Capital Asset Pricing Model Adjusted for Anchoring

Hammad, Siddiqi

The University of Queensland

1 October 2015

Online at https://mpra.ub.uni-muenchen.de/67668/
MPRA Paper No. 67668, posted 06 Nov 2015 07:09 UTC
Capital Asset Pricing Model Adjusted for Anchoring

Hammad Siddiqi
The University of Queensland
Australia
h.siddiqi@uq.edu.au
October 2015

Abstract
I show that adjusting CAPM for anchoring provides a unified explanation for the size, value, and momentum effects. Anchoring adjusted CAPM (ACAPM) predicts that stock splits are associated with positive abnormal returns and an increase in return volatility, whereas the reverse stock-splits are associated with negative abnormal returns and a fall in return volatility. Existing empirical evidence strongly supports these predictions. Anchoring has the effect of pushing up the equity premium, a finding which is relevant for the equity premium puzzle.

Keywords: Size Premium, Value Premium, Behavioral Finance, Stock Splits, Equity Premium Puzzle, Anchoring Heuristic, CAPM, Asset Pricing

JEL Classification: G12, G11, G02
Capital Asset Pricing Model Adjusted for Anchoring

Finance theory predicts that risk adjusted returns from all stocks must be equal to each other. The starting point for thinking about the relationship between risk and return is the Capital Asset Pricing Model (CAPM) developed in Sharpe (1964), and Lintner (1965). CAPM proposes that beta is the sole measure of priced risk. If CAPM is correct then the beta-adjusted returns from all stocks must be equal to each other. A large body of empirical evidence shows that beta-adjusted stock returns are not equal but vary systematically with factors such as “size” and “value”. Size premium means that small-cap stocks tend to earn higher beta-adjusted returns than large-cap stocks.¹ Value premium means that value stocks tend to outperform growth stocks.² Value stocks are those with high book-to-market value. They typically have stable dividend yields. Growth stocks have low book-to-market value and tend to reinvest a lot of their earnings. Value stocks are typically less volatile than growth stocks. Fama-French (FF) value and growth indices (monthly returns data from July 1963 to April 2002) show the following standard deviations: FF small value: 19.20%, FF small growth: 24.60%, FF large value: 15.39%, and FF large growth: 16.65%. That is, among both small-cap and large-cap stocks, value stocks are less volatile than growth stocks.

Intuitively, the value premium is even more surprising than the size premium as it is plausible to argue that small size means higher risk (such as business cycle or liquidity risk) with size premium being compensation for higher risk; however, how can less volatility be more risky as the value premium seems to suggest?³

The existence of size and value premiums has led to a growing body of research that attempts to explain them. In particular, there is the empirical asset pricing approach of Fama and French (1993) in which these factors are taken as proxies for risks with the assumption that all risks are correctly priced.⁴ The task then falls to the asset pricing branch of theory to explain the sources of these risks. Fama and French (1997) argue that value firms are financially distressed, and the

² Value premium is documented in Fama and French (1998) among many others.
³ Researchers appeal to other dimensions of risk different from volatility in attempts to explain value premium. However, no consensus explanation exists as to the source of value premium.
⁴ Recently Fama and French (2015) show that value premium is also captured by adding “investment” and “profitability” factors to size and beta factors.
existence of the value premium is a compensation for bearing this risk. However, the empirical
evidence is largely inconsistent with this view as distressed firms are found to have low returns
rather than high returns (see Dichev (1998), Griffin and Lemmon (2002), and Campbell et al (2008)
among others). Behavioral explanations of the value premium have also been put forward. In
particular, DeBondt and Thaler (1987), Lakonishok et al (1994), and Haugen (1995) argue that
traders overreact to news, and overprice “hot” stocks which tend to be growth firms, and under-
price out of favor stocks which tend to be value firms. When this overreaction is eventually
corrected, value premium arises.

Apart from size and value, there also exists, what is known as, the momentum effect in the
stock market. Momentum effect refers to the tendency of “winning stocks” in recent past to
continue to outperform “losing stocks” for an intermediate horizon in the future. Momentum effect
has been found to be a robust phenomenon, and can be demonstrated with a number of related
definitions of “winning” and “losing” stocks. Jegadeesh and Titman (1993) show that stock returns
exhibit momentum behavior at intermediate horizons. A self-financing strategy that buys the top
10% and sells the bottom 10% of stocks ranked by returns during the past 6 months, and holds the
positions for 6 months, produces profits of 1% per month. George and Hwang (2004) define
“winning’ stocks as having price levels close to their 52-week high, and “losing” stocks as those with
price levels that are farthest from their 52-week high, and show that a self-financing strategy that
shorts “losing” stocks and buys “winning” stocks earns abnormal profits over an intermediate
horizon (up to 12 months) consistent with the momentum effect.

The existence of size, value, and momentum effects clearly show that CAPM falls
significantly short in explaining average market returns. It implies that at least one key assumption in
CAPM is wrong. Which assumption could that be? The dominant view is that the assumption that
traders consider only means and variances of payoffs while forming portfolios is the culprit here and
needs to be relaxed. Plausibly, in the real world, there are other relevant aspects of risk (such as
business cycle risk, liquidity risk, and distress risk) which are not captured by the simple mean-
variance framework of CAPM.

In this article, I argue that focusing on and relaxing another key CAPM assumption, which
has largely been overlooked, provides a plausible unified explanation for the size, value, and
momentum effects. CAPM assumes that investors are able to form correct expectations about future
payoffs and their corresponding future volatilities for every stock in the market. This is a rather strong assumption especially given the fact that not all stocks are equal in terms of history, data availability, as well as analyst coverage and trader attention. Some stocks have been around for decades and belong to well-known and well-established companies while others are relative new comers. Market participants are acutely aware of this fact, and this difference is reflected in the terminology used to classify stocks. In particular, in market parlance, there are blue chip stocks, which are stocks of well-known, well-established, financially strong companies with large cash flows. The term blue chip has its origins in poker in which the most valuable chips are known as the blue chips. As the poker analogy suggests, blue chips stocks have large market capitalizations (often in billions), large market prices, and are often household names. Every sector of the economy has its own blue chip stocks, however, they commonly receive a disproportionate amount of analysts’ coverage and investor attention and their business models are presumably better understood.

This article puts forward a modified version of CAPM which assumes that investors use the payoff distributions of well-established stocks with large market capitalizations as starting points which are then adjusted to form judgments about other stocks. Starting from Kahneman and Tversky (1974), over 40 years of research shows that people have a tendency to start from what they know and make adjustments to it to form judgments. However, adjustments typically fall short. This observation is known as the anchoring bias (see Furnham and Boo (2011) for a literature review). Adjustments are typically insufficient because people tend to stop adjusting once a plausible value is reached (see Epley and Gilovich (2006)). Hence, assessments remain biased towards the starting value known as the anchor.

I show that anchoring adjusted CAPM (ACAPM) provides a unified explanation for the size, value, and momentum effects in the stock market. Of course, it is impossible to prove conclusively that any one explanation is correct. The purpose of this article is to demonstrate that anchoring must be considered a plausible explanation for the size, value, and momentum effects. ACAPM converges to CAPM if the adjustments made to volatilities of well-established stocks to arrive at volatility judgments of other stocks are correct. If ACAPM converges to CAPM, the size, value, and momentum effects disappear. If ACAPM deviates from CAPM, the size, value, and momentum effects re-emerge. So, CAPM can be considered a special case of ACAPM corresponding to correct adjustments. Furthermore, ACAPM approach makes the following directly testable predictions: 1) stock splits generate positive abnormal returns and an increase in return volatility, and 2) reverse
stock splits generate negative abnormal returns and a fall in return volatility. Existing empirical evidence supports strongly supports these predictions. Furthermore, with ACAPM, equity premium is larger than what it would be with CAPM. Hence, anchoring has the effect of pushing up the equity premium, a result which is relevant for the equity premium puzzle put forward in Mehra and Prescott (1985).

CAPM assumes that the representative agent knows the future payoff distribution exactly for every asset in the market. Of course, this is a very unrealistic assumption, as the future payoff distributions are not just unknown, but are also likely to be unknowable in many cases. That is, no amount of information collection can reveal them, because current financials are simply not much of a window to the future, especially for smaller newly established firms. Despite its lack of realism, this assumption solves a key problem, which is, the determination of key decision primitives in the mean-variance maximization framework. The decision primitives are expected payoffs, expected payoff variances, and expected payoff covariances of every asset in the market. Once, the decision primitives are known, CAPM follows logically from mean-variance maximization. Clearly, omniscience is a convenient assumption. I argue in this article that this convenience comes at a great cost. In particular, it leads to the inability of CAPM to capture the size, value, and momentum effects.

