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This paper presents, in brief, the fundamentals of optimal control theory together with some 

notes for differential games, which is the game theoretic analogue of the optimal control. As it 

is recommended by literature references the main tool of analysis in open loop information 

structure for environmental models is the Pontryagin’s Maximum Principle, while the 

Hamilton–Jacobi–Bellman equation is the tool of analysis for any closed loop informational 

structure. As applications of the above theoretic considerations we present some 

environmental economic models which are solved both as optimal control problems and as 

differential games as well. 
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Optimal control is one of many strands of control theory which uses mathematical 

methods to address a wide area of applications in many scientific fields. The mathematics of 

optimal control theory is the generalization of the ancient theory called "calculus of 

variations". The early applications in calculus of variations were in physics, since 1662 

Fermat derived “���������	�
�	
�����
” as a solution to a minimum time problem. Only after 

more than 250 years, in 1924, Evans studied a dynamic economic model for monopolists, 

whereas Ramsey (1928), using techniques of calculus of variations, solved the famous capital 

accumulation model (the well known Ramsey model). The first environmental model 

analyzed with the calculus of variations was the optimal exploitation of exhaustible resources, 

first proposed by Hotelling (1931). To begin with optimal control theory it is better to set the 

statement of a calculus of variations problem and then to compare with the same optimal 

control problem statement and solution. 

The fundamental calculus of variations problem appears as an optimization problem 

of the form:  

                 

[ ] ( ) ( )

( )
( )

0

maximize    or   minimize   

 subject to                          = A    (A given)

 and                                     = Z    (T, Z given)            

�  
 =  
 

∫
�� �

� � � ��� � � ��
��

� �

� �
                        

( )1  

The task of the calculus of variations is to select from a set of admissible �  paths the one that 

yields an extreme value of the integral [ ]� �  . Note that the solution path is restricted to 

those curves that are continuous with continuous derivatives. 

For the solution process of problem ( )1  one has to deal with the basic first order 

condition, also called the Euler equation, which briefly says that every small perturbation 

( )ε⋅	 � of the optimal time path ( )
� � , i.e. ( ) ( ) ( )ε⋅
� � � � � � 	 � , has no action on the 

integral [ ]� � , as this perturbation tends to zero, or formally  
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0
0

ε=
=

ε
��

�                                                        

( )2   

so the condition 0ε =�� �  is a necessary condition for the extremal.  

Since ( )2  is not operating, as many arbitrary variables are involved, the final form of 

the Euler equation, after the appropriate development, becomes:  

                                    0′ =� �

�
� �

��
�     for all [ ]t 0,T∈                 ( )3  

and the more explicit version of the Euler equation, after ( )3 ’s expansion, is the following 

second order nonlinear differential equation 

              ( ) ( ) 0′ ′ ′ ′′′ ′+ + − =�� � �� ��
� � � � � � � �   for all [ ]t 0,T∈              ( )4  

That is ( )4  is a more familiar, since the only calculations needed are the derivatives of the 

objective functional � with respect to ′ ′ ′ ′� � �

�� �

�� and � . 

Suppose you need to find the extremal of the functional [ ] ( )
2

0

′= ∫
�

� � ������ ��  

with boundary conditions ( )0 0=�  and ( )2 8=� . Since ′
�

�������� , following ( )4  

we compute  �� ���� , ′ ′
�

� ��� , ′ ′� �
� ��  and ′ ′�� ��

� �� � � . The Euler equation and 

its solution is the following: 

( ) ( ) ( ) ( )′′ ′′ ′⇔ ⇔ ⇔� 
 �

� � ��� � ���� �


 


� � � ��


 


� � � �� �� 


 


� � � � �� ����  

The values of the constants of integration are � �� � � � � , setting in the solution �� �  and 

���  and substituting into the boundary conditions. So the extremal, the optimal time path, 

is the cubic time function ( )
 �� � � � . 

A special class of the isoperimetric problems arising in the case the constraint is 

substituted by an integral of the type: ( )
0

�

′ =∫ � ����� �� � with �  a constant. In such a 

situation the problem appears in general (with m integral constraints) as 
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( )

( )

( )

maximize     

 subject to   

.

.

.                      

                  and appropriat

′ ′′

′ ′′

′ ′′

∫

∫

∫

�

� � � � � �

�

�

� � � � � � � �

�

�

� � � � � � � �

�

� ��� �� ������ �� �� ����� � ��

� ��� �� ������ �� �� ������ ��� �

� ��� �� ������ �� �� ������ ��� �

e boundary conditions

  

 

In this case the Euler equation becomes the following Euler–Lagrange equation (it is assumed 

only one integral constraint) 

                                        ( ) ( )x 0λ λ′ ′− − − =� � �

�
� � � �

��
                   ( )5  

where λ  is the Lagrange multiplier which in the isoperimetric case is a constant.  

Moreover, in the one–state–variable problem with a single integral constraint, it can 

be shown that the modified Lagrange integrand ( ) ( )λ′ ′= −� � ����� � �����  can be used 

and then apply the Euler – Lagrange equation to �  alone. Now the value of the (constant) λ  

can be determined from the isoperimetric constraint. 

In the above class of the isoperimetric problems belongs the model proposed by H. 

Hotelling in the classic article “�������
�������	������������������
���” (Hotelling, 1931). 

