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Abstract

In this work we develop advanced techniques for measuring bank insolvency risk. More

specifically, we contribute to the existing body of research on the Z-Score. We develop bias

reduction strategies for state-of-the-art Z-Score measures in the literature. We introduce novel

estimators whose aim is to effectively capture nonstationary returns; for these estimators, as

well as for existing ones in the literature, we discuss analytical confidence regions. We exploit

moment-based error measures to assess the effectiveness of these estimators. We carry out

an extensive empirical study that contrasts state-of-the-art estimators to our novel ones on

over ten thousand banks. Finally, we contrast results obtained by using Z-score estimators

against business news on the banking sector obtained from Factiva. Our work has important

implications for researchers and practitioners. First, accounting for the degree of nonstation-

arity in returns yields a more accurate quantification of the degree of solvency. Second, our

measure allows researchers to factor in the degree of uncertainty in the estimation due to the

availability of data while estimating the overall risk of bank insolvency.
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1 Introduction

The measurement of financial stability in banking aims at assessing the degree of solvency of indi-

vidual credit institutions or of the overall sector. Banking financial stability has been investigated

in relation to a broad variety of determinants such as corporate governance Laeven and Levine

[2009], competition Fiordelisi and Mare [2014], efficiency Fiordelisi et al. [2011], the diversifica-

tion strategy of shareholders Garćıa-Kuhnert et al. [2013], creditor rights and information sharing

Houston et al. [2010]. It is paramount both under the regulatory and supervisory perspectives

because it drives policy choices to assure the resilience and the functional working of the banking

sector, along with optimal social welfare and economic growth.

Bank financial instability is proportional to the likelihood that creditors of a bank are not repaid

partially or in full. This comes to be true when financial losses (expected and unexpected) are not

covered with provisions or capital and the value of the assets is not sufficient to repay in full debt

obligations. In practice, assessment of bank’s insolvency risk should capture both the variability in

revenues and the buffers — both in terms of reserves and equity — to absorb financial losses. The

Z-Score is one of the most broadly used accounting measures in the literature for estimating the

overall bank solvency because it combines together information on performance (return on assets

indicator), leverage (equity to assets indicator) and risk (standard deviation of return on assets).

A bank can therefore be classified as being less stable, or closer to insolvency, if it shows lower

performance, it is less capitalized or it has a higher degree of variation in returns. In the banking

literature we do not have a unique indication on how to construct the Z-Score. A recent paper

by Lepetit and Strobel [2013] surveys the literature to show different approaches to estimate the

Z-Score. It also proposes an adjustment that brings the best results in terms of the root mean

squared error (RMSE) criterion compared to existing approaches.

The goal of our work is to obtain reliable estimates of this measure of financial stability. To

achieve this, we extend the study of Lepetit and Strobel [2013] and we contribute to the literature

on Z-score estimators as follows:

• We introduce bias reduction strategies to improve effectiveness of estimators in Lepetit and

Strobel [2013].

• We introduce novel estimators whose aim is to effectively capture nonstationary stochastic

returns; for these estimators, as well as for existing ones in the literature, we discuss analytical

confidence regions. Due to the small sample size typically employed, we argue that accounting

for estimation errors is important to obtain consistent ranking of credit institutions according

to their overall risk of solvency.
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• For the first time in the literature, we exploit moment-based error measures — a novel tool for

ranking forecasters recently introduced in Prestwich et al. [2014] — to assess the effectiveness

of existing estimators from Lepetit and Strobel [2013] as well as of our novel ones.

• We carry out an extensive empirical study that contrast results obtained with the aforemen-

tioned estimators on over ten thousand banks.

• Finally, we contrast results obtained by using Z-score estimators against business news on

the banking sector obtained from Factiva.

The remainder of the paper is structured as follows. Section 2 presents a brief overview of the

relevant literature. Section 3 defines the Z-Score whilst Section 4 summarises the current methods

for computing the Z-Score and some important limitations. Section 5 illustrates how to remove bias

from existing methods for computing the Z-Score. Section 6 introduces our novel nonstationary

estimators; while Section 7 presents analytical confidence regions for these estimators. Section 8

puts to the test our novel estimators against existing methods for computing the Z-Score. Section

9 presents an empirical study based on data from BvD Bankscope, covering the period 2005-2013;

the study investigates ranking discrepancies observed between our novel estimators and existing

ones in the literature. Section 10 illustrates two case studies that contrast results obtained by using

Z-score estimators against business news on the banking sector obtained from Factiva. Section 11

concludes.

2 Measures of bank stability

A large literature employs accounting information, market information or a combination of the two

sources to compute bank stability measures. The Z-Score, discussed in next section, is by far the

most widely used accounting ratio in the literature Boyd et al. [2006], Mercieca et al. [2007], Laeven

and Levine [2009], Fiordelisi and Mare [2014], Bolton et al. [2015]. Other accounting ratios, such

as non-performing loans to total loans or the level of provisioning Houston et al. [2010], Fiordelisi

et al. [2011], are also used to capture different risk dimensions although the focus is on specific

narrower aspects such as credit risk, operational risk, liquidity risk and market risk. Market-

based measures include observable market prices (equity prices, debt prices, credit default swap

spreads, bond yield spreads) that allow to capture forward-looking information by incorporating

market expectations. Moreover, structural models are populated using both accounting and market

information assuming a theoretical framework for formalising the occurrence of bank default.

