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Equation Section 1  

Abstract 

 In this article, we analyze how factor endowment affects production in the three-factor two-

good general equilibrium trade model. These relationships determine whether ‘a strong Rybczynski 

result’ holds or not. We search for a sufficient condition for this result to hold (or not to hold). We 

assume factor intensity ranking is constant. We use ‘the economy-wide substitution’ (or EWS) and 

EWS-ratios to analyze Rybczynski sign pattern in a systematic manner. We also analyze Stolper-

Samuelson sign pattern, which expresses the commodity price-factor price relationships.  

 

Keywords: three-factor two-good model; general equilibrium; Rybczynski result; economy-wide 

substitution. 

 

1. Introduction 

Batra and Casas (1976) (hereinafter BC) wrote an article on functional relations in a three-

factor two-good neoclassical model (or 3 X 2 model), and they claimed that ‘a strong Rybczynski 

result’ arises. According to Suzuki (1983, p141), BC contended in Theorem 6 (p34) that ‘if commodity 

1 is relatively capital intensive and commodity 2 is relatively labor intensive, an increase in the supply 

of labor increases the output of commodity 2 and reduces the output of commodity 1.’ This is what ‘a 

strong Rybczynski result’ implies.  

 Suzuki (1983) contended that this could not be the case under the assumption of ‘perfect 

complementarity’. He used the Allen-partial elasticities of substitution (hereinafter AES) for his 

analysis. Jones and Easton (1983) (hereinafter JE) mainly analyzed how commodity prices affect 

factor prices. This relationship is the dual counter-part to the factor endowment-commodity output 

relationships. On this duality, see JE (p67), see also BC (p36, eq. (31)-(33)). JE (p75) defined ‘the 

economy-wide substitution’ (hereinafter EWS) for their analysis. By using EWS’s, JE showed some 

sufficient conditions for ‘a strong Rybczynski result’ to hold (or not to hold) in Subsection 5.2 (p86-

92), for example, under the assumption of ‘perfect complementarity’ defined by themselves. JE 

suggested that ‘the factor intensity ranking’ and EWS are important for their analysis (On this, see 

JE(p67, p96)). Thompson (1985) also tried to show some sufficient conditions for ‘a strong 

Rybczynski result’ to hold (or not to hold). He used the concept of ‘aggregate substitution’.  
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 In sum, these 3 articles tried to disprove BC’s claim of ‘a strong Rybczynski result’. 

However, Suzuki’s proof is not plausible (On this, see Nakada (2015a)). JE’s analysis is somewhat 

complicated. Especially, JE’s proof in subsection 5.2.4, and 5.2.5 (pp. 90-92) is questionable (On this, 

see Nakada (2015b) and Appendix). Thompson’s analysis is not so simple. Sometimes, it is difficult 

to follow his logic. In any case, before Thompson (1985), it was meaningful to disprove the results 

derived by BC. But after that, its significance seems to have decreased.  

On the other hand, Takayama (1982, Section 4, p13-21) analyzed the factor endowment-

commodity output relationships and its dual counter-part in the 3 X 2 model in his survey article. For 

example, he analyzed when ‘extreme factors’ are ‘aggregate complements’ (On this definition, see 

Takayama (p18)). And he derived the result which is equivalent to ‘a strong Rybczynski result’.  

 After Thompson (1985), what studies have been done about the 3 X 2 model? I mainly 

explain the articles which dealt with the factor endowment-commodity output relationships and/or its 

dual-counterpart.  

 I can classify the articles after Thompson (1985) as follows.  

(1) Studies which assumed the functional form of production functions. See e.g., Thompson (1995), 

Ban (2007), Ban (2008), Ban (2011).  

(2) Studies which assumed another assumption about production functions (e.g., normal property, 

separability). See e.g., Suzuki (1985), Suzuki (1987, chapter 2), Bliss (2003).  

(3) Studies which modified one of basic assumptions. See e.g., Ide (2009).  

(4) Studies which modified an important basic assumption. See e.g., Ban (2010).  

(5) Other studies. See e.g., Suzuki (1987, chapter 1), Teramachi (1993), Easton (2008). 

 In sum, some of these studies after Thompson (1985) are not so simple, but somewhat 

complicated. I am not sure whether all of these studies are plausible or not. I do not discuss about it. 

It seems that some papers tried to apply before they understood the basic functions of the model. Some 

articles analyzed very differently from other articles. Therefore, sometimes it is not so easy to compare 

with others.  

 At least, about a sufficient condition for ‘a strong Rybczynski result’ to hold (or not to hold) 

in the 3 X 2 model of BC’s original type, nobody has analyzed systematically. The purpose of this 

article is to analyze it in a systematic manner. We define EWS-ratios based on EWS to analyze.  

 In section 2, we explain about the basic structure of the model. In section 3, we assume 

factor intensity ranking. In section 4, we make a system of linear equations using 5 X 5 matrix to 

obtain the solutions. In section 5, we make a Rybczynski matrix, and analyze its component. In section 

6, we rewrite it using EWS-ratios. In section 7, we derive the important relationship among EWS-

ratios. And we draw the boundary line for the region for EWS-ratio vector in the figure. In section 8, 

we draw the border line for a Rybczynski sign pattern to change in the figure. This border line devides 

the region for EWS-ratio vector into 12 subregions. In section 9, we analyze Rybczynski sign patterns 
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by using Hadamard product of matrices, and derive a sufficient condition for ‘a strong Rybczynski 

result’ to hold (or not to hold). In section 10, We analyze Stolper-Samuelson sign patterns which 

express the commodity price-factor price relationships. In section 11, we show some applications of 

these results. Section 12 is a conclusion. In Appendix, we derive the important relationship among 

EWS’s.  

 The studies after Thompson (1985) are as follows.  

(1) Thompson (1995) assumed that production functions were trans-log type, and he estimated the 

values of parameters in U.S. using econometrics. Based on these, he computed ‘the aggregate 

elasticities’ (equivalent to EWS). Next, he assumed Cobb-Douglas type, and CES type, and 

computed similarly. And after that, he assumed ‘the strong degrees of complementarity’. In sum, 

he used all of these for his analysis of the factor endowment-commodity output relationships, and 

its dual-counterpart. This is an application. Ban (2007), assumed that production functions were 

two-stage CES type. In his model, three factors are skilled labor, capital, unskilled labor. He 

assumed that capital and skilled labor could be ‘[Allen-] complements’ in two sectors. And he 

computed the values of AES’s theoretically. He tried to analyze how commodity prices affect the 

relative factor prices when skilled labor and capital are (Allen-)complements in both sector. And 

he described those effects when he changed factor intensity ranking. But his analysis is somewhat 

complicated, and his results are not so clear. This is a theoretical study. Ban (2008, p4, Table1) 

showed a table to classify the results in Ban (2007) by factor intensity ranking. He classified the 

countries in the world into 14 regions in total. And, he computed the factor intensity for these 

areas, using GTAP vesion 6 database. And he assumed 10 kinds of values for ‘the elasticities of 

substitution’ (equivalent to EWS) in order to simulate how commodity prices affect the relative 

factor prices. This is an application. Ban (2011, chapter 4, p87-89) summarized Ban (2007) and 

Ban (2008), and modified them. About his results, see Ban 2011, p96-97, Table 4-1.  

