
Munich Personal RePEc Archive

Economy-wide substitution and

Rybczynski sign pattern in a three-factor

two-good model: Further analysis

Nakada, Yoshiaki

Kyoto University

14 November 2015

Online at https://mpra.ub.uni-muenchen.de/67864/

MPRA Paper No. 67864, posted 14 Nov 2015 08:03 UTC



1 
 

Title: Economy-wide substitution and Rybczynski sign pattern in a three-factor two-good model: 

Further analysis  
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Abstract: The position of EWS-ratio vector determines Rybczynski sign pattern, and hence, Stolper-

Samuelson sign pattern in a three-factor two-good general equilibrium trade model (see Nakada 

(2015)). EWS-ratio vector can be defined based on EWS (or economy-wide substitution). In this 

article, I develop a method to estimate the position of EWS-ratio vector to some extent. Especially, I 

derive a sufficient condition for extreme factors to be economy-wide complements. We assume factor 

intensity ranking is constant. The results suggest that if we have appropriate data, we can estimate the 

position of EWS-ratio vector to some extent. The results are useful for application.  

 

Keywords: three-factor two-good model; general equilibrium; Rybczynski result; economy-wide 

substitution, Stolper-Samuelson sign pattern.  

 

Section 1.Introduction 

 

Batra and Casas (1976) (hereinafter BC) wrote an article on functional relations in a three-

factor two-good neoclassical model (or 3 X 2 model), and they claimed that ‘a strong Rybczynski 

result’ arises. But I proved this was not the case (see Nakada (2015)). According to Suzuki (1983, 

p141), BC contended in Theorem 6 (p34) that ‘if commodity 1 is relatively capital intensive and 

commodity 2 is relatively labor intensive, an increase in the supply of labor increases the output of 

commodity 2 and reduces the output of commodity 1.’ This is what ‘a strong Rybczynski result’ 

implies.   

 Nakada (2015) has succeeded to derive a sufficient condition for ‘a strong Rybczynski result’ 

to hold (or not to hold) in the 3 X 2 model of BC’s original type in a systematic manner by using EWS-

ratio vector, which is defined based on ‘economy-wide substitution’ (hereinafter EWS) originally 

defined by Jones and Easton (1983) (hereinafter JE). Nakada concluded that the position of EWS-ratio 

vector determines Rybczynski sign pattern, which expresses the factor endowment-commodity output 

relationships, and its dual-counterpart, Stolper-Samuelson sign pattern, which expresses the 

commodity price-factor price relationships. And, the following result has been established (see Nakada 

(2015, Theorem 1)).  

 

Theorem 1. If extreme factors are economy-wide complements, ‘a strong Rybczynski result’ holds 

necessarily. 
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 The purpose of this paper is as follows. First, I develop a method to estimate the position of 

EWS-ratio vector, (S’, U’) to some extent, by using the framework of general equilibrium. Next, by 

using this method, I derive a sufficient condition for extreme factors to be economy-wide complements, 

which implies ( ', ') ( , )S U    . Next, we derive a sufficient condition for a certain Stolper-

Samuelson sign pattern to hold. For this purpose, we will derive some important relationships among 

some variables. We can conclude that EWS-ratio vector exists on the line-segment.   

 Some papers are interested in the role of complementarity. For example, they analyzed the 

factor endowment-commodity output relationships, and its dual-counterpart, that is, the commodity 

price-factor price relationships, when extreme factors are aggregate complements, economy-wide 

complements, or Allen-complements in each sector.  

 For example, JE assumed 2 factors are ‘perfect complements’ by using EWS (see JE (pp. 

90-92)). Suzuki (1983) ssumed 2 factors are ‘perfect complements’ in each sector by using Allen-

partial elasticities of substitution. Takayama (1982, Section 4, p13-21) assumed that extreme factors 

are aggregate complements. Thompson (1985) assumed that 2 factors are aggregate complements. 

Suzuki (1987, Chapter 1, p17-26) assumed that extreme factors are Allen-complements in each sector. 

Teramachi (1993) assumed that extreme factors are aggregate complements. Other papers, also deal 

with complementarity, e.g., Thompson (1995), Bliss (2003), Easton (2008), Ide (2009), Ban (2007), 

and Ban (2008).  

 In sum, some of these previous studies are not so simple, but somewhat complicated. I am 

not sure whether all of these studies are plausible or not. I do not discuss about it. At least, to the 

author’s knowledge, nobody has analyzed that under what condition, can extreme factors be economy-

wide complements.  

 In section 2, we explain about the basic structure of the model. In section 3, we assume 

factor intensity ranking. In section 4, we define the factor-price-change ranking. In section 5, we derive 

the important relationship among EWS-ratios. In section 6, we show that EWS-ratio vector is on the 

line-segment (or EWS-ratio vector line-segment). In section 7, we derive important relationship 

among some variables (Hj<0, H0<0). In section 8, we estimate the position of EWS-ratio vector in case 

of P>0. First, we derive a sufficient condition for extreme factors to be economy-wide complements. 