Starting from Kahneman and Tversky (1974) over 40 years of research has demonstrated that while forming estimates, people tend to start from what they know and then make adjustments to their starting points. However, adjustments typically remain biased towards the starting value known as the anchor. A stock is just a name given to a future payoff structure. While facing the task of forming an opinion about the future payoff structure, it makes sense to start from a related payoff structure that one is well familiar with. That is, using the payoff structure of a well-established stock as a starting point for forming judgments about other stocks in the same sector is a sensible approach. A series of cognitive operations should then be applied to the starting point, for example, re-scaling, which is an adjustment for size difference, and increasing payoff dispersion, which is an adjustment for the higher risk of the newer stock. Every cognitive operation implies some adjustments in the decision primitives, with the largest adjustment needed for payoff variance due to its non-linear nature. Hence, the largest room for error is in estimating the payoff variance. This is where the anchoring bias has the most bite. Adjusting CAPM for anchoring means replacing the assumption of omniscience, with the assumption that the representative agent is anchoring prone in
estimating future payoff variances. This is the only change, and all other assumptions in the classical CAPM are maintained. I show that adjusting CAPM for anchoring provides a plausible unified explanation for the size, value, and momentum effects.

Hirshleifer (2001) considers anchoring to be an “important part of psychology based dynamic asset pricing theory in its infancy” (p. 1535). Shiller (1999) argues that anchoring appears to be an important concept for financial markets. This argument has been supported quite strongly by recent empirical research on financial markets. Anchoring has been found to matter for credit spreads that banks charge to firms (Douglas et al (2015), it matters in determining the price of target firms in mergers and acquisitions (Baker et al (2012), and it also affects the earnings forecasts made by analysts in the stock markets (Cen et al (2013)). Furthermore, Siddiqi (2015) shows that anchoring provides a unified explanation for a number of key puzzles in options market.

Well-established stocks, which are typically big-cap or large-cap stocks, constitute a small fraction of the total number of firms whose stocks are traded. In the US market, less than 4% of the stocks are classified as large-cap, however, they receive a substantially greater amount of attention from full-time professional stock analysts. A study suggests that roughly 83% of analysts cover large-cap stocks, which are less than 4% of the stocks, leaving only 17% analysts for the remaining 96%.5

Arguably, this disproportionate interest is partly due to the fact that well-established firms have a long history behind them, That is, there is sufficiently rich dataset available to study and analyze. Smaller firms, with much shorter histories, have not been around long enough to generate a rich dataset. Furthermore, covering large-cap stocks generates significant investment banking commissions for Wall Street firms, which is not the case for small-cap stocks. Also, the current values of company financials for a typical large-cap provide more of a window into its future, when compared with the current company financials of a small-cap as it remains to be seen how a small-cap may end up as it grows with time. Some market professionals advocate an 80-20 rule for large-cap vs. small cap, which says that for evaluating a large-cap, place an 80% weight on company financials and 20% weight on your judgment, whereas for a small-cap, place only a 20% weight on current financials and an 80% weight on judgment.6 So, it is not just that less is known about the

6 http://www.investopedia.com/articles/stocks/07/micro_cap.asp
future potential performance of a small-cap stock, it also is true that much less is actually knowable, and meticulously studying current company financials does not solve the problem as the financials are practically out-of-date the moment they are filed.

Imagine one is interested in Cisco system’s stock in February 1990. Cisco in 2015 is a network technology giant and considered a blue-chip stock with over 30 years of history behind it. However, back in 1990, its stock was launched at a price of 6 cents (on split-adjusted basis). Not much was known about Cisco in 1990, then only 6 years old, in the relevant market segment largely dominated by IBM. How would one go about forming a judgment about Cisco’s stock in 1990? Where-else would one start if not by looking at the performance of the established market leader at that time, which was IBM, and attempt to make appropriate adjustments for much smaller size, greater riskiness, and growing nature of the new firm? That is, it makes a lot of sense to start from the payoff structure of IBM’s stock, and then apply a series of cognitive operations to it with an aim of adjusting for size, riskiness, and other aspects.

Of course, with time, the business model of Cisco was better understood; however, the firm also grew and now is among large-cap blue chip stocks. Other start-ups and relative new comers now occupy the same spot that Cisco had in 1990. And, arguably, just like for Cisco in 1990, for these newer small companies, one may start from Cisco’s stock and attempt to make appropriate adjustments to form relevant judgments. The point is that a given firm may go through several classifications over its lifetime. A small-cap stock of yesterday, if it does not go bust, may be a large-cap stock of today, with newer small cap stocks taking its place. The identities of firms within the categories of large-cap and small-cap change, but the percentages of stocks in each category remain more or less the same. So, the impact of the anchoring bias may never disappear, as there will always be small-cap stocks that are valued by making adjustments to large-cap stocks. Learning may alleviate the bias in the stock of a particular small company if it does not go bust, but the time it takes to do that, may mean a classification change to large-cap stock, with some other small-cap taking its place.

Anchoring is among the most deep rooted cognitive biases, and short of getting one’s hands on a crystal ball that reveals future payoff volatilities of all stocks, it is hard to see how one can escape from it. For a typical stock, forming judgments about future payoff volatility is essentially forming judgments about something which is largely unknowable. When faced with this task, the
obvious thing to do is to start from what one knows and make adjustments to it. Where else can one start if not from a well-known and a well-established stock in the same sector? Plausibly one starts from there and then make adjustments. If adjustments happen to be correct, then the size, value, and momentum effects disappear and CAPM becomes the correct model. If adjustments fall short, the size, value, and momentum effects emerge. Anchoring heuristic implies that adjustments typically fall short.

Mullainathan et al (2008) argue that advertisers frequently make use of the fact that people are anchoring-prone. That is why we get campaigns like, “we put silk in our shampoo”. With a campaign like this, advertisers are attempting to create a ‘quality’ anchor in the minds of consumers so that their shampoo gets anchored with being silky, which is presumably a good quality in hair. Whereas advertisers maybe attempting to implant ‘superficial anchors’ through media campaigns, arguably, anchoring is an even more powerful force when anchors are self-generated and salient to the problem at hand. Epley and Gilovich (2006) show that starting from a self-generated initial value, people tend to stop adjusting once a plausible value is reached, so estimates remain biased towards the starting value known as the anchor.

Ariely (2008) argues that we tend to compare things that are similar or related in some way and not compare thing that are not easy to compare. Some cognitive scientists consider thinking by analogy and comparison as the fuel and fire of thinking (see Hofstadter and Sander (2013)). A stock is just a name given to a payoff structure. For a newer stock, it makes a lot of intuitive sense to start from the payoff structure of another more established stock in the same sector, and then apply a series of cognitive operations to it with an aim of adjusting for size, risk, and other idiosyncratic aspects. However, doing that exposes one to the anchoring bias.

To my knowledge, adjusting CAPM for anchoring is the smallest deviation from its basic framework that allows one to capture the size, value, and momentum effects. By this criterion, it offers the simplest explanation. The only difference between the classical CAPM and the anchoring adjusted CAPM is that in the latter the assumption of an omniscient representative agent is replaced with a more realistic assumption of an anchoring-prone representative agent.

This article is organized as follows. Section 2 develops ACAPM. Section 3 shows that effects akin to size, value, and momentum arise with ACAPM. Section 4 provides a numerical illustration of ACAM vs. CAPM. The implications of ACAPM for the equity premium puzzle are discussed in
section 5. Section 6 discusses the predictions of the anchoring approach for stock-splits and reverse stock-splits. Section 7 concludes.

2. Anchoring Adjusted CAPM

A typical derivation of CAPM via utility maximization starts by considering an overlapping generations (OLG) economy with agents having identical beliefs. Each agent lives for two periods. Agents that are born at t aim to maximize their utility of wealth at $t + 1$. Their utility functions are identical and exhibit mean-variance preferences. They trade securities $s = 1, \ldots, S$ where security s pays dividends δ^s_t and has x^s shares outstanding, and invest the rest of their wealth in a risk-free asset that offers a rate of r_F.

Market dynamics can be described by a representative agent who maximizes:

$$\max x'\{E_t(P_{t+1} + \delta_{t+1}) - (1 + r_F)P_t\} - \frac{1}{2} x'\Omega_t x$$

where P_t is the vector of prices, Ω_t is the variance-covariance matrix of $P_{t+1} + \delta_{t+1}$, and γ is the risk-aversion parameter.

The maximization problem described above has three decision primitives, which are as follows: 1) Vector of expected payoffs in the next period, $E_t(P_{t+1} + \delta_{t+1})$. 2) Expected variances associated with these payoffs, that is, the diagonal elements in the variance-covariance matrix Ω_t. 3) Expected covariances associated with these payoffs, which are the off-diagonal elements in Ω_t.

Once the above three decision primitives are specified, CAPM follows via a series of logical steps under the assumption that expectations coincide with reality.

How does anchoring influence this picture? To illustrate, consider an over-simplified example in which the possible next period payoffs associated with a well-established stock in a given sector are 100, 150, and 200 with an equal chance of each payoff. Imagine that one is interested in forming judgments about a relatively new stock in the same sector. Starting from the well-
established stock, assume that the following two cognitive operations are needed to get to the new stock payoffs:

1) Divide the payoffs by 10. This adjusts for the smaller size of the new stock.