Equity Beta and Equity Return volatility Stever [2007], Fahlenbrach et al. [2012] are market-
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based measures computed using equity prices. Beta captures systematic risk or the risk of an

investment that cannot be diversified. It is estimated using asset pricing models, such as the

capital asset pricing model Sharpe [1964], Lintner [1969] or the three-factor model of Fama and

French [1993]. The higher the value of this indicator the higher the instability of a bank. Equity

return volatility captures both systematic and non-systematic risk and it is computed as the stan-

dard deviation of bank’s equity returns over a certain time period. Higher values indicate higher

fluctuation in stock returns hence higher risk.

Insolvency risk may be estimated implicitly looking at market prices and specifically bond

yield spreads and credit default swaps (CDS). These prices are used to estimate the risk-neutral

probabilities that include systematic risk. Both measures draw on the risk-free rate to compute the

present value of the expected losses. The bond yield spread is calculated as the difference between

the interest rate on a certain bank bond and the risk-free rate. The price of the risky bond should

reflect the expected risk of the security and it captures the expected loss to investors. In a CDS

the seller of the contract accepts to compensate the buyer of the CDS in case the bank defaults

on the bond. In return for assuming the credit risk on the bank, the seller receives a stipulated

premium from the buyer of the CDS.

Two standard measures of firm level risk are Value-at-Risk (VaR) and Expected-Shortfall (ES).

These seek to measure the potential loss incurred by the firm as a whole in an extreme event at a

prefixed confidence level. VaR expresses the maximum loss given a certain level of confidence over

a certain time horizon. The expected shortfall, see e.g. Acharya et al. [2010], Ellul and Yerramilli

[2013], is defined as the expected loss conditional on returns being less than some α-percentile.

Specifically, ES is the average negative return over the α% worst return days for a bank’s stock

price.

Structural models provide a framework for estimating default probabilities. The most widely

used is the Merton’s model [Merton, 1973] to estimate a distance-to-default indicator (DD). The

bank is in technical default (insolvent) when the market value of its assets is below the market

value of its liabilities. Since the DD is a market-based measure of distress, it contains expectations

of market participants and it is forward-looking, making it a popular measure in bank insolvency

prediction.

3 The Z-Score

The Z-Score is employed by researchers and by multilateral organisations — for instance, it is

included among the indicators of The Global Financial Development Database (World Bank) — to
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Figure 1: This figure summarizes the information provided by the Z-Score. When the only random
variable is ROA, we seek for the point in the distribution where capital is depleted. We are then
able to infer the probability of bankruptcy. Higher values of the Z-Score denote higher stability
because the distance to default is larger.

estimate the overall degree of solvency in banking. It is built using the return on asset ratio (ROA)

augmented by the equity-to-asset ratio (EA) all divided by a measure of variability in returns —

often, the standard deviation of ROA. The rationale is that the lower the capital base the higher is

the likelihood of bankruptcy. Moreover, higher variability in returns also increases the probability

of bankruptcy. In a cross-sectional setting, the standard approach to estimate the Z-Score for an

individual bank (or a set of banks) is as follows:

Z =
−EA− µ(ROA)

σ(ROA)
(1)

where µ denotes the expected value and σ denotes the standard deviation of the ROA. In the liter-

ature, it is customary to revert sign so to obtain a positive Z-Score, i.e. (µ(ROA)+EA)/σ(ROA).

In the rest of this work we will adopt this convention.

The Z-Score combines balance sheet and income statement information to provide a measure of

bank soundness. It indicates the number of standard deviations by which returns have to diminish

in order to deplete the equity of a bank or a banking system. A higher Z-Score implies a higher

degree of solvency and therefore it gives a direct measure of bank stability. Figure 1 illustrates the

rationale for using the Z-Score as a measure of the overall bank stability.

An important element of Equation 1 is establishing whether we have one or more random

variables involved in the formula. The common approach in the literature is to consider EA

deterministic hence ROA is the only random variable Boyd and Graham [1986]. This is not a

necessary assumption if we consider EA to be just the upper bound of the probability of insolvency.

When we introduce the time dimension and work in a cross-sectional stochastic setting, there

are few options that can be exploited. Lepetit and Strobel [2013] suggest that ROA, EA and
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σ(ROA) can be computed using either the current period values or values over a set of time

periods; e.g., rolling time window using three or five observations. Nevertheless, the ambiguity on

how to compute the different components of the Z-Score has favoured the development of different

approaches that bring surprisingly different results in terms of linear dependence of the different

measures; see for instance Table 3 in Lepetit and Strobel [2013]. These have led to a number of

inconsistencies. First, if we consider the last period value for ROA and we compute σ(ROA) over

the whole sample horizon, it is not clear what random variable is being estimated. Second, higher

returns may be associated with higher variance (heteroscedasticity) and no existing methods reflect

the degree of estimation error associated with available data. Third, considering different lengths

in the time series of data of each individual bank and then comparing the resultant values of the

Z-Score may lead to inconsistencies, as the measure of variability could be affected, along with the

value of the mean. Finally, since annual data is often employed for the computation of the different

elementary components of the Z-Score, the information set available varies at different points in

time and this is likely to affect the accuracy of the computations.