Next, we derive a sufficient condition for a certain Stolper-Samuelson sign pattern to hold. In section 

9, we estimate the position of EWS-ratio vector in case of P<0. Section 10 is a conclusion.  

 In addition, section 2, 3 and 5 include the same contents as in Nakada (2015).  

   

Section 2. Model 

 We assume similarly to BC (pp22-23). That is, we assume as follows. Products and factors 

markets are perfectly competitive. Supply of all factors is perfectly inelastic. Production functions are 

homogeneous of degree one and strictly quasi-concave. All factors are not specific and perfectly 
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mobile between sectors, and factor prices are perfectly flexible. These two ensure the full employment 

of all resources. The country is small and faces exogenously given world prices, or the movement in 

relative price of a commodity is exogenously determined. The movements in factor endowments are 

exogenously determined. 

 Full employment of factors implies 

 

 ,  ,  ,  ,
ij j ij

a X V i T K L    (1) 

 

where Xj denotes the amount produced of good j (j=l, 2); aij the requirement of input i per unit of 

output of good j (or the input-output coefficient); Vi the supply of factor i; T is the land, K capital, and 

L labor. 

 In a perfectly competitive economy, the unit cost of production of each good must just equal 

to its price. Hence, 

 

  ,  1 ,2,
ij ji i

a w p j    (2) 

 

where pj is the price of good j; wi is the reward of factor i. 

 BC (p23) stated, ‘With quasi-concave and linearly homogeneous production functions, each 

input-output coefficient is independent of the scale of output and is a function solely of input prices:’ 

 

   ,  ,  ,  ,   1,2.
ij ij i

a a w i T K L j     (3) 

 

And they continued, ‘In particular, each Cij [aij in our expression] is homogeneous of degree zero in 

all input prices.’  

 We might need some explanation about this. Samuelson (1953) suggested that aij is 

homogeneous of degree zero in all input prices under the assumption of cost minimization. But he did 

not prove it. That is, he (1953, chapter 4, p59) defined the function:

1 n(x,w , ,w ),(i 1, ,n)i
iv f    . iv is ‘an optimum value for each productive factor’ to derive 

‘the minimum total cost for each output (p58)’, x is production, and wi is ‘prices of productive factors’. 

Samuelson (1953, chapter 4, p68) stated that vi ‘must be homogeneous of order zero in the variables

1 n(w , ,w ) , x being constant’ (see also Samuelson (1983, chapter4, eq. (5) in p61; eq. (52) in p70)).  

 Eq. (1)-(3) describe the production side of the model. These are equivalent to eq. (1)-(5) in 

BC. The set includes 11 equations in 11 endogenous variables (Xj, aij, and wi) and 5 exogenous 
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variables (Vi and pj). The small-country assumption simplifies the demand side of the economy.

 Totally differentiate eq.(1):  

 

 * *  *,  , ,  ) ,(j ij ij ij j ia X V i T K L      (4) 

 

where an asterisk denotes a rate of change (e.g., Xj*=d Xj / Xj), and where λij is the proportion of the 

total supply of factor i in sector j (that is, λij=aij Xj / Vi). Note that Σj λij=1. 

 The minimum-unit-cost equilibrium condition in each sector implies Σi wi daij =0. Hence, 

we derive (see JE (p73, eq. (9)), BC (p24, n5),  

 

 * 0,  1,  2,
i ij ij

a j     (5) 

 

where θij is the distributive share of factor i in sector j (that is, θij=aijwi/ pj). Note that Σiθij=l; daij is the 

differential of aij. 

 Totally differentiate eq.(2):  

 

 * *. 
i ij i j

w p    (6) 

 

Subtract pj * from the both sides of(6):  

 

  
1 1

2 1

* 0,            

  * ,  ,  ,   ,

i i i

i i i

w

w P i T K L




 

   
 (7) 

 

where P=p1*-p2*= (p1/p2)*, wi1*= wi*-p1*, wi1 = wi /p1; P is the rate of change in the relative price of 

a commodity; wi1 is the real factor price measured by the price of good 1. 

 Totally differentiate eq.(3) to obtain 

 

 *  * 0,  ,  ,  ,   1,  2,ij

ij h h h
a w i T K L j      (8) 

 

where 
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 / .  ij ij

h ij h hj h
loga log w       (9) 

 

σij
h is the Allen-partial elasticities of substitution (hereinafter AES) between the ith and the hth factors 

in the jth industry. For additional definition of these symbols, see Sato and Koizumi (1973, pp47-49), 

and BC (p24). AES’s are symmetric in the sense that  

 

 σij
h =σhj

i. (10) 

 

And according to BC (p33), ‘Given the assumption that production functions are strictly quasi-concave 

and linearly homogeneous,’  

 

 σij
i<0. (11) 

 

 Since aij is homogeneous of degree zero in input prices, we have 

 

0,  ,  ,  ,  1,  2.ij ij

h h h hj h
i T K L j           (12) 

 

Eq. (8) and (12) are equivalent to the expressions in BC (p24, n. 6). See also JE (p74, eq. (12)-(13)). 