The major conclusion of the Hotelling model is that the pure competition can yield a socially 

optimal extraction path for an exhaustible resource, while the monopoly cannot. The resulting 

condition, after the solution
1
 of the isoperimetric problem, which ensures the above 

conclusion, is the following 

                                   ( ) ( ) ρλ′− = �� � � � �
              

( )6  

                                                           
1
 For a detailed analysis of the solution process, see among others Chiang (1982). 
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which in turn says that, in the pure competition, the quantity ( ) ( )′−� � � �  grows at the 

interest rate ρ . Note that the Lagrange multiplier λ  in ( )6  represents the initial value of the 

difference price minus marginal cost ( ( ) ( )′−� � � � ).  

In the monopoly the final solution leads to the conclusion “the difference between the 

marginal revenue and the marginal cost grows at the interest rate”, i.e. 

( ) ( ) ρλ′ ′− = �� � � � � , which is suboptimal compared with the socially optimal extraction. 

After the Pontryagin's et al. (1962) book "Mathematical Theory of Optimal Processes", the 

Maximum Principle became the main tool of analysis in economics and management, 

physics, biology and so on. The absolute success of the Maximum Principle is due to the 

introduction of the two, instead of one, types of variables in the optimization process. The 

first is the ��
�
�� and the other is the ����� variable. The ��
�
�� variable is a steering 

mechanism which one can maneuver so that as to drive the ����� variable to various positions 

at any time via one or more equations of motion. That is, the Maximum Principle is this tool 

which sets an order in the mess of the corner solutions that may appear in the optimization 

process. Here the goal of the optimal control theory, is the determination of the optimal time 

path of the ��
�
�� variable first and then the determination of the ������variable, unlike the 

calculus of variations where the main task is to find the optimal time path of the ����� 

variable. 

Especially the simplest optimal control problem can be derived from the calculus of 

variations problem if the time derivative of the state variable, involved in the objective 

functional, is replaced by the so called �������
� �	� �����
. Below we present a simple 

calculus problem together with the equivalent optimal control problem. The calculus problem 

is:  

                 

( )

( )
( )

0

maximize                            

 subject to                          = A    (A given)

 and                                     free   (T given)            

�

= ∫ ɺ� � ����� ��

� �

� �
                          

( )��
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Now introducing the control variable �  and the equation of motion ɺ� � �  the same problem 

in optimal control fashion can be written as:  

            

( )

( ) ( )

0

maximize                            

 subject to                          x = u

 and                                     = A,   free   (A, T given)            

�

= ∫
ɺ

� � ����� ��

� � � �
      

( )� 
 

and the fundamental link between the two variables became apparent. 

It is important to say that at the solution process, according to the Maximum 

Principle, except the time, state and control variables one more class of variable(s) will 

emerge. This is the so called ������� variable, measuring the shadow price of the state 

variable, denoted by λ(t). 

Except the �������� �
�
����� there is another solution method for optimal control 

problems which is called the "dynamic programming". Starting with a wider class of similar 

problems which can be solved, the original problem is embodied in the larger class of 

problems. A policy oriented expression for the �
�
�������	����������� could be the following: 

“�
�������������������������
���
���������������
������
�������������
���
�������������
��
�������


����
�
���������
���������
���������
���������������������
���
���������������
������
��	
���

����	�
����������
”. Now, it remains to set as simple as possible in rigorous mathematics the 

���������
�
����� and �
�
�������	�����������.  

'�� %�
�#
���	���
��
#���
���
�	
��������
��
	���
����
�
���

We discuss the class of optimal control problems that appears in the modeling of 

dynamic systems. Then, the state of a system at time �  can be described by the following n–

dimensional column vector 

                    ( ) ( ) ( ) ( )( ) [ ]    ,    0,T
′ ∈ ∈ℝ� � �� � � � � �� � ������ � �  

where the terminal time T 0>  in many economic applications is infinity, i.e. T = ∞ . 

Moreover suppose that there is a decision maker influencing the time path of the state variable 

by choosing the time path of the m–dimensional control value. That is  
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                      ( ) ( ) ( ) ( )( ) ( )( ) [ ]       ,     0,′= ∈ � ∈� � �� � � � �� � ������ � � � � � � �  

The control variable ( )  � �  is a piecewise continuous function and ( )( )� � � � �  is the given 

control region, i.e. ( ) ( )( )  ∈ ��
� 

 � � � � . Additionally it is assumed that the dynamis of the 

state variable is governed by the following Ordinary Differential Equation (ODE) 

                          ( ) ( ) ( )( ) [ ]     0,	 ∈ɺ� � � � � �� � � � � �                      ( )!�  

                          subject to ( ) �� � � �                                                  ( )!  

with terminal constraints: 

                             

( ) ( )
( ) ( )
( ) ( )

′

′ ′′≥

′′

�

" "

�

" "

"

� � � � �





" �������� 















 !�

� � � �





" � � �������� 









 !�

� � 
#$���






" � � ��������










 !�

 

where 
n m n,   :	′ ′′ ′ ′′ ≤ × × →ℝ ℝ ℝ ℝ� %��


� %��


� �� �  is a vector valued 

function ( )1 2, ,..., 
	 	 	 	 ′= , where for all ( ),    	"" �������� �����  and ( )	∂ ∂" ����� �  are 

continuous functions with respect to their arguments. Equation ( )!�  is the ���������
����� 

or the �������
��	������
. 