(2) Suzuki (1985) analyzed the factor endowment-commodity output relationships when he assumed 

‘normal property’ of the factor of production. In Suzuki (1987, Chapter 2, pp27-36), he assumed 

that production functions are separable (p32). Bliss (2003) assumed that only one sector has a 

specific factor. He assumed separability and non-separability in production functions. And he 

assumed that capital and land are ‘Hicksian Complement’ in agriculture (p274). He analyzed the 

commodity price-factor price relationships. And he tried to explain the wage movement in British 

economic history. This is a kind of application.  

(3) Ide (2009) modified one of the basic assumptions of the model, that is, he assumed the model with 

increasing returns to scale technology. He assumed that extreme factors are ‘aggregate 

complements’. And he analyzed the commodity price-factor price relationships, and its dual-

counterpart. This is a theoretical study. 

(4) Ban (2010) modified an important assumption of the model, that is, he assumed that commodity 
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prices are endogenous. He analyzed how factor endowments affected on factor prices. This is a 

theoretical study.  

(5) In Suzuki (1987, Chapter 1, pp17-26), he assumed that ‘extreme factors’ are ‘Allen-complements’ 

in both of the 2 sectors (p23). Teramachi (1993) analyzed the commodity price-factor price 

relationships in a similar way to Suzuki (1987, Chapter 1), and Takayama (1982) in elasticity 

terms. For example, he commented on Thompson (1985) in his Appendix (p66-70) that 

Thompson’s analysis in not plausible. Easton (2008) analyzed whether the extent of 

substitutability and complementarity affect the commodity price-factor price relationships. He 

reconsidered the analysis in JE (1983). For example, he tried to extend the concept of ‘perfect 

complementarity’.   

 

2. Model 

 We assume similarly to BC (pp22-23). That is, we assume as follows. Products and factors 

markets are perfectly competitive. Supply of all factors is perfectly inelastic. Production functions are 

homogeneous of degree one and strictly quasi-concave. All factors are not specific and perfectly 

mobile between sectors, and factor prices are perfectly flexible. These two ensure the full employment 

of all resources. The country is small and faces exogenously given world prices, or the movement in 

relative price of a commodity is exogenously determined. The movements in factor endowments are 

exogenously determined. 

 Full employment of factors implies 

    ,  ,  ,
i j j ij

a X V i T K L    (1) 

where Xj denotes the amount produced of good j ( j=l,2); aij the requirement of input i per unit of 

output of good j (or the input-output coefficient); Vi the supply of factor i; T is the land, K capital, and 

L labor. 

 In a perfectly competitive economy, the unit cost of production of each good must just equal 

to its price. Hence, 

     ,  1  ,
i j ji i

a w p j    (2) 

 

where pj is the price of good j; wi is the reward of factor i. 

 BC (p23) stated, ‘With quasi-concave and linearly homogeneous production functions, 

each input-output coefficient is independent of the scale of output and is a function solely of input 

prices:’ 
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   ,  ,  ,  ,   1,2.
ij ij i

a a w i T K L j     (3) 

 

And they continued, ‘In particular, each Cij [aij in our expression] is homogeneous of degree zero in 

all input prices.’  

 We might need some explanation about this. Samuelson (1953, chapter 4, p59) defined the 

function, 1 n(x,w , ,w ),(i 1, ,n)i
iv f    . iv is ‘an optimum value for each productive factor’ 

to derive ‘the minimum total cost for each output (p58)’, x is production, and wi is ‘prices of productive 

factors’. Samuelson (1953, chapter 4, p68) stated that vi ‘must be homogeneous of order zero in the 

variables 1 n(w , ,w ) , x being constant’ (see also Samuelson (1986, chapter4, eq. (5) in p61; eq. (52) 

in p70)). This implies that aij is homogeneous of degree zero in all input prices.  

 Eq. (1)-(3) describe the production side of the model. These are equivalent to eq. (1)-(5) in 

BC. The set includes 11 equations in 11 endogenous variables (Xj, aij, and wi) and 5 exogenous 

variables (Vi and pj). The small-country assumption simplifies the demand side of the economy.

 Totally differentiate eq. (1):  

 

 j  (λijaij* +λij Xj *) =Vi*, i=T,K ,L , (4) 

 

where an asterisk denotes a rate of change (e.g., Xj*=d Xj / Xj), and where λij is the proportion of the 

total supply of factor i in sector j (that is, λij=aij Xj / Vi ). Note that Σj λij=1. 

 The minimum-unit-cost equilibrium condition in each sector implies Σi wi daij =0, hence we 

derive (see JE (p73, eq. (9)), BC (p24, n5),  

 

 Σi θijaij*=0, j=1, 2,  (5) 

 

where θij is the distributive share of factor i in sector j (that is, θij=aijwi/ pj). Note that Σiθij=l; daij is the 

differential of aij. 

 Totally differentiate eq. (2):  

 

 Σiθijwi*=pj *.  (6) 

 

Subtract pj * from the both sides of (6):  

 

 Σiθi1 wi1*=0,  

 Σiθi2 wi1*=-P, i=T, K, L ,  (7) 
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where P=p1*-p2*, wi1*= wi*-p1*, wi1 = wi /p1; P is the change in the relative price of a commodity; wi1 

is the real factor price measured by the price of good 1. 

 Totally differentiate eq. (3) to obtain 

 

 aij*= Σh εij
h wh* =0, i=T, K , L , j= 1, 2, (8) 

 

where  

 εij
h = ∂log aij /∂log wh =θhjσij

h ; (9) 

 

σij
h is the AES (or the Allen-partial elasticities of substitution) between the ith and the hth factors in 

the jth industry. For additional definition of these symbols, see Sato and Koizumi (1973, pp47-49), 

BC (p24). Since aij is homogeneous of degree zero in input prices, we have 

 

Σh εij
h =Σh θhjσij

h =0, i=T, K, L, j=1, 2.  (10) 

 

Eq. (8)-(10) are equivalent to the expressions in BC (p24, n. 6). See also JE (p74, eq. (12)-(13)). From 

these: 

 

 aij*=Σh εij
h wh1*.  (11) 

 

Substitute eq. (11) in eq. (4): 

 

  j( λij h εij
h wh1*+λij Xj *) =Σh gih wh1*+Σj λij Xj * = Vi *, i =T, K, L. (12) 

 

where  

 gih = Σj  ijεij
h,  i, h=T, K, L. (13) 

 

This is the EWS (or ‘the economy-wide substitution’) between factors i and h defined by JE (p75). 