2) Increase the payoff dispersion around the mean by subtracting 5 from the lowest payoff and adding 5 to the highest payoff. This adjusts for the greater riskiness of the small stock.

Now, let’s examine how the decision primitives change as we go through the above steps:

1) Dividing the payoff by 10 lead to the following payoffs: 10, 15, and 20. Expected payoff gets divided by 10, covariances also get divided by 10, however, the variance is divided by 100. That is, starting from the payoffs of well-established stock, a much higher adjustment is needed for variance, than what is required for other decision primitives.

2) Subtracting 5 from the lowest payoff and adding 5 to the highest payoff leads to the following payoffs: 5, 15, and 25. There is no change in expected payoffs due to this adjustment. Covariances get multiplied by 2, and the variance gets multiplied by 4. Once again, largest adjustment is needed in the variance.

Putting the above two steps together, we can see that starting from the well-established stock to form payoff judgments about the new stock requires dividing the expected payoff by 10, dividing the covariances by 5, and dividing the variance by 25. As the largest adjustment is needed for variance, it is the decision primitive with the largest room for error. Anchoring bias, if it matters, should matter more for variances, when compared with other decision primitives, due to the non-linear adjustments needed for variance.

I assume that the representative agent forms correct judgments about the decision primitives of expected payoffs and covariances, however, he displays anchoring bias in variance. Equivalently, one can assume that there is anchoring bias in all three decision primitives, with the largest bias in variance, without any change in the key implications. For simplicity, and clarity of exposition, I choose to assume that the bias is only in variance judgments. The only difference between classical CAPM and anchoring adjusted CAPM is that in the latter, instead of assuming that the representative agent is omniscient, it is assumed that the representative agent is anchoring-prone in forming payoff volatility judgments.
To illustrate the implications of anchoring, I start by considering the simplest case of one well-established stock and one newer stock in section 2.1. Section 2.2 considers the case of one well-established stock and many newer stocks, and section 2.3 adds a large number of established stocks to the picture with one stock corresponding to each sector of the economy.

2.1 Anchoring Adjusted CAPM: The Simplest Case

Consider an overlapping-generations (OLG) economy in which agents are born each period and live for two periods. For simplicity, in the beginning, I assume that they trade in the stocks of two firms and invest in a risk-free asset. One firm is well-established with large payoffs (the leader firm), and the second firm is a relative new-comer with much smaller payoffs (normal firm). The next period payoff per share of the leader firm is denoted by $\delta_{Lt+1} = P_{Lt+1} + d_{Lt+1}$ where P_{Lt+1} is the next period share price and d_{Lt+1} is the per share dividend of the large firm. Similarly, the next period payoff per share of the normal firm is defined by $\delta_{St+1} = P_{St+1} + d_{St+1}$. The risk-free rate of return is r_F and $\delta_{Lt+1} \gg \delta_{St+1}$. At time t, each agent chooses a portfolio of stocks and the risk-free asset to maximize his utility of wealth at $t + 1$. There are no transaction costs, taxes, or borrowing constraints.

The market dynamics are described by a representative agent who maximizes utility:

\[
n_L\{E_t(\delta_{Lt+1}) - (1 + r_F)P_{Lt}\} + n_S\{E_t(\delta_{St+1}) - (1 + r_F)P_{St}\} - \frac{\gamma}{2}\left\{n_L^2 \sigma_L^2 + n_S^2 \sigma_S^2 + 2n_Ln_S \sigma_{LS}\right\}
\]

where $n_L, n_S, and \gamma$ denote the number of shares of the leader firm, the number of shares of the normal firm, and the risk aversion parameter respectively. Next period variances of the leader firm and the normal firm payoffs per share are $\sigma_L^2 = Var(\delta_{Lt+1})$ and $\sigma_S^2 = Var(\delta_{St+1})$ respectively, with $\sigma_L^2 > \sigma_S^2$, and σ_{LS} denotes their covariance. Note, that payoff variances are different from return variances. The payoff variance of the normal firm’s stock, σ_S^2, is smaller than the payoff variance of the leader firm’s stock, σ_L^2, because of the much smaller size of its payoffs. In contrast, the return variance of the normal firm is much larger than the return variance of the large firm’s
stock because of the smaller share price of the normal firm. That is why, when considering
variances, it is important to be clear whether one is considering the payoff variance or the return
variance. To see this clearly, consider an example. Suppose the possible payoffs of the leader firm
stock, in the next period, are 300, 350, and 400 with equal chance of each. The variance of these
payoffs can be calculated easily and is equal to 1666.667. In a risk-neutral world, with zero risk-free
interest rate, the price must be 350, so corresponding (gross) returns are: 0.857, 1, 1.143. The return
variance is 0.010. Assume that the next period payoffs of the normal firm are 0, 35, and 70. The
variance of these payoffs is 816.667. The risk neural price (with zero risk-free rate) is 35 leading to
possible returns of 0, 1, and 2. The corresponding return variance is 0.66. As can be seen in this
example, the payoff variance of the normal firm stock is smaller than the payoff variance of the
leader firm stock, whereas the return variance of the normal firm is much larger.

The first order conditions of the maximization problem are:

\begin{align}
E_t(\delta_{Lt+1}) - (1 + r_F)P_{Lt} - \gamma n_L \sigma_L^2 - \gamma n_S \sigma_{LS} &= 0 \tag{1} \\
E_t(\delta_{St+1}) - (1 + r_F)P_{St} - \gamma n_S \sigma_S^2 - \gamma n_L \sigma_{LS} &= 0 \tag{2}
\end{align}

Solving (1) and (2) for prices yields:

\begin{align*}
P_{Lt} &= \frac{E_t(\delta_{Lt+1}) - \gamma n_L \sigma_L^2 - \gamma n_S \sigma_{LS}}{1 + r_F} \\
P_{St} &= \frac{E_t(\delta_{St+1}) - \gamma n_S \sigma_S^2 - \gamma n_L \sigma_{LS}}{1 + r_F}
\end{align*}

If the number of shares of the leader firm outstanding is \(n'_L\), and the number of shares of the
normal firm outstanding is \(n'_S\), then the equilibrium prices are:

\begin{align}
P_{Lt} &= \frac{E_t(\delta_{Lt+1}) - \gamma n'_L \sigma_L^2 - \gamma n'_S \sigma_{LS}}{1 + r_F} \tag{3} \\
P_{St} &= \frac{E_t(\delta_{St+1}) - \gamma n'_S \sigma_S^2 - \gamma n'_L \sigma_{LS}}{1 + r_F} \tag{4}
\end{align}
Next, I show how anchoring alters the above equilibrium. I assume that the representative agent is unsure about the variance of the normal firm’s payoffs, and to form his judgment, he starts from the variance of the leader firm and subtracts from it.

The agent knows that as the normal firm has smaller payoffs, its payoff variance must also be smaller. So, he starts from the variance of the leader firm and subtracts from it to form his judgment about the normal firm’s variance: \(\hat{\sigma}_S^2 = \sigma_L^2 - A \). If he makes the correct adjustment, then \(A = \sigma_L^2 - \sigma_S^2 \). Anchoring bias implies that the adjustment falls short. That is, \(A = m(\sigma_L^2 - \sigma_S^2) \) with \(0 < m < 1 \). Hence, \(\hat{\sigma}_S^2 = (1 - m)\sigma_L^2 + m\sigma_S^2 \). Note, if the adjustment is correct then \(m = 1 \).

If one starts from the payoff volatility of a related well-established stock and make adjustments to it based on available news, then one expects a smaller error in stocks with more information available about them. This is consistent with the findings in Kudryavtsev and Cohen (2010) that anchoring bias is stronger when the judgment task is more difficult. Stocks that are far from the leader stock are likely to be the stocks with least amount of information available about them, and stocks that are closest to the leader stock, are likely to have more information available. That is, stocks with less distance with the leader stock, should exhibit smaller anchoring bias when compared with stocks that are far removed from the leader stock. Note, defining the adjustment term as \(A = m(\sigma_L^2 - \sigma_S^2) \) automatically adjusts for this. An example clarifies this point. Suppose the leader stock has a payoff volatility of 100, whereas there are two other stocks with payoff volatilities 50 and 10 respectively. Suppose the anchoring prone marginal investor is able to go 90% of the way in each case, while making adjustments. That is, \(m = 0.90 \). The adjustment term in the first case is 45, and in the second case is 81. The estimated variance in the first case is 55, which implies an error of 5. The estimated variance in the second case is 19, which implies a larger error of 9. That is, greater the distance between a normal firm and the associated leader firm, larger is the magnitude of error, given the intensity of anchoring.