From these: 

 

 1* *.ij

ij h h h
a w   (13) 

 

Substitute eq. (13) in eq.(4): 

 

 1 1* *  * *  *,   ,  ( ,  ,)ij
ij h

j h h ij j h ih h j ij j i
w X g w X V i T K L            (14) 

 

where  

 ,  ,  ,  ,  .ij

ih j ij hg i h T K L     (15) 

 

This is the EWS (or ‘the economy-wide substitution’) between factors i and h defined by JE (p75). 

They stated, ‘Clearly, the substitution terms in the two industries are always averaged together. With 
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this in mind we define the term 
i
k to denote the economy-wide substitution towards or away from 

the use of factor i when the kth factor becomes more expensive, under the assumption that each 

industry's output is kept constant:…’.  

 Note that  

 

 0, ,  ,  ,ihh i Tg K L    (16) 

 ( / )  , ,  ,  ,  .ih h i hi i h T K Lg g    (17) 

 

gih is not symmetric. Namely, gih ≠ ghi , i ≠ h in general. On eq.(17), see also JE (p85). From(17), for 

example, we obtain 

  

  KK KT KL
g g g   ,  TT TK TL

g g g   , ( )LK LLL Tgg g   . (18) 

 

Recall(11), that is, σij
i<0. From this equation and(9), we derive εij

i<0. Further, from this equation 

and(15), we derive  

 

 gii<0. (19) 

 

Section 3. Factor intensity ranking 

 

 In this article, we assume 

 

1 1 1

2 2 2

T L K

T L K

  
  

  , (20) 

1 2L L  . (21) 

 

 Eq.(20) is, what you call, ‘the factor intensity ranking’ (see JE (p69), see also BC (pp26-

27), Suzuki (1983, p142),). This implies that sector 1 is relatively land intensive, and sector 2 is 

relatively capital intensive, and that labor is the middle factor, and land and capital are extreme factors 

(see also Ruffin (1981, p180)). Eq.(21) is ‘the factor intensity ranking for middle factor’. It implies 

that the middle factor is used relatively intensively in sector 1.  

 In the following sections, I show the analysis under these assumptions. Nakada (2015) also 

assumed (20) and (21) hold. Of course, even if we assume 1 2L L  , we can analyze similarly.  

 

Section 4. Factor-price-change ranking segment 
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Subsection 4.1. In case of P>0 

 

 For example, we assume  

 

 P>0. (22) 

 

Recall (7), that is, 1 2* *P p p  . We can draw the line which expresses the change in real-factor-

price in the figure, and can compare them. Recall(7):  

 

 
1 1

2 1

* 0,            

  * ,  ,  ,  .

i i i

i i i

w

w P i T K L




 

   
 (23) 

 

We define that, for ease of notation:  

 

 11 1 11 1( , , ) ( *, *, *) ( * p *, * p *, * p *)T LT L KKX Y Z w w w w w w    . (24) 

 

This is a change in the real factor price. Transform (23) using(24):  

 

 
1 1 1

2 2 2

T K L

T K L

X Z

Y P Z

  
  

     
           

. (25) 

 

Solve eq.(25):  

 

 
2 1 1

2 1 21

1 K K L

T T L

X Z

Y P ZD

  
  

      
           

 , (26) 

 

where 1 1 2 1 2T K K TD      . Hence, we have  

 

 
2

1

1 1

1
K

D
X P Z

D D
  , 

 
3

1

1 1

1
( )T

D
Y P Z

D D
   ,  
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 Z Z ,  (27) 

  

where 2 2 1 1 2,K L K LD      3 1 2 2 1T L T LD      . Eq.(20) implies 

 

 1, 2, 3( ) ( , , )D D D     . (28) 

 

We can treat as if X, Y were dependent variables, and Z was the independent variable. Eq.(27) express 

the straight lines in 2 dimensions. We call these, respectively, as line-X, -Y, -Z. Because we assume 

(22)(P>0), the sign of gradient and intercept of line-X, line-Y is, respectively:  

 

 
2

1

( ),
D

D
   1

1

1
( ),K P

D
   for line-X; 

 
3

1

( ),
D

D
   1

1

1
( ) ( ),T P

D
   for line-Y. (29) 

 

Hence, we can draw line-X, -Y, -Z in the figure (see Fig. 1). We can show that line-X and line-Y has 

an intersection point in quadrant IV, because we assume eq. (21) ( 1 2L L  ).  

 Only 4 rankings are possible, that is, 

 

 X>Y>Z, X>Z>Y, Z>X>Y, Z>Y>X. (30) 

 

Either of the 4 patterns is possible. We call this as the factor-price-change-ranking. For example, we 

can assume as follows.   

 

 X>Z>Y  T L Kw * w * w *  . (31) 

 

If (31) holds, the change in real reward for labor is intermediate (or middle), and the change in real 

reward for land and capital are extreme.  