They stated, ‘Clearly, the substitution terms in the two industries are always averaged together. With 

this in mind we define the term 
i
k to denote the economy-wide substitution towards or away from 

the use of factor i when the kth factor becomes more expensive, under the assumption that each 

industry's output is kept constant’.  

 Note that  

 

  h ihg =0, i=T, K, L.(14) 

 ( / )ih hig h i g  , i, h=T, K, L. (15) 
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gih is not symmetric. Namely, gih ≠ ghi , i ≠ h in general. On eq.(15), see also JE (p85).  

From (14), we obtain 

  

 gKK =-(gKT +gKL), and gTT =-(gTK +gTL). (16) 

 

 Combine eq. (12) and (7) to make a system of linear equations. Use 5 X 5 matrix, we 

obtain 

 

 AX=P,  (17) 

 

where A= 1 2

1 2

1

1 1

2 2 2

2

1 0 0

0 0

T K L

T K L

TT TK TL

KT KK KL

LT LK LL

T T

K K

L L

g g g

g g g

g g g

 
 


  




 
 
 
 
 
 
 
  

, X=

1

1

1

1

2

*

*

*

*

*

T

K

L

w

w

w

X

X

 
 
 
 
 
 
  

 , P=

0

*

*

*

T

K

L

P

V

V

V

 
  
 
 
 
  

.  

A is a 5 X 5 coefficient matrix, and X, P are column vectors.  

 

3. Factor intensity ranking 

 In this article, we assume: 

 

 
1 1 1

2 2 2

T L K

T L K

a a a

a a a
  .  (18) 

 

This implies:  

 

 
1 1 1

2 2 2

T L K

T L K

  
  

  . (19) 

 

This is, what you call, ‘the factor intensity ranking’ (see JE (p69), see also BC (pp26-27), Suzuki 

(1983, p142),). This implies that sector 1 is relatively land intensive, and sector 2 is relatively capital 

intensive, and that labor is the middle factor, and land and capital are extreme factors (see also Ruffin 

(1981, p180)). 

 If eq.(19) holds, we have  
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1

1 2

2

1 ,
L

L L

L

  


  (20) 

 
1

1 2

2

or 1
L

L L

L

  


   (21) 

 

Note that we do not assume that 1 2L L  holds. JE (p70) called eq.(20),(21), as ‘the factor intensity 

ranking for middle factor’. It implies that the middle factor is used relatively intensively in sector 1.  

 Define that  

 

   11 2 1 2 2,  ,  ,  ( , ).
T T K K L L

EA B         (22) 

 

This is the inter-sectoral difference in distributional share. The equation of Σiθij=l (see eq.(5)) implies  

 

 A B 0.E   (23) 

 

From (23):  

 

 (A,B, ) ( , , ),( , , ),( , , ),( , , ),( , , ),( , , )E                    (24) 

 

But, eq.(19) implies  

 

 (A, B, E)=(+, -, ?). (25) 

 

That is,   

 

 (A,B, ) ( , , ),( , , )E         (26) 

 

From (23), e.g.,  

 

 (A B).E      

 B (A ).E    (27) 

 

If we assume eq. (20) holds, we derive  

 

 (A, B, E)=(+, -, +).  (28) 
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On the other hand, if we assume eq.(21) holds, we derive  

 

 (A, B, E)=(+, -, -). (29) 

 

4. Solution 

 Use Cramer’s rule to solve eq. (17) for X2*: 

 

 X2*=∆5/∆,  (30) 

 

where ∆=det (A), ∆5= det (A5)= 1

1

1 1 1

2

1

2 2

0 0

0

*

*

*

T K L

T K L

TT TK TL T

KT KK KL K

LT LK L

T

L

K

L L

P

g g g V

g g g V

g g g V

  
  







.  

 

∆ is the determinant of matrix A. We can show that ∆<0, but we do not need to prove this. It is because 

∆ is equivalent to the 3 X 3 determinant D in BC, and they proved that D<0 (on this, see BC (pp25-

26)). Replace column 5 of matrix A with column vector P, we derive matrix A5. ∆5 is the determinant 

of matrix A5. Sum columns 1 and 2 in column 3, and subtract row 2 from row 1: 

 

 ∆5= 1

2 2

1

1

0 0

1 0

0 *

0 *

0 *

T K

TT TK T

KT KK K

LT LK L L

T

K

A B P

P

g g V

g g V

g g V

 






. 

 

Recall that (A, B)=(θT1-θT2, θK1-θK2) (see eq. (22)). Express the above as a cofactor expansion along 

the 3rd column: 

 

 ∆5= (1)(-1)2+3 

1

1

1

0

*

*

*

TT TK T

KT KK

T

K

L

K

LT LK L

A B P

g g V

g g V

g g V





. 
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Express the above as a cofactor expansion along the 4th column: 

 

 ∆5= (-1)2+3 [P (-1)1+4 CP2 + VT*(-1)2+4CT2 + VK*(-1)3+4CK2 + VL*(-1)4+4 CL2 ],  

 

where  

CP2=

1

1

1

TT TK

KT K

T

K

L

K

LT LK

g g

g g

g g





, CT2= 1

1

0

KKT KK

L LT LK

A B

g g

g g




, CK2= 1

1

0

TTT TK

L LT LK

A B

g g

g g




, CL2= 1

1

0

TTT TK

K KT KK

A B

g g

g g




. 

 

Hence,  

 

 X2*=∆5/∆=1/∆ (-1) [ 2 2) *( TP TVP C C  + 2*( )K KV C + 2*
L

LV C ].  (31) 

 

 On the other hand, solve eq. (17) for X1*: 

 

 X1*=∆4/∆,  (32) 

 

where ∆4=det (A4)=

1 1 1

2

2

2

2

2

2

0 0

0

*

*

*

T K L

T K L

TT TK TL T

KT KK KL K

LT LK L

K

LL

T

L

P

g g g V

g g g V

g g g V

  
  






. 

 

Replace column 4 of matrix A with column-vector P, we derive the matrix A4. ∆4 is the determinant 

of matrix A4 . Sum columns 1 and 2 in column 3, and subtract row 2 from row 1: 

 

 ∆4= 2

2 2

2

2

0 0

1 0

0 *

0 *

0 *

T K

TT TK T

KT KK K

LT L

T

K

K L L

A B P

P

g g V

g g V

g g V








 
. 

 

Express the above as a cofactor expansion along the 3rd column: 
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 ∆4 =(1)(-1)2+3

2

2

2

0

*

*

*

TT TK T

KT KK K

LT LK

K

LL

T

A B P

g g V

g g V

g g V





.   

 

Express the above as a cofactor expansion along the 3rd column:  

 

 ∆4= (-1)2+3[P(-1)1+3CP1 + VT*(-1)2+3CT1 + VK*(-1)3+3CK1 + VL*(-1)4+3CL1 ],  

 

where 

CP1=

2

2

2

TT TK

KT K

T

K

L

K

LT LK

g g

g g

g g





, CT1= 2

2

0

KKT KK

L LT LK

A B

g g

g g




, CK1= 2

2

0

TTT TK

L LT LK

A B

g g

g g




, CL1= 2

2

0

TTT TK

K KT KK

A B

g g

g g




. 