Coming back to the case we have been considering, that is, one leader firm and one normal firm, with anchoring, the equilibrium price of the normal firm falls, however, the equilibrium price of the leader firm remains unchanged.
The equilibrium price of the normal firm with anchoring is:

\[p_{St} = \frac{E_t(\delta_{St+1}) - \gamma n'_S \sigma^2_S - \gamma n'_S (1 - m) \sigma^2_L - \gamma n'_L \sigma_{LS}}{1 + r_F} \]

(5)

Adding and subtracting \(\gamma n'_S \sigma^2_S \) to the numerator of the above equation and using
\[\text{cov}(\delta_{St+1}, n'_L \delta_{Lt+1} + n'_S \delta_{St+1}) = n'_L \sigma_{LS} + n'_S \sigma^2_S \] leads to:

\[p_{St} = \frac{E_t(\delta_{St+1}) - \gamma [\text{cov}(\delta_{St+1}, n'_L \delta_{Lt+1} + n'_S \delta_{St+1}) + n'_S (1 - m) (\sigma^2_L - \sigma^2_S)]}{1 + r_F} \]

(6)

Not only the price in (6) is smaller than in (4), but there is also another interesting aspect to it. The impact of anchoring is larger, smaller the actual payoff volatility of the normal firm’s stock. That is, keeping all else the same, higher actual payoff volatility lowers the impact of anchoring. We will see shortly that this provides a potential explanation for the value premium. Of course, with correct adjustment, that is, with \(m = 1 \), there is no anchoring and (6) reduces to (4).

Expressing (6) in terms of the expected stock return leads to:

\[E_t(r_s) = r_F + \frac{\gamma}{p_{St}} [\text{cov}(\delta_{St+1}, n'_L \delta_{Lt+1} + n'_S \delta_{St+1}) + n'_S (1 - m) (\sigma^2_L - \sigma^2_S)] \]

(7)

Anchoring does not change the share price of the leader firm. By re-arranging (3), the expected return expression for the stock price of the leader firm is obtained:

\[E_t(r_L) = r_F + \frac{\gamma}{p_{Lt}} [\text{cov}(\delta_{Lt+1}, n'_L \delta_{Lt+1} + n'_S \delta_{St+1})] \]

(8)

Expected return on the total market portfolio is obtained by multiplying (7) by \(\frac{n'_L p_{St}}{n'_L p_{Lt} + n'_S p_{ST}} \) and (8) by \(\frac{n'_L p_{St}}{n'_L p_{Lt} + n'_S p_{ST}} \) and adding them:

\[E_t[r_M] = r_F + \frac{\gamma}{n'_L p_{Lt} + n'_S p_{St}} [\text{Var}(n'_L \delta_{Lt+1} + n'_S \delta_{St+1}) + n'_S^2 (1 - m) (\sigma^2_L - \sigma^2_S)] \]

(9)
Proposition 1. The expected return on the market portfolio with anchoring is larger than the expected return on the market portfolio without anchoring.

Proof.

Follows directly from (9) by realizing that with anchoring \(P_{St} \) is smaller than what it would be without anchoring, and the second term, \(n_S^2 (1 - m)(\sigma_L^2 - \sigma_S^2) \), which is positive with anchoring is equal to zero without anchoring.

Equation (9) has implications for the equity premium puzzle put forward in Mehra and Prescott (1985). We will see in section 4 that anchoring is relevant for the puzzle.

\[
\gamma = \frac{(E_t[r_M] - r_F) \cdot (n_L^t P_{Lt} + n_S^t P_{St})}{\text{Var}(n_L^t \delta_{Lt+1} + n_S^t \delta_{St+1}) + n_S^t (1 - m)(\sigma_L^2 - \sigma_S^2)}
\]

From (9), one can obtain an expression for the risk aversion coefficient, \(\gamma \), as follows:

\[
E_t(r_S) = r_F + E_t[r_M - r_F] \cdot \frac{\text{Cov}(r_S, r_M) + n_S^t (1 - m)(\sigma_L^2 - \sigma_S^2)}{\text{Var}(r_M) + n_S^t (1 - m)(\sigma_L^2 - \sigma_S^2)}
\]

\[
E_t(r_L) = r_F + E_t[r_M - r_F] \cdot \frac{\text{Cov}(r_L, r_M)}{\text{Var}(r_M) + n_S^t (1 - m)(\sigma_L^2 - \sigma_S^2)}
\]

Equations (11) and (12) are the expected return expressions for the normal stock and the leader stock respectively with anchoring. They give the expected return under the anchoring adjusted CAPM (ACAPM). It is straightforward to see that substituting \(m = 1 \) in (11) and (12) leads to the
classic CAPM expressions. That is, without anchoring ACAPM converges to CAPM, with beta being the only priced risk factor, \(\beta_S = \frac{\text{Cov}(r_S, r_M)}{\text{Var}(r_M)} \), and \(\beta_L = \frac{\text{Cov}(r_L, r_M)}{\text{Var}(r_M)} \).

Proposition 2 shows that anchoring implies that the normal firm has a larger beta-adjusted return than the leader firm.

Proposition 2 The beta-adjusted excess return on the normal stock is larger than the beta-adjusted excess return on the leader stock.

Proof.

From (12):

\[
\frac{E_t[r_L - r_F]}{\text{Cov}(r_L, r_M)} < \frac{E_t[r_M - r_F]}{\text{Var}(r_M)}
\]

and from (11)

\[
\frac{E_t[r_S - r_F]}{\text{Cov}(r_S, r_M)} > \frac{E_t[r_M - r_F]}{\text{Var}(r_M)}
\]

Hence, the beta-adjusted excess return on the normal stock must be larger than the beta-adjusted excess return on the leader stock.

In the next two sub-sections, the above results are generalized. In section 2.2, the results are generalized to include a large number of normal firms while keeping the number of leader firm at one. In section 2.3, the results are generalized to include a large number of leader firms as well. We will see that effects similar to size, value, and momentum arise naturally with anchoring with a large number of firms.
2.2 Anchoring adjusted CAPM with many normal firms

It is straightforward to extend the anchoring approach to a situation in which there are a large number of normal firms. I make the further assumption that all stocks have positive CAPM-betas. This simplifies the discussion on value effect considerably. In general, stocks almost always move with the market, and it is rare to find a stock that has a negative beta. Equation (6) remains unchanged. However, equation (9) changes slightly to the following:

\[
E_t[r_M] = r_F + \frac{\gamma}{P_{Mt}} \left[Var(\delta_{Mt+1}) + \sum_{i=1}^{k} n_i^2(1 - m)(\sigma_i^2 - \sigma_{Si}^2) \right]
\]

(13)

where \(\delta_{Mt+1} \) is the payoff associated with the aggregate market portfolio in the next period, and \(k \) is the number of normal firms in the market.

From (13), it follows that:

\[
\gamma = \frac{(E_t[r_M] - r_F) \cdot (P_{Mt})}{Var(\delta_{Mt+1}) + \sum_{i=1}^{k} n_i^2(1 - m)(\sigma_i^2 - \sigma_{Si}^2)}
\]

(14)

The corresponding expression for a normal firm \(j \)'s expected return can be obtained by substituting (14) in (7):

\[
E_t(r_{Sj}) = r_F + E_t[r_M - r_F] \cdot \frac{Cov(r_{Sj}, r_M) + \frac{n_j'(1 - m)(\sigma_L^2 - \sigma_{Si}^2)}{P_{Sj}P_{Mt}}}{Var(r_M) + \sum_{i=1}^{k} \frac{n_i^2(1 - m)(\sigma_i^2 - \sigma_{Si}^2)}{P_{Mt}^2}}
\]

(15)

The corresponding expression for the leader firm is obtained by substituting (14) in (8):

\[
E_t(r_L) = r_F + E_t[r_M - r_F] \cdot \frac{Cov(r_L, r_M)}{Var(r_M) + \sum_{i=1}^{k} \frac{n_i^2(1 - m)(\sigma_L^2 - \sigma_{Si}^2)}{P_{Mt}^2}}
\]

(16)

(15) and (16) provide the expected return expressions corresponding to a situation in which there are a large number of normal firms and one leader firm. It is straightforward to check that in the absence of the anchoring bias, that is, when \(m = 1 \), the anchoring model converges to the classic...
CAPM expressions of expected returns. In the next section, I generalize the model to include a large number of leader firms as well.

2.3 ACAPM with Q leader firms and $Q \times k$ normal firms

It is natural to expect that every sector has its own leader firm whose stock is used as a starting point to form judgments about other firms in the same sector. I assume that there are Q sectors and every sector has one leader firm. I assume that the number of normal firms in every sector is k. That is, the total number of normal firms in the market is $Q \times k$. As the total number of leader firms is Q. The total number of all firms (both leader and normal) in the market is $Q + (Q \times k)$.

