection rates are around 11.1% (compared to 14.1% without

refinement). In addition, our heteroskedasticity correction significantly improves the dependence of rejection

rates with respect to the relative size of the treated group. When N = 400, there is virtually no difference

in rejection rates for treated groups above and below the median number of observations. When N = 25,

our method rejects slightly more when for larger treated groups when ρ = 0.01% (0.8 percentage points).

This number, however, should be compared to the 16 percentage points difference in rejection rates with

the residuals-bootstrap without correction. Therefore, our inference method with asymptotic refinement

provides a significant improvement relative to alternative methods, providing reasonably good hypotheses

testing even when the number of control groups is not that large.

3.2 Inference in Synthetic Controls

An alternative estimation method when there is only one treated group is to use the Synthetic Control

Estimator. As explained in Section 2.5, one inference method suggested in Abadie et al. (2010) compares

the ratio of post/pre-treatment RMSE of the Synthetic Control Estimator and compares it to the same ratio
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when we use the control groups as placebo treatments. We present in Panel A of Table 5 rejection rates for the

case with T = 2, with one pre and one post-intervention periods. Rejection rates are higher when the treated

group is small when ρ = 0.01%. This happens because the post-treatment RMSE used in the numerator

is higher when the treated group is smaller, due to the heteroskedasticity generated by the variation in the

number of observations per group. However, the pre-treatment RMSE used in the denominator is just an

error term reflecting the fact that Y N
11 will not be identical to Y11 because we restrict to convex combinations

of the control groups, so the ratio will be decreasing in M1. When ρ is higher, then a given variation in

the number of observations per group generates less heteroskedasticity, so this effect is weaker. Exactly the

same pattern happens in Panel B, where we simulate a case with T = 3 with 2 pre-treatment periods, but

include both Yj1 and Yj2 to estimate the weights.15

In Panel C, we consider again the case with T = 3 periods, but now we use only Yj1 to estimate the

weights. In this case, the pre-treatment RMSE used in the denominator is higher when the treated group

is smaller, since it includes the predicted error related to the pre-treatment period t = 2. As explained in

Section 2.5, while both the numerator and the denominator decrease with M , the ratio will be constant

under the assumption that the residuals are i.i.d. across groups up to the variance parameter (note that we

allow for unrestricted auto-correlation across time within group). This implies that the difference in rejection

rates for small and large groups is corrected using this inference method. The only detail is that rejection

rates are slightly lower when the treated group is small. This happens because when the treated group is

small, it will be more likely that it will not be possible to provide a good fit for the treated group. In this

case, the pre-treatment RMSE will be larger. Again, this problem will be less relevant when ρ is larger, since

this implies that variation in M generates less heteroskedasticity.

4 Simulations with Real Datasets

To illustrate the magnitude of this problem, we also conduct simulations of placebo interventions using a real

dataset: the American Community Survey (ACS). We extract information on employment status earning

for women between ages 25 and 50 for the years 2005 to 2013. We consider two different group levels based

on the geographical local of residence: Public Use Microdata Areas (PUMA) and states. Simulations using

placebo interventions at the PUMA level would be a good approximation to our assumption that N1 is small

while N0 → ∞, while simulations using placebo interventions at the state level would mimic situations of

15When N = 25, average rejection rate is 12%. This, however, is just a consequence from the fact that we have only 25
estimates by changing the treated group.

19



DID designs that are commonly used in applied work, where one state is treated while all the other states

are used as control.

We consider pairs of two consecutive years and estimate placebo DID regressions using one of the groups

(PUMA or state) at a time. Note that this differs from Bertrand et al. (2004) simulations, since we are

defining only one group to be treated, while they randomly selected half of the states to be treated. For

each pair of years, the number of PUMAs that appear in both years ranges from 427 to 982, leading to

5,188 regressions in total16. There are, on average, 730 observations in each PUMA x time cell. This

number, however, hides an important heterogeneity in cell sizes. As presented in column 1 of Table 6, the

10th percentile of PUMA x time cell sizes is 171, while the 90th percentile is 1,337. For the state level

simulations, we have 51 × 8 = 408 regressions (we include Washington, D.C.). Again, there is substantial

heterogeneity in state x time cell sizes. As presented in column 2 of Table 6, while the average cell size is

10,138, the 10th percentile is 1,250, while the 90th percentile is 21,099.