 

Hence,  

 

 X1*=∆4/∆=1/∆ (-1) [PCP1 +VT*(-CT1) +VK*CK1 + VL*(-CL1)].  (33) 

 

 In sum, from eq. (31), (33), we obtain:  

  

 X2*=1/∆ 2 2 2 2*( ) * *[ ( ) .]P T T K K L LPC V C V C V C      (34) 

 X1*=1/∆ 1 1 1 1( ) * *( ) *[ ].P T T K K L LP C V C V C V C       (35) 

 

5. Rybczynski matrix  

 From the above, Rybczynski matrix  */ *j iX V (to use Thompson’s terminology (1985, 

p619)) in elasticity terms is:  

 
1 1 1

2 2

1 1

2 2 2 2

1*/ * */ * */ * 1

*/ * */ * */ *

T K L

T L

T K L

T K L K

X V X V X V

X V X V X V

C C C

C C C

  
      


 

.  (36) 

 

Express in general: 
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 */ *j iX V =1/∆(-1)i+jCij , i=T, K, L, j=1, 2. (37) 

 

Substitute 1, 2, 3 instead of T, K, L, respectively, when we compute (-1)i+j . Sign patterns are of interest. 

We can show that 1*/ *LX V , 2*/ *LX V , are respectively equivalent to eq. (26), (27) in BC (p32). 

BC only obtained these 2 equations. It seems that BC’s method of derivation is somewhat complicated. 

The method shown here is simpler.  

 Use Saruss’s rule to expand the determinant of Cij, i=T, K, L, j=1, 2: 

 

 CT1 =A 2LKKg  +B 2 TK Lg -(A 2KLKg  +BgKT 2L ), 

 CK1 =AgTK 2L +B 2T gLT -(A 2TLKg  +BgTT 2L ), 

 CL1 = AgTK 2K +B 2T gKT -(A 2TKKg  +BgTT 2K ); 

 CT2 =A KKg 1L +B 1K LTg -(A LKg 1K +BgKT L1), 

 CK2 =AgTK 1L +B 1T gLT -(A LKg 1T +BgTT 1L ), 

 CL2 = AgTK 1K +B 1T gKT -(A KKg 1T +BgTT 1K ) . (38) 

 

Recall eq.(16), that is, gKK =-(gKT +gKL), and gTT =-(gTK +gTL). Substitute these equations into eq. (38) 

to eliminate gKK , gTT. Next, recall ( / )ih hig h i g  (see eq.(15)). Use this equation to eliminate gKL, 

gTL, gTK. Define that 

 

  (S, T, U)=(gLK, gLT, gKT). (39) 

 

Use these symbols for ease of notation: 

 

 CT1 =E 2L U -A
2

K




(1- 2T )S +B K2 T, 

 CK1 = (-E)
K

T




2L U - A 2T S + B
2

T




(1- 2K )T, 

 CL1 =(-E)
2

T




(1- 2L ) U+ A
L

K




2T S+ B
L

T




2K T; 

 CT2 = E L1 U -A
1

K




(1- 1T )S+B 1K T, 

 CK2 = (-E)
K

T




1L U - A 1T S + B
1

T




(1- 1K )T, 

 CL2 =
1

1 11( E) (1 )U A
L L

L

K

k

T

T

T

S B T
  
  

     .  (40) 
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Cij is a linear function in S, T, and U. Recall that (A B)E    (see eq. (27)) ; i   and j  are, 

respectively, the share of factor i and good j in total income. That is,  /j j jp x I  , /i i iwV I  ,  

where j j jI p X  = ii iw V . On this, see BC (p25, eq. (16)). Hence, we obtain ( / )ij j i ij     (see 

JE (p72, n. 9)). Note that 1,j j  1i i  .  

 

6. Transforming the Rybczynski matrix by using EWS-ratios 

 Define that  

 

 (S’, U’)= (S/T, U/T)=(gLK /gLT, gKT /gLT ) ,   (41) 

 

which we call as EWS-ratio vector. S’ and U’ denote, respectively, the relative magnitude of EWS’s 

between factors L and K, factors K and T, compared to EWS between factors L and T. Using these, 

transform the above: 

 CT1 = E 2L T [U’-fT1(S’)]], CK1 =(-E)
K

T




2L T[U’-fK1(S’)] ,  

 CL1 =(-E)
2

T




(1- 2L ) T[U’-fL1(S’)];  

 CT2 = E 1L T [U’-fT2(S’)]], CK2 =(-E)
K

T




 L1 T[U’-fK2(S’)] , 

 CL2 = (-E)
1

T




(1- 1L )T[U’-fL2(S’)],   (42), 

where 

 fT1(S’)= [A 2

K




(1- 2T )S’ -B K2 ] (E L2 )-1
 , 

 fK1(S’)= [A T2S’- B 2

T




(1- 2K )][(-E)
K

T




 L2] -1 
, 

 fL1(S’)= [- A
L

K




 T2 S’ -B L

T




 K2 ][ (-E)
2

T




(1- 2L )] -1 ; 

 fT2(S’)= [A 1

K




(1- 1T )S’ -B K1 ] (E L1 )-1 , 

 fK2(S’)= [A 1T S’- B 1

T




 (1- 1K )][(-E)
K

T




 L1] -1 , 

 fL2(S’)= [- A
L

K




 T1 S’ -B L

T




 K1 ][ (-E)
1

T




(1- 1L )] -1 . 

Define that 
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   1
ij ij ij[A S' B ]E'

ij
f S

  , and  ' ' , , ,L, j 1,2.’
i

j
j

iC U i T Kf S     (43) 

 

'ijC  is a linear function in S’ and U’. In these expressions, Aij, B ij, Eij are the parameters respectively 

related to A, B, E. That is,  

 

 , ,( )ij ij ijA B E = (A
2

K




(1- 2T ), -B K2, E L2), for ij=T1,   

  = (A T2, -B
2

T




(1- 2K ), (-E)
K

T




 L2 ), for ij= K1,  

   = (-A
L

K




 T2, -B
L

T




 K2, (-E)
2

T




(1- 2L ) ) , for ij= L1;  

  = (A
1

K




(1- 1T ), -B K1, E L1 ), for ij=T2, 

  = (A T1, - B
1

T




(1- 1K ), (-E)
K

T




 L1
 ), for ij= K2, 

  = (- A
L

K




 T1, -B
L

T




 K1, (-E)
1

T




(1- 1L ) ) , for ij= L2.  (44) 

 

Express in general:  

 

 i T,K,L ’, , j 1,2.
ij ij ij

C E T C     (45) 

 

7. EWS-ratio boundary and the region for EWS-ratio vector 

 According to BC (p33), ‘Given the assumption that production functions are strictly quasi-

concave and linearly homogeneous,’ σij
i<0. This implies (see Appendix , eq. (A5)): 

 

 gKKgTT- gTKgKT >0.  (46) 

 

Recall eq. (16). That is, gKK =-(gKT +gKL), and gTT =-(gTK +gTL). Substitute these equations to eliminate 

gKK , gTT from L.H.S. of eq. (46). Next, recall ( / )ih hig h i g   (see eq. (14)). Use this equation to 

eliminate gKL, gTL, gTK. That is, express using only 3 EWS’s, namely, gLK, gLT, gKT :  

 



15 
 

 L.H.S. = KT TL KL TK KL TLg g g g g g   = [ ( ) ]
L L

KT LT LK LK LT

T K

g g g g g
 
 

  . 