 

Subsection 4.2.In case of P<0 

 

 On the other hand, if we assume 

 

 P<0,  (32) 

 

we can draw line-X,-Y,-Z in the figure similarly. The sign of intercept of line-X,-Y is opposite to(29). 
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But the sign of gradient is similar to(29). This implies that only 4 rankings are possible, that is,  

 

 X>Y>Z, Y>X>Z, Y>Z>X, Z>Y>X. (33) 

 

Either of the 4 patterns is possible. 

 

Section 5. EWS-ratio vector boundary  

 

 Each aij is homogeneous of degree zero in all input prices (see(3)). Recall(11), σij
i<0. These 

implies (see Nakada (2015), Appendix, eq. (A14)):  

 

 gKKgTT- gTKgKT >0.  (34) 

 

Recall eq.(18). That is,  ,KK KT KL
g g g   and  TT TK TL

g g g   . Substitute these equations 

to eliminate gKK , gTT from L.H.S. of eq.(34). Next, recall eq.(17), that is, ( / )ih h i hig g  . Use this 

equation to eliminate gKL, gTL, gTK. That is, express using only 3 EWS’s, namely, gLK, gLT, gKT :  

 

 L.H.S. of (34)= KT TL KL TK KL TLg g g g g g  = [ ( ) ]( 0)
L L

KT LT LK LK LT

T K

g g g g g
 
 

   .(35) 

 

From(35), we derive  

 ( )
L

KT LT LK LK LT

K

g g g g g



   .(36)  

From(18) and(19), we derive 0LK L LLTg g g   . Divide(36) by ( )LK LTg g , we have

 

L LK LT
KT

K LK LT

g g
g

g g




 


.  (37) 

If we define, for ease of notation,  

 

 ( ,  ,  ) ( , , )LK LT KTS T U g g g , (38) 

 

we derive 
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L

K

ST
U

S T




 
 .  (39) 

 

Divide the both sides by T:  

 

 
'

'
' 1

L

K

S
U

S




 


, if T>0;
'

'
' 1

L

K

S
U

S




 


, if T<0, (40) 

 

where 

    ’,  ’ / ,  / ( // , )
LK LT KT LT

S U S T U T g g g g . (41) 

 

We call this as EWS-ratio vector. Transform that  

 

 

' 1
'

' 1 ' 1

L L L

K K K

S
U

S S

  
  

    
  ,  (42) 

 

which expresses the rectangular hyperbola. We call it as the equation for EWS-ratio vector boundary. 

It passes on the origin of O (0, 0). The asymptotic lines are  

 

 ’ 1 ' /L KS U    ， . (43) 

 

We can draw this boundary in the figure (see Fig. 2). S’ is written along the horizontal axis, and U’ 

along the vertical axis. EWS-ratio vector boundary demarcates the boundary of the region for EWS-

ratio vector. This implies that EWS-ratio vector is not so arbitrary, but exists within this bounds.  

 Note that:  

 

 EWS-ratio vector exists in the upper right region of EWS-ratio vector boundary, if T>0, 

 EWS-ratio vector exists in the lower left region of EWS-ratio vector boundary, if T<0.(44)  

 

The sign patterns of EWS-ratio vector are, in each quadrant:  

 

 quad. I: (S', U’)=(+, +)↔(S, T, U) = (+, +, +); 

 quad. II: (S', U’)=(-, +)↔(S, T, U) =(-, +, +); 

 quad. III: (S', U’)= (-, -)↔(S, T, U) =(+, -, +); 

 quad. IV: (S', U’)= (+, -)↔(S, T, U) =(+, +, -).  (45) 
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Hence, one of EWS’s can be negative at most. Note that  

 

 T>0, if (S', U’) exists in quadrant I, II, or IV;  

 T<0, if (S', U’) exists in quadrant III.  (46) 

 

Recall (38) and (41), that is, (S’, U’)=(S/T, U/T)=(gLK /gLT, gKT /gLT), (S, T, U) = (gLK, gLT, gKT). 

We may define (for i≠h),  

 

 Factors i and h are economy-wide substitutes, if gih >0;  

  Factors i and h are economy-wide complements, if gih <0.  (47) 

 

Section 6. EWS-ratio vector line-segment  

 

 Eliminate i
ij from (13) using(12) to obtain (on this, see BC (p33, note6 in p24)):  

 

 K T L T* (w * w *) (w * w *)Tj TKj Kj TLj Lja        , 

 L K T K* (w * w *) (w * w *)Kj KLj Lj KTj Tja        , 

 T L K L* (w * w *) (w * w *)Lj LTj Tj LKj Kja        , (48) 

 

where
ij

ihj h  . By using(9), that is, / ,  ij ij

h ij h hj h
loga log w      transform(48):  

 

 K T L T* (w * w *) (w * w *)Tj TKj TLja      , 

 L K T K* (w * w *) (w * w *)Kj KLj KTja      , 

 T L K L* (w * w *) (w * w *)Lj LTj LKja      , (49) 

 

where
ij

ihj h  .  