For each placebo DID regression, we test the null hypothesis that the “intervention” has no effect (α = 0)

using robust standard errors, Conley and Taber (2011) method, Donald and Lang (2007) method, and our

two corrected methods. Since we are looking at placebo interventions, if the hypothesis testing is correct,

then we would expect to reject the null roughly 10% of the time for a test with 10% significance level. We

present in Panel A of Table 7 rejection rates in simulations results using PUMAs as the group level, while in

Panel B we present results using states as the group level. Results in columns 1 show that robust standard

errors in the OLS individual level DID regression, that assume that all individual errors are independent,

would tend to over-reject the null hypothesis. In particular, we reject the null at 10% significance level, on

average, around 13%-14% of the time, in both the PUMA and the state level simulations.17

We present in columns 3 to 6 of Table 7 rejection rates for Conley and Taber (2011) and Donald and Lang

(2007) inference methods. The results are very similar to our Monte Carlo simulations presented in Section

3. When we consider the PUMA level simulations, both methods over-reject the null when the treated group

is small, and under-reject the null when the treated group is large. When we look at state level simulations,

Conley and Taber (2011) method also over-rejects the null on average, which is again consistent with our

Monte Carlo results. What is most remarkable, however, is that this problem of rejection rates varying with

the size of the treated group is extremely relevant even in a dataset with a very large number of observations:

16Information on PUMA of residence is only available for ACS data after 2005.
17Clustered standard errors (whether at group or group x time level) perform very poorly in this situation. Rejection rates are

always greater than 80% (results not shown). This was expected, since our simulations have only one treated group (Bertrand
et al. (2004), and Wooldridge (2003)).
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when we consider the state level simulations, average number of observations per group x time is greater

than 10,000. When we consider the simulations with employment status as outcome variable, Conley and

Taber (2011) method would have a rejection rate of 21% if the number of observations in the treated group

is below the median, while it would have a rejection rate of 2% when it is above the median.

Given that the existing inference methods do not perform well in this situation, we now consider our

corrected inference methods. When we apply our simpler correction method (columns 7 and 8 of Table 7)

in the PUMA level simulations, the test is very accurate, rejecting around 10% of the time irrespectively of

the treated group size. In the state level regressions (N0 + 1 = 51), our simpler method present an average

rejection rate of around 12%, which again is consistent with our Monte Carlo simulations. In columns 10

and 11 we present rejection rates with our residuals-bootstrap method with asymptotic refinement. With

this method, we are able to achieve a rejection rate closer to 10%, and we cannot reject the null that there

is no variation in rejection rates across M1.

5 Conclusion

This paper shows that usual inference methods used in DID models might not perform well in the presence

of heteroskedasticity when the number of treated groups is small. In particular, we show that, methods

designed to work when there are few treated groups would tend to (under-) over-reject the null hypothesis

when the number of observations of the treated groups is (large) small relative to the number of observations

of the control groups. A notable exception is the inference method proposed by Abadie et al. (2010) for

the Synthetic Control Estimator. This method takes heteroskedasticity into account provided that there

is at least one pre-intervention period not included in the estimation of the Synthetic Control weights.

Therefore, it is not possible to use this inference method to correct for heteroskedasticity when there is

only one pre-treatement period. The inference methods we derive provide an alternative solution to the

heteroskedasticity problem in DID models with few treated groups when the number of control groups is

large. In particular, our methods work even when there is only one treated group and only one pre-treatment

period. A refinement of our method using residuals-bootstrap also provided reasonably accurate hypothesis

testing in our simulations when the number of control groups is around 25.

Finally, it is important to point out that our inference method for correcting for heteroskedasticity is

more general than the main case we analyzed in this paper, in which the heteroskedasticity is generated by

variation in the number of observations per group. In fact, as long as we are able to assume a structure of
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the residual variances, we are able to apply our method. There are other applications where the variance of

Wj might vary by group even when all groups have the same size. This would happen when, for example,

Yijt is a binary variable and average Yjt might be closer or farther away from 0.5 depending on j.
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Figure 1: Rejection Rates in Monte Carlo Simulations by Quintiles of M1 (H0 : α = 0 at 10%
significance level)

Conley and Taber (2011) Method

Figure 1.A: ρ = 0.01% Figure 1.B: ρ = 4%
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Corrected Method

Figure 1.C: ρ = 0.01% Figure 1.D: ρ = 4%
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Notes: These figures present the rejection rates by quintile of the number of observation of the treated group whenN0+1 =