Following a similar set of steps as in the previous two sections, the expected return expression for a normal firm j in sector $q \in Q$ is given by:

$$E_t(r_{qsj}) = r_F + E_t[r_M - r_F] \cdot \frac{Cov(r_{qsj}, r_M) + \frac{n_{qsj}'(1-m)(\sigma_{qL}^2 - \sigma_{qSj}^2)}{p_{qsj}P_{Mt}}}{Var(r_M) + \sum_{q=1}^{Q} \sum_{l=1}^{k} \frac{n_{qsi}^2(1-m)(\sigma_{qli}^2 - \sigma_{qsi}^2)}{p_{Mt}^2}}$$

(17)

The corresponding expression for the leader firm in sector q is given by:

$$E_t(r_{ql}) = r_F + E_t[r_M - r_F] \cdot \frac{Cov(r_{ql}, r_M)}{Var(r_M) + \sum_{q=1}^{Q} \sum_{l=1}^{k} \frac{n_{qsi}^2(1-m)(\sigma_{qli}^2 - \sigma_{qsi}^2)}{p_{Mt}^2}}$$

(18)

(17) and (18) are the relevant expected return expressions under ACAPM. As before, it is easy to see that, in the absence of the anchoring bias, that is, if $m = 1$, ACAPM expressions converge to the classic CAPM expressions.

Section 3 shows how the effects similar to size, value, and momentum arise with ACAPM. However, before tackling that, section 2.4 presents an alternate derivation of ACAPM by using portfolio expected returns and standard deviations.
2.4 ACAPM: A derivation based on portfolio expected return and standard deviation

In this section, I show that ACAPM can also be derived by directly considering returns and variances of returns instead of starting from the decisions primitives of expected payoffs and payoff variances as needed for utility maximization. With anchoring in judgments regarding payoff variances, the return variance of a normal firm stock \(i \) in sector \(q \) is:

\[
\hat{\sigma}^2_{Rqi} = \frac{(1 - m)\sigma^2_{Lq} + m\sigma^2_{qi}}{p^2_{qi}}
\]

where \(\hat{\sigma}^2_{Rqi} \) is the estimated return variance of a normal stock \(i \) in sector \(q \), \(\sigma^2_{Lq} \) is the payoff variance of the leader stock, \(\sigma^2_{qi} \) is the payoff variance of the normal stock, and \(p_{qi} \) is the price of the normal stock. It is easy to see that the estimated return variance is larger than the actual return variance with anchoring:

\[
\hat{\sigma}^2_{Rqi} = \frac{(1 - m)\sigma^2_{Lq}}{p^2_{qi}} + m\sigma^2_{Rqi}
\]

As \(\sigma^2_{Lq} \) is larger than \(\sigma^2_{qi} \), it follows:

\[
\hat{\sigma}^2_{Rqi} > \sigma^2_{Rqi}
\]

ACAPM can be derived by minimizing portfolio standard deviation for a given level of expected return.

I illustrate the two asset case below with one leader stock and one normal stock. Generalizations to large number of normal and leader stocks are straightforward. The portfolio standard deviation is:

\[
\sigma_0 = \sqrt{w^2_L\sigma^2_{RL} + w^2_S\hat{\sigma}^2_{RS} + 2w_Lw_S\text{Cov}(r_L,r_S)}
\]

where \(w_L \) and \(w_S \) are portfolio weights of leader and normal stock respectively. \(\sigma^2_{RL} \) is the variance of leader stock’s return, \(\hat{\sigma}^2_{RS} \) is the judgment of the anchoring prone investor regarding the return variance of normal stock.
Anchoring bias implies the following:

$$\hat{\sigma}_{RS}^2 = \frac{(1 - m)\sigma_L^2}{P_S^2} + m\sigma_{RS}^2 > \sigma_{RS}^2$$

where σ_L^2 is the payoff variance of the leader firm’s stock, and P_S is the normal stock’s price.

The optimization problem of the representative agent is as follows:

$$L = \sigma_0 + \lambda(E(r_0) - w_LE(r_L) - w_SE(r_S) - (1 - w_L - w_S)r_F)$$

The first order conditions are:

$$\frac{1}{\sigma_0}(w_L\sigma_{RL}^2 + w_SCov(r_L, r_S)) = \lambda(E(r_L) - r_F)$$

$$\frac{1}{\sigma_0}\left(w_S(1 - m)\sigma_L^2 + w_LCov(r_L, r_S)\right) = \lambda(E(r_S) - r_F)$$

Multiply the first equation with w_L, multiply the second equation with w_S, add them together and carry out a little algebraic manipulation to arrive at the following result at the point where $w_L + w_S = 1$:

$$\frac{1}{\lambda} = \frac{[E[r_M] - r_F]\sigma_M}{\sigma_M^2 + \frac{w_S^2(1 - m)(\sigma_L^2 - \sigma_S^2)}{P_S^2}}$$

where $E[r_M]$ and σ_M identify the portfolio expected return and the portfolio standard deviation at the point $w_L + w_S = 1$. That is, they correspond to the market portfolio. σ_S^2 is the payoff variance of the normal stock. Note, if there is no anchoring bias, then the expression corresponding to the classical CAPM is obtained: $$\frac{1}{\lambda} = \frac{[E[r_M] - r_F]}{\sigma_M}.$$ As $w_S = \frac{n_rP_r}{P_M}$, it follows that:

$$\frac{1}{\lambda} = \frac{[E[r_M] - r_F]\sigma_M}{\sigma_M^2 + \frac{n_r^2(1 - m)(\sigma_L^2 - \sigma_S^2)}{P_M^2}}$$
Substituting $\frac{1}{A}$ in the first order conditions and carrying out a little algebraic manipulation leads to:

\[
E_t(r_S) = r_F + E_t[r_M - r_F] \cdot \frac{Cov(r_S, r_M) + n_S' (1 - m)(\sigma^2_L - \sigma^2_S)}{Var(r_M) + \frac{n^2_S (1 - m)(\sigma^2_L - \sigma^2_S)}{P_M^2}}
\]

\[
E_t(r_L) = r_F + E_t[r_M - r_F] \cdot \frac{Cov(r_L, r_M)}{Var(r_M) + \frac{n^2_S (1 - m)(\sigma^2_L - \sigma^2_S)}{P_M^2}}
\]

The above two equations are identical to equations 11 and 12 respectively.

In the next section, I show that effects akin to size, value, and momentum arise with the anchoring adjusted CAPM.

3. The Size, Value, and Momentum Effects under ACAPM

In equations (17) and (15), effects that correspond to the well documented size, value, and momentum premiums can be easily seen.

Size premium means that beta-adjusted excess returns on small-cap stocks are larger than beta-adjusted excess returns on large-cap stocks. To demonstrate the existence of the size effect in ACAPM, we need to see whether beta-adjusted excess returns on smaller-size normal firms are larger than the beta-adjusted excess returns on relatively larger-size normal firms.

The size effect with anchoring can be easily seen after a little algebraic manipulation of (17). Beta-adjusted excess return on a normal firm’s stock is:

\[
BetaAdjusted excess return = \frac{E(r_{qSj}) - r_F}{Cov(r_{qSj}, r_M)} \cdot \frac{Cov(r_{qSj}, r_M)}{Var(r_M)}
\]

Beta-adjusted excess return on a normal firm’s stock can be written as:

\[
BetaAdjusted excess return (normal stock) = [h] \cdot [1 + g]
\]
where \(g = \frac{n^i_q s_j (1-m)(\sigma^2_{qL} - \sigma^2_{qSj})}{p_{qSj} (1-m) \text{Cov}(\sigma^2_{qL} - \sigma^2_{qSj})} = \frac{n^i_q s_j (1-m)(\sigma^2_{qL} - \sigma^2_{qSj})}{\text{Cov(stock's payoff, market payoff)}} \)

and \(h = \frac{\text{Var}(r_M) - \frac{\text{Var}(r_F)}{\text{Var}(r_M) + \Sigma^i_{n=1} \Sigma^k_{i=1} n^2_{qSj} (1-m) \frac{(\sigma^2_{qL} - \sigma^2_{qSj})}{p^2_{Mt}}} \right)} = \text{constant} \)

In a given cross-section of stocks, \(h \) is a constant. So, in order to make predictions about what happens to beta-adjusted return when size varies, we need to look at how \(g \) changes with size.

Clearly, \(g \) varies inversely with \(\sigma^2_{qSj} \) and \(\text{Cov(stock's payoff, market payoff)} \). That is, stocks that have higher payoff variance and payoff covariance with market do worse than stocks that have lower payoff variance and payoff covariance with market. To take an illustrative example of how they change with size, imagine that there are two firms that are identical except for size. Specifically, there is a larger size stock with payoffs exactly two times the payoffs of a smaller stock. It follows that the payoff variance of the larger stock is 4 times the payoff variance of the smaller stock, whereas the payoff covariance of the larger stock with the market is also larger than the payoff covariance of the smaller stock with the market. That is, keeping everything else the same, the payoff variance and the payoff covariance increase with size. It follows that \(g \) falls with size. Consequently, the beta-adjusted return on the larger stock is smaller than the beta-adjusted return on the smaller stock. This is the size effect. Hence, anchoring adjusted CAPM offers a straightforward explanation for this well-observed anomaly in financial markets.