4 Existing approaches to compute the Z-Score

Consider the elementary information in Table 1 for the calculation of the time-varying Z-Score.

Notation Description

t time index
NOPATt net operating profit after taxes at time t
TOTAt total assets at time t
TEt total equity at time t
ROAt return on asset at time t, defined as NOPATt/TOTAt

EAt equity over asset at time t, defined as TEt/TOTAt

Table 1: Elementary information for the calculation of time-varying Z-Score

Consider a random variable ρ with unknown distribution representing the stochastic process

that generates realisations ROAt. We are given a set ROAT of realisations sampled from ρ for

T periods, i.e. T ≡ {t − k, . . . , t}, where t denotes the most recent time period. Let µ(ROAT )

represent the sample mean of these realisations and σ(ROAT ) their sample standard deviation.

The literature proposes five main approaches to compute the Z-Score for a given bank Lepetit and

Strobel [2013]. These are reported below as Z1, . . . , Z5.

We shall consider first

Z1 ≡ µ(ROAT ) + µ(EAT )

σ(ROAT )
(2)

where T = t − 2, . . . , t. According to this measure realisations EAt also come from a random
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variable whose sample mean is estimated from past observations. We can imagine that in certain

settings equity over asset at time t should be modeled as a random variable. However, if the model

comprises this random variable, then the measure should also take into account the variability

associated with it.

The second measure is a rather straightforward implementation of the classic Z-Score discussed

in Section 3.

Z2 ≡ µ(ROAT ) + EAt

σ(ROAT )
(3)

where T = t−2, . . . , t. Now equity over asset is a known value, while mean and standard deviation

of ROA are estimated from past realisations observed in the last three periods. Unfortunately, as

we shall see in the next section, the reliability of this measure is low because of statistical bias in

the estimation of the standard deviation of ROA.

As mentioned in Section 3, in the third measure

Z3 ≡ ROAt + EAt

σ(ROAT )
(4)

where T = 1, . . . , t, the model considers only the last period value for ROA, while it computes

σ(ROA) over the whole sample horizon. In this case, it is not clear what random variable is being

estimated and no clear judgement can be made on the statistical properties of this estimator.

To compute the fourth approach to calculate the Z-Score, we need to define the instantaneous

standard deviation as

σinst(ROAT ) ≡ |ROAt − µ(ROAT )| (5)

where T = 1, . . . , t and |x| denotes the absolute value of x. Z4 can then be computed as

Z4 ≡ ROAt + EAt

σinst(ROAT )
(6)

where T = 1, . . . , t. This measure features drawbacks similar to those discussed for Z3.

Finally,

Z5 ≡ µ(ROAT ) + EAt

σ(ROAT )
(7)

where T = 1, . . . , t, is essentially a modified version of Z2 in which sample mean and sample

standard deviation are computed over the whole sample horizon as opposed to the last three

periods. Due to the conceptual problems associated with estimators Z1, Z3 and Z4, in the rest of

this work we shall concentrate on developing enhanced versions of estimators Z2 and Z5.
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5 Eliminating bias in estimators Z2 and Z5

Estimators Z2 and Z5 are essentially the same estimator, with the only difference that Z5 employs

the whole set of past realisations to estimate mean and standard deviation of ROA, while Z2

only employs the last three realisations. For ease of exposition, we generalise these estimators by

introducing estimator

Zk
6 ≡ µ(ROAT ) + EAt

σ(ROAT )
(8)

where T = t− k + 1, . . . , t.

It is well-known in statistics that the sample standard deviation is a biased estimator of a ran-

dom variable standard deviation, see Bolch [1968]. The great advantage of Zk
6 — and consequently

of estimators Z2 and Z5 — is its simplicity and intuitive nature. It is therefore worthwhile to

develop an unbiased variant of this estimator.

Unfortunately, there exists no estimator of the standard deviation that is unbiased and distribu-

tion independent — note that Bessel’s correction does not yield an unbiased estimator of standard

deviation. However, if we assume normally distributed ROA, to correct the bias we can exploit

Cochran’s theorem, which implies that the square of
√
n− 1s/σ, where s is the sample standard

deviation and σ is the actual standard deviation, has chi distribution with n−1 degrees of freedom.

Let χ̄(k − 1) denote the expected value of a chi distribution with n − 1 degrees of freedom and s̄

denote the expected value of the sample standard deviation, it follows that σ = s̄χ̄(k− 1)/
√
k − 1.

The unbiased variant of Zk
6 is then

Z̄k
6 ≡ µ(ROAT ) + EAt

σ(ROAT )χ̄(k − 1)/
√
k − 1

(9)

where T = t− k + 1, . . . , t. A simpler approximation can be obtained by exploiting the correction

factor for the estimator of the coefficient of variation of a normally distributed random variable

Salkind [2010],

Ẑk
6 ≡ µ(ROAT ) + EAt

(1 + 1/(4k))σ(ROAT )
(10)

where T = t− k + 1, . . . , t.