Now we suppose that the decision maker has a time discounted objective in the form 

of the following functional 

           ( )( ) ( ) ( )( ) ( )( )
0

  ρ ρ−= +∫
�

� �� � � � & � � �� � � � ��

 � ' � � ���

               ( )9  

( ) ( )( )& � � �� � � �  is the instantaneous profit gained by exerting the control variable ( )� � at 

time � , ( )� �  is the current state, while ρ  is the positive discount rate. At the end horizon 

� the state would be ( )� � , while the corresponding payoff  is described by the term  

( )( )' � � ��  also called, in the optimal control language, the ������� or ��
��� �����. The 

payoff function ( ) ( )( )& � � �� � � �  and its partial derivative ( )∂ ∂& ����� �  are assumed 
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continuous with respect to their arguments as well as the scrap value function 

n:� × →ℝ ℝ ℝ  with respect to �  and T. Then the task of the regulator is to choose the best 

policy ( )� �  among all the admissible trajectories. As a consequence the optimal control 

problem is the maximization of  the reward ( )( )� � �  taking into account that the state’s 

motion is governed by equation ( )!� . 

As it is mentioned above, generally there exists two different approaches to solve an 

optimal control problem of the type ( ) ( )8     9− . One is based on the Pontryagin’s Maximum 

Principle (Pontryagin et al., 1962; Grass et al., 2008), while the other hinges upon the 

Hamilton–Jacobi–Bellman (HJB) equation introduced by Bellman (1957). 

%�
�(�)������������	
�

Before we proceed with the necessary first order conditions of the maximization with 

the Maximum Principle approach, it is important to introduce the Hamiltonian function (H), 

which has as arguments all the involved variables λ��

��

��

 . The Hamiltonian function is 

defined as 

                             ( ) ( ) ( ) ( )    	λ λ= +( ������ & ����� � �����             ( )10
 

Once the Hamiltonian function is defined by ( )10  there is the requirement to maximized with 

respect to the control variable �  at every point of time. Pontryagin’s Maximum Principle 

states as:  

%�

�
��$ (Pontryagin et al., 1962; Grass et al, 2008).  

���� ( ) ( )
 
� � �

� �   be �
����������������
��	������
����� ( ) ( )8     9−
 
 ���� 	
�����
��
�������� �

���
����
�������� ����
��
������
��������������
��
���������		�
�
�������	�
����
� ( ).λ  ����� 

( ) 
λ ∈ℝ�  �����	��
��	�
����� [ ]0,∈� �   

             ( ) ( ) ( )( )
( )( )

( ) ( ) ( )( )* * *

,

, , , max ,λ λ
∈�

=

� � � �

( � � � � � � ( � � � � � � � �             

�
��������
�����
���	������ � ����
�� ( )� � ������
��
������
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                         ( ) ( ) ( ) ( ) ( )( )* *, , ,λ ρλ λ= −ɺ
�� � ( � � � � � �

                    
( )���  

!�
���
��
�������
�
���
���������
�����
��

                         ( ) ( )( )*λ = �� ' � � ��
                                              

( )��  

����������
������"������
��
�	�
����
������	�
������(10# ��

Next in the lines of Forster (1980) we provide an example of a pollution abatement 

model solved as an optimal control problem. 

�)���	
�$�

A question raised in Environmental Economics is how much of a given level of 

emissions should be abated (with a given abatement technology) and how much should be 

diffused in the environment. To focus on this problem let us assume that ( )� �  represents the 

pollutants flows generated by the firms’ production process and ( )) �  are the emissions 

produced by these pollutants flows. These emissions can either be abated or diffused in the 

environment. Let *  be the amount of emissions allocated for abatement, so 

( )+�) � *� is the corresponding diffusion rate or net emissions dispersed in the 

environment. The stock of pollutants is raised according to the equation  

                        ( ) ( ) 00δ δ =ɺ��+ ��) � * ��





� �� � �  

where δ  is natural decay rate. 

Furthermore let ( ), *  be the utility which the society enjoys from the abatement at 

rate *  and ρ  is the discount factor of the society. Then the regulator has to solve the 

following optimal control problem 

          

( )
( ) ( )( )

( )
( )

t T

           A .
0

0

         max            (11 )

                   (11 )  

0                                    (11 )              

� �

�

�

ρ ρ

δ

Τ
− −

   +    

=

∫
ɺ

� , * �� � � �

-� .���
�/
��) � * �














 
� �

� �
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where �  is the salvage function mentioned above. 

The necessary assumptions on the functions U and E are the following: 

( ) ( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( ) ( )
( )

0,    ,  0    0            

0,     0      0                               

0,      ,                                    

0       

ρ δ δ

′ ′ ′′> =∞ < ≥

′ ′′> <

′ ′= > + ∞ <

′′ ≤

, * , � , * #/$

�00
* ���

) � ) � #/$

�00
 �% �� 

) � ) � ) ���

' � ( )                                                                         ���

 

The properties summarized in (12) are the well known $
������
�����
�. For the solution of 

the optimal control problem (11), first we formulate the Hamiltonian function 

                           ( ) ( )( )λ δ− −(�, * � ) � � *                            ( )13  

The Hamiltonian function is concave with respect to A  due to the assumptions (12), i.e. 

′′=**( , 1� . Thus the maximizer 
** of the Hamiltonian ( )λ( ��*�  for fixed �  and 

λ lies in the interior of [ )0,�= ∞  and satisfies the following first order condition 

                                ( ) ( )* * 0λ λ′= − =*( ��* � , *  

from which the Maximum Principle yields 

                                                  ( )*λ ′=, *                                       ( )14  

Due to the concavity of the utility function , , the inverse function ( ) 1−′,  exists and 

therefore 
**  is a function of the adjoint variable λ  given by 

                                        ( ) ( ) ( )1* %λ λ
−′=*                                ( )15  

The Hamiltonian's concavity in ( )��* is assured. This is easily seen, by using the positivity 

of λ , which can be deduced from (14) and (12a), which in turn implies the negative 

definiteness of the matrix 

                                 
( ) 0

0

λ   ′′   =      ′′   
�� �*

*� **

( ( ) �

( ( ,
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and therefore the concavity of the Hamiltonian. Moreover the hypothesis that any solution 

that satisfies the necessary conditions is optimal is ensured (applying the maximum principle), 

due to the concavity of the salvage function. 

