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Abstract

This paper presents a theoretical investigation into why losing weight is so difficult even in the absence

of rational addiction, time-inconsistent preferences or bounded rationality. We add to the existing literature

by focusing on the role that individual metabolism has on weight loss. The results from the theoretical

model provides multiple steady states and a threshold revealing a situation of ”obesity traps” that the

individual must surpass in order to successfully lose weight. Given such a threshold we investigate if a

short-run incentive scheme for weight loss is able to promote persistent weight-losses and what features

an incentive scheme should have in order to sustain permanent weight loss. We find that a lump-sum

incentive scheme is not always able to lead the individual to permanent weight loss. On the contrary,

a non-decreasing incentive scheme with rewards for weight loss according to levels of body weight (i.e.

progressive), is able to sustain a steady state reduction in body weight and food consumption.

JEL-Classification: D91, I12, I18

Keywords: Obesity, Dieting, Optimal Control, Multiple Equilibria.

∗I am thankful to Davide Dragone, Enrico Bernardi, Francesca Barigozzi, Kristian Bolin, and seminar participants at University

of Bologna, University of Gothenburg, the Summer School of Health Economics and Game Theory, the Institute for New Economic

Thinking (INET), the Center for International Governance Innovation (CIGI) for insightful comments.
†Corresponding author. Centre for Health Economics, University of Gothenburg, Vasagatan 1, S-41124 Goteborg, Sweden

E-mail address: paolonicola.barbieri@economics.gu.se.

1



1 Introduction

Over the last decade the incidence of obesity has increased dramatically (Ogden and Carroll, 2010, von

Ruesten et al., 2011), leading to greater concerns about the promotion of efficient ways to invert this trend

by means of dieting (Baradel et al., 2009, Bish et al., 2012) or physical activity (Mozaffarian et al., 2011).

However, although attempts at losing weight may have increased, more than 50% of obese individuals still

struggle to lose weight permanently (Kruger et al., 2004). Due to these unsuccessful attempts and in order to

facilitate weight-loss efforts, recent insights deriving from behavioral economics (Loewenstein et al., 2007) have

been used to promote the reduction of excessive weight by motivating individuals to follow a type of behavior

that they would not naturally follow thanks to monetary and non-monetary incentives1 (Augurzky et al.,

2012, Cawley and Price, 2013, John et al., 2011, Volpp et al., 2008). Unfortunately, despite promising short-

run results and the fact that weight loss was indeed achieved during experiments, substantial weight regain

was found after the incentive was removed (John et al., 2011, Volpp et al., 2008, Cawley and Price, 2013),

proving that, despite being sustained by incentives, individuals were still failing to lose weight permanently.

This poses the questions of why weight loss is so difficult to achieve, what factors influence weight loss and

how they even manage to negate the effects of short-run incentives. Current literature relates difficulties

in losing weight to several possible explanations such as: time-inconsistent preferences (Dodd, 2008, Ikeda

et al., 2010); willpower depletion (Ozdenoren et al., 2006); the interaction between two conflicting systems

driving human behavior (cognitive vs. affective) (Loewenstein and O’Donoghue, 2004, Ruhm, 2012); or, more

generally, to the failure of individuals to rationally balance current benefits and future costs related to food

consumption and body weight (O’Donoghue and Rabin, 1999).

In this paper we add to existing literature by proposing another, complementary, explanation for why

dieting is so difficult, even in the absence of rational addiction, time-inconsistent preferences or bounded

rationality. To do so we develop an original assumption regarding an individual’s metabolism. Current

economic literature considers individual metabolism to be linearly related to body weight, such that the more

an individual weighs the higher his or her caloric expenditure will be (Dragone, 2009, Levy, 2002, Harris

and Benedict, 1918). The key assumption is that calories expended by the metabolism in order to keep

the basic functions of the organism running (i.e. basal metabolic rate), is a linear and increasing function

of body weight; meaning that of two individuals of a similar age, the one with a higher body weight (i.e.

the one with the greater “weight stock”) will burn a higher fraction of it to keep his organism running.

This assumption entails that the marginal effect of an additional kg on an individual’s caloric expenditure

is always positive and that the caloric expenditure of obese/overweight individuals is therefore higher than

that of leaner individuals, simply because they weigh more.