 

From σij
i<0, we derive εij

i<0, hence, gii<0. Racall eq.(14), that is,  h ihg =0, i=T, K, L. This implies 

LK LTg g =-gLL >0. Using this, transform eq.(46):  

 

L LK LT
KT

K LK LT

g g
g

g g




 


.  (47) 

Replace gLK, gLT, gKT , respectively with S, T, U for ease of notation: 

 

 

L

K

ST
U

S T




 
 .  (48) 

 

Devide the both sides by T:  

 

 
'

'
' 1

L

K

S
U

S




 


, if T>0; 
'

'
' 1

L

K

S
U

S




 


, if T<0. (49) 

 

Recall that (S’, U’)=(S/T, U/T) (see eq. (41)). This is EWS-ratio vector. Transform that  

 

 

' 1
'

' 1 ' 1

L L L

K K K

S
U

S S

  
  

    
  ,  (50) 

 

which expresses the rectangular hyperbola. We call it as the equation for EWS-ratio vector boundary. 

It passes on the origin of O (0, 0). The asymptotic lines are S’=-1，U'= /L K  . We can draw this 

boundary in the figure (see Fig. 1). S’ is written along the horizontal axis, and U’ along the vertical 

axis. EWS-ratio boundary demarcates the boundary of the region for EWS-ratio vector. This implies 

that the EWS-ratio vector is not so arbitrary, but exists within this bounds.  

 Note that:  

 

 EWS-ratio vector (S', U’) exists in the upper right region of the EWS-ratio boundary, if T>0 , 

 EWS-ratio vector (S', U’) exists in the lower left region of the EWS-ratio boundary, if 

T<0.(51)  

 

The sign patterns of the EWS-ratio vector are, in each quadrant:  
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 quad. I: (S', U’)=(+, +)↔(S, T, U ) =(+, +, +); 

 quad. II: (S', U’)=(-, +)↔(S, T, U ) =(-, +, +); 

 quad. III: (S', U’)= (-, -)↔(S,T, U ) =(+, -, +); 

 quad. IV: (S', U’)= (+, -)↔(S, T, U ) =(+, +, -).  (52) 

 

Hence, one of EWS’s can be negative at most. Note that  

 

 T>0, if (S', U’) exists in quadrant I, II, or IV,  

 T<0, if (S', U’) exists in quadrant III.  (53) 

 

Recall that (S’, U’)=(S/T, U/T)=(gLK /gLT, gKT /gLT ), (S, T, U) =(gLK, gLT,  gKT ) . On this, see eq.(41)

(39). We may define (for i≠h),  

 

 Factors i and h are economy-wide substitutes, if gih >0,  

  Factors i and h are economy-wide complements, if gih <0.  (54) 

 

In addition, we may define (for i≠h)(on this, see e.g., Takayama (1982, p17, eq. (35)),  

 

 Factors i and h are Allen-substitutes, if 0ij

h
  ,  

  Factors i and h are Allen-complements, if 0ij

h
  . (55) 

 

8. Drawing the border line for a Rybczynski sign pattern to change 

 We derive: 

 

 */ * 0 0 ' 0j i ij ijX V C C       

   1
ij ij ij ,' [A S' B ]E i T,K,L, j 1,2.'

ij
fU S

        (56) 

 

This equation expresses the straight line in two dimensions. We call it as the equation for line ij, which 

expresses the border line for a Rybczynski sign pattern to change. The gradient and intercept of line ij 

are, respectively, 1
ij ijA E  , and 

1
ij ijB E 

. 

 Make a system of equations using eq.(56), and eq.(50): 
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   1
ij ij ij' [A S' B ]E ,i T,K,L, j 1,2’

ij
f SU

     ,  (57) 

 
'

'
' 1

L

K

S
U

S




 


.  (58) 

 

From these, we obtain a quadratic equation in S’ for each i, j. Solve this to derive two solutions. Each 

solution denotes the S’ coordinate value of intersection point of line ij and EWS-ratio boundary. The 

solutions are, for line-T1, K1, L1; T2, K2, L2, respectively:  

 S’= 2

2

,
1

K

T

B

A




 , S’= 2

2

(1
,

)K

T

B

A




  , S’= 2

2

  , K

T

B

A




;  

  S’= 1

1

,
1

K

T

B

A




 , S’= 1

1

(1
,

)K

T

B

A




  , S’= 1

1

, K

T

B

A




.  (59) 

 

In sum, there are 7 intersection points. Each line ij passes through the same point, which we call as the 

point Q. The Caretesian coordinates of the point Q is  

 

 (S’, U’)= (B/A, (B/E) ( L / K )). (60) 

 

 We call the 6 intersection points other than point Q as the point Rij, i=T, K, L, j=1, 2. The 

Cartesian coordinates of these points are, for line-T1, K1, L1; T2, K2, L2, respectively:  

 (S’, U’)=( 2 2

2 21
,K K L

T L K

  
  




), (
2 2

2 2

(1 ) 1,
K K

T L

 
 

  


L

K




), (
2 2

2 2

,
1

K K

T L

 
 




L

K




);  

 (
1 1

1 1

,
1

K K

T L

 
 

 L

K




), (
1 1

1 1

(1 ) 1,
K K

T L

 
 

  


L

K




),(
1 1

1 1

,
1

K K

T L

 
 




L

K




).  (61) 

 

The sign patterns of point Rij are, respectively, 

 

 sign (S’, U’) = (-, +), (-, -), (+, -); (-, +), (-, -), (+, -).  

 

Hence, point RT1, RT2 is in quadrant II; point RK1, RK2 is in quadrant III; point RL1, RL2 is in quadrant 

IV.  

 From the factor intensity ranking, (A, B, E)=(+, -, +)(see (28)). Hence, the sign pattern of 
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point Q is (-, -)(see (60)). This implies that point Q belongs to quadrant III.  

 Next, we investigate the relative position of point Rij, and Q. From eq. (17), we can prove 

for S’ values of point RK1, RK2:  

 
2

2

(1 )K

T




 
<

1

1

(1 )K

T




 
(62) 

Eq.(62) tells us about the relative position of 2 points (RK1, RK2). Similarly, from (17), we can prove 

for S’ values of point RT1, RT2, the origin of O, RL2, RL1: 

 

 
2

21

K

T







<
1

11

K

T







<0<
1

1

K

T




<
2

2

K

T




.  (63) 

 

Eq.(63) tells us about the relative position of these 5 points.  