Next we derive the equation of motion for the costate variable by applying (10b). For the 

Hamiltonian (13), (10b) yields 

              ( )( ) ( )( )λ ρλ ρλ λ δ ρ δ λ′ ′= − = + − = + −ɺ
�( ) � ) �                   ( )16       

Substituting (15) into the state equation (11b) establishes  

                            ( ) ( ) ( )1

 % λ δ
−′ɺ��) � �� �                                    ( )��    

Equations (16) an (17) is the so called ��
�
����������� of equations which is appropriate for 

further analysis. 

Since the control function given by (15) is differentiable with respect to time, the time 

derivative of the ( ) 0λ =*( ��*�  is: 

                                      ( )�

�
λ′′= −ɺ ɺ

*( , * *
�

 

and using the adjoint equation (16) and equation (14), the time derivative of the control * can 

be written as: 

                            
( )
( )

( )
( )
( )

δ ρ
′ ′

+ −
′′ ′′

ɺ
, * ) �

*�
, * , *

        ( )���  

Equation (17a) together with the state dynamics ( ) δɺ��) � * �� �  constitute the 

transformed state–control system. 

The infinite horizon version of the Maximum Principle was first introduced by Halkin 

(1974) as: 

%�

�
��' (Maximum Principle for an Infinite Time Horizon) 

�����������
� ( ) ( )( )
 
� � �

� �  �� �
����������������
��	������
	�
������
�&�
��
����� �
�������

���(8)K(9)��
����� ����
����
�������� ����
��
������
��������������
��
���������		�
�
�������

	�
����
� ( ).λ  ����� ( ) 
λ ∈ℝ�  and a constant 0 0λ > �����	��
��	�
����� [ ]0,∈� �   
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�������������� �������������
( )( )0 ,  0λ λ ≠�              

 ( ) ( ) ( )( )
( )( )

( ) ( ) ( )( )* * *

,

, , , max ,λ λ
∈�

=

� � � �

( � � � � � � ( � � � � � � � �             

�
��������
�����
���	������ � ����
�� ( )� � ������
��
������

                       ( ) ( ) ( ) ( ) ( )( )* *

0, , ,λ ρλ λ λ= −ɺ
�� � ( � � � � � � �

           
 

Note that there is no transversality condition in the sense of (10b), a result that is a 

consequence of the proof strategy presented in Halkin (1974). 

Continuing with the pollution abatement model in infinite horizon, the basic 

equations are transformed below as                             

                          

( )
( ) ( )

( ) ( )
( )

t

           A .
0

0

         max                                     

                            

0                                         

ρ

δ

∞
−

       

=

∫
ɺ

� , * �� �!�

-� .���
�/
��) � * � �! 















� �

� �

( )
( ) ( )

( )

         

                    0                                     

                                                                     

≤ ≤

′≥

�!�

* ) � �!�

� � �!�

 

and the canonical system 

                                        

( ) ( )
( )
( )

( )( ) ( )

                                    

                   

δ

δ ρ
′

′+ −
′′

ɺ

ɺ

��) � * � �2�

, *
*� ) � �2 

, *

� �

                                

Next we draw the phase portrait for the canonical system of equations (19a)K(19b). Therefore 

we consider the ɺɺ��

* , isoclines, yielding 

                                               ( ) δ=* ) � ��                         ( )���                                    

                                                ( ) δ ρ′ = +) �                         ( )��     

Under the assumptions (12b), (12c), the ɺ�  isocline (20a) reduces to a strictly concave 

function. This concave function vanishes at the origin and for some 0>ɶ� , but meets its 

maximum at some 0< ɶ
�� 1� . The other isocline ɺ*  becomes a vertical line. The condition 
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(12c) together with (20b) now assures the existence of a unique ɺ�  satisfying (20b). Finally 

we find a unique equilibrium at ( )ɶɶ��*  with ( ) δɶ ɶ ɶ*�) � ��  for which  the corresponding 

Jacobian is the following matrix: 

                                  ( )
( )
( )
( )

( )

1

ˆ

0

δ ′ − −     = ′   ′′−   ′′   

ɶ

ɶɶ ɶ

ɶ

ɶ

) �

3 ��* , *
) �

, *

  

Since ˆdet   31�  there exists a saddle point equilibrium, i.e., the equilibrium exhibits a stable 

path. Therefore, for initial values in a neighborhood of �  the stable path is a possible 

candidate for an optimal solution.  

Further phase portrait analysis includes the following two cases. 

"��
�$: Under the constraint (18d) there exist points 1 2<ɶ ɶ� � , with the property: for initial 

values between these points the resulting path is the unique optimal solution (see Figure 1). 

The exit point 1
ɶ�  is an intersection point of the state path with the axis *� � , but the  point  

2
ɶ� lies into the intersection of the stable path with the curve ( )=* ) � . 

"��
�': With the constraint (18e) the solution for  1
′<ɶ ɶ� � 1�  is depicted in Figure 1.b. In 

this case it is optimal to control the system into the marginal equilibrium point ( )′ ′� �* . For 

initial values of the state into the open interval between  1
′ ɶ� 

���

� , the optimality of the 

above solution can be explicitly shown. Since  ( ) 0λ ≥� for all  �  and ( )
t
lim
→∞

≥ ɶ� � � ,  the 

limiting transversality condition is satisfied for any admissible orbit of the state. Finally, we 

conclude that the depicted solution in Figure 1.b is the unique optimal solution, because the 

adjoint and the control variables are both continuous at the point  1
ɶ� . 