It is well-known that, although σ(ROAT ) is biased, it performs better than the corrected

estimator in terms of the mean squared error criterion, see e.g. Johnson and Wichern [2007];

however, since in Z̄k
6 the estimator of the standard deviation appears in the denominator, as

we will demonstrate in our experiments, this represents for us an advantage. If ROA is not

normally distributed, bias can be reduced via bootstrapping or by means of distribution dependent

approximate correction factors.
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6 A dynamic estimator for nonstationary ROA

Algorithm 1: Computing Zk
7

Data: r: an array of ROA realisations; t: the period for which we aim to estimate the

Z-score; EA: equity over asset at time t; k: the time window (in periods) used for

trend estimation, an odd number greater than one.

Result: z: the estimated Z-score at period t

1 n := t− k − 1; d := {}; x := {}; k := 1;

2 for i ≤ n+ 1 do

3 fit a trend line f(y) : a+ by with intercept a and slope b to the time series ri, . . . , ri+k−1;

4 x := x
⋃{f(i+ (k − 1)/2)} ;

5 d := d
⋃{ri+(k−1)/2 − f(i+ (w − 1)/2)} ;

6 end

7 m := Mean(x);

8 s := StandardDeviation(d);

9 τ̄ := (1 + 1/(4(n+ 1)))s/m;

10 if |τ̄ f(t)| ≤ ǫ then

11 standard deviation forecast very close to zero, i.e. smaller than ǫ;

12 s̄ := sχ̄(n+ 1)/
√
n;

13 z := −(EA+ f(t))/s̄;

14 else

15 z := −(EA+ f(t))/(τ̄ f(t));

16 end

Despite being simple and intuitive the key assumption underpinning Zk
6 and its unbiased variant

is that there is a stationary stochastic process generating ROA realisations — or a process whose

mean and standard deviation change slowly over time. In fact, these measures are essentially

based on moving averages and standard deviations and may therefore fail to properly capture the

structure of an underlying nonstationary stochastic process for the ROA. Setting a low value of k

as in Z2 partially addresses this problem by reducing the size of the window of past observations

that are used to estimate mean and standard deviation of ROA. Unfortunately, if the underlying

process features trends and it is heteroskedastic, estimates of mean and standard deviation may

lag behind the actual stochastic process. To deal with a potentially heteroskedastic ROA, in this

section we introduce a new method that operates under the assumption that the stochastic process

associated with the ROA is nonstationary with unobserved time dependent mean µt(ROA) and
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Figure 2: Dynamic estimator for nonstationary ROA

unobserved constant coefficient of variation τ , where τ = σt(ROA)/µt(ROA). The measure we

propose, which we shall name Zk
7 , is essentially an heteroskedastic extension of Z̄k

6 , which can be

computed as shown in Algorithm 1. Let r be a time series of ROA realisations, stored in an array;

t be the time period for which we aim to compute a Z-Score; EA the equity over asset at time t;

k the size (in periods) of a rolling time window, where k is odd and greater than one. For each

period i = 1, . . . , n+1 consider time window i, . . . , i+k−1 (line 6); fit a trend line f(y) : a+ by —

note that a nonlinear regression is also possible — to ROA observations within this time window

(line 3); and use this trend line to detrend the ROA realisation at period i+ (k − 1)/2. Maintain

a record of detrended ROA realisations (line 5) and associated estimates of mean ROA values

(line 4); estimate τ̄ using these values (line 9). By using the trend line obtained for time window

n + 1, . . . , n + k, forecast mean ROA in period t as f(t) and ROA standard deviation in period

t as f(t)τ̄ (line 15). If, however, |τ̄ f(t)| ≤ ǫ, where ǫ is a small number, use a more conservative

homoscedastic strategy in which the Z-score is computed from the bias-adjusted sample standard

deviation s̄ as shown in line 13. A graphical representation of the approach is shown in Figure 2.
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7 Confidence regions for Z-score estimators

In this section, we discuss how to construct confidence intervals around Zk
6 and confidence regions

around Zk
7 in such a way as to account for the weight of evidence at hand; these may be employed

to carry out classical statistical analysis or, if we are interested in the newsvendor-like problem of

determining capital requirements for institutions, confidence-based reasoning [Rossi et al., 2014].

We shall assume without loss of generality normally distributed ROA. Recall that ROAt is the

return on asset observed at time t; consider k periods and let the sample mean of the ROA be

m and its sample standard deviation be s. We compute α confidence intervals around the ROA

sample mean and sample standard deviation according to established formulae for the normal

distribution parameters

(

m− tk−1

(

1 + α

2

)

1√
k
s,m+ tk−1

(

1 + α

2

)

1√
k
s

)

= (µlb, µub)

(

(k − 1)s2

χ2
k−1(

1+α
2 )

,
(k − 1)s2

χ2
k−1(

1−α
2 )

)

= (σ2
lb, σ

2
ub)

where tk−1(·) is the inverse Student’s t distribution with k − 1 degrees of freedom; and χ2
k−1(·) is

the inverse χ2 distribution with k − 1 degrees of freedom.