400 and M ∈ [50, 200]. These rejection rates are based on Monte Carlos simulations explained in Section 3. Figures 1.A and 1.B

present results using Conley and Taber (2011) inference method, while Figures 1.C and 1.D presents results using the corrected

method proposed in this paper.
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Table 1: Rejection Rates in MC Simulations with N0 +1 = 400 (H0 : α = 0 at 10% significance level)

Inference Method
Conley Donald Corrected

Robust OLS and Taber and Lang Method
ρ Mean Diff Mean Diff Mean Diff Mean Diff

(1) (2) (3) (4) (5) (6) (7) (8)
Panel A: M ∈ [50, 200]

0.01% 0.108 0.001 0.107 -0.111 0.102 -0.108 0.108 -0.001

1% 0.272 0.065 0.104 -0.052 0.100 -0.052 0.104 0.001

4% 0.493 0.112 0.099 -0.022 0.096 -0.022 0.100 -0.001

Panel B: M ∈ [200, 800]

0.01% 0.109 0.000 0.104 -0.107 0.099 -0.103 0.106 0.000

1% 0.493 0.126 0.102 -0.021 0.100 -0.022 0.104 0.001

4% 0.716 0.073 0.100 -0.004 0.097 -0.005 0.101 0.003

Panel C: M ∈ [50, 950]

0.01% 0.111 -0.010 0.102 -0.159 0.088 -0.145 0.101 -0.005

1% 0.474 0.187 0.100 -0.041 0.097 -0.040 0.102 0.003

4% 0.692 0.144 0.102 -0.011 0.099 -0.013 0.103 0.001
Note: This table presents results from Monte Carlo simulations with 400 groups,
as explained in Section 3. In all simulations, only one group is treated. Each line
presents simulation for different values of intra-group correlation, while each panel
presents results for different numbers of observations per group. For each inference
method we present the average rejection rate for a test with 10% significance level
and the difference in rejection rates when the number of individual observations in
the treated group (M1) is above and when it is below the median. We run 40,000
simulations for each M×ρ×N0 scenario. The standard error for the average rejection
rates is around 0.16 percentage points, while the standard error for the difference in
rejection rates between above and below median M1 is around 0.3 percentage points.
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Table 2: Rejection Rates in MC Simulations with N0 +1 = 100 (H0 : α = 0 at 10% significance level)

Inference Method
Conley Donald Corrected

Robust OLS and Taber and Lang Method
ρ Mean Diff Mean Diff Mean Diff Mean Diff

(1) (2) (3) (4) (5) (6) (7) (8)
Panel A: M ∈ [50, 200]

0.01% 0.130 0.009 0.107 -0.102 0.096 -0.100 0.113 0.004

1% 0.316 0.121 0.110 -0.054 0.102 -0.052 0.110 0.004

4% 0.506 0.049 0.113 -0.021 0.102 -0.022 0.115 -0.001

Panel B: M ∈ [200, 800]

0.01% 0.110 -0.025 0.107 -0.091 0.097 -0.093 0.116 0.007

1% 0.486 0.135 0.111 -0.016 0.101 -0.015 0.112 0.007

4% 0.720 0.126 0.110 -0.004 0.101 0.000 0.113 0.002

Panel C: M ∈ [50, 950]

0.01% 0.098 0.004 0.105 -0.157 0.088 -0.143 0.106 0.013

1% 0.460 0.212 0.112 -0.041 0.103 -0.042 0.115 0.001

4% 0.700 0.170 0.111 -0.011 0.102 -0.015 0.110 0.004
Note: This table presents results from Monte Carlo simulations with 100 groups,
as explained in Section 3. In all simulations, only one group is treated. Each line
presents simulation for different values of intra-group correlation, while each panel
presents results for different numbers of observations per group. For each inference
method we present the average rejection rate for a test with 10% significance level
and the difference in rejection rates when the number of individual observations in
the treated group (M1) is above and when it is below the median. We run 40,000
simulations for each M×ρ×N0 scenario. The standard error for the average rejection
rates is around 0.16 percentage points, while the standard error for the difference in
rejection rates between above and below median M1 is around 0.3 percentage points.
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Table 3: Rejection Rates in MC Simulations with N0 + 1 = 50 (H0 : α = 0 at 10% significance level)

Inference Method
Conley Donald Corrected

Robust OLS and Taber and Lang Method
ρ Mean Diff Mean Diff Mean Diff Mean Diff

(1) (2) (3) (4) (5) (6) (7) (8)
Panel A: M ∈ [50, 200]

0.01% 0.098 0.008 0.119 -0.104 0.097 -0.095 0.126 0.006

1% 0.267 0.064 0.116 -0.053 0.098 -0.051 0.122 0.000

4% 0.490 0.108 0.116 -0.022 0.096 -0.018 0.120 0.002

Panel B: M ∈ [200, 800]