 We define:  

 

 0 ' *,i , , .i ij ij
j

a a T K L    (50) 

 

This is the aggregate of input-output-coefficient-change ( *)ija . Substitute (49) in eq.(50), we derive, 

for example,  
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 0 K T L T' * { (w * w *) (w * w *)}T Tj Tj T
Tj Tj

Kj j L
ja a        , 

 0 L K T K' * { (w * w *) (w * w *)}K Kj Kj K
Kj Kj

Lj j T
ja a        , 

 0 T L K L' * { (w * w *) (w * w *)}L Lj Lj L
Lj Lj

Tj j K
ja a        . (51) 

 

Rewrite (51) using eq.(15) ( ,  ,  ,  ,  .ij

ih j ij hg i h T K L    ):  

 

 0 TK K T TL L T' g (w * w *) g (w * w *)}Ta     , (52) 

 0 KL L K KT T K' g (w * w *) g (w * w *)Ka     , (53) 

 0 LT T L LK K L' g (w * w *) g (w * w *)}La     . (54) 

 

Recall eq.(17), that is, ( / )ih h i hig g  . Using this, eliminate TK TL KLg ,g ,g , from (52),(53):  

 

 0 K T L T' (w * w *) (w * w *)T KT KT LT LTa g g     , (55) 

 0 L K T K' (w * w *) (w * w *)K LK LK KTa g g    , (56) 

 

where  

 

 / ,ih i h i h    . (57) 

 

In sum, from(55),(56), and(54), we have  

 

 0 K T L T' (w * w *) (w * w *)T KT KT LT LTa g g     , (58) 

 0 L K T K' (w * w *) (w * w *)K LK LK KTa g g    , (59) 

 0 T L K L' (w * w *) (w * w *)L LT LKa g g    . (60) 

 

Multiply(58),(59), and(60) by , ,LK T LT K KT Kg g g   , respectively, and take the difference: 

 

 0 0 K T 0' ' (w * w *)GT LK T K LT Ka g a g    , 

 0 0 L K 0' ' (w * w *)GK LT K L KT Ka g a g    , 

 0 0 T L 0' ' (w * w *)GL KT K T LK Ta g a g    , (61),  

 

where  
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 0 ( ) ( 0)KT K LK LT LT LK LG g g g g g     . (62) 

 

From(35), we can derive(62). From(61), we have:  

 

 
0 0 0 0 0 0

0

K T L K T L

' ' ' ' ' '
G

(w * w *) (w * w *) (w * w *)

T LK T K LT K K LT K L KT K L KT K T LK Ta g a g a g a g a g a g       
  

  
.

(63) 

From(63), we have:  

 

 0 0 L K 0 0 K T( ' ' )(w * w *) ( ' ' )(w * w *)T LK T K LT K K LT K L KT Ka g a g a g a g        . (64) 

 

Divide the both sides of (64) by LTg . Recall (38) and(41), that is, (S, T, U) = (gLK, gLT, gKT), (S’, U’) 

=(S/T, U/T) = (gLK /gLT, gKT /gLT). Use these symbols, we have  

 

 0 0 L K 0 0 K T( ' ' ' )(w * w *) ( ' ' ' )(w * w *)T T K K K K L Ka S a a a U        . (65) 

 

From(65), we derive 

 

 1 1' ' bU a S   , (66) 

 

where  

 

 
0

1

0

'
,

'

T T LK

L K KT

a W
a

a W





0

1

0

'

'

K LT

L KT

a W
b

a W
 , * * ( / )*,i T,K,L,i hih i h i hW w w w w     . (67) 

 

ihW  is the change in relative factor price between factors i and h. Eq.(66) expresses the straight line. 

EWS-ratio vector ( ', ')S U exists on this line. We call it as EWS-ratio vector line. Hence, U’ has a 

linear relationship with S’.  

 From (66) and(42), we can make a system of equations:  

 

 1 1' ' bU a S   , (68) 

 
'

'
' 1

L

K

S
U

S




 


. (69) 

  

From (68) and(69), we obtain a quadratic equation in S’. Solve this to derive two solutions. Each 
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solution denotes the S’ coordinate value of intersection point of EWS-ratio vector line and EWS-ratio 

vector boundary. The solutions are:  

 

 'S 
0

0

'
,

'

TL K
KT

KL T

W

W

 



. (70) 

 

Hence, the Cartesian coordinates of intersection point is,  

 

 0 , 0( ',U') ( , ),( )
TL L LT

KT

KL K KT

W W
S

W W

   


 
 , (71) 

 

where  

 

 
0 0

0 , 0

0 0

' '

' '

K K

T L

  
 

 . (72) 

 

We call these points as point A and B, respectively.  

 In general, EWS-ratio vector, ( ', ')S U exists on the line-segment AB. We can call it as 

EWS-ratio vector line-segment.  

 

Section 7. Derivation of important relationship among some variables (Hj<0, H0<0)  

 

 Unit cost of production of good j equals the price of good j (see eq.(2)): 

 

  ,  ,2.1 
ij i ji

a w p j  (73) 

 

Eq.(73) expresses the isocost surface (or IC) (see Fig. 3). IQ is the isoquant surface. We define as 

follows.  