Note that Figures 1.a and 1.b are drawn for the functional forms ( )=) � �    and   

( ) log=, * * and the parameter values are δ=0.5 and ρ=0.1.    
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        *  

                       ɺ*� �  

                                                   ( )*�) �  

 

 

 

 

 

       ɶ*                                  ɺ�� �     

 

        0   1
ɶ�   ɶ�           2

ɶ�                                                             �  

�

*����
�$��� The black dotted curve is the optimal solution path for the pollution abatement 

model. Starting between the states 1
ɶ�  and 2

ɶ�  the path which converges to the saddle point 

( ),ɶ ɶ* � is the optimal solution. For all other initial values except the previously noted the 

control trajectory under consideration is on its boundary until the exit point 1
ɶ�  or 2

ɶ�  is met. 

     

      *  

 

                                                        ( )*�) �  

 

 

 

 

 

     ′*                                                  ɺ�� �  

 

 

        0                ′�    1
ɶ�                                                              �       

 

*����
�$��� Here we consider  ′≥� � , i.e., for state values into the interval  between ′� and    

1
ɶ� , the optimal control line lies in the interior of the control region and the optimal path leads 

to the boundary equilibrium ( ),′ ′* � . For states 1≥ ɶ� �  the control values are chosen from 

the upper boundary of the control region, until the exit point  1
ɶ�  is reached.              
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%�
��������	
�
#�&�����	����

As it is mentioned above the other approach to solve optimal control problems is the 

principle of Optimality and is based on the HJB equation. According to that principle, the 

wider class of these problems, in which an optimal control problem belongs, is sated as 

follows: 

                          
( )

( ) ( )( ) ( )( )
t

max   +∫
�

� �
& � - �� - �- �-

 ' � � ��

 

                            (21a)   

                  Subject to            ( ) ( ) ( )( ) [ ]     ,	 ∈ɺ� - � � - �� - �- - � �                           
(21b)

 

                            ( ) ξ=� �  

As it is assumed above the optimal control problem under consideration has an optimal 

solution for any pair ( ),ξ �  . The Bellman equation with the pair ( ),ξ � , ( ),ξ� �  as arguments, 

is defined as 

                    ( )
( )

( ) ( )( ) ( )( )
.

, max   ξ = +∫
�

�
�

� � & � - �� - �- �-

 ' � � ��       
        (22)

 

Now in order to produce the HJB equation the following Principle of Optimality must be 

used. 

%�

�
��+ (Principle of Optimality)  

'�� �������� ����� ���
�� ������� �� �������
� ( ) ( )( )* *� � �� � �	� ���� �
������ (21)� �
�� ����� �������
�

������� 	�
� ����� ���
� ( ),ξ � � ����� [ ], ,   
ξ∈ ∈ℝ� � �  � ���
� � ( ) ( )( )* *� � �� � � ��� �
� ��������

�������
�	�
������
�������	�������(21)������ ( ) ξ=� � ��	��
���
����	�

            ( ) ( ) ( )( ) ( )( )* * *,   ξ = τ τ τ τ +∫
-

�

� � & � �� � � 

 � � - �-                        (23a)  

�
�       ( )( ) ( )( )* *=� � � �� ' � � ��                                        (23b)  

 Note that, the information which records the relative change of  ( )ξ4 ��  with respect to   ξ�  

when -  tends to  �  is given by relation (23a). The resulting HJB equation formally is defined 

as follows. 
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%�

�
��, (HJB equation).  

��� ���
���������
��������������
�
��� ( )*� � �
������
���

����
��
�� �
�(����
�� ( )*� �
�
	�
�����

����� �)�
����
� ����*�����
� 	�
����
� ( ),ξ� � � �����
��
���������		�
�
������������
������� ���

ξ �
�� �  � ���
� ( ) ( )( )* *� � �� � � ��� �
� �������� �������
� �	� ���� �
������ (21)� �	� �
�� �
��� �	� ����

*�����
�	�
����
� ( ),ξ� � ������	��������"+*��������
,�

                        ( ) ( ) ( ) ( ){ }, max ,   , ,
�

	ξ ξ ξ ξ= +� � �� � & ��� 
 � � ���                 (24a)                  

�
��� � � ( ) ( )ξ ξ=� �� ' ��                                                               (24b)  

 	�
�������( ) [ ], 0,
ξ ∈ ×ℝ� � ��	�
������� ( )*� � ������
��
���� ������������������������������

Note that for the problems which the discount factor is entered into the objective 

functional, equation (24a) is not operative in the solution process. Therefore another 

condition, for the HJB equation provided by Dockner et al (2000), satisfies the following 

partial differential equation: 

             ( ) ( ) ( ) ( ) ( ){ }, , max ,   , ,
�

	ρ = +� � �� � � � � � & � ��� 
 � � � � ���                      (25)  

and (25) is the HJB function for discounted problems, which is very useful for our economic 

problems under consideration. 

Next we present an example of a very simple environmental model for which the HJB 

equation is used in order to extract feedback strategies and the optimal value function. 

�)���	
�'�

Assume we have a nonrenewable resource extraction monopolistic firm that sells the 

extracted product at a fixed price 0>	 . We denote by ( )� �  the resource’s extraction rate 

and we suppose that this rate equals to the sales rate, thus preventing the resource’s stock up. 