We construct confidence intervals around Zk
6 as we argue that data availability is a key ele-

ment whilst drawing comparisons between point estimates. The new confidence based Zk
6 has the

following lower (lb) and upper (ub) bounds:

Zk
6,lb ≡ −EAT − µlb

σub
(11)

Zk
6,ub ≡ −EAT − µub

σlb
(12)

The graphical representation is reported in Figure 3. In this figure, plb and pub are lower and
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upper bounds, respectively, for the default probability. That is plb = Φ(Z5lb) and pub = Φ(Z5ub);

where Φ(·) is the standard normal cumulative distribution function.

Finally, we apply confidence based reasoning to the computation of Zk
7 . In Algorithm 1 consider

the set d of detrended realisations obtained at line 5 and the set x of means obtained at line 4; let

s be the standard deviation of d and m the mean of x.

Confidence intervals around the coefficient of variation τ can be constructed by using a variant

of the approach in Edward Miller [1991], which accounts for the reduced number of degrees of

freedom (n+ k − 3(n/k))

τlb ≡ s

m
− Φ−1

(

1 + α

2

)

√

(n+ k − 3(n/k))−1
( s

m

)2
(

0.5 +
( s

m

)2
)

τub ≡ s

m
+Φ−1

(

1 + α

2

)

√

(n+ k − 3(n/k))−1
( s

m

)2
(

0.5 +
( s

m

)2
)

where Φ−1(·) is the inverse standard normal cumulative distribution function. The rationale behind

the number (n + k − 3(n/k)) is the following: n + k is the total number of ROA realisations, 3

degrees of freedom (slope, intercept, and mean used in the detrending step) are lost every time we

fit a trend over a time window that does not overlap with any other time window; this happens

n/k times, since there are n/k of such time windows. It should be noted that the coefficient of

variation is, by definition, a positive value. We can address this issue by taking the absolute value

|s/m| of s/m in the above expressions and by not allowing intervals spanning over negative values.

However, a more elegant but slightly more complicated solution for normally distributed ROA can

be obtained by adopting the approach in Koopmans et al. [1964].

Confidence bands around the trendline f(y) : a + by can be constructed using standard ap-

proaches in linear regression, i.e.

f(n+ k)lb ≡ f(n+ k)− t−1
k−2

(

1 + α

2

)

√

1

k
+

(k/2 + 1)2
∑n+k

i=n (i− n− k/2)2

√

√

√

√

1

k − 2

n+1
∑

i=1

d2i

f(n+ k)ub ≡ f(n+ k) + t−1
k−2

(

1 + α

2

)

√

1

k
+

(k/2 + 1)2
∑n+k

i=n (i− n− k/2)2

√

√

√

√

1

k − 2

n+1
∑

i=1

d2i

where t−1
k−2 is the inverse t distribution with k − 2 degrees of freedom. Zk

6,lb and Zk
6,ub can be

immediately constructed using the results just presented. In Figure 4 we construct, for a simple

numerical example, confidence bands for the trendline as well as confidence intervals around the

standard deviation.
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8 Numerical analysis

In this numerical study we test the effectiveness of Zk
6 , Z̄

k
6 and Zk

7 . To do so, we employ the six

stochastic processes illustrated in Table 2 and Figure 5. We assume that ROAt in each period

t = 1, . . . , 50 is a normally distributed random variable with mean µt(ROA) and standard deviation

τµt(ROA), where τ is the coefficient of variation, which in our experimental design takes values

0.1, 0.25 and 0.5. We generate 300 random realisations of each series, for a total of 5400 series.

We then apply Zk
6 , Z̄

k
6 and Zk

7 at each period t = 21, . . . , 50, to estimate the Z-score. Experiments

are carried out under a common random number settings; periods 1, . . . , 20 are kept as “warm up”

periods and the Z-score for these periods is not forecasted. The actual Z-score for each period

can be obtained analytically from the stochastic process that generated the ROA realisations. In

our study the forecasting error is given by the difference between the actual Z-score at a given

period and the one estimated by a given estimator. In practice, we measure forecasting errors

against parameters of the underlying stochastic process that generated the data — in particular

mean and standard deviation used in the computation of the Z-score. Since we do not measure

forecasting errors against ROA realisations, we effectively employ mean-based error measures, or

we should rather say moment-based error measures, as introduced in Prestwich et al. [2014]. In

our experiments, EA is fixed to 10; error measures used to compare different Z-score measures,

namely mean error (ME), mean absolute error (MAE) and root mean squared error (RMSE), are

computed for periods 21, . . . , 50 in the forecasting horizon over the 300 realisations considered for

each time series.