This notion of body weight accumulation and energy expenditure contradicts recent insights from medical

literature, according to which metabolism actively and non-monotonically reacts to changes in body weight

(Catenacci et al., 2011, Ebbeling et al., 2012, Gale et al., 2004, Katan and Ludwig, 2010, Leibel and Hirsch,

1Experimental attempts used either lump-sum payments or lotteries, in order to exploit individual fallacies in the estimation
of the probability of an unlikely event, to motivate subjects to lose weight (Kahneman and Tversky, 1979).
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1984, Leibel et al., 1995), such that obese/overweight individuals do not burn more calories simply because

they weigh more (Johnstone et al., 2005, Cunningham, 1991, Astrup et al., 1999). Even given the same level

of physical activity and food intake, the higher adipose content in the body composition of obese/overweight

individuals contributes in reducing their caloric expenditure rather than increasing it, since body fat negatively

affects an individual’s caloric expenditure. Mifflin et al. (1990), Cunningham (1991), Wang et al. (2000) report

that the main predictor for total energy expenditure is the level of non-adipose mass that the individual

possesses and that fat mass is not one of its main predictors. Moreover, Johnstone et al. (2005) quantify

that fat mass accounts for less than 6% of basal metabolic rate variability, while fat-free mass accounts for

almost 70%. Based on this evidence we can conclude that given the minimal incidence that fat mass has on

an individual’s caloric expenditure and the fact that obese/overweight individuals have a positive imbalance

of fat mass over fat-free mass, the relationship between body weight and caloric expenditure is non-linear

(Thomas et al., 2009, 2011). This means that of two individuals of the same age, the one who weighs more

(i.e. the one with a higher adipose content) is predicted to burn fewer calories with respect to the leaner

individual. In order to capture this dynamic we will assume that there exists an individual specific level of

body weight over which any additional weight gain will decrease caloric expenditure; conversely any weight

gain lower than this threshold will increase caloric expenditure.

The results from the theoretical model using this novel metabolic assumption are threefold. Firstly, we

extend the rational eating literature (Dragone, 2009, Levy, 2002) to show the impact that metabolism can

have on the steady state decision of a rational individual. Unlike current literature, in which the individual

exhibits only a rational and stable outcome of overweight, we allow for multiple equilibria and report one

characterized by a healthier body weight. Second, this multiplicity of steady states provides the evidence of an

“obesity trap” with an associated threshold dividing the two possible outcomes. Intuitively, any weight-loss

efforts that the individual undertakes have to surpass this threshold in order to result in permanent weight

loss, otherwise the individual will gradually regain weight and converge to his or her previous body weight.

This threshold provides the rationale for any unsuccessful dieting efforts even in the absence of rational

addiction, time-inconsistent preferences or bounded rationality. Therefore the presence of such a threshold

does indeed have an influence on the possible persistence of dieting efforts. Lastly, to prove the crucial role

that metabolic patter have on dieting effort, we provide an explanation for why previous financial incentive

scheme were so unsuccessful and propose a possible design for incentives that could sustain a persistent weight

loss. A non-decreasing incentive scheme rewarding greater weight loss at a higher level of body weight (i.e.

progressive) is able to sustain steady state decreases in body weight and food consumption while a lump-sum

payment for weight loss, the most used incentive scheme in experimental literature, is not. This result provide

a possible theoretical explanation for the long-run weight regain reported in experimental evidence.
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2 The Model

2.1 The Utility Function

Consider an individual whose intertemporal utility depends on food consumption, c(t) ≥ 0 and body

weight, w(t) > 0, according to the following utility function

V (c(t), w(t)) = U(c(t), w(t)) (1)

Where U(.) represents the instantaneous utility from food consumption and the disutility from body weight,

while I(.) is utility related to incentives for weight loss. We will assume that the instantaneous utility U(c, w)

is twice continuously-differentiable, jointly concave with negative second order derivatives, Ucc and Uww and

separable, Ucw = 0.

Following Dragone and Savorelli (2011) we assume that there exists a satiation point for individual food

consumption, denoted by csat, with an associated level of body weight wsat, such that ∂U(csat)/∂c = 0, which

is to be interpreted as the (steady state) body weight that an agent would reach if she always ate to satiation2.

We say the agent is on a diet if Uc > 0 (utility would be increased by increasing food consumption) and is

binging if Uc < 0 (utility would be increased by decreasing food consumption). Regarding body weight we

assume that there exists BMI that maximizes each agent’s health condition; denote the corresponding body

weight as wH , such that ∂U(wH)/∂w = 0. We say the agent is overweight (w > wH) if Uw < 0 (utility

would be increased by decreasing body weight) and conversely underweight (w < wH) if Uw > 0 (utility

would be increased by increasing body weight). It is possible to distinguish between three possible cases. If

wsat > wH , satiation induces being overweight; likewise we say that satiation induces one to be underweight

if wH > wsat. Lastly if wsat = wH satiation corresponds to healthy weight.