Moreover we denote by ( )� �  the remainder resource stock at time � . The system dynamics 

is described as “����
�����	�
�������
��	�����
����
�������-������������������
�����
�
���”. Thus 

the equation of motion is the following: 
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                                          ( ) ( )= −ɺ� � � �                                          (26)                    

and with boundary conditions    ( ) ( )0,    0≥ >� � � �   

Extraction cost is an increasing function with respect to the extraction rate ( )� �  and 

decreasing with respect to the remainder stock  ( )� � . 

The monopolistic firm maximizes its discounted profits, given by the objective 

functional: 

                    ( )( ) ( ) ( ) ( )( )
0

ρ

∞
−  =   ∫ �3 � � � 	� � � � � �� � ���                         (27)         

And the optimal control problem is: 

 ( )( ) ( ) ( ) ( )( )
0

ρ

∞
−  =   ∫ ����

3 � � � 	� � � � � �� � ���                     (28)  

Subject to     ( ) ( )= −ɺ� � � �   

With the boundary conditions    ( ) ( )0,    0≥ >� � � �  

Specifying the cost function as: 

                                    ( ) γ
=

��
� ���

��
                                               (29)  

we have the following result. 

�

��
�
����
��$  

“�
��������� 	������-����
�����
� ��
������ ( )� ��� � �	� �����
������ (28) under the constraint�

(26)��������	������
�, 

                                   ( )( )
( )

γ

 − =
� 	 * �

� � � � �   

���
�� ( )* � ���������
������������
��	�����	������
������������		�
�
������������
,�



18 

 

       ( ) ( )
( )

2

ρ
γ

 − = −ɺ
	 * �

* � * �
�

” 
2
           

��

# 

The HJB equation of the above problem is: 

  ( ) ( ) ( ) ( ) ( ) ( ){ }max |	ρ − = + ∈� �
�

� ��� � �� � & ���� � � ��� ����� � , ���  

    with ( ) ( ) γ
= −

��
& ����� 	� �

��
 ,  ( ) ( )	 =−����� � �                                               

Taking the first order conditions of the above HJB function we have: 

( ) ( ) ( ){ } ( )

( ) ( )
( )( )

( )

0 0    

0                                                    

	

γ

γ

γ

   ∂ − − ∂    = ⇒ = ⇒
∂ ∂

⇒ − − = ⇒ =

�

�
�

�

�

�
	� � ��� �

& ����� �� ��� ����� ��

� �

� 	 � ����
	 � ��� � ��� ��

�

�

Making use of the well informed guess for the value function 

                           ( ) ( )� ��� �* � �  

thus giving the following derivatives: 

                              
( ) ( )

( ) ( )ɺ
�

�

� ��� �* �

� ��� �* � �
 

Now substituting the value function derivative (with respect to state) into the strategy (30) we 

have the final strategy 

                                 ( )( )
( )

γ

 − =
� 	 * �

� � � ��  

Now it remains to verify that this strategy satisfies the initial HJB equation for the conjectured 

linear value function  ( ) ( )� ��� �* � � . 

First, substituting the strategy into the right hand side of the HJB equation gives: 

                                                           

2
 The solution of the differential equation ( ) ( )

( )( )2

2

� � �
� � � �ρ

γ

−
= −ɺ  is  

( )
( )2

1 2 2
2

tanh 2
2

� � .
� � � 
 �

γ ρ γρ
γρ γ γρ

γ

 + +  = + + +   
 , where tanh( )

� �

� �

� �
�

� �

−

−

−
=

+
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( )( )

( )( )

( )
( )( )2

RHS(HJB)

γ
γ

γ γ

 
  

   −   = − + − =   
      

��� 	 * �

� 	 * � � 	 * �
	 * �

��

�

�

  

          
( )( )

2γ
=

�
	 * �

�
�

  

Second, the left hand side of the same equation becomes: 

  ( ) ( ) ( ) ( ) ( )LHS HJB ρ =  
ɺ

�$� ��� � ��� � � * � * �� �  

Equating both sides, i.e. ( )LHS HJB RHS(HJB)=  the result is the differential equation 

                                   ( ) ( )
( )

2

ρ
γ

 − = −ɺ
	 * �

* � * �
�

  

for which the solution must be ( )* �  in order to satisfy the HJB equation.         

�

+�� ��##
�
����	����
��

Game theory is intended to be a useful tool for modeling situations in which there are 

many (rational) decision makers and for guessing the outcome of decision makers' 

competition or cooperation. Here we deal only with differential games. Differential games 

involved in dynamic conflict situations, for which an arbitrary number of decision makers 

(such as renewable or nonrenewable resources extractors, pollution regulators etc) interact in 

an environment e.g., a fishery place, a mine, a factory or a society) .  

In fact, differential games are those dynamic games for which the maximization of 

each player's objective is subject to some limitations. All those constraints which are subject 

to the payoffs of each player are included in one or more differential equations describing the 

state's evolution of the game. 

Since every player involved in a differential game has its own objective functional to 

maximize (or minimize), optimal control theoretic methods can be used. Considering the 

game’s solution, we seek for the Nash equilibrium which is the appropriate, but not the only, 

concept of solution. Under the Nash equilibrium concept there no incentive for none of the 

involved players to deviate from his/her own Nash equilibrium strategy. 
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Before we continue with the (brief) description of the solution it is necessary to give 

some definitions of the type of the available strategies depending on information patterns. An 


�
��	

� strategy is only a time dependent rule of decision, i.e., the resulting controls are 

functions of time as: 

                                              ( ) ( )�φ="� � �  

An open loop strategy is used only if the players commit at the start of the game to follow a 

fixed time path. This strategy is applied only if it is impossible for every one player to 

observe the current state variable involved. 