Our numerical study confirms the effectiveness of the bias reduction strategy discussed in

Section 5 and of the dynamic estimator Zk
7 discussed in Section 6. In Tables 3, 4 and 5 we report
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Figure 5: The six series of E[ROAt] employed in our numerical study
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Series Analytical expression
1 E[ROAt] = 100

2 E[ROAt] =

{

80 + 2.5t if 1 ≤ t ≤ 25
142.5− (t− 26) if 26 ≤ t ≤ 50

3 E[ROAt] =

{

50 if t = 1
E[ROAt−1] + 0.1t if 2 ≤ t ≤ 50

4 E[ROAt] = 100 + 50sin(0.2t)
5 E[ROAt] = 100 + 50sin(0.2t) + 2t

6 E[ROAt] =

{

100 + 50sin(0.5t) + 5t if 1 ≤ t ≤ 25
100 + 50sin(0.5t) + 125− 5t if 26 ≤ t ≤ 50

Table 2: Expected ROA patterns in our empirical study

Zk
6 Z̄k

6 Zk
7

τ Series\k 3 5 t 3 5 t 3 5 7

0.1

1 9.13 2.91 0.28 6.84 2.08 0.19 2.73 1.46 0.99
2 8.26 2.16 -4.92 6.08 1.38 -4.97 2.58 1.31 0.85
3 7.91 1.47 -6.46 5.77 0.73 -6.49 2.39 1.15 0.75
4 4.10 -1.85 -7.93 2.36 -2.41 -7.96 2.24 0.88 0.09
5 6.70 0.23 -6.13 4.73 -0.42 -6.17 2.38 1.09 0.45
6 1.78 -3.44 -6.94 0.36 -3.87 -6.97 2.08 -0.32 -2.44

0.25

1 3.66 1.17 0.11 2.74 0.83 0.07 1.17 0.62 0.41
2 3.34 1.09 -0.61 2.46 0.76 -0.64 1.11 0.56 0.36
3 3.64 1.09 -1.14 2.73 0.76 -1.17 1.02 0.48 0.31
4 2.99 0.59 -1.82 2.14 0.28 -1.84 0.97 0.44 0.22
5 3.32 0.89 -1.02 2.46 0.58 -1.05 1.00 0.48 0.28
6 2.58 0.14 -1.37 1.80 -0.12 -1.39 0.97 0.39 0.01

0.5

1 3.66 1.17 0.11 2.74 0.83 0.07 1.17 0.62 0.41
2 3.34 1.09 -0.61 2.46 0.76 -0.64 1.11 0.56 0.36
3 3.64 1.09 -1.14 2.73 0.76 -1.17 1.02 0.48 0.31
4 2.99 0.59 -1.82 2.14 0.28 -1.84 0.97 0.44 0.22
5 3.32 0.89 -1.02 2.46 0.58 -1.05 1.00 0.48 0.28
6 2.58 0.14 -1.37 1.80 -0.12 -1.39 0.97 0.39 0.01

Z2 Z5

Table 3: ME for Zk
6 , Z̄

k
6 and Zk

7

ME, MAE and RMSE for the various estimators derived from the literature, i.e. Zk
6 , their unbiased

variants Z̄k
6 , and for our novel estimator Zk

7 . It is immediately apparent that Z3
6 (i.e. Z2 from

Lepetit and Strobel [2013]) and Z5
6 , including their unbiased variants, perform poorly. Zt

6 (i.e. Z5

from Lepetit and Strobel [2013]) is instead competitive, especially in its unbiased variant Z̄t
6.

As expected, estimators Zk
6 and Z̄k

6 are very effective in dealing with a stationary pattern (series

1); however, Zk
7 is also competitive in this setting. If the underlying stochastic process features

trends and low/medium variability τ ∈ {0.1, 0.25}, estimators Zk
6 and Z̄k

6 are generally inferior to

Zk
7 across the board (ME, MAE and RMSE).

As variability increases, τ = 0.5, Z̄k
6 begins to be more effective than Zk

7 . We believe that

this behavior ought to be expected. If variability is very high, trying to capture underlying trends

becomes a difficult task. In this setting, although Zk
7 remains quite competitive, it appears that
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Zk
6 Z̄k

6 Zk
7

τ Series\k 3 5 t 3 5 t 3 5 7

0.1

1 11.12 4.66 1.12 9.64 4.30 1.11 2.97 1.96 1.64
2 10.39 4.31 4.92 9.04 4.05 4.97 2.88 1.88 1.59
3 10.13 3.97 6.46 8.83 3.79 6.49 2.78 1.86 1.62
4 7.75 4.25 7.93 7.06 4.37 7.96 2.75 1.82 1.51
5 9.22 3.73 6.13 8.13 3.69 6.17 2.72 1.77 1.42
6 7.01 4.68 6.94 6.64 4.89 6.97 2.50 1.24 2.47

0.25

1 4.50 1.91 0.46 3.91 1.76 0.46 1.32 0.82 0.68
2 4.19 1.86 0.69 3.64 1.72 0.71 1.28 0.79 0.66
3 4.48 1.85 1.22 3.89 1.72 1.24 1.21 0.77 0.67
4 3.94 1.65 1.82 3.44 1.58 1.84 1.24 0.81 0.70
5 4.17 1.71 1.03 3.63 1.60 1.06 1.17 0.75 0.63
6 3.66 1.53 1.37 3.23 1.51 1.39 1.24 0.78 0.63