 

 , 'i i iw w w w w   , , ,ij ij ijOB OAa a a    

 AB OB OA  = ( ) , , , , 1,2.ij ij ij ija a a a i T K L j      , (74) 

 

where  denotes the small variation. Vector wi is vertical to the isocost surface (IC). Because 

production functions are homogeneous of degree one and strictly quasi-concave, isoquant surface is 
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convex to the origin. Isocost surface has a point of contact on point A with isoquant surface. That is 

the equilibrium point. The input-output coefficient (aij) is determined on this point. I draw this figure 

by analogy from the figure of isocost line and isoquant curve in case of 2 factor case. If isocost surface 

changes its position and becomes IC’, the equilibrium point move to new point, point B. Angles A  

and B are the angles between vector w and AB , 'w and BA , respectively. 

 We obtain for angles ,A B  :  

 

 0 ,0
2 2

A B
      . (75) 

 

Hence, the inner product of vectors satisfies:  

 

 cosi ij A
i

w AB w ABw a     >0, (76) 

 ( )( ) co' ' si i ij B
i

w w aw BA w BA      >0. (77) 

 

By summing up(76) and(77), we have:  

 

 1,  0,  2i ij
i

jw a     . (78) 

 

From(78): 

 

 1, 20,   j jH  , (79) 

 

where 

  j i ij
i

H w a   . (80) 

jH is the inner product of 2 vectors, w ( ),iw   and ( )ijB aA   .   

 Eq.(79) is very similar to the equation which Samuelson derived (see Samuelson (1983, 

chapter 4, p78, eq. (82)), that is,  

 

 
1

0
n

i iw v   , (81) 
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where iw is the price of factor i; iv is the combination of factors which minimize the total cost. But he 

derived (81) in another way.  

 Transform (80):  

 

 j* *p ,  1,  2j i ij ij
i

H a jw   . (82) 

 

Of course, from eq.(79), we derive  

 

 ,  
1

0 1,  2j

j

H
p

j  .(83) 

 

We define  

 

 0
1

j j
j

j

H H
p

 . (84) 

 

We call this as the aggregate of Hj /pj. From (84) and(83), we derive 

 

 0 0H  .(85)  

 

Substitute (82) in(84): 

 

 0 j
1

* *pj i ij ij
j i

j

H w a
p

   * *ij ij i i
i j

a w   . (86) 

  

 Recall(50), that is, 0 ' *,i , , .i ij ij
j

a a T K L   Rewrite (86) using(50), and from(85), 

we have:  

 

 0 0 ' * 0i i i
i

H a w  . (87) 

  

 Recall eq.(5)(Σi θijaij*=0, j=1, 2,). From(50), and(5), we can show that  
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 0 ' 0i i
i
a   . (88) 

 

From(88), we derive: 

 

 0 0 0' ( ' ' )L L T T K Ka a a     . (89) 

 

Substitute (89) in (87) to derive:  

 

 0 T L 0 K L 0(w * w *) ' (w * w *) 'T T K KH a a     <0. (90) 

 

Similarly, we derive  

 

 0 T K 0 L K 0(w * w *) ' (w * w *) 'T T L LH a a     <0, (91) 

 0 K T 0 L T 0(w * w *) ' (w * w *) 'K K L LH a a     <0. (92) 

 

Eq.(88) implies that  

 

 0 0 0( ', ', ') ( , , )( , , )T K La a a        , 

 0 0 0( ', ', ') ( , , ),( , , ),( , , ),( , , ),( , , ),( , , )T K La a a                    . (93) 

 

One or two of 0 'ia can be negative. We call these sign patterns as sign A, B, C, D, E, F, respectively. 

 

Section 8. Estimating the position of EWS-ratio vector in case of P>0  

 

 In this section, I estimate the position of EWS-ratio vector. We assume P>0.  

 

Subsection 8.1. A sufficient condition for extreme factors to be economy-wide complements   

 

For example, we assume:  

 

 T L Kw * w * w *X Z Y     . (94) 

 

This assumption is plausible (see eq.(30)). Hence,  

 

 T L K L(w * w *,w * w *) ( , )     , T K L K(w * w *,w * w *) ( , )     , 
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 K T L T(w * w *,w * w *) ( , )     .  (95) 

 

Substitute (95) in eq.(90),(91), and(92), we obtain  

 

 0 0( ', ') ( , )T Ka a    , 0 0( ', ') ( , )T La a    , 0 0( ', ') ( , )K La a    . (96) 

 

From(96), we have  

 

 0 0 0( ', ', ') ( , , ),( , , )T K La a a        . (97) 

 

Hence, sign E and F are impossible. The sign A, B, C, and D are possible (see(93)). That is,  

 

 0 0 0( ', ', ') ( , , ),( , , ),( , , ),( , , )T K La a a              . (98) 

 

 Because we assume(94), we derive  

 

 ) ( ,
TL L LT

KL K KT

W W

W W




 
=

T L L T

K L K T

(w * w *) (w * w *)
( , )

(w * w *) (w * w *)

L

K




   
 

= ( , )  . (99) 

 

Hence, point A is in quad IV. And we derive the results as follows.  