A��	
�
��	

� of feedback or Markovian strategy is that for which each player observes the 

system’s current state i.e., according to the state – time pair ( )���  and decides about her 

action according to the rule: 

                                   ( ) ( )( )φ" "� � � � � ��                                          

while the stationary closed loop strategy is defined independently of the time as: 

                                        ( ) ( )( )φ" "� � � � �  

The major question raised in differential games is how we can compute the Nash equilibrium. 

Supposing that all the other N–1 rivals of player "  use closed loop strategies  

( ) ( )( ), ,   φ ≠. .� � � � � � . "  , then player  "  has to solve an optimal control type problem, 

which is of the following form: 

                    
( )

( )( ) ( )( )
.

0

max ,   
ρ ρφ −

∈�
+∫ " "

" "

�

� �

" " " "
�

� & ��� � � � � � ��

 � ' � ��

 

subject to   ( )( ) ( ) 0, ,      0	 φ =ɺ
" "� � ��� � � � �� � �
�

 

where   ( ) ( ) ( ) ( ) ( ) ( )( ), , , , ,..., , , , ,..., ,φ φ φ φ φ φ=
� �" � � " � "�� 5� � � � � � � � � � � �          

Since one differential game is faced as N optimal control games the above theorems 2 and 4 

for the Maximum Principle and for the Principle of Optimality are in use.  

Next we present an example of a differential game model. 
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�)���	
�+�

As a differential game example we deal with the basic renewable resource 

model, but we modify its growth function to be a Gompertz type. The Gompertz 

growth function is given by the expression (see for instance Schafer, 1967)  

    ( ) ( ) ( )( )1 = −  & � � � 0� � �
 

Concerning the properties of the Gompertz growth this function first of all fulfills the 

conditions:  

( ) ( )ln′ =−& � �         ( ) 0′′ =− <
�

& �
�

     ( )0 0=&        

Second, it is a concave function and therefore it has "the pure compensation property" 

as it is defined by Clark (1984). 

Third, it is right–skewed and has the same properties as the logistic growth function, 

while the upper stationary solution of ( )ɺ� � & � , i.e. the solution � � � , is 

asymptotically stable. 

 

    ( )& �  

 

 

 

 

 

 

 

 

             

              0                      1                                              e                         �  

*����
�'- The shape of the Gompertz growth function ( ) ( ) ( )( )1 ln� � � � � � = −    
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According to that growth function the stock of the resource obeys to the 

following differential equation law of motion: 

        ( ) ( ) ( )( ) 1 21 φ φ − − −  ɺ� � � � � 0� � �  

where ,   �φ " ����  is the harvesting function for the two players of the model. If we 

define the fishing effort for the "  player as ( ) ( ) ( )� �φ=" "� � � , then the game is a 

nonKcooperative one for which every agent chooses a time path of his own fishing 

effort ( )�" �  that maximizes the discounted utility. We transform the utility in the form 

of an additive separable function, i.e. dependent on the fish stock ( )� �  and on utility 

that every player enjoys from harvesting ( )�φ"  as well.  

We specify the utility functions to be in logarithmic form arising from the 

following utility function specification often used in growth models 

     ( )
( )

( )

1
0,1

0

β

β
β

β

 − ∈= =

�

, �

0� �

  

for which the elasticity of intertemporal substitution is given by ( )1 1 β− . Moreover, 

we define ( ) ( )6 � � 0�� �  in the case 0β = .  

A number of calculations are performed in order to set up the problem. The 

calculations are the following:  

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )⇒ ⇒ ⇒ɺ ɺ ɺ ɺ

6 � 6 ��� �
6 � � 0�� � � � � � � � � � � 6 � � � � � � 6 �

��
  

Now, the transformed evolution equation becomes: 

( ) ( ) ( )( ) ( )
( )

( )( )
( ) ( )

1 2
1 2

φ φ
φ φ − − ⇒ − − ⇒  

ɺ
ɺ

� �
� � � � � � 0� � � �� 0� � �

� � � � � �
� �  

( ) ( ) ( ) ( )1 21 � � � �⇒ = − − −ɺ6 � 6 �   
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This is the transformed stock evolution equation that depends on the logarithm of the 

resource stock as well as on the players’ fishing effort. 

The utility function that is maximized is depending on the resource stock and 

on effort as well. It is assumed that original present value maximized utility is 

dependent on the harvesting function, i.e.: ( )( )
0

max ln�ρ φ

∞
−∫ "� � �� , but the latter can 

be transformed as follows: 

           

( )( ) ( )( ) ( )( ) ( )( )

( )
( )

( )( ) ( )( ) ( )

0 0

0 0

max ln max ln ln ln

max ln ln max ln
��

� �

�
� �

ρ ρ

φ φ

ρ ρ

φ

φ φ

φ

∞ ∞
− −

∞ ∞
− −

 = − +  

     =  + = +        

∫ ∫

∫ ∫

" "

"

� �

" "

"� �

"

� �� � � � � � ��

� � � �� � 6 � ��
� �

 

The differential game now becomes:  

                            ( )( ) ( )
0

max ln�

�
� �ρ

∞
−  +  ∫

"
"� 6 � ��

                      

( )��  

subject to           ( ) ( ) ( ) ( )1 � �= − − −ɺ
� �6 � 6 � � �

             
( )��  

In what follows we explore the Nash equilibria of the game which may be a time 

consistent one in the sense of subgame perfectness.  