0.5

1 2.34 1.02 0.26 2.04 0.95 0.26 0.83 0.56 0.45
2 2.23 1.01 0.26 1.94 0.93 0.26 0.79 0.54 0.44
3 2.30 1.01 0.32 2.00 0.94 0.32 0.78 0.52 0.42
4 2.30 0.97 0.43 2.00 0.91 0.45 0.82 0.58 0.49
5 2.20 0.97 0.27 1.92 0.90 0.27 0.71 0.49 0.40
6 2.13 0.89 0.34 1.86 0.84 0.35 0.73 0.56 0.48

Z2 Z5

Table 4: MAE for Zk
6 , Z̄

k
6 and Zk

7

Zk
6 Z̄k

6 Zk
7

τ Series\k 3 5 t 3 5 t 3 5 7

0.1

1 45.06 8.35 1.48 39.70 7.65 1.45 3.85 2.61 2.23
2 30.14 8.69 4.95 26.40 8.03 5.00 3.76 2.52 2.16
3 40.93 6.50 6.60 36.06 6.00 6.63 3.70 2.52 2.21
4 18.77 5.76 7.95 16.40 5.67 7.97 3.74 2.48 2.02
5 48.13 5.73 6.17 42.51 5.40 6.20 3.63 2.39 1.92
6 20.78 5.57 6.96 18.35 5.66 6.99 3.30 1.56 2.64

0.25

1 18.47 3.40 0.61 16.28 3.11 0.60 1.75 1.10 0.93
2 10.60 3.39 0.78 9.25 3.11 0.80 1.71 1.07 0.90
3 24.70 3.53 1.34 21.82 3.25 1.36 1.65 1.05 0.92
4 10.58 2.80 1.84 9.25 2.59 1.86 1.73 1.13 0.99
5 12.73 3.08 1.11 11.17 2.84 1.13 1.59 1.03 0.87
6 14.26 2.41 1.42 12.56 2.27 1.44 1.70 1.15 0.95

0.5

1 9.69 1.79 0.34 8.55 1.65 0.34 1.27 0.92 0.77
2 6.94 1.76 0.33 6.09 1.61 0.33 1.22 0.90 0.71
3 8.72 1.77 0.39 7.68 1.62 0.39 1.22 0.87 0.68
4 6.85 1.72 0.48 6.01 1.59 0.50 1.33 1.01 0.84
5 6.56 1.65 0.33 5.76 1.51 0.33 1.10 0.80 0.64
6 8.61 1.43 0.39 7.59 1.32 0.40 1.18 0.98 0.87

Z2 Z5

Table 5: RMSE for Zk
6 , Z̄

k
6 and Zk

7

the best strategy is simply to ignore trends and revert to simpler measures such as Z̄k
6 to prevent

overfitting.

Finally, an interesting result is the fact that estimators Zk
6 and Z̄k

6 present a considerable bias

when the underlying stochastic process features trends and low variability; this can be observed

by contrasting ME and MAE. Zk
7 , in contrast, features a much lower bias.
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Country Commercial Cooperative Savings Total
Argentina 277 16 8 301
Austria 352 493 381 1,226
Brazil 400 9 0 409
Canada 55 4 0 59
China 226 4 1 231
France 556 190 118 864
Germany 627 5,634 3,479 9,740
India 358 24 0 382
Indonesia 276 0 0 276
Italy 156 1,080 94 1,330
Japan 994 3,815 9 4,818
Mexico 182 0 2 184
Republic Of Korea 0 2 6 8
Russian Federation 2,222 0 16 2,238
Saudi Arabia 81 0 0 81
South Africa 38 0 0 38
Spain 53 124 25 202
Turkey 96 0 0 96
United Kingdom 433 0 0 433
USA 29,543 55 1,030 30,628
Total 36,925 11,450 5,169 53,544

Table 6: Distribution of banks by country and specialization

9 Empirical study

In this section we present a comparative study of how the different banks are classified in the deciles

of the distribution of Z̄k
6 with k equal to the whole sample available, Z̄3

7 and Z̄5
7 . The aim is to

contrast assessment of the overall risk of bankruptcy among different measures. We retrieve data

from BvD Bankscope covering the period 2005–2013. We select all types of depository institutions

(commercial banks, savings banks and cooperative banks) that operate in G20 countries. We also

exclude all institutions where data was not available for one of the following accounting items:

total assets, total equity and pre-tax profit. The total number of observations per country and

type of credit institution appears in Table 6. In Figure 6, we pool together the data for all banks

and all years and classify each observation in the decile of the distribution of each measure. We

then relate each numerical value corresponding to the decile of the distribution by comparing the

assessment for each measure and compute the difference in the deciles. In 20% of the cases, all

three methods lead to the same classification, i.e. banks are assigned to the same decile of the

distribution. Z̄3
7 and Z̄5

7 show the highest level of correspondence (47% of the cases). Z5 and Z5
7

agree only in slightly more than 30% of the cases, while in approximately 65% of the cases they

differ by ± one decile or more. In 30% of the cases the difference is of two deciles or more, and in

10% of the cases it is of three deciles or more. Hence we conclude that in general these measures

produce different results. We further investigate this matter in the context of two case studies.
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10 Case studies