0.01% 0.114 0.002 0.121 -0.103 0.101 -0.098 0.128 0.002

1% 0.498 0.103 0.122 -0.012 0.101 -0.013 0.128 0.011

4% 0.715 0.067 0.118 -0.006 0.100 -0.010 0.123 0.000

Panel C: M ∈ [50, 950]

0.01% 0.106 0.005 0.126 -0.166 0.097 -0.147 0.130 0.002

1% 0.467 0.190 0.120 -0.049 0.100 -0.046 0.125 -0.005

4% 0.691 0.148 0.119 -0.008 0.100 -0.007 0.125 0.008
Note: This table presents results from Monte Carlo simulations with 50 groups, as
explained in Section 3. In all simulations, only one group is treated. Each line
presents simulation for different values of intra-group correlation, while each panel
presents results for different numbers of observations per group. For each inference
method we present the average rejection rate for a test with 10% significance level
and the difference in rejection rates when the number of individual observations in
the treated group (M1) is above and when it is below the median. We run 40,000
simulations for each M×ρ×N0 scenario. The standard error for the average rejection
rates is around 0.16 percentage points, while the standard error for the difference in
rejection rates between above and below median M1 is around 0.3 percentage points.
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Table 4: Inference with Bootstrap Methods - MC Simulations (H0 : α = 0 at 10% significance level)

Total Number of Groups (N0 + 1)
25 50 100 400

ρ Mean Diff Mean Diff Mean Diff Mean Diff
(1) (2) (3) (4) (5) (6) (7) (8)

Panel A: Residuals-Bootstrap on α̂ w/o heteroskedasticity correction

0.01% 0.127 -0.158 0.115 -0.168 0.110 -0.166 0.105 -0.169

4.00% 0.125 -0.008 0.115 -0.011 0.111 -0.019 0.104 -0.019

Panel B: Residuals-Bootstrap on α̂ w/ heteroskedasticity correction

0.01% 0.142 -0.003 0.122 0.001 0.115 -0.002 0.104 0.000

4.00% 0.139 0.006 0.122 0.001 0.113 0.000 0.103 -0.001

Panel C: Residuals-Bootstrap on Pivotal Statistics w/ heteroskedasticity correction

0.01% 0.112 0.008 0.106 0.002 0.106 -0.005 0.102 -0.001

4.00% 0.110 -0.005 0.108 -0.003 0.105 0.001 0.100 0.000
Note: This table presents results from Monte Carlo simulations for different number of
groups and for different intra-group correlation parameters (ρ). In all simulations, only
one group is treated. In each scenario, we run 100,000 simulations. In Panel A, we test
the null hypothesis that α = 0 with a 10% significance level with residuals-bootstrap
without our heteroskedasticity correction to recover the distribution of the non-pivotal
parameter α̂. In Panel B, we show results when we run a residuals-bootstrap with our
heteroskedasticity correction to recover the distribution of the non-pivotal parameter
α̂. In Panel C, we use a pivotal test statistics using residuals-bootstrap with our
heteroskedasticity correction to recover its distribution. The test statistic is given by

ŝ = α̂/

√
v̂ar(α̂). For each simulation, we bootstrap the residuals Ŵj in the group x

time aggregate model, and calculate sb = (α̂b−α̂)/

√
̂var(α̂b) 500 times to construct the

distribution of the test statistic s. For each scenario, we present the average rejection
rate for a test with 10% significance level and the difference in rejection rates when
the number of individual observations in the treated group (M1) is above and when it
is below the median. The standard error for the average rejection rates is around 0.1
percentage points, while the standard error for the difference in rejection rates between
above and below median M1 is around 0.2 percentage points.
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Table 5: Inference with Synthetic Control - Monte Carlo Simulations

Total Number of Groups (N0 + 1)
25 50

ρ Mean Diff Mean Diff
(1) (2) (3) (4)