Time consistency could be seen as a minimal requirement for the credibility of 

an equilibrium strategy. If player i (i=1,2) had an incentive to deviate from his 

strategy �ψ  during the time interval [ )0,� , the other player .�


.����  would not 

believe his announcement of  �ψ  in the first place. Consequently, player . computes 

his own strategy taking into account the expected future deviation of player "  which, 

in general, would lead to strategies different from ,   ψ ≠. . " . OpenKloop informational 

structure strategies are not in general time consistent; while closedKloop or Markovian 

strategies are certainly time consistent (Dockner ����� , 2000).  
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On the other hand subgame perfectness is the concept for which an 

equilibrium strategy remains unchanged regardless the starting period the game 

begins. So, subgame perfectness is a sole requirement for the credibility of an 

equilibrium strategy that is time consistency for that strategy. We conclude if we can 

found an equilibrium strategy for the game, independently of the initial state and 

regardless of the informational structure employed, this strategy has the subgame 

perfectness property and can be a time consistent strategy. 

�.��	����������	�����

��
�
����
��'�

������������������/����
�&��������
����
����
�����	�
����
����������
��������
����

��
�������	�����	�
�� 1� ρ= +" �������������������
�����
� �

��

#�

The Hamiltonian of the above problem for the player i (i=1,2) is  

( ) ( ) ( ) ( ) ( ) ( )ln � � � �λ  = + + − − − " " � �( 6 � � � 6 � � �  

and the conditions for an interior solution are 

( )
( ) ( )

( )
1 1

0 �
� �

λ
λ

∂
= − = ⇒ =

∂
"

"

" "

(
� �

� �
  

The costate’s variable equation of motion becomes:  

( ) ( ) ( ) ( ) ( )1 1
�

λ ρλ λ ρ λ
∂

=− + ⇒ =− + +
∂

ɺ ɺ"(
� � � �   

with solution     ( ) ( )11

1
�
ρ

λ
ρ

+= + �
+

�
�  

along with the transversality condition  ( ) ( )lim 0λ
→∞

=
�

� 6 � ,  

which must be satisfied, so it is reasonable to set 0�=  and the costate variable 

becomes ( ) 1

1
λ

ρ
=

+
� . Substituting the value of the costate variable into the strategy, 
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the resulting strategy becomes 1� ρ= +"  which is independent of the initial state, and 

therefore it is time consistent. 

��
�
����
��+�

$
� ���� ����� ���� �����
�� �����
���� ���� (��
�� �����
������ ����� ��
�����
�� �������
����

��
�����
����
�������������
�����������
�����
 ( ) 1

2
�

ρ+
=�  �

��

#�

The evolution equation in the cooperative case becomes 

( ) ( ) ( )1 2�= − −ɺ6 � 6 � �  where ( ) ( ) ( )1 2� � �= +� � �  is the joint fishing effort of the 

two players. The Hamiltonian for the cooperative case is,  

( ) ( ) ( ) ( ) ( )ln 1 2� �λ  = + + − − �( 6 � � � 6 � �  

 and the rest of algebraic manipulations for maximization reveals the cooperative 

equilibrium strategy 
1

2
�
ρ+

=  which is again time consistent.  

%�
����
##�/0�	�
1�#�����
��

��
�
����
��,�

$
� ���� ����� ���� �����
�� ��� 
��� �����
���� ���� ����		� 	�
����
� 	�
� ����� �����
� ���

( )1 1
ln 1

1 1
ρ

ρ ρ ρ

 
 = + + + − + + 

"

6
� � . 

��

#�

We check whether the equilibrium strategies given by proposition 2 are verified by 

the above value function. The Hamilton–Jacobi–Bellman (HJB) of the differential 

game (31)K(32) becomes:  

( ) ( ) ( ) ( ) ( ) ( )max ln 1    � � �ρ
 ∂   = + + − − − ≠   ∂  

"
" " " .

�
� 6 � � 6 � � � " .�

" ����

.����

6
 

and the maximization of the RHS of the HJB equation yields: 
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( ) ( ) ( ) ( ) ( )

( )

ln 1
1

0

� � (

� �

� � � �

� �

 ∂   ∂ + + − − −   ∂ ∂  = ⇒ =
∂ ∂

"

"

�
6 � � 6 � � �

6 �

6 �
      .  

Differentiation of the proposition’s 4 value function with respect to the state 

variable6 , yields 
1

1 ρ

∂
=

∂ +
"�

6
 . Now equating the derivatives  

∂
∂

"�

6
, the final result is 

1.� ρ= +"  

(�����
�����

In this paper we first discus the dynamical methods as they applied in environmental 

and resource economics, given in a rigorous mathematical language; and second, as a 

contribution, we introduce and solve two environmental and resource models. The first model 

is an optimal control one, touching the classical monopolistic extraction of a depletable 

resource, disposed after the extraction in a market. One of the first model’s crucial 

characteristic is that the extraction cost is dependent not only from the monopolist’s utility but 

also from the remaining stock of the resource. At the solution process, under the closed loop 

informational structure, we found the analytic expression of the optimal monopolistic 

strategy, which also is time consistent and therefore an objective for further research and 

policy instrument, as well.  

In the game theory part of the paper we tackle with a renewable resource model for 

which as the growth function of the resource is set the well known (from biology) Gompertz 

growth function. In the equilibrium analysis that follows, pointing out the closed loop 

solutions of the game, we found the analytic expressions of the cooperative and non 

cooperative strategies. All the above strategies are independent the state’s variable as well as 

the control’s variable, but only hinges upon the discount factor. Therefore, these strategies 

have the important properties of time consistency, thus they constitute economically acceptant 

policies. Regarding the players’ payoffs, we also found the analytic expressions of the value 

functions which are functions of the state variable and functions of  the common discount rate 

as well. 
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