 

(i)If sign A holds, we derive 0 0( , ) ( , )KT      , point B is in quad. III. (100) 

(ii)If sign B holds, we derive 0 0( , ) ( , )KT      , point B is in quad. II. (101) 

(iii)If sign C holds, we derive 0 0( , ) ( , )KT      , point B is in quad. IV. (102) 

(iv)If sign D holds, we derive 0 0( , ) ( , )KT      , point B is in quad. IV.(103) 

 

Hence, we can plot point A and B in the figure. If sign C holds, both point A and B is in quad. IV. 

Similarly, if sign D holds, both point A and B is in quad. IV. Therefore, if sign D or C holds, we have 

to show that which point is on the L.H.S., point A or B. We can analyze the distribution of point A and 

B by using eq. (90) as follows.  

 For example, we assume sign C holds, that is, 

 

 0 0 0( ', ', ') ( , , )T K La a a     . (104) 

 

Recall(90), that is,  
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 0 T L 0 K L 0(w * w *) ' (w * w *) 'T T K KH a a     <0. (105) 

 

Transform(105):  

  

 
T L 0

0 K L 0

K L 0

(w * w *) '
(w * w *) ' { }

(w * w *) '

K K
T T

T T

a
H a

a





  


 

 
TL

KL 0 0

KL

W
W ' { } 0

W
T T KTa      . (106) 

 

We have KLW ( ),  0 ' ( )Ta   . Hence, we derive  

 

 
TL

0

KL

W

W
KT  >0. (107) 

 

This implies 

 
TL

0

KL

W

W
KT   . (108) 

 

Hence, point A is on the L.H.S. of point B (see(71)). From (99) and(102), both of point A and B exist 

in quadrant IV. Hence, the point of ( ', ')S U exists on the line-segment AB, which exists in quad. IV 

(see Fig. 2).  

 From the above, if we assume sign C holds, the point of ( ', ')S U satisfies as follows:  

 

 0'
TL

KT

KL

W
S

W
 

  , 0U'
L LT

K KT

W

W

 



  . (109) 

 

Hence, we derive 

 

 ( ', ') ( , )S U      , ,( ,T, ) ( ) ( , , )LK LT KTS U g g g     . (110) 

 

This implies that factors T and K are economy-wide complements. In sum, the following result has 

been established.  

 

Theorem 2. If we assume  

 

 P>0, T L Kw * w * w *X Z Y     , 0 0 0( ', ', ') ( , , )T K La a a     , (111) 
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we derive 

 0'
TL

KT

KL

W
S

W
 

  , 0U'
L LT

K KT

W

W

 



  , (112) 

 ( ', ') ( , )S U      , ,( ,T, ) ( ) ( , , )LK LT KTS U g g g     . (113) 

 

This implies that extreme factors are economy-wide complements.  

 

 On the other hand, we can show that if sign D holds, point A is on the R.H.S. of point B. We 

can do the similar analysis. But I omit.  

 

Subsection 8.2. A sufficient condition for a certain Stolper-Samuelson sign pattern to hold  

 

 We assume (111) holds, hence, (112)and(113) hold. On the other hand, the following result 

has been established already (see Nakada (2015, section 10)).  

 

Theorem 1. If extreme factors are economy-wide complements, ‘a strong Rybczynski result’ holds 

necessarily. In this case, Stolper-Samuelson sign patterns for subregion P1-P3 are:  

    P1  P2  P3 

 
* *

sign[ ]
i jw p

P


=
   
    

   
    

   
    

, (114) 

 

where  

 1 2* *P p p  ,[
* *i jw p

P


]=

1 1 1

2 2 2

* * * * * *

* * * * * *

T K L

T K L

w p w p w p

w p w p w p

   
    

1

P
.(115) 

 

 I use this theorem for the analysis. I show some examples of a sufficient condition for a 

certain Stolper-Samuelson sign pattern to hold. For the analysis shown below, compare (112) with 

the results in Nakada (2015, example 2 in section 11).  

 

(i) Example 1 

 If we assume:  
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2

0

2

'
K TL

KT

T KL

W
S

W

  



   , (116) 

 

EWS-ratio vector exists in the subregion P1. Hence, we derive 

 

 
* *

sign[ ]
i jw p

P


=
   
    

. (117) 

 

What is the sufficient condition for(116)? If (116) holds, we have  

 

 
2

2

K TL

T KL

W

W





 . (118) 

 

Multiply by KLW (<0), we have: 

 

 2 2K KL TL TW W     2 K L T L 2(w * w *) (w * w *)K T      

   2 i Lw * w * 0i
i
   . (119) 

 

Recall (6)( * *. 
i ij i j

w p  ). Use (6) to transform(119), we have  

 

 2 Lp * w * 0   L 2w * p * ( ) 0    . (120) 

 

 In sum, if (120) holds, (116) holds. Hence, (117) holds.  