2.2 The Dynamics of Individuals Body Weight

The determinants of individual’s body weight are given by food consumption, c(t), and current body

weight, w(t) which will influence the accumulation of body weight in time as follows

ẇ(t) = c(t)− g(w(t)) (2)

Assumption 1. The g(.) function is twice continuously-differentiable, positive and concave with a maximum

in g(w̄)

g(w(t)) is a concave function determining the amount of energy expended per unit of body weight, which

in medical terms is defined as the basal metabolic rate (Harris and Benedict, 1918), that is, the amount

of energy expended by individuals at rest. We assume that the contribution of food consumption to body

2
c
sat corresponds to the solution of a standard constrained optimization problem where the agent must choose between two

goods, food and non-food, without suffering from any health consequences.
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weight is positive and linear. Additionally, the contribution of body weight to the rate of caloric expenditure

is assumed to be positive (i.e. gw ≥ 0) for w ∈ [0, w̄] and decreasing afterwards, with gw < 0. The idea is

the following: the more an individual eats the more weight he will gain; the more weight he gains, the more

calories he will burn until he reaches an individual specific body weight, w̄, where the effect of additional

body weight will actually decrease this basal metabolic rate. This explanation is related to the fact that the

main predictor of basal metabolic rate is individual’s lean mass (Johnstone et al., 2005, Mifflin et al., 1990,

Wang et al., 2000), which is supposed to be lower (in proportion) in heavier individual. Therefore w̄ can be

thought of as the maximum sustainable level of body weight above which the organism will store additional

calories in fat tissue and not in lean mass, resulting then in a net decrease in caloric expenditure since fat

mass burns at a lower rate with respect to lean mass.

We will assume that as long as any additional weight gain is resulting in an increases in caloric expenditure,

such that gw ≥ 0, the individual can be considered has having a positive imbalance between fat free mass

and fat mass. Conversely as soon as the individual surpasses surpass w̄, resulting in a decreases in caloric

expenditure associated with an increases in body weight, gw < 0, the individual can most certainly be

considered overweight or obese, since the percentage of fat mass will be strictly higher than the percentage

of fat-free mass.

3 Optimality conditions and stability

The individual’s goal is to maximize his intertemporal utility by choosing the amount of food consumption,

which in turn will affect her body weight. Given an infinite time horizon and a positive discount rate, ρ, the

individual’s problem can be written as follows (See Appendix A.1):

max
c(t)

∫ ∞

0
e−ρt[U(c(t), w(t))]dt (3)

subject to ẇ(t) = c(t)− g(w(t)) (4)

w(t), c(t) ≥ 0 (5)

w(0) = w0, given (6)

Here we have introduced the non-negativity constraint on c and w since they represent, respectively, food

consumption and body weight which, by definition, cannot become negative. The associated current value

Hamiltonian (dropping the time indexes for convenience) is

H(c, w, λ) = U(c, w) + λ(c− g(w)) (7)

3.1 Obesity Traps

Given joint concavity (See Appendix A.2), the first-order conditions for this problem are
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Hc = 0 Uc + λ = 0 (8a)

λ̇ = λ(ρ+ gw)− Uw (8b)

ẇ = c− g(w) (8c)

If we time-differentiate equation (8a) and substitute it in (8b) along with (8a) we derive an expression for ċ,

which, along with (8c) results in the following system of differential equations characterizing the equilibrium

ċ =
Uc

Ucc
(ρ+ gw) +

Uw

Ucc

ẇ = c− g(w)

(9)

For an internal steady state the following conditions must be satisfied

ċ = 0 Uw = −Uc(ρ+ gw) (10)

ẇ = 0 css = g(wss) (11)

Plugging equation (11) into (10) we get

Uc(g(w), w) (gw + ρ) + Uw(g(w), w) = 0 (12)

In order to establish the multiplicity of steady states we need to prove that equation (12) has more than one

possible solution. The number of steady states will be given by the number of solutions that equation (12)

admits. However given the implicit form of equation (12) explicitly deriving the number of solutions is not

straightforward. Therefore we must go further and differentiate it with respect to w in order to get

gwwUc(g(w)) + gw (gw + ρ)Ucc(g(w)) + Uww ≶ 0 (13)

Due to the fact that the marginal utility from food consumption (Uc) and the marginal contribution of body

weight to caloric expenditure (gw) are changing sign two times, the conditions created are sufficient for the

non-monotonicity of equation (13) resulting in the possibility of multiple steady states.

Proposition 3.1. The intertemporal problem (2)-(5) is associated with multiplicity of steady states charac-

terized by the sufficient condition for an unstable threshold

−gw(ρ+ gw) >
Hww

Ucc
(14)

Associated with the following trade-offs between body weight and food consumption according to equation (10)

1. Being overweight and on a diet, Uw < 0 and Uc > 0
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2. Being underweight and on binging, Uw > 0 and Uc < 0

(See Appendix A.3)

Interestingly the only case in which eating up to satiation is a steady state outcome is associated to

the case in which csat = cH , with cH being the amount of food consumption associated with wH , because

Uc = −Uw = 0. There is, albeit under specific circumstances, therefore a possible steady state in which the

individual is perfectly healthy and consuming to satiation, with no loss of utility whatsoever. More generally,

the steady state will not be associated with satiation, but either with binging or dieting, since Uc 6= −Uw

but either Uc > 0 and Uw < 0 (binging and being underweight) or Uc < 0 and Uw > 0 (dieting and being

overweight).