 We can prove for S’ values of point RK2, Q: 

 
1

1

(1 )K

T




 
<

B

A
.  (64) 

The derivation of (64) is as follows. Because we assume (A,B,E)=(+, -, +)((see (28)), we have A=(+), 

Hence,  

 
1 1(1 )AK T B     (65) 

 

Substitute B=-(A+E) (see eq. (27)?), and multiply the both sides by (-1), we have  

  
1 1A 0L TE   (66) 

We can show that   

 
1 1 2 1 1 1. .S. ( ) ( )L T T L L TL H          

 

From eq. (17), we have  

  

 . .S. 0L H   

 

 From the above, we can draw point Q, Rij, and hence, line ij in the figure. Each line ij divides 

the region for EWS-ratio vector into 12 subregions, that is, the subregion P1-5 (upper right region) 
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and M1-7 (lower left region)(see Fig. 1).  

 

9. Rybczynski sign patterns  

 Define the 2 X 3 matrices: 

 

 F=[Fij]=
1 1 1

1 1 1

 
  


, C= [Cij]=

1 1 1

2 2 2

T K L

T K L

C C C

C C C

 
 
 

, 

 E=
1 1 1

2 2 2

T K L

ij

T K L

E E E
E

E E E
 
  

 
  
 

=

   

   

2 2 2

1 1 1

2

1

( )

( )

1

1

K

T T

L L
L

L L
L

K

T T

E E E

E E E

 
 
 




  


  
 


 


 
  

  
,  

 C’=[Cij’]=
1 1 1

2 2 2

' ' '

' ' '

T K L

T K L

C C C

C C C

 
 
 

=
     
     

1 1 1

2 2 2

’ ’ ’
’ ’

' ' '

' ' ' ’
T K L

T K L

f S f S f S

f

U U U

S f S fU U U S

   
    

.  (67) 

 

Using the Hadamard product of these matrices, the Rybczynski matrix is expressed as (see (36)):  

    1
*/ *j iX V 


F C ,  (68) 

 

where (see (45)) 

 

 TC E C' . (69) 

 

In general, if A=[aij] and B=[bij] are each m X n matrices, their Hadamard product is the matrix of 

element-wise products , that is, ij ij[a b ]A B . On this definition, see, e.g. Styan (1973, p217-218). 

Hadamard product is known, for example, in the literature of statistics.  

 Hence, Rybczynski sign patterns are: 

   1 1
*/ *j isign X V sign sign sign 

 
F C F C ,   (70) 

 

where  

 ( )sign sign T sign sign T C E C' E C' . (71) 

 

 Recall that 0  (see eq.(30)). Hence,  
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1

sign


F =
1

sign


1 1 1

1 1 1
sign

 
  


=(-)

   
    

=
   
    

.(72) 

 

 Recall that we assume (A, B, E)=(+, -, +)(see eq.(28)). Hence,  

 

 sign E
   
    

. (73) 

 

 In general, if EWS-ratio vector (S’, U’) exists in the subregion above line ij (resp. below 

line ij), we derive  

 

  ' ' ’ij
ij

C U f S  =(+)>0 (resp.  ' ' ’ij
ij

C U f S  =(-)<0).  (74) 

 

For example, if EWS-ratio vector exists in the subregion P2, that is, below line T1, T2, L2, and above 

line L1, K1, K2, the sign pattern of matrix C’ is:  

 

 sign C’=[Cij’]=
   
    

. 

 

 Sign patterns of the matrix C’ are, respectively, for each subregion: 

  P1  P2     P3   P4  P5 

  s i g nC' =
   
    

   
    

   
    

   
    

   
    

 

 M1  M2       M3  M4  M5       M6  M7 

   
    

   
    

   
    

   
    

   
    

   
    

   
    

(75) 

  

In sum, the position of EWS-ratio vector determines the sign pattern of the matrix C’.  

 Of course, we derive  

 

 T>0, if EWS-ratio vector exists in either of the subregion P1-P5,  

 T<0, if EWS-ratio vector exists in either of the subregion M1-M7. (76) 

 

 From eq.(75),(76), sign patterns of the matrix C’T are, for each subregion: 

  P1  P2     P3   P4  P5 
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  s i g n TC' =
   
    

   
    

   
    

   
    

   
    

 

 M1  M2       M3  M4  M5       M6  M7 

   
    

   
    

   
    

   
    

   
    

   
    

   
    

(77) 

 

Note that the sign patterns for P1-P5 are, respectively, the same as those for M3-M7.  

 Recall that (see eq.(70))  

 

 ( )sign sign T sign sign T C E C' E C' . (78) 

 

Substitute eq. (77), (73) in eq.(78):  

  P1  P2     P3   P4  P5 

  s i g nC =
   
    

   
    

   
    

   
    

   
    

 

 M1  M2       M3  M4  M5       M6  M7 

   
    

   
    

   
    

   
    

   
    

   
    

   
    

(79) 

 

 Recall that (see eq.(70)) :  

 

 sign */ *j iX V =
1

sign sign


F C . (80) 

 

Substitute eq. (79), (72) in eq.(80), we derive Rybczynski sign patterns. They are, for each 

subregion:  

   P1  P2     P3   P4  P5 

  sign */ *j iX V =
   
    

   
    

   
    

   
    

   
    

 

 M1  M2       M3  M4  M5       M6  M7 

   
    

   
    

   
    

   
    

   
    

   
    

   
    

(81) 

 

In sum, the position of EWS-ratio vector determines Rybczynski sign pattern. There are 12 patterns 

in total. Note that the sign patterns for P1-P5 are, respectively, the same as those for M3-M7. If we 

do not count the duplication, there are 7 patterns in total.  
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 We can state as follows. 

 

 ‘A strong Rybczynski result’ holds, if EWS-ratio vector exists in the subregion P1, P2, P3; 

M3, M4, or M5.  

 ‘A strong Rybczynski result’ does not hold, if EWS-ratio vector exists in the subregion P4, 

P5; M1, M2, M6, or M7. (82) 

 

10. The commodity price-factor price relationship 

 From the reciprocity relations derived by Samuelson, BC (p36, eq. (31)-(33)) derived:  

 

 
1 2 2* * *

*

i

i i

w p X

P V




 
 ,  

 
2 1 1* * *

*

i

i i

w p X

P V





 , i=T, K, L. (83) 

 

Recall that P=p1*-p2* (see eq. (7)). Define the Stolper-Samuelson matrix in elasticity terms:  

 

 [
* *i jw p

P


]=

1 1 1

2 2 2

* * * * * *

* * * * * *

T K L

T K L

w p w p w p

w p w p w p

   
    

1

P
.  (84) 

 

This matrix shows how the relative price of a commodity affects the real factor prices. Sign patterns 

are of interest. Multiply row 2 of Rybczynski sign pattern (eq.(81)) by (-1), and interchange row 1 and 

row 2, we derive Stolper-Samuelson sign pattern as follows.  