Proposition 3 (The Size Premium):

Beta-adjusted excess returns with anchoring fall as payoff size increases. In the absence of anchoring, beta-adjusted excess returns do not vary with size and are always equal to the market risk premium.
Proof.

$$BetaAdjusted\ excess\ return = \frac{E(r_{qsj}) - r_F}{Cov(r_{qsj}, r_M) / Var(r_M)}$$

Substituting from (17) and re-arranging leads to:

$$BetaAdjusted\ excess\ return = \left[\frac{Var(r_M) \cdot E_t[r_M - r_F]}{Var(r_M) + \sum_{q=1}^Q \sum_{i=1}^k \frac{n_{qsi}^2 (1 - m)(\sigma_{qL}^2 - \sigma_{qsi}^2)}{p_{Mt}^2} \cdot \left[1 + \frac{n_{qsj}^2 (1 - m)(\sigma_{qL}^2 - \sigma_{qsj}^2)}{p_{qsjt}^2 p_{Mt} \cdot Cov(r_{qsj}, r_M)} \right] \right]$$

That is, beta-adjusted excess return can be written in the form:

$$BetaAdjusted\ excess\ return = [h] \cdot [1 + g]$$

where $g = \frac{n_{qsj}^2 (1 - m)(\sigma_{qL}^2 - \sigma_{qsj}^2)}{p_{qsjt}^2 p_{Mt} \cdot Cov(r_{qsj}, r_M)}$ and $h = \frac{Var(r_M) \cdot E_t[r_M - r_F]}{Var(r_M) + \sum_{q=1}^Q \sum_{i=1}^k \frac{n_{qsi}^2 (1 - m)(\sigma_{qL}^2 - \sigma_{qsi}^2)}{p_{Mt}^2}} = constant$

Clearly, as payoff variance and covariance with the market increase, g falls. It follows that beta-adjusted excess returns must fall as payoff size increases when there is anchoring bias. In the absence of anchoring bias, that is, with $m = 1$, it follows that $g = 0$ and $h = E[r_M - r_F]$. Hence, in the absence of anchoring, beta-adjusted excess return does not change with payoff covariance and payoff variance, and remains equal to the market risk premium.

The mechanism that leads to the size premium with anchoring makes sharp testable predictions. Anchoring adjusted CAPM predicts that stock-splits, which merely reduce the size of the payoffs, should lead to an increase in beta-adjusted returns, and reverse stock-splits, which
increase the size of the payoffs, must lead to a fall in beta-adjusted returns. We will see in section 6 that existing empirical evidence strongly confirms both predictions.

As mentioned in the introduction value premium means that value firms earn higher beta-adjusted excess returns than growth firms. Value firms have higher book-to-market ratios when compared with growth firms. Among firms of similar size, that is, firms having similar prices and the number of shares outstanding (and comparable payoffs), a growth firm would have a lower book value of equity, and in general, a smaller asset base. As the name suggests, a growth firm is attempting to increase its asset base at a rapid pace. Consequently, it has higher payoff volatility. Keeping other things the same, higher payoff volatility reduces the impact of anchoring. Hence, an effect akin to the value premium naturally arises with anchoring. The intuition of how value premium arises with anchoring can also be easily seen. Controlling for size, increasing the payoff variance also increases the payoff covariance with the market; however, the payoff covariance increases by a smaller factor. Clearly, \(g \) falls as payoff variance (and consequently, payoff covariance with the market) is increased. As growth stocks tend to have higher payoff variances, it follows that beta-adjusted returns on growth stocks are smaller. This is the value premium, and it arises as naturally with anchoring as the size premium discussed earlier. For both the size and value premiums, one needs to look at the payoff variance and the payoff covariance, and consider how they vary with size in the first case, and with growth in the second case.

Proposition 4: (The Value Premium):

Beta-adjusted excess return on stocks with smaller payoff volatility is larger than the beta-adjusted excess returns on stocks with higher payoff volatility. In the absence of anchoring, beta-adjusted returns do not vary with payoff volatility and are always equal to the market risk premium.

Proof.

From the proof of proposition 3, we know that:

\[\text{BetaAdjusted excess return} = [h] \cdot [1 + g] \]
where \(g = \frac{n_{qSj}(1-m)(\sigma_{qL}^2-\sigma_{qSj}^2)}{p_{qSj}r_{PM}\text{Cov}(r_{qSj},r_{PM})} \) and \(h = \frac{\text{Var}(r_{PM})E_t[r_{PM}-r_t]}{\text{Var}(r_{PM})+\sum_{q=1}^{n_q} \sum_{l=1}^{n_{qSj}} n_{qSj}(1-m)(\sigma_{qL}^2-\sigma_{qSj}^2)} = \text{constant} \)

Note, that \(g = \frac{n_{qSj}(1-m)(\sigma_{qL}^2-\sigma_{qSj}^2)}{\text{Cov}(stock\’s\ payoff, market\ payoff)} \). As payoff volatility rises, \(g \) falls because numerator falls and denominator rises. It follows that beta-adjusted excess return falls as payoff volatility rises, holding all else constant.

Corollary 4.1: (The Value Premium Falls with Size):

At larger payoff sizes, the impact of an increase in payoff volatility (due to a given change in payoffs) on beta-adjusted excess returns is smaller.

Proposition 4 shows that value premium arises due to higher payoff volatility of growth firms. However, the relative impact of increasing payoff dispersion around the mean by a given magnitude is smaller at larger sizes. Arguably, adding a new project may increase the payoff dispersion around the mean. To see this clearly, suppose a firm is considering adding a project that increases payoffs by 50 in the best state and reduces payoffs by 50 in the worst state. Suppose the existing payoffs are: 100, 150, and 200 with 100 being the payoff in the worst state and 200 being the payoff in the best state. So, with the addition of the new project, the possible payoffs become 50, 150, and 250. Now, assume that the original payoffs (before the project is added) are doubled to 200, 300, and 400. The addition of the same project with the doubled payoffs lead to the following possible payoffs: 150, 300, and 450. Clearly, the relative impact of adding the same project on payoffs is smaller at the higher size. In the first case, adding the new project multiplies the payoff variance by 4 as it increases from 1666.667 to 6666.667. In the second case, the payoff variance increases from 6666.667 to 15000. That is, an increase by a factor of approx. 2.25. In other words, at larger size the impact of the same magnitude growth is smaller than its impact at smaller size. So, with anchoring, one expects the value premium to be weaker at larger sizes.

The difference between growth and value firms of the same size arise due to the fact that growth firms are aggressively pursuing new projects, whereas the value firms are not. However, the
relative impact of adding projects on payoff dispersion falls as size increases. So, the impact of an equivalent magnitude change in payoffs on payoff variance (and consequently payoff covariance with the market) gets smaller at higher sizes. It follows that, if the anchoring approach is correct, one expects value premium to decline with size. Intriguingly, this is exactly what the empirical evidence suggests. Fama and French (2004) among others confirm that the value premium declines with size.

The essence of proposition 3 and proposition 4 can be easily illustrated with an example. Suppose there is a stock with the next period possible payoffs of 100, 150, and 200 with equal chance of each payoff. It follows that the variance of payoffs is 1666.667. Assume that there are 5 other stocks in the market, and the covariances of the stock’s payoffs with these other stocks are 2000, 333.33, 500, 1000, 1333.33 respectively. If the size of the stock’s payoff is doubled, that is, the possible next period payoffs are now 200, 300, and 400, then the payoff variance gets multiplied by 4. That is, the new payoff variance is 6666.667. All covariances with other stocks get multiplied by 2. That is, the new covariances are 4000, 666.66, 1000, 2000, and 2666.667. Assuming that every stock has exactly one share outstanding, the ratio of payoff variance to payoff covariance with the market at small and large size can be calculated as follows:

\[
\frac{\sigma^2_{qsj}}{\text{Cov(stock’s payoff, market payoff)}} (\text{SmallSize})
\]

\[
= \frac{1666.667}{1666.667 + 2000 + 333.33 + 500 + 1000 + 1333.33} = 0.24
\]

\[
\frac{\sigma^2_{qsj}}{\text{Cov(stock’s payoff, market payoff)}} (\text{LargeSize})
\]

\[
= \frac{6666.667}{6666.667 + 4000 + 666.66 + 1000 + 2000 + 2666.667} = 0.39
\]

One can see that both the payoff variance and the payoff covariance with the market increase with size. It follows that \(g \) falls, leading to a fall in beta-adjusted returns with size.