From condition (14) we can also derive an additional (sufficient) condition for multiple steady states. In

addition to the unstable threshold in (14), which makes the determinant positive, we can also see that the

equation

−gw(ρ+ gw)−
Hww

Ucc

which is the determinant of the Jacobian associated with the intertemporal problem (3)-(6) (See Appendix

A.3) can be negative in two different cases, thus allowing two possible stable steady states. The firs one is

when gw > 0, while the second one is for gw < 0. This characterization of steady states based on the sign

of the derivative of the g(.) function allows us to say that our model permits two stable steady states, one

healthier than the other, since gw > 0 is associated, by definition, to a condition of healthy weight, while

gw < 0 is associated with overweight/obesity. More generally we will assume that there will be at most three

steady states, divided by the threshold defined in equation (14).

Corollary 3.1 (Obesity Traps). Of the two possible steady states associated with the intertemporal problem

(2)-(5), one is characterized by a healthy body weight (i.e. gw > 0) while the other one is characterized by a

condition of overweight/obesity (i.e. gw < 0).

Proposition 3.1 allows us to state that if there are indeed multiple steady states, and condition (14) is

therefore satisfied, instability becomes an issue and there exists a threshold such that the individual is trapped

in an excessive weight steady state. This result characterize a situation in which there is body resistance to

weight-loss that the individual has to surpass in order to permanently lose weight, which can be reconciled

with the concept of ”homeostasis” reported in medical evidence (Ebbeling et al., 2012, Gale et al., 2004,

Katan and Ludwig, 2010, Leibel and Hirsch, 1984, Leibel et al., 1995). Such that the organism contrast

dieting effort since losing weight results in a decrease in energy available and in order to keep the organism

in a stable energy state metabolism contrast weight-losses.

To explicitly presents multiple steady states we will resort to specific functions for the utility function and

the dynamics of body weight. In order to do so, we will follow Wirl and Feichtinger (2005) and Wirl (2004)

to prove that our results hold under the most common and general functional specification to then be able
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to use explicit formulations for computational purpose without losing too much generality. As for the utility

function we will assume a quadratic formulation:

U(c, w) = c

(

a−
c

2

)

− β
(w − wH)2

2

where csat = a.

For the law of motion of body weight we assume that individual body weight is composed by two main

components: (1) fat mass (FM) and (2) fat-free mass (FFM). Each is supposed to represent a fraction µ and

1− µ with µ ∈ [0, 1], respectively, of total body weight w, such that

FM = (1− µ)w

FFM = µw

w = FFM + FM = µw + (1− µ)w = w

As medical literature suggests (Wang et al., 2000, Thomas et al., 2009, 2011), caloric expenditure for each of

these components is different and assumed to be given by the following functions

CEFFM = µw

CEFM = −(1− µ)
w2

2

such that: (1) fat-free mass has a linear, positive and monotonically increasing contribution to caloric ex-

penditure and (2) fat mass has a quadratic and negative effect on caloric expenditure. The intuition is the

following: initially there is a positive imbalance of fat-free mass over fat mass when, after w̄ the (negative)

contribution of fat mass tops the positive of the fat-free mass and caloric expenditure starts to decrease (see

Figure 1). Overall caloric expenditure is computed by combining CEFFM with CEFM , such that

CETOT =
1

2
w(2µ+ (µ− 1)w)

Which, given its quadratic characteristic, can be approximated with a general logistic function

CETOT =
1

2
w(2µ+ (µ− 1)w) ≈ w

(

w̄ −
w

2

)

= g(w)

where w̄ is assumed to represent the level of body weight above which there is a positive imbalance of fat

mass over fat-free mass or, more intuitively, the starting point after which the individual starts to become

overweight and consequently experiences a reduction in caloric expenditure.

[Figure 1 about here.]
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To summarize utility and body weight law of motion are the following

U(c, w) = c

(

1− α
c

2

)

− β
(w − wH)2

2

ẇ = c− g(w) = c− w(w̄ −
w

2
)

(15)

From this it is clear that we have deliberately chosen a simple standard specification for both equations in

order to stress that the results are present even when using a very simple and compact functional form.

Appendix A.5 provides a complete solution to this specific example. Fig.2 summaries the number and the

dynamic orientation of the three steady states of the system in equation (15), which is characterized by two

saddle point points, wss
1 and wss

3 , divided by an unstable node, wss
2 . The figure also shows the saddle path

leading to the two steady states and passing through the unstable node.

[Figure 2 about here.]