 They are, for each subregion:  

   P1  P2     P3   P4  P5 

  
* *

sign[ ]
i jw p

P


=
   
    

   
    

   
    

   
    

   
    

 

 M1  M2       M3  M4  M5       M6  M7 

   
    

   
    

   
    

   
    

   
    

   
    

   
    

 

(85) 

 

In sum, the position of EWS-ratio vector determines the Stolper-Samuelson sign pattern.  

 Note that  

 

 The sign patterns of matrix [ * *i jw p ] are similar to eq.(85), if P=(+)>0, 
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 The sign patterns of matrix [ * *i jw p ] are opposite to eq.(85), if P=(-)<0, (86) 

 

11. Some applications 

Example 1: We assume (S’, U’)=(+, -)↔(S, T, U )=(gLK, gLT, gKT )=(+, +, -). This implies that factors 

K and T, extreme factors, are economy-wide complements. Hence, EWS-ratio vector exists in quadrant 

IV, that is, in the subregion P1, P2, or P3. Rybczynski sign patterns for P1-P3 hold. Hence, in this case, 

‘a strong Rybczynski result’ holds necessarily. The following result has been established.  

 

 Theorem 1. If extreme factors are economy-wide complements, ‘a strong Rybczynski result’ 

holds necessarily. Stolper-Samuelson sign patterns for subregion P1-P3 are:  

    P1  P2  P3 

 
* *

sign[ ]
i jw p

P


=
   
    

   
    

   
    

.  (87) 

 

For example, if we assume that P=(+)>0, the sign patterns of the matrix [ * *i jw p ] are similar to the 

above. That is, both the real factor prices of land measured by good 1 and 2 increase, and both the real 

factor prices of capital decrease.  

(i) If EWS-ratio vector exists in the subregion P1, both the real factor prices of labor measured by 

good 1 and 2 decrease. This is not favorable to the owner of labor.   

(ii) If EWS-ratio vector exists in the subregion P2, the real factor price of labor measured by good 1 

decreases, the real factor price of labor measured by good 2 increases. It is indeterminate whether this 

is favorable to the owner of labor or not.  

(iii) If EWS-ratio vector exists in the subregion P3, both the real factor prices of labor measured by 

good 1 and 2 increase. This is favorable to the owner of labor.. 

 On the other hand, if we assume P=(-)<0, the sign patterns of the matrix [ * *i jw p ] are 

opposite to the above.  

 For example, we can apply these results to U.S. trade problem in the 1980’s, as Takayama 

(1982, p20) did. He did not analyze in elasticity terms, but analyzed in differential forms. If we replace 

factors T, K, L in our analysis, respectively, with factors 1, 2, 3, his analysis is very similar to ours.  

 He called factors 1, 2, and 3, respectively, as skilled labor, (physical) capital, and unskilled 

labor (or raw labor). And he called industries 1 and 2, respectively, as exportables and importables.  

 And he stated, ‘there seems to be strong evidence that the current U. S. commodity structure 

of trade is such that her exports are relatively skilled labor (or R&D) intensive vis a vis unskilled labor, 

and that her imports are relatively capital intensive vis a vis unskilled labor (e.g., Baldwin, 1971, 

1979)’. This implies (see Takayama (p20, p14))  

 



24 
 

 
11 31 21

12 32 22

a a a

a a a
  . 

 

This is the factor intensity ranking. And he continued, ‘there is some evidence that skilled labor and 

capital are (aggregate) complements (e, g., Branson-Monoyios, 1977). This indicates that our 

assumption of [aggregate] complements for extreme factors are satisfied.’  

 This implies that s12<0 (on this, see Takayama (p18)). This implies g12<0, if we use EWS. It 

is because sih= gihVi/wh, i, h=1, 2, 3 (On this, see eq. (A-4) in Appendix). Hence, EWS-ratio vector 

exists in quadrant IV, that is, in either of the subregion P1, P2, or P3.  

 He derived the sign pattern of ‘the Stolper-Samuelson matrix’ (see p20, eq. (40)). It is, if we 

use our symbols:  

 

  /j iX V  =
t[ / *]i jw p  =

?

?

  
   

,  

 

where t denotes the transpose. And he concluded, ‘we may conclude that an import restriction which 

raises the domestic price of importables (say, automobiles from Japan) in the U.S. increases the return 

on capital and lowers the return on skilled labor (or R&D) in the U.S.’ Similarly, he analyzed the effect 

of reduction of import restrictions. It is opposite to the above.  

 He did not analyze how the strengthening (or reduction) of import restrictions affected the 

price of middle factor (factor 3, or unskilled labor). But, he only analyzed how this affected the price 

of extreme factors (factors 1 and 2). In our analysis, the strengthening implies that P=p1*-p2*=(-), and 

the reduction implies that P=(+). 

 Our results suggest that it is possible to analyze how the trade-policy-change affected middle 

factor in U.S., if we have other two information. That is, the information about the factor intensity 

ranking of middle factor (that is, which equation holds, 31 32  , or 31 32  ), and the information 

about the position of EWS-ratio vector, that is, the subregion P1, P2, or P3. Using these information, 

we can decide Stolper-Samuelson sign pattern and, hence, the sign pattern of matrix [wi*-pj*].  

 If we assume 31 32  , we have known that 3 patterns of Stolper-Samuelson sign patterns 

hold as shown in eq. (87). On the other hand, if we assume 31 32  , we can analyze similarly.  

 Of course, if we use econometrics, we can estimate the value of each coefficient in equation 

for the solutions for X1* and X2*, that is, eq. (25) and (26). That is, we can derive the value of each 

element of the Rybczynski matrix. Therefore, we can derive Rybczynski sign pattern, and hence, 

Stolper-Samuelson sign pattern. This will be useful for us.  

 

Example 2: Next, we show some examples of a sufficient condition for ‘a strong Rybczynski result’ 
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to hold. We assume (S’, U’)=(+, -)↔(S, T, U)=(+, +,-). We analyze using the coordinate values of 

point RL2, RL1. 

(i) If (S’, U’) satisfy  

 
2

2

K

T




<S’, 2

21

K

L







L

K




>U’, 

EWS-ratio vector (S’, U’) exists in the lower right of point RL1 . Hence, it exists in the subregion P1.  

(ii) If (S’, U’) satisfy  

 0<
1

1

K

T




<S’< 2

2

K

T




, and 0>
1

11

K

L







L

K




>U’> 2

21

K

L







L

K




, 

EWS-ratio vector (S’, U’) exists in the lower right of point RL2, and in the upper left of point RL1 . 

Hence, it exists in the subregion P2.  

(iii) If (S’, U’) satisfy  

 0<S’< 1

1

K

T




, and 0>U’> 1

11

K

L







L

K




, 

EWS-ratio vector (S’, U’) exists in the lower right of the origin of O, and in the upper left of point 

RL2 . Hence, it exists in the subregion P3.  