To see the value effect, suppose that size does not change; however, the payoffs are made more volatile. For example, suppose the next period payoffs are now 50, 150, and 250 instead of 100, 150, and 200. Note, that there is no change in expected payoff which remains at 150. The payoff variance with this change is 6666.667. That is, the payoff variance is now 4 times of its earlier
value which is 1666.667. Of course, covariances also change; however, they increase by a factor less than 4, assuming that there is no change in the payoffs associated with other stocks. We cannot calculate the exact values of these new covariances with other stocks without knowing what these other payoffs are; however, we know that they must increase by a factor that is smaller than the factor by which the variance changes. Consequently, the numerator in g falls and the denominator increases if the volatility of payoffs increases. As growth stocks tend to have higher payoff volatilities, g is lower for them. That is, growth stocks tend to have lower beta-adjusted returns. This is the value effect with anchoring. As discussed earlier, the value effect should decline with size if ACAPM is correct as the same magnitude growth increases the payoff variance by a smaller factor at larger sizes.

As proposition 2, proposition 3, and proposition 4 show, the size and value premiums arise naturally with anchoring. Proposition 5 shows that an effect similar to the momentum effect can also be seen in (17).

Proposition 5: (The Momentum Effect):

Low “m” stocks, that is, stocks that are more strongly anchored to their respective leader stocks, earn higher beta-adjusted excess returns when compared with high “m” stocks.

Proof.

As discussed in the proof of proposition 3, beta-adjusted excess return, in a given cross-section of stocks, can be written as:

$$BetaAdjusted excess return = [h] \cdot [1 + g]$$

where $g = \frac{n_q^T(1-m)(\sigma_{QL}^2 - \sigma_{QS}^2)}{P_{qSt} P_{Mt} \cdot Cov(r_{qSt}, r_M)} = \frac{n_q^T(1-m)(\sigma_{QL}^2 - \sigma_{QS}^2)}{Cov(stock's payoff, market payoff)}$

and $h = \frac{Var(r_M)E[r_{M-r_F}]}{Var(r_M) + \sum_{q=1}^{Q} \sum_{i=1}^{r_{Qq}} \frac{n_q^T(1-m)(\sigma_{QL}^2 - \sigma_{QS}^2)}{P_{Mt}}} = constant$

It can be seen directly from above that low “m” stocks earn higher beta-adjusted returns in a given cross-section of stocks, holding other parameters constant.
The effect described in proposition 5 can be described as the momentum effect. Proposition 5 says that, in a given cross-section of stocks, keeping everything else the same, low “m” stock do better than high “m” stocks. But, how can we identify low vs high “m” stocks? Plausibly, we can identify them by looking at their recent performances. Stocks that have received unusually good news recently are “winning stocks”, and stocks that have received unusually bad news recently are “losing stocks”. Winning stocks are likely to get more strongly anchored to the leader stock as their recent success makes them more like the leader. For losing stocks, their recent bad spell makes them less like the leader. That is, “m” falls for winning stocks and rises for losing stocks. So, winning stocks continue to outperform losing stocks till the effect of differential news on “m” dissipates, and “m” returns to its normal level. Of course, there could be multiple ways of identifying “low m” vs. “high m” stocks. Plausibly, stocks with prices at or closest to their 52-week high can be considered as stocks with low “m” values, and stocks with prices at or near their 52-week low, can be considered as high “m” stocks. It takes a series of positive news to get to the 52 week high, and a series of negative news to get to the 52 week low.

The ACAPM based explanation for the momentum effect is related to the explanations offered in Barberis, Shleifer, and Vishny (1998), and Daniel, Hirshleifer, and Subrahmanyam (1998). The explanation in Barberis et al (1998) is based on the idea that traders are slow to update their priors when new information arrives. That is, traders under-react to new information. In contrast, Daniel et al (1998) argue that momentum occurs because traders overreact to prior information if the new information confirms it. With ACAPM, the payoff volatility judgment about a normal firm’s stock is anchored to the payoff volatility of a well-established stock in the same sector:

$$\hat{\sigma}_S^2 = (1 - m)\sigma_L^2 + m\sigma_S^2$$

One can see both under-reaction and overreaction in the above expression. Firm specific news, that is, news specific to σ_S^2 is under-reacted to. However, an anchoring prone trader also reacts to unrelated news. He overreacts by also responding to news only related to the leader firm. That is, he overreacts by responding to news only related to σ_L^2. Even though ACAPM explanation of the momentum effect is different from previous explanations, it has aspects of under-reaction and overreaction that other explanations appeal to.
Without anchoring, ACAPM converges to CAPM, and the size, value, and momentum effects disappear. This can be seen directly from (17) by substituting $m = 1$ in (17). Hence, CAPM is a special case of ACAPM.

In the next section, the differences between ACAPM and CAPM is illustrated with a numerical example.

4. Anchoring Adjusted CAPM: A Numerical Example

In this section, a numerical example is presented, which considers the implications of ACAMP and CAPM when there is one leader firm and three normal firms of similar size in the market. It is shown that under CAPM, beta-adjusted excess returns of all four firms are equal to each other, whereas, under ACAPM beta-adjusted excess returns are larger for normal firms when compared with the leader firm. The three normal firms, although of similar size (similar expected payoffs and market capitalizations) vary in one crucial way. Their payoff variances are different with S1 having the highest payoff variance, followed by S2, and then by S3. We will see that, in line with the value premium, less volatile payoffs lead to higher beta-adjusted excess returns among similar size firms.

Suppose there are four types of stocks with next period payoffs as shown in Panel A of Table 1. Type “Large” belongs to a large well-established firm with large cash flows. Types S1, S2, and S3 are smaller firms with equal expected payoffs, however, their payoff volatilities are 416.667, 216.667, and 66.667 respectively. That is, among the small firms, S1 is the most volatile, followed by S2, and then S3. Panel B of Table 1 shows the associated covariance matrix. The risk aversion parameter is assumed to be 0.001, and the one period risk-free rate is 0.01. Every type is assumed to have exactly one share outstanding. Another way of seeing the difference between S1, S2, and S3 is to calculate the quantity: $\frac{\text{Variance (stock payoff)}}{\text{Covariance (stock payoff, market payoff)}}$. The values for S1, S2, and S3 are 0.238, 0.161, and 0.095 respectively. S1 is akin to growth stock due to high payoff volatility, whereas S3 is similar to a value stock due to low payoff volatility. One can verify that g is smallest for S1, and largest for S3. So, beta-adjusted excess returns on S3 must be larger than the beta-adjusted excess returns on S1 with anchoring, in line with the value premium.
Prices implied by CAPM can be calculated for each stock from (3) and (4) and are shown in Panel C of Table 1. Panel C also shows expected returns, the value of the aggregate market portfolio, the variance of the market portfolio’s return, and the covariance of each stock’s return with the market portfolio’s return. Panel D shows each stocks beta and the corresponding beta-adjusted excess return. It can be seen that all stocks have the same beta-adjusted excess return, which is equal to the excess return on the market portfolio.

(Insert Table 1 here)

The key prediction of CAPM can be seen in the last line of Table 1. That is, beta-adjusted excess returns of all assets must be equal. In other words, beta is the only measure of priced risk in CAPM. And, investors are rewarded based on their exposure to beta-risk. Once beta-risk has been accounted for, there is no additional return.

Next, we will see what happens with anchoring. Table 2 shows the results from ACAPM. Everything is kept the same except that now anchoring is allowed in variance judgments. The anchoring prone marginal investor starts from the variance of the large firm and subtracts from it to form variance judgments about the small stocks. For the purpose of this illustration, I assume that he goes 90% of the way. That is, $m = 0.90$. As can be seen, price of the large firm does not change, however, the prices of small firms change, and can be calculated from (6). As expected, expected return on the large firm’s stock does not change. However, as the market portfolio changes, all betas change. Expected returns on small firms can be calculated from (15).

As can be seen from Table 2, beta-adjusted excess returns on normal stocks are larger than the beta-adjusted excess return on the leader stock. Furthermore, the value premium can be seen in Table 2 among normal firms. Highest payoff volatility S1 has the smallest excess return of 0.03425, whereas the lowest volatility S3 has the highest excess return of 0.039274. As value stocks typically have lower payoff volatility than growth stocks, in this example, S3 is like a value stock, and S1 is like a growth stock.

(Insert Table 2 Here)
5. The Equity Premium Puzzle

Since its identification in Mehra and Prescott (1985), a large body of research has explored what is known in the literature as the equity premium puzzle. It refers to the fact that historical average return on equities (around 7%) is so large when compared with the historical average risk-free rate (around 1%) that it implies an implausibly large value of the risk aversion parameter. Mehra and Prescott (1985) estimate that a risk-aversion parameter of more than 30 is required, whereas a much smaller value of only about 1 seems reasonable.

If one is unaware of the phenomenon of anchoring, and he uses CAPM to estimate risk-aversion then he would use the following equation:

\[E_t[r_M] = r_F + \frac{\gamma}{P_{Mt}}[Var(\delta_{Mt+1})] \] \hspace{1cm} (19)

One may recover the corresponding value of \(\gamma \), the risk-aversion parameter from (19) by substituting for all other variables and parameters in (19). The equity premium puzzle, when translated in the CAPM context, is that the recovered value of risk-aversion parameter is implausibly large.