In this section we operationalise the Z-score measures presented in Section 5 (Z̄k
6 with k equal to

the whole sample available) and in Section 6 (Z̄k
7 with k equal to 3 and 5; therefore Z̄3

7 and Z̄5
7 ,

respectively) in the context of two real-world scenarios. We carried out an extensive search for

events that indicate financial distress in banks. We used Factiva news database to collect data on

such events between 1997 and 2011. Among all events retrieved from the database only two refer

to financial institutions (Commerzbank AG and Dexia CLF Banque) for which we have sufficient

data in our numerical data set described in Section 9. We use these data to estimate three different

Z-score measures (Z̄k
6 , Z̄

3
7 and Z̄5

7 ) until the year before the distress events observed for the two

aforementioned institutions (Figure 7). The level of distress in financial institutions is inversely

proportional to the Z-Score value [see Lepetit and Strobel, 2013]. The reader should keep in mind

that a low value of the Z-score is associated with high levels of financial distress. As shown in

Figure 8, in 2007 only approximately 7.5% of the banks in the sample feature lower Z-Scores (i.e.

higher levels of financial distress) than Commerzbank AG and Dexia CLF Banque. For reference,

the figure also reports the evolution of the distribution of bank Z-Score in our sample between

2006 and 2008; in particular, it is apparent the increase of the level of financial distress in 2008.
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Figure 7: Performance of Z-score measures in the context of two real-world scenarios (2005-2007)

Commerzbank AG. On the 2nd of November 2008, it was announced that Commerzbank AG,

the second-biggest German bank, would receive a government rescue of around 19 billion euros.

According to the bank’s chief executive, the need of a bailout was due to the abrupt rise in capital

requirements demanded by supervisory authorities, rating agencies and the capital markets after

the financial crisis. As other German banks were facing the same regulatory changes but many of

them did not rely on new capital injections by the national government, we would expect that a

good Z-score measure would capture the unusual capital depletion at Commerzbank. Given the

inverse relationship between Z-score and distress level mentioned above, it is expected that Com-

merzbank Z-score should be low immediately before 2008. Figure 7 shows that Z̄k
6 is the measure

that predicts the highest level of financial distress, while Z̄3
7 appears to be the less accurate among

the three measures. However, all three measures (Z̄k
6 , Z̄

3
7 and Z̄5

7 ) are fairly low in comparison with

other banks in the sample (Figure 8). This indicates a significant level of distress between 2005

and 2007, which can be seen as an early warning signal on Commerzbank’s financial situation.

Dexia CLF Banque. On the 30th of September 2008 Dexia Bank received a 6.4 billion euro

bailout from France, Belgium and Luxembourg. In the weeks following the bankruptcy of the

American investment bank Lehman Brothers, rumours on the weak financial situation of Dexia

spread in the European market and its shares plunged by nearly 30% on the day before the bailout

was announced. As in the previous example, we would expect a low Z-score reading for Dexia in

the years preceeding the distress. In this case, Figure 7 shows that Z̄5
7 is the measure that predicts

the highest level of financial distress in 2007; once more Z̄3
7 appears to be the less accurate among

the three measures. However, as in the previous case study, all three measures (Z̄k
6 , Z̄

3
7 and Z̄5

7 )

are low in comparison with other banks in the sample (Figure 8) and clearly indicate a situation

of financial distress.
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Figure 8: Relative position of Commerzbank AG and Dexia CLF Banque in 2007 with respect
to all other banks in the sample. The position is computed using Z̄5

7 , but other measures do not
produce a substantially different rank.

While studying the two financial distress events here discussed, we observed a steady increase

in the the level of financial distress of institutions between 2007 and 2008. This ought to be

expected, as in this period we were approaching the 2008 financial crisis. However, in Figure 9 we

now show the evolution, between 2006 and 2013, of the distribution of bank Z-Score (Z̄5
7 ) in our

sample. This figure appears to suggest that the steady increase in the the level of financial distress

of institutions in our sample goes beyond the 2008 financial crisis and appears to span over the

whole period 2006 - 2013. We feel that it is out of the scope of this paper to cross-validate this

result by using alternative indicators and to discuss the implications of this finding; however, we

believe this preliminary result deserves further investigation.

11 Conclusions

In this work we focused on the issue of determining reliable estimates of the Z-Score, a popular

measure of financial stability. To achieve this, we extended the study of Lepetit and Strobel

[2013] by introducing bias reduction strategies to improve effectiveness of their estimators. We

also introduced a number of novel estimators whose aim is to effectively capture nonstationary

stochastic returns; for these estimators, as well as for existing ones in the literature, we discussed

analytical confidence regions. For the first time in the literature, we exploited moment-based error

measures to assess the effectiveness of existing estimators from Lepetit and Strobel [2013] as well as
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Figure 9: Distribution of bank Z-Score (Z̄5
7 ) in our sample; evolution between 2006 and 2013

of our novel ones; we carried out an extensive empirical study that contrast results obtained with

the aforementioned estimators on over ten thousand banks; and we contrasted results obtained by

using Z-score estimators against business news on the banking sector obtained from Factiva.
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