Panel A: T = 2, just-identified

0.01% 0.120 -0.039 0.100 -0.042

4.00% 0.120 -0.003 0.100 -0.004

Panel B: T = 3, just-identified

0.01% 0.120 -0.027 0.100 -0.048

4.00% 0.120 -0.001 0.100 -0.003

Panel B: T = 3, over-identified

0.01% 0.120 0.008 0.100 0.004

4.00% 0.120 0.001 0.100 0.000
Note: This table presents rejection rates from
Monte Carlo simulations using the inference
proposed by Abadie et al. (2010) for the Syn-
thetic Control Estimation for different number
of groups and for different intra-group corre-
lation parameters (ρ). In all simulations, only
one group is treated. Panel A reports results
for a scenario with 2 periods, one pre- and one
post-treatment. We estimate the weights us-
ing Yj1 and Mj . Panel B reports results for a
scenario with 3 periods, two pre- and one post-
treatment. We estimate the weights using Yj1,
Yj2 and Mj . Panel C also reports results for
a scenario with 3 periods using only Yj1 and
Mj to estimate the weights. For each scenario,
we present the average rejection rate for a test
with 10% significance level and the difference
in rejection rates when the number of individ-
ual observations in the treated group (M1) is
above and when it is below the median.
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Table 6: Number of Observations per Group x Time cell

Group Level
PUMA State
(1) (2)

Average 729.91 10,137.79

1% 127 883
5% 154 1,037
10% 171 1,250
25% 212 2,527
50% 317 7,205
75% 626 11,509
90% 1,337 21,099
95% 2,333 32,961
99% 8,168 62,752

Note: This Table presents the dis-
tribution of number of observations
per groups (PUMA or state) used
in the simulations with the ACS
dataset.
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Table 7: Simulations with the ACS Survey (H0 : α = 0 at 10% significance level)

Inference Method
Conley Donald Corrected Corrected

Robust OLS and Taber and Lang Method Bootstrap
Outcome Mean Diff Mean Diff Mean Diff Mean Diff Mean Diff
Variable (1) (2) (3) (4) (5) (6) (7) (8) (10) (11)

Panel A: ACS with PUMA level interventions
Employment 0.133*** 0.008 0.102 -0.149*** 0.101 -0.147*** 0.102 -0.005 0.101 -0.006

(0.005) (0.010) (0.005) (0.009) (0.005) (0.009) (0.004) (0.009) (0.004) (0.009)

Log(wages) 0.136*** 0.002 0.102 -0.140*** 0.102 -0.140*** 0.102 0.005 0.105 0.011
(0.005) (0.009) (0.005) (0.009) (0.005) (0.009) (0.005) (0.009) (0.005) (0.009)

Panel B: ACS with state level interventions
Employment 0.130* 0.049 0.118 -0.192*** 0.105 -0.168*** 0.118 0.024 0.103 -0.016

(0.016) (0.032) (0.024) (0.038) (0.023) (0.038) (0.019) (0.036) (0.017) (0.032)

Log(wages) 0.137** -0.024 0.118 -0.211*** 0.091 -0.178*** 0.125 0.030 0.089 0.015
(0.019) (0.039) (0.028) (0.046) (0.026) (0.044) (0.021) (0.043) (0.018) (0.037)

Note: This table presents rejection rates for the simulations using ACS data. For each pair of consecutive years, we run a DID
regression using one group as treated and the other groups as a control. The outcome variable is employment status or log(wages)
for women aged between 25 and 40. Then we test the hypothesis that the effect of the “intervention” is equal to zero using different
inference methods: hypothesis testing using robust standard errors, Conley and Taber (2011) inference method, Donald and Lang
(2007) inference method, our correction method, and a residuals-bootstrao method on a pivotal statistic with our heteroskedasticity
correction. Panel A reports results when groups are defined as PUMAs, while Panel B reports results when groups are defined as
states. We present in brackets standard errors for the rejection rates clustered at the treated group. For average rejection rates,
* means that we reject at 10% that the average rejection rate is equal to 10%, while for the differences in rejection rates * means
that we reject at 10% that rejection rate for M1 above and below the median are equal. ** means that we reject at 5%, while ***
means that we reject at 1%.
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Supplemental Appendix: Inference in Differences-in-Differences with

Different Group Sizes

This supplemental appendix contains the main theorems and proof of the paper “Inference in Differences-in-Differences

with Different Group Sizes”. We use the same notation as in the main paper. Let M (j, t) be the number of observations in

group j, time t.

The aggregated model is:

yjt = αdjt + θj + γt + ηjt (14)

For now, we deal with the case with only j = 1 is treated, and two periods of time. We assume exogeneity of ηjt and a

variance structure

The first assumption imposes independence of ηjt and the main right-hand side variable in the model. The second assump-

tion states the first and second moments of ηj1−ηj0.

Assumption 1 (Independence and Distribution) : (ηj1, ηj0) is independent of (dj1, dj0) and is also independent

across j. In addition, we assume that the distribution of the (ηj1, ηj0) only differs among the j by the variance.