A key prediction of ACAPM is that the average return on the market portfolio is larger than what can be justified by market volatility. That is, with CAPM adjusted for anchoring, the expected return on the market portfolio is given by:

\[E_t[r_M] = r_F + \frac{\gamma}{P_{Mt}}[Var(\delta_{Mt+1}) + \sum_{q=1}^{k} \sum_{l=1}^{Q} n_{ql}^2 (1 - m) (\sigma_{ql}^2 - \sigma_{qS_l}^2)] \] \hspace{1cm} (20)

A comparison of (20) and (19) shows that, with anchoring accounted for, a much smaller value of the risk-aversion parameter is required to justify the observed equity premium. Hence, ACAPM is relevant for the equity premium puzzle.

6. ACAPM, Stock-Splits, and Reverse Stock-Splits

A stock-split increases the number of shares proportionally. In a 2-for-1 split, a person holding one share now holds two shares. In a 3-for-1 split, a person holding one share ends up with three shares
and so on. A reverse stock-split is the exact opposite of a stock-split. Stock-splits and reverse stock-splits appear to be merely changes in denomination, that is, they seem to be accounting changes only with no real impact on returns. With CAPM, stock-splits and reverse stock-splits do not change expected returns. To see this clearly, consider equation (4), which is reproduced below:

\[P_{St} = \frac{E_t(\delta_{St+1}) - \gamma nS'\sigma_S^2 - \gamma nL'\sigma_{LS}}{1 + r_F} \]

(21)

A 2-for-1 split in the small firm’s stock divides the expected payoff by 2, divides the variance by 4 and covariance by 2, while multiplying the number of shares outstanding by 2. That is, a 2-for-1 split leads to:

\[P_{St}^{split} = \frac{E_t(\delta_{St+1})}{2} - \gamma \frac{2nS'\sigma_S^2}{4} - \gamma \frac{nL'\sigma_{LS}}{2} \]

(22)

It follows that \(P_{St}^{split} = \frac{P_{St}}{2} \).

That is, the price with split is exactly half of what the price would have been without the split. As both the expected payoff and the price are divided by two, there is no change in expected returns associated with a stock-split under CAPM. An equivalent conclusion follows for a reverse stock-split as well. For a reverse split, both the expected payoffs and the price increase by the same factor.

With anchoring, things change considerably. Recall, that beta-adjusted excess return with anchoring is given by:

\[BetaAdjusted \ excess \ return \ (normal \ stock) = [h] \cdot [1 + g] \]

where \(g = \frac{n_{qS_j}(1-m)(\sigma_{qL}^2 - \sigma_{qS_j}^2)}{p_{qSt}^{P_Mt} \cdot Cov(r_{qS_j}, r_{M})} = \frac{n_{qS_j}(1-m)(\sigma_{qL}^2 - \sigma_{qS_j}^2)}{Cov(stock's \ payoff, market \ payoff)} \)

and \(h = \frac{Var(r_{M})E_t[r_{M} - r_F]}{Var(r_{M}) + \sum_{q=1}^{Q} \Sigma_{i=1}^{n_{qS_j}} \frac{Y_k n_{qS_j}(1-m)(\sigma_{qL}^2 - \sigma_{qS_i}^2)}{p_{qS_i}^{P_Mt}}} = constant \)

The key here is to look at what happens to the payoff variance and the payoff covariance with the market in a stock-split.
A 2-for-1 split divides σ_{qSj}^2 by 4, and divides the payoff covariance by 2 while multiplying the number of shares outstanding by 2. Hence, g rises, which implies an increase in the beta-adjusted return. The opposite conclusion is reached for the case of a reverse stock-split. It follows that ACAPM predicts that a stock-split increases beta-adjusted return, and a reverse stock-split reduces beta-adjusted returns. Furthermore, if the anchoring approach is correct, then one expects to see an increase in return volatility after the split. This is because the price falls more than the fall in expected payoffs causing an increase in volatility of returns. For reverse stock-splits, if the anchoring approach is correct, then one expects to see a fall in return volatility. This is because price rises more than payoffs causing a decline in return volatility.

7. Conclusions

In this article, an anchoring adjusted Capital Asset Pricing Model is put forward. Adjusting CAPM for anchoring provides a plausible unified explanation for the size, value, and momentum effects in the stock market. The anchoring model predicts that the expected return on the market portfolio must be larger than what can be justified by observed market volatility alone. Hence, the anchoring approach is relevant for the equity premium puzzle. The anchoring approach also predicts that stock-splits have positive abnormal returns, and reverse stock-splits have negative abnormal returns. Existing empirical evidence strongly supports these predictions.
References

Table 1
CAPM Returns and Prices

\(\gamma = 0.001, \text{and } r_f = 0.01 \)

Panel A: Payoffs

<table>
<thead>
<tr>
<th></th>
<th>Large</th>
<th>S1</th>
<th>S2</th>
<th>S3</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>150</td>
<td>5</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>150</td>
<td>200</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>200</td>
<td></td>
<td>55</td>
<td>50</td>
<td>40</td>
</tr>
</tbody>
</table>

Expected Payoff | 150 | 30 | 30 | 30 |

Panel B: The Covariance Matrix

<table>
<thead>
<tr>
<th></th>
<th>Large</th>
<th>S1</th>
<th>S2</th>
<th>S3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Large</td>
<td>1666.667</td>
<td>833.333</td>
<td>666.667</td>
<td>333.333</td>
</tr>
<tr>
<td>S1</td>
<td>833.333</td>
<td>416.667</td>
<td>333.333</td>
<td>166.667</td>
</tr>
<tr>
<td>S2</td>
<td>666.667</td>
<td>333.333</td>
<td>216.667</td>
<td>133.333</td>
</tr>
<tr>
<td>S3</td>
<td>333.333</td>
<td>166.667</td>
<td>133.333</td>
<td>66.667</td>
</tr>
</tbody>
</table>

Panel C: CAPM Prices

<table>
<thead>
<tr>
<th></th>
<th>Large</th>
<th>S1</th>
<th>S2</th>
<th>S3</th>
<th>Mkt Portfolio Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Price</td>
<td>145.0495</td>
<td>27.9703</td>
<td>28.3168</td>
<td>29.0099</td>
<td>230.3465</td>
</tr>
<tr>
<td>Expected Returns</td>
<td>0.03413</td>
<td>0.0726</td>
<td>0.0594</td>
<td>0.03413</td>
<td>0.0419</td>
</tr>
<tr>
<td>Variance of Mkt Portfolio's Return</td>
<td>0.1385</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Covariance with Mkt Portfolio's Return</td>
<td>0.10475</td>
<td>0.2716</td>
<td>0.2146</td>
<td>0.10475</td>
<td>0.1385</td>
</tr>
</tbody>
</table>

Panel D: CAPM Beta and Beta-Adjusted Excess Returns

<table>
<thead>
<tr>
<th></th>
<th>Large</th>
<th>S1</th>
<th>S2</th>
<th>S3</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CAPM Beta</td>
<td>0.75622</td>
<td>1.96081</td>
<td>1.54945</td>
<td>0.75622</td>
<td>1</td>
</tr>
<tr>
<td>Beta Adjusted Excess Returns</td>
<td>0.03191</td>
<td>0.03191</td>
<td>0.03191</td>
<td>0.03191</td>
<td>0.03191</td>
</tr>
</tbody>
</table>
Table 2
ACAPM Returns and Prices
\(\gamma = 0.001, r_F = 0.01, \text{and } m = 0.90 \)

Panel A: ACAPM Prices

<table>
<thead>
<tr>
<th></th>
<th>Large</th>
<th>S1</th>
<th>S2</th>
<th>S3</th>
<th>Mkt Portfolio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Price</td>
<td>145.0495</td>
<td>27.84653</td>
<td>28.18722</td>
<td>28.85149</td>
<td>229.9257</td>
</tr>
<tr>
<td>Expected Return</td>
<td>0.03413</td>
<td>0.0773</td>
<td>0.0647</td>
<td>0.0398</td>
<td>0.0438</td>
</tr>
<tr>
<td>Covariance of Mkt Portfolio’s Return</td>
<td>0.139031</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Covariance with Mkt Portfolio’s Return</td>
<td>0.1049</td>
<td>0.2733</td>
<td>0.2161</td>
<td>0.1055</td>
<td>0.139031</td>
</tr>
</tbody>
</table>

Panel B: CAPM Beta and Beta Adjusted Returns under ACAPM

<table>
<thead>
<tr>
<th></th>
<th>Large</th>
<th>S1</th>
<th>S2</th>
<th>S3</th>
<th>Mkt Portfolio</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAPM Beta</td>
<td>0.7548</td>
<td>1.9659</td>
<td>1.5542</td>
<td>0.75898</td>
<td>1</td>
</tr>
<tr>
<td>Beta Adjusted Excess Returns</td>
<td>0.031967</td>
<td>0.03425</td>
<td>0.035164</td>
<td>0.039274</td>
<td>0.0338</td>
</tr>
</tbody>
</table>