The multiplicity of steady states gives us a rationale for why, in general, dieting efforts are so difficult and

why weight loss is not always guaranteed after a diet is finished. The reason behind this is the presence of a

weight threshold above which any weight loss will be permanent. This means that if dieting does not enable

the individual to surpass this threshold he or she will start to regain weight once the diet is finished and will

then slowly converge back to the previous weight, nullifying all dieting efforts.

4 An application: Financial Incentives for weight loss

Due to unsuccessful dieting attempts and in order to facilitate weight-loss efforts, recent insights deriving

from behavioral economics have been used to promote the reduction of excessive weight by motivating indi-

viduals to lose weight thanks to monetary and non-monetary incentives. Unfortunately, despite promising

short-run results and the fact that weight loss was indeed achieved during experiments, substantial weight

regain was found after the incentive was removed proving that, despite being sustained by incentives, indi-

viduals were still failing to lose weight permanently. We now investigate how short-run financial incentives

interact in our model and if they might be able to produce permanent weight loss, given the established

metabolic pattern introduce in Section 2.2.

4.1 Incentive for weight loss

In addition to the instantaneous utility U(.) we also assume that there exists an incentive function for

weight loss, which represents any type of incentive, internal and external, that the individual exploits in

order to sustain weight loss. This function, denoted by αI(wH , w(t)), can be either positive or equal to

zero, depending whether the individual is motivated or not to lose weight. I(.) is a non-decreasing incentive

function which achieves a (unique) minimum when w = wH , where wH is the target body weight and α ∈ [0, 1]
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is a parameter related to the individual’s responsiveness to incentive. The idea behind the incentive function

is that the farther the individual is from his or her target body weight, the higher the incentive to sustain

dieting effort, which will gradually decrease as the individual converges towards wH . The I(.) function

captures the idea that heavier individuals should be rewarded more than leaner individuals for weight loss of

equal magnitude. In order to focus on healthy weight-loss incentives and to rule out any type of punishment or

weight loss below an individual’s healthy weight, wH , it is necessary to impose the following set of restrictions

on I(.):

Assumption 2. The incentive function has two properties:

1. For w < wH I(.) = 0,

2. For w > wH I(.) > 0

The first assumption excludes any incentive (or punishment) for weight lower than wH the second follows

from the fact that the incentive function is an increasing function in body weight. If the first case does not

hold we would model cases in which individuals are motivated to lose weight despite already being at their

healthy body weight level3.

By including the incentive for weight loss the system of differential equations characterizing the equilibrium

is similar to the one we derived in Section 3.1

ċ =
Uc(ρ+ gw) + Uw + αIw

Ucc

ẇ = c− g(w)

(16)

With the only difference being the presence of the incentive function in the ċ equation. For an internal steady

state the following conditions must be satisfied

ċ = 0 Uw + αIw = −Uc(ρ+ gw) (17)

ẇ = 0 c = g(w) (18)

In order to investigate what consequences had the introduction of the incentive on the steady states value of

body weight and food consumption we will compute the change in the steady state body weight as a response

to a change in the sensitivity to the incentive is given by the following expression (See Appendix A.4):

∂wss

∂α
= −

|P |

|J |
= −

Iw/Ucc

|J |
(19)

Where |J | is the determinant of the Jacobian associated with the system of differential equations (16) and

3Such situations can be linked to eating disorders such as bulimia and anorexia which are not explored in this paper.
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|P | is the determinant of the following matrix

P =











∂ċ

∂α

∂ċ

∂c

∂ẇ

∂α

∂ẇ

∂c











The sign of equation (19) leads to the following proposition.

Proposition 4.1. A sufficient condition for an incentive for weight loss to sustain an achievable steady state

with a lower body weight is Iw > 0.

Proof. In a steady state the determinant of the Jacobian is negative and thus the denominator of equation

(19) is negative, so for Iw > 0 and Ucc < 0 the presence of the incentive (α > 0) is associated with a stable

decreases in body weight. �

Corollary 4.1. Incentive schemes unrelated to body weight (i.e. Iw = 0) are not able to lead to stable changes

in body weight.

Proof. For Iw = 0 the effect of an incentives on the equilibrium level of body weight is nil, since equation

(19) is equal to zero. �

As far as steady state food consumption is concerned we can derive a condition similar to (19) (See

Appendix A.4)
∂css

∂α
= −

|K|

|J |
= −

gwIw/Ucc

|J |
(20)

|K| is the determinant of

K =











∂ċ

∂α

∂ċ

∂w

∂ẇ

∂α

∂ẇ

∂w











Such that

Proposition 4.2. Steady state decreases in food consumption are achieved by Iw > 0, for overweight/obese

individuals.