 In all 3 cases, ‘a strong Rybczynski result’ holds. 

 

Example 3: On the other hand, for example:  

(i) If (S', U’)=(+, +), EWS-ratio vector exists in quadrant I, i.e., in the subregion P1-P5.  

(ii) If (S', U’)= (-, +), EWS-ratio vector exists in quadrant II, i.e., in the subregion P3, P4, or P5.  

(iii) If (S', U’)= (-, -), EWS-ratio vector exists in quadrant III, i.e., in the subregion M1-M7.  

 In all 3 cases, it is indeterminate whether ‘a strong Rybczynski result’ holds or not.  

 

11. Conclusion 

 We assumed a certain pattern of factor intensity ranking, including that of middle factor. 

And we analyzed the Rybczynski matrix and its sign pattern, by using EWS-ratio vector. This matrix 

expresses the factor endowment-commodity production relationships. The EWS-ratio boundary 

demarcates the boundary of the region where EWS-ratio vector can exist. line ij divides this region 

into 12 subregions. The position of EWS-ratio vector determines Rybczynski sign pattern. ‘A strong 

Rybczynski result’ holds for some subregions. We have succeeded to derive a sufficient condition for 

‘a strong Rybczynski result’ to hold (or not to hold) in a systematic manner. We also analyzed the 

Stolper-Samuelson matrix and its sign pattern, which expresses the commodity price-factor price 
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relationships. I showed some applications.  

Equation Section  1 

Appendix: Derivation of important relationship among EWS 

 

 On this, see Nakada (2015b). Here, I show only the essence of it. Thompson (1985, p618) 

stated, ‘Aggregate substitution between factors h and k is expressed by the substitution term  

 

 skh=Σj xj ∂akj/∂wh [, k, h=1, 2, 3]. (A1) 

 

The 3 X 3 matrix of substitution terms is symmetric and negative semidefinite. A result of cost 

minimizing behavior is  

 

 Σi shiwi=0, for every factor h [, h=1, 2, 3].’ (A2) 

 

For definition of these symbols, it is similar to that in this paper.  

 But his explanation seems too short. The ‘cost minimizing behavior’ implies that each aij 

function is homogeneous-of-degree-zero (see eq.(3) in this paper). From this, we can derive the 

Thompson’s result,(A2). Probably, we should prove it below.  

 Recall (9), εij
h = ∂log aij /∂log wh =θhjσij

h. From this equation, we obtain  

 

 / /  ,  ,  ,  ,  ,  1,  2ij

ij h h ij h
a w a w i h T K L j     . (A3) 

 

 Replace skh in (A1) with sih , we derive  

 

 sih=Σj xj ∂aij/∂wh,  i, h=T, K, L. (A4) 

 

Substitute (A3) in (A4), we obtain:  

 

 ,/  ,  ,  ,  .ij

ih j j h ij h
s x a w i h T K L     (A5) 

 

Because each aij function is homogeneous-of-degree-zero (see eq.(3)):  

 

0,  ,  ,  ,  1,  2.ij ij

h h h hj h
i T K L j         (A6) 
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From (A5),(A6), we derive:  

 

0,  ,  ,  .h ih hs w i T K L    (A7) 

 

This is equivalent to Thompson’s result,(A2).  

 AES’s are symmetric in the sense that 

 

  .ij hj

h i
   (A8) 

 

And according to BC (p33), ‘Given the assumption that production functions are strictly quasi-concave 

and linearly homogeneous,’  

 

 0.ij

i
   (A9) 

 

By using (A8) and (A6), we can show that sih=shi , namely, aggregate substitutions are symmetric. 

And (A9) implies that εij
i <0, hence sii <0.  

 Next, we analyze sLL in a way similar to that which BC (p33) used in analyzing AES (σLj
L ). 

Eliminate sTL, sKL from eq.(A7): 

 
    2

   
1

.
LL T T TT K TK K T KT K KK

L

s w w s w s w w s w s
w

    (A10) 

 

Transform (A10):  

 

 sLL= x Ax  , (A11) 

 

where x is a vector, A a matrix, and x Ax  the inner product of vectors; 

,
K KK KT

T TK TT

w s s
x A

w s s

   
    
   

 .  

 

Quote a passage from BC (p33): ‘the quadratic form on the right-hand side of the expression above 

must be negative definite. This in turn implies that’  
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 A  =sKKsTT- sTKsKT >0, (A12) 

where A  is the 2 X 2 determinant. Transform eq.(A5):  

 

sih= Σj ij εij
h Vi/wh = gihVi/wh,  i, h=T, K, L. (A13) 

 

This equation shows how aggregate substitution and EWS is related. From (A13), gih is not symmetric. 

Namely, gih ≠ ghi , i ≠ h in general. Substitute eq. (A13) in (A12):  

 

 gKKgTT- gTKgKT >0.  (A14) 

 

 It may be noted that this equation is useful to show that JE’s proof is impossible. I show the 

disproof. It might be useful to readers. JE (p75) defined σi
k ,i, k=1, 2, 3, as EWS. In subsection 5.2.4 

(p90), JE stated, ‘First we assume that the two extreme factors [factors 1 and 2] are perfect 

complements in the sense that any factor price change does not alter the ratio of the intensities of their 

use (σ1
k =σ2

k [, k=1, 2, 3]).’  

 Here, for them, ‘perfect complementarity’ implies σ1
k =σ2

k. If we replace σi
k with gih, this 

implies that  

 

 gTh=gKh, h=T, K, L ↔ gTT=gKT , gTK=gKK , gTL=gKL . (A15) 

 

In other words, they found that the set of three equations holds for EWS under the assumption of 

‘perfect complementarity’. Next, they used this set to prove how commodity prices affect factor prices.  

If we compare eq.(A15) with eq.(A14), we find that the latter is not consistent with the 

former. That is, if eq. (A15) holds, L.H.S. of eq. (A14) equals zero. Hence, JE’s result is impossible. 

Specifically, they failed to explain what ‘perfect complementarity’ implies. In sum, their proof is not 

plausible.  

 In subsection 5.2.5 (p91), JE analyzed similarly to subsection 5.2.4. They assumed that 

extreme factor (factor 2) is a perfect complement with middle factor (factor 3). They stated that they 

derived σ3
1 =σ2

1. Apparently, in their context, this implies σ3
k=σ2

k, k=1, 2, 3. We can prove that it is 

impossible, similarly.  

 In addition, it may be noted that Takayama (1982) analyzed the general m X n model, and 

he stated that since ‘substitution matrix’ S is negative semidefinite and R(S)=m-1, the (m-1) x (m-1) 

matrix is negative definite, from which sii<0, i=1, 2, …, m (p5, Theorem 1, note5). R(S) denotes the 

rank of a particular matrix, and S=[sih].  
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Fig. 1 Illustration of EWS-ratio boundary and Line-ij 
(border line for a Rybczynski sign pattern to  change)
Note: S'=S/T=gLK/gLT, U'=U/T=gKT/gLT
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