Assumption 218 (Exogeneity and Variance-Covariance Structure):

E [ηj1 − ηj0] = 0

V ar [ηj1 − ηj0] = A+B

(
1

M(j, 1)
+

1

M(j, 0)

)

where A and B are constants.

As noted in the main paper, in this model the DID estimator would be given by:

α̂ = α+ (η11 − η10)−
1

N0

N0+1∑

j=1

(ηj1 − ηj0)

Under assumptions 1 and 2, the variance of this DID estimator is

V ar [α̂] =

(
N0

1 +N0

)
A+

B

M (j, 1)
+

B

M(j, 0)
+

1

N2
0

N0+1∑

j=1

[
B

M (j, 1)
+

B

M(j, 0)

]
(15)

As N0 → ∞,

α̂− α → η11 − η10 ≡ W

V ar [α̂] → A+
B

M (j, 1)
+

B

M(j, 0)

We extend the main idea in Conley and Taber (2011) to the heteroskedasticity case, and use the predicted residuals from

the control groups, Ŵj = η̂j1 − η̂j0 to estimate the distribution of W . Because of the this heteroskedasticity, we would like to

use W̃j = Ŵj ·
√

V ar[W ]

V ar[Wj ]
so that all W̃j have the same variance as W .

We assume that the number of individuals in each group is fixed and does not vary withN0. Denote Γ (w1) = Pr [W1 < w| t = 1, .., T ]

and Γ̂ (wj) = 1
{
W̃j < w

}
, where W̃j = (η̂j1 − η̂j0) ·

√
V ar[W ]

V ar[Wj ]
, for j = 2, ..., N0 + 1.

18This assumption can be derived from assumptions about ηjt or about the unobservable terms in the individual-level model.
However, this assumption is general, allowing serial correlation of the ηjt.
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Theorem 1 shows that Γ̂ (wj) converges uniformly on any compact subset of the support of W . The proof is similar to

Conley and Taber (2011) proposition 2.

Theorem 1 Under assumptions 1 and 2, Γ̂ (wj) converges in probability to Γ (w1) uniformly on any compact subset of the

support of W , as N0 → ∞.

Proof. Since under our assumptions, ηjt are independent across jand in the same family of distributions, we can write

Γ (w1) = Pr [W1 < w| t = 1, .., T ]

=

∫
1 (W1 < w) dF1 (W1)

and

Γ̂ (w1) =

∫
1 (W1 < w) dF̂1 (W1)

=

∫
1 (W1 < w) dF̂ ∗

j (W1)

where

F̂ ∗
1 (w1) = F̂ ∗

1

(
wm ·

√
V ar [W1]

V ar [Wj ]

)

where V ar [W1] and V ar [Wj ] are unknown constants and F̂ ∗
j (.) is the empirical CDF of the residuals from the control group

normalized to have variance equal to the treatment group. In our case, we can take out the means and estimate the following

model (as in C&T):

Ỹjt = αd̃jt + η̃jt

The residual for a member of the control group is

η̃jt = Ỹjt

Note that η̃jt = ηit − ηj − ηt + η →p ηjt − ηj as N0 → ∞. Using this definition,

F̂ ∗
j (w1) =

1

N0

N0∑

m=1

1

{(
Ỹm1 − Ỹm0

)√V ar [W1]

V ar [Wj ]
< wm

√
V ar [W1]

V ar [Wj ]

}

=
1

N0

N∑

i=1

1
{
W ∗

j < w1

}

Note that W ∗
j are now i.i.d across j.

Define

φ (w1) = Pr

[
(ηj1 − ηj0) ·

√
V ar [W1]

V ar [Wj ]
< w1

]

As in C&T, we first need to show that F̂ ∗
j (wj) converges uniformly to φ (wj) over wj . Note that

Ỹm1 − Ỹm0 = ηj1 − ηj0

and

√
V ar[W1]

V ar[Wj ]
= cj that is a constant for each j.

We need to show that

sup
wj∈Θ

∣∣∣F̂ ∗
j (wj)− φ (wj)

∣∣∣→p 0
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where Θ is the support of W1. This is satisfied by the Glivenko–Cantelli theorem.

The approach proposed to estimate W̃j is unfeasible since we do not know the variances of Wj and W1. Theorem 2 shows

that if we have a consistent estimator of

√
V ar[W1]

V ar[Wj ]
, we can construct

̂̃
Wj = (η̂j1 − η̂j0) ·

√
̂V ar[W ]

̂
V ar[Wj ]

, and use the approach

proposed above. Define
̂̂
Γ (wj) = 1

{
̂̃
W j < w

}
.