Proof. By definition excessive body weight, or a positive imbalance between fat mass and fat free mass, is

characterized by the condition gw < 0, which will make equation (20) negative resulting in a decrease in

steady state food consumption.. �
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The Jacobian matrix associated with the system (19)

J =









ρ+ gw
Uww + gwwUc + αVww

Ucc

1 −gw









(21)

The trace is still positive and equals to tr(J) = ρ > 0, so the steady state can be at most a saddle point4.

However the determinant is now

det(J) = −gw (ρ+ gw)−
(Uww + gwwUc + αIww)

Ucc
(22)

If we take a closer look at the determinant in (22) we arrive at the following proposition

Proposition 4.3. “Progressivity” in the incentive scheme, Iww > 0, or a high level of sensitivity in incentive

schemes, is a necessary condition in order to sustain persistent weight loss.

Proof. Rewriting the determinant equation (22) in terms of the instability condition (14) we have that

−gw(ρ+ gw) >
Hww

Ucc
+ α

Iww

Ucc
(23)

High level of either Iww or α significantly reduce the conditions under which the inequality for instability is

verified, since the second term in equation (23) is negative due to Ucc < 0. �

Proposition 4.4. proves that incentive schemes which associate higher rewards for weight loss with a

higher body weight are able to promote persistent weight loss. Intuitively, weight loss is possible whenever

there is an incentive scheme which is more rewarding for weight loss at a higher level of body weight with

respect to weight loss achieved when the body weight is relatively low (Iww > 0), or when the incentive is so

salient that it is able to provide active motivation for the dieter (high α). This progressivity characteristic

that incentive schemes need in order to lead to permanent results might raise the controversy that agents

should stay fat in order to gain higher rewards. However, one additional assumption has to be taken into

consideration: incentive schemes should be designed to reward weight loss at a higher level of body weight, not

higher body weight per se’ 5.

The results on the canonical system (16) of introducing a quadratic incentive function, α(w − wH)2 are

summarized in Fig.3, from which the downward shift of the ċ = 0 isocline reduces the number of steady states

from three to just one. Pre-incentive individuals who were converging towards an excessive weight steady

state are now attracted by the only steady state reachable, which is represented by a lower body weight and,

hence, improved health. However, convergence to the lower steady state is not trivial and it can either be

4At least one eigenvalues must be positive
5This is usually done in experimental literature by providing the reward if and only if the individual were able to decreases

his body weight.
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temporary or permanent depending on whether the individual is able, once the incentive is removed, to reach

the stable lower steady state, thus surpassing the intermediate unstable steady state.

[Figure 3 about here.]

[Figure 4 about here.]

Following Fig. 4 we can characterize the following outcomes

1) Temporary Result: The convergence towards the lowest steady state is such that the individual is

unable to surpass the unstable steady state. Once the incentive is removed the individual will reconverge

to the initial steady state.

2) Permanent Result: The convergence towards the lowest steady state is such that the individual is

able to surpass the unstable steady state. Once the incentive is removed the individual will continue

converging towards the healthier steady state.

In the first case the individual is not able to escape the “obesity trap” and will therefore be unable to

permanently lose weight. In the second case, due to the presence of the incentive, the individual is able to

avoid the “obesity trap” and permanently converge towards a lower level of body weight. The results from

the model show an incentive scheme design which is able to produce permanent weight loss; however, it has

to be pointed out that since the intervention is introduced temporarily its design is just a necessary condition

for the convergence to an improved weight condition.

5 Conclusion

Given the increasing incidence of obesity, the promotion of efficient ways to invert this trend is a major

health concern. A reduction in caloric intake or an increase in caloric expenditure via physical activity, are

the two main strategies normally prescribed. Although there has been an increase in weight-loss attempts

using both of these recommended strategies, their beneficial effects are yet to be seen. Due to unsuccessful

attempts and in order to facilitate weight-loss efforts, recent insights from behavioral economics have been

used to promote the reduction of excessive weight by motivating individuals to follow a type of behavior that

they would not naturally follow by means of monetary and non-monetary incentives. Although the results

seem to support the ability of the scheme to promote weight loss during the time of the experimentation,

few of the experiments were able to sustain a long-lasting effect and almost all weight was regained post-

experiment. This poses the question of understanding why weight loss is so difficult to achieve and what

factors influence weight loss and how they can negate the effects of short-run incentives. Thus, in order to

design more effective interventions for future implementation, a theoretical investigation into the effects that

these incentives have on individuals’ behavior and why weight loss maintenance after the cessation of the

incentive is not sustained is needed. In order to do so we add to existing literature by proposing another,
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complementary, explanation for why dieting efforts are so difficult, even in the absence of rational addiction,

time-inconsistent preferences or bounded rationality.