Theorem 2 If for each j

√
̂V ar[W ]

̂
V ar[Wj ]

is a consistent estimator for

√
V ar[W1]

V ar[Wj ]
, under assumptions 1 and 2,

̂̂
Γ (wj) converges in

probability to Γ (w1) uniformly on any compact subset of the support of W , as N0 → ∞.

Proof. Note that

sup
wj∈Θ

∣∣∣F̂ ∗
j (ŵj)− φ (wj)

∣∣∣ = sup
wj∈Θ

∣∣∣F̂ ∗
j (ŵj)− F̂ ∗

j (wj) + F̂ ∗
j (wj)− φ (wj)

∣∣∣

≤ sup
wj∈Θ

∣∣∣F̂ ∗
j (ŵj)− F̂ ∗

j (wj)
∣∣∣+ sup

wj∈Θ

∣∣∣F̂ ∗
j (wj)− φ (wj)

∣∣∣

By Theorem 2, supwj∈Θ

∣∣∣F̂ ∗
j (wj)− φ (wj)

∣∣∣→p 0 We only need to work with the first term,

sup
wj∈Θ

∣∣∣F̂ ∗
j (ŵj)− F̂ ∗

j (wj)
∣∣∣ = sup

wj∈Θ

∣∣∣∣∣∣
1

N0

N0∑

m=1

1 {Wm · ĉj < wm · ĉj} − 1

N0

N∑

i=1

1 {Wm · cj < wm · cj}

∣∣∣∣∣∣

= sup
wj∈Θ

|(1 {Wm · ĉj < wm · ĉj} − 1 {Wm · cj < wm · cj})|

≤
N0∑

m=1

sup
wj∈Θ

|(1 {Wm · ĉj < wm · ĉj} − 1 {Wm · cj < wm · cj})|

→p 0 since ĉj →p cj .

We proposed a consistent estimator of

√
V ar[W1]

V ar[Wj ]
based on an ordinary least squares estimator. We estimate a linear

regression that relates squares of Ŵ 2
j and 1

M(j,1)+M(j,0)
and constant. We obtain Â as the least squares coefficient associated

with the constant, and B̂ as the coefficient associated with 1
M(j,1)+M(j,0)

. We use A and B to construct a consistent estimator

for the V ar[Wj ],

̂V ar[Wj ] = Â+
B̂

M (j, 1) +M(j, 0)

and

̂V ar[W1] = Â+
B̂

M (1, 1) +M(1, 0)

We use these two estimator to estimate the ratio ĉj ≡
√

̂V ar[W1]

̂
V ar[Wj ]

. Theorem 3 shows that ĉj is a consistent estimator for

√
V ar[W1]

V ar[Wj ]
.

Theorem 3 Under assumptions 1 and 2, ĉj is a consistent estimator for

√
V ar[W1]

V ar[Wj ]
.

Proof. Under assumptions 1 and 2,

V ar [Wjt] = A+
B

M (j, t)
and E [Wjt] = 0
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So we can write

E
[
W 2

jt

]
= A+

B

M (j, t)

or

W 2
jt = A+

B

M (j, t)
+ ω

where E [ω] = 0. In this case, we estimate A and B by ordinary least squares, we obtain consistent estimators as NT → ∞.

Since M (j, t) does not vary with N0, ĝ (M (j, t)) →p g (M (j, t)) .

The method proposed above provides consistent results if we have a large number of controls. In the last part of the article,

we compare the method proposed above with a bootstrap-based method that works better with a not so large N0. We propose

to work with the following test statistics:

s =
α̂√

V ar [α̂]

where V ar [α̂] is given by equation 15.

If you know A and B, under the null hypothesis, s will converge in distribution to a normal with mean 0 and variance 1.

Note that s is a pivotal test statistics. Cameron, Gelbach and Miller (2008) shows that is asymptotically better to bootstrap

an asymptotically pivotal statistics.

However, we do not know A and B, and we estimate A and B using the OLS estimators of a regression of W 2
j on a constant

and
(

1
M(j,1)

+ 1
M(j,0)

)
as explained above. When we use V̂ ar [α̂] in the place of V ar [α̂] , the test statistics does not have

known distribution in small sample. In large sample, we can show that the distribution of the test statistics approximately a

normal with mean 0 and variance 1.