In this paper we have presented a theoretical model with an original assumption regarding individual

metabolism, in order to investigate why weight-loss attempts are so difficult to achieve. The novelty of the

model lies in the presence of a non-monotonic relationship between caloric expenditure and body weight,

resulting in lower caloric expenditure for overweight/obese individuals. The theoretical analysis helps us to

understand why losing weight is so difficult without relying on rational addiction, time-inconsistent preferences

or bounded rationality and, most importantly, the conditions under which an incentive for weight loss should

be designed such that the individual is able to permanently lose weight. Multiple steady states and a threshold

characterizing a situation of “obesity traps”, which the individual must try to surpass by means of dieting,

are derived. Moreover, the presence of incentives is not always sufficient to lead to a permanent effect; such an

effect is related to the design of the incentive scheme. A non-decreasing incentive scheme rewarding greater

weight loss at a higher level of body weight (i.e. progressive) is able to sustain steady state decreases in body

weight and food consumption, while a lump-sum incentive scheme is not.
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A Appendix A.

A.1 The intertemporal problem (3) - (6)

In this appendix we will prove that the intertemporal problem (3) - (6), with an infinite time horizon and

constant discount rate, is an approximation of a similar model with stochastic time of death.

A.1.1 The Model with stochastic time of death

In order to take into account that individual’s longevity is stochastic and impossible to known before

time of death, we assume that the agent’s life is finite but with an uncertain terminal date, T , (Yaari, 1965).

F (T ) represents the probability o dying at time T and f(T ) is the associated density function. Given initial

body weight w0, the agent must choose the path of food consumption satisfying the following intertemporal

problem

max
c(t)

E

[ ∫ T

0
e−ρ̃t[U(c(t), w(t))] + αI(wH , w(t))dt

]

(24)

subject to ẇ(t) = c(t)− g(w(t)) (25)

w(t), c(t) ≥ 0 (26)

w(0) = w0, given (27)

where ρ̃ > 0 is the intertemporal discount rate representing the agent’s impatience. The objective function

(24) , differently from (3) represents the expected lifetime utility function of an agent with stochastic terminal

time. Following Dragone et al. (2013), Yaari (1965) we can exploit a very useful result in order to prove the

equivalency of the two. Equation (24) can be equivalently represented in terms of the following objective

function
∫ T

0
[1− F (t)]e−ρ̃tU(.) + αI(.)dt

where 1−F (t) is the probability of living beyond t (Yaari, 1965, Levy, 2002). In order to prove the equivalency

of (24) and (3) we will focus on the special case where f(T ) = ρ̂e−ρ̂t so that the density function is exponential.
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Under this assumption the expected intertemporal utility of the agent can be equivalently written as follows

E

[ ∫ T

0
e−ρ̃tU(.) + αI(.)dt

]

=

∫ T

0
e−ρ̂te−ρ̃tU(.) + αI(.)dt =

∫ T

0
e−ρtU(.) + αI(.)dt (28)

where ρ = ρ̂+ ρ̃ and it is the overall discount rate depending on impatience (ρ̃) and on the hazard rate (ρ̂).

Equation (28) represents the discounted stream of utility of an infinitely-lived agent, however, an alternative

interpretation is possible, whereby the objective function (28) represents the expected intertemporal utility

of an agent with stochastic life and whose hazard rate is constant. Thus, providing a bridge between finite

and infinite horizon models.

A.2 Concavity of the Hamiltonian function

In this appendix a formal analysis on the concavity of the Hamiltonian functions of the paper is provided.

Assuming that the Utility function is separable in c and w such that Ucw = 0 we can write the Hessian of

the Hamiltonian as

H̃ =







H(.)λλ H(.)λc H(.)λw

H(.)cλ Hcc H(.)cw

H(.)wλ H(.)wc H(.)ww






=







0 1 −gw

1 Hcc 0

−gw 0 Hww







with Hcc = Ucc and Hww = Uww − λgww.

If the last n minors alternate in sign provided that the det H̃ itself has the sign of (−1)n, where n is the

number of variable in the utility function, then the point is a local maximum i.e. the Hessian is concave. On

the other hand if the largest n minors all have positive sign and that sign is (−1)m where m is the number of

multipliers in the problem the point is a local minimum. Thus, concavity requires that the principal largest

leading minor of H̃ to be mixed in signs:

|H̃2| =

∣

∣

∣

∣

∣

0 1

1 Hcc

∣

∣

∣

∣

∣

= −1

|H̃3| =

∣

∣

∣

∣

∣

∣

∣

0 1 −gw

1 Hcc 0

−gw 0 Hww

∣

∣

∣

∣

∣

∣

∣

= −g2wHcc −Hww > 0

Given the assumption on U(.) and g(.) joint concavity is satisfied as long as g2wUcc + Uww + αIww > λgww.
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A.3 The Derivation of Condition (14)

The Jacobian associated with the intertemporal problem (3)-(6) is

J =









ρ+ gw
Uww + gwwUc

Ucc

1 −gw









(29)

Given that the trace is positive and equals to tr(J) = ρ > 0, the steady state can be at most a saddle point6.