ŝ =
α̂√

V̂ ar [α̂]

=
α̂√

V ar [α̂]
·
√

V ar [α̂]

V̂ ar [α̂]

Under assumptions 1 and 2,

√
V ar[α̂]

V̂ ar[α̂]
→p 1 and ŝ →d N (0, 1).

Since the distribution of ŝ is unknown in not so large samples, we use bootstrap to approximate the conditional distribution

function ŝ. By bootstrap, we obtain B resamples of size N of the original sample ZN . In each bth sample (Z∗
Nb

), we calculate

α̂Nb and ̂V ar [α̂Nb], and compute the following statistics,

ŝNb =
α̂Nb − α̂√

̂V ar [α̂Nb]

The empirical distribution of ŝNb, b = 1, ..., B is used to compute the test critical values and p-values.

Theorem 4 Define d1−α
2

and dα
2

as the (1− α
2
)th and a

2
th quantile of the empirical distribution of ŝNb, b = 1, ..., B. Under

assumptions 1 and 2,

Pr
[
d1−α

2
≤ ŝ ≤ dα

2

∣∣∣α0

]
→p 1− α

Proof. This proof is divided in two parts. In the first part, we show that given a sample Z,
√
NŝNb converges conditionally in

distribution to the same limit as
√
Nŝ. Then we show that Pr

[
d1−α

2
≤ ŝ ≤ dα

2

∣∣∣α0

]
→p 1− α.
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After estimating the model by Difference in Difference, we generate normalized
˜̂
W j = Ŵj ·

√
1

̂
V ar[Wj ]

, with ̂V ar [Wj ] =

Â+ B̂
(

1
M(j,1)

+ 1
M(j,0)

)
.

In each bootstrap replication, we generate a sample with replacement of size N,

(
˜̂
W 1

)
, ...,

(
˜̂
WN

)
and generate

˜̂
W

∗

j,b =
˜̂
W j,b ·

√
̂V ar[Wj,b]

where ̂V ar[Wj,b] is the variance of Wj the corresponding group b.

α̂Nb =
(
Ŷ11 − Ŷ10

)
+
˜̂
W

∗

1,b −
1

N0

N0+1∑

j=2

(
Ŷj1 − Ŷj0 +

˜̂
W

∗

j,b

)

=
(
Ŷ11 − Ŷ10

)
− 1

N0

N0+1∑

j=2

(
Ŷj1 − Ŷj0

)
+


˜̂W

∗

1,b −
1

N0

N0+1∑

j=2

˜̂
W

∗

j,b




Ŷjt = α̂djt + θ̂j + γ̂t

Using the formulas of the traditional Difference in Difference,

α̂Nb − α̂ =
˜̂
W

∗

1,b −
1

N0

N0+1∑

j=2

˜̂
W

∗

j,b

and we do a regression of
˜̂
W

∗

j,b on a constant and
(

1
M(j,1)

+ 1
M(j,0)

)
, and construct

̂

V ar

[
˜̂
W

∗

j,b

]
= Âb + B̂b

(
1

M(j, 1)
+

1

M(j, 0)

)

and

̂V ar [α̂Nb] =
̂

V ar

[
˜̂
W

∗

1,b

]
+

1

N2
0

N0+1∑

j=2

̂

V ar

[
˜̂
W

∗

j,b

]

Note that

˜̂
W

∗

j,b = Ŵj ·

√√√√ ̂V ar [Wb]

̂V ar [Wj ]
= Ŵj · cjb

Under assumptions 1 and 2,

E

[∥∥∥∥
˜̂
W

∗

b

∥∥∥∥
2
]
· 1
{∥∥∥∥
˜̂
W

∗

b

∥∥∥∥ > ε
√
n

}
=

1

n

n∑

j=1

E

[∥∥∥Ŵj,b

∥∥∥
2
c2jb

]
· 1
{∥∥∥Ŵj,b

∥∥∥ > cjbε
√
n
}

→p 0

V ar

[
˜̂
W

∗

b

]
→p Σ

By the Lindeberg-Feller Central Limit Theorem,

ŝNb =


˜̂W

∗

1,b − 1
N0

N0+1∑

j=2

˜̂
W

∗

j,b




√√√√ ̂

V ar

[
˜̂
W

∗

1,b

]
+ 1

N2
0

N0+1∑

j=2

̂

V ar

[
˜̂
W

∗

j,b

] →d N (0, 1)
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and by theorem 23.3 of Vaart (1998),

Pr
[
d1−α

2
≤ ŝ ≤ dα

2

∣∣∣α0

]
→p 1− α
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