The determinant is harder to sign

det(J) = −gw (ρ+ gw)−
(Uww + gwwUc)

Ucc
(30)

A negative determinant, det(J) < 0 implies that one of the eigenvalues is negative, characterizing a saddle

point7 A positive determinant, det(J) > 0, is then a necessary and sufficient conditions to exclude a saddle

(i.e. conditional) stability, both eigenvalues are positive so that the associated steady state is an unstable

node. To characterize the cases in which such instability is achieved we can rewrite the determinant as

det(J) = −gw (ρ+ gw)−
Hww

Ucc
(31)

given the assumptions on U(.) and g(.) H is concave and the last term of equation (26) is negative meaning

that a positive determinant is only possible when, gw < 0, providing the following sufficient condition for

instability

−gw(ρ+ gw) >
Hww

Ucc
(32)

A.4 Comparative Statics

In order to compute the effect of a change in a parameter x on steady-state levels of body weight (wss)

and food consumption (css), we apply the Cramer’s rule to the following system (all functions are evaluated

6At least one of the two eigenvalues of J

e1,2 =
1

2

[

tr(J)±
√

tr(J)2 − 4 det(J)

]

is positive (or has positive real parts)
7Which even if unstable has a stable manifold (of dimension one) determining optimal policy. Given the positive trace with

a little but of abuse of notation I will define ’stable’ such outcomes, since it is the maximum achievable stability given by the
canonical equation in (8).
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at the steady state)










∂ċ

∂c

∂ċ

∂w

∂ẇ

∂c

∂ẇ

∂w





















∂css

∂x

∂wss

∂x











=











−
∂ċ

∂x

−
∂ẇ

∂x











where the first term is the Jacobian matrix (|J |) of the system of differential equations (16) evaluated at the

steady state. Applying Cramer’s rule for a change in α we have











∂css

∂x

∂wss

∂x











=













−
|K|

|J |

−
|P |

|J |













where |P | and |K| are the determinant of the following matrices

K =











∂ċ

∂α

∂ċ

∂w

∂ẇ

∂α

∂ẇ

∂w











P =











∂ċ

∂α

∂ċ

∂c

∂ẇ

∂α

∂ẇ

∂c











A.5 The example with explicit functions

Threshold and history dependence are possible in a perfectly governed economy (i.e. strictly concave).

The first term of the utility function specifies that csat = 1/α where α captures individual characteristics

(e.g. income., gender, age) which affects food satiation; the second term represents the consequence of begin

either overweight (w > wH ) or underweight (w < wH ) with β > 0 representing the scaling parameter of the

(quadratic) appreciation of an healthy body weight. (12) is determining the following canonical equations

ċ =
(αc− 1)(ρ− (w − w̄))

α
+ β

(w − wH)

α

ẇ = c− w

(

w̄ −
w

2

) (33)

From which we can derive the ċ = 0-isocline and the ẇ = 0-isocline, which are respectively

ċ = 0 c = −β
(w − wH)

a[ρ− (w − w̄)]
+

1

a

ẇ = 0 c = w

(

w̄ −
w

2

)

= g(w)

(34)

From which we can verify the arrows of motion of Fig.2. For the ẇ = 0-isocline we have ẇ < 0 for c < g(w)

and ẇ > 0 otherwise; while for the ċ = 0-isocline we have ċ < 0 for c > −β (w−wH)
a[ρ−(w−w̄)] +

1
a
and ċ > 0 otherwise.
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The system (34) has up to three steady states since substituting the stationary solution for ċ = 0 into

ẇ = 0 results in a cubic equation in w. The Jacobian as well as the determinant simplify to

j =









ρ+ gw
β − (αc− 1)

α

1 −gw









(35)

det(j) = −gw(ρ+ gw) +
(αc− 1)− β

α

β

α
− cg′′(w) +

g′′(w)

α
− ρg′(w)− g′(w)2 (36)

The ẇ = 0, c = w(w̄ − w/2) is determined by the metabolic level of caloric consumption, c = g(w) with a

maximum in w̄. The ċ = 0 hits this function in three points corresponding to three steady state characterized

by an incremental level of steady state body weight.
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Figure 1: The law of motion of body weight for w̄ = 0, 82.
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Figure 2: Phase diagram of (15) for the parameters values: a = 3.9, β = 0.05, w̄ = 0.82, wH = 0.44 and
ρ = 0.8

c

w

ċ = 0

ẇ = 0

w̄wss

1 wss

2 wss

3
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Figure 3: Phase diagram of (16) after the introduction of the incentive for the parameters values: a = 3.9,
β = 0.05, w̄ = 0.82, wH = 0.44, α = 0.4 and ρ = 0.8

c

wwss w̄

ẇ = 0
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Figure 4: Comparative Statics, pre- and post-incentive.
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