 

(ii)Example 2 

 If we assume:  

 

 
1 2

0

1 2

'
K TL K

KT

T KL T

W
S

W

  
 


    , (121) 

 

EWS-ratio vector exists in the subregion P2. Hence, we derive  

 

 
* *

sign[ ]
i jw p

P


=
   
    

.  (122) 
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What is the sufficient condition for(121)? If (121) holds, because (57)( / ,ih i h i h    ) implies

/KT K T   , we derive  

 

 
1

1

K TL

T KL

W

W





  L 1w * p * ( ) 0    ; (123) 

 
2

0

2

K
KT

T

 


   
0 2

,

0 2

'

'

K K K

T T T

  
  

 (124) 

 

Recall(88). From this, we have 0 0 0' ( ' ' )K K L L T T        . Substitute this in L.H.S. of(124): 

 

 L.H.S. of(124)=
0 0 0'

0 0

' '

' '

K K L L T T

T T T T

     
   


 

=
0

0

'
1

'

L L

T T

 
 
  =

*
1.

*

Lj Lj
Lj

Tj Tj T
j

a

a

 
 







(125) 

Substitute (125) in(124):  

 

 
1 1 2 2 2

1 1 2 2 2

( * *)
1

( * *)

L L L L L K

T T T T T T

a a

a a

   
   
   


1 1 1 2 2 2 2

1 1 1 2 2 2 2

( * *)
1

( * *)

L L L L K

T T T T T

a a

a a

    
    
   


. (126) 

 

 In sum, if (126) and (123) hold, (121) holds. Hence, (122) holds. Eq.(126) seems useful 

for application.  

 

(iii)Example 3 

 If we assume  

 

 
1

0

1

0 '
TL K

KT

KL T

W
S

W

 



    ,  (127) 

 

EWS-ratio vector exists in the subregion P3. Hence, we derive  

 

 
* *

sign[ ]
i jw p

P


=
   
    

. (128) 

 

What is the sufficient condition for(127)? If (127) holds, we derive  
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 0
TL

KL

W

W


 ; (129) 

 
1

0

1

K
KT

T

 


    
0 1

0 1

'

'

K K K

T T T

  
  

 . (130) 

 

(129) holds, because we assume  (94). Use (125) to transform(130):  

 

 
1 1 2 2 1

1 1 2 2 1

( * *)
1

( * *)

L L L L L K

T T T T T T

a a

a a

   
   
   


1 1 1 2 2 2 1

1 1 1 2 2 2 1

( * *)
1

( * *)

L L L L K

T T T T T

a a

a a

    
    
   


. (131) 

 

 In sum, (131) and (129) hold, (127) holds. Hence, (128) holds. Eq. (131) seems useful 

for application.  

 

Section 9. Estimating the position of EWS-ratio vector in case of P<0  

 

 In this section, I estimate the position of EWS-ratio vector. We assume P<0.  

 

Subsection 9. 1. A sufficient condition for extreme factors to be economy-wide complements   

 

 We assume: 

 

 T L Kw * w * w *X Z Y     . (132) 

 

This assumption is plausible (see(33)). Hence,  

 

 T L K L(w * w *,w * w *) ( , )     , T K L K(w * w *,w * w *) ( , )     , 

 K T L T(w * w *,w * w *) ( , )     .  (133) 

 

Substitute (133) in eq.(90),(91), and(92), we obtain  

 

 0 0( ', ') ( , )T Ka a    , 0 0( ', ') ( , )T La a    , 0 0( ', ') ( , )K La a    . (134) 

 

From the above,  

 

 0 0 0( ', ', ') ( , , ),( , , )T K La a a        . (135) 
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Hence, sign B and A are impossible. The sign C, D, E, and F are possible (see(93)). That is,  

 

 0 0 0( ', ', ') ( , , ),( , , ),( , , ),( , , )T K La a a              . (136) 

 

 Because we assume(132), we derive  

 

 ) ( ,
TL L LT

KL K KT

W W

W W




 
=

T L L T

K L K T

(w * w *) (w * w *)
( , )

(w * w *) (w * w *)

L

K




   
 

= ( , )  .(137) 

 

Hence, point A is in quad. IV. And we derive the results as follows.  

 

(i)If sign E holds, we derive 0 0( , ) ( , )KT      , point B is in quad. III. (138) 

(ii)If sign F holds, we derive 0 0( , ) ( , )KT      , point B is in quad. II. (139) 

(iii)If sign C holds, we derive 0 0( , ) ( , )KT      , point B is in quad. IV. (140) 

(iv)If sign D holds, we derive 0 0( , ) ( , )KT      , point B is in quad. IV.(141) 

 

Hence, we can plot point A and B in the figure. If sign D or C holds, we have to show that which point 

is on the L.H.S., point A or B. We can analyze the distribution of point A and B by using eq.(90) as 

follows.  

 For example, we assume sign C holds, that is, 

 

 0 0 0( ', ', ') ( , , )T K La a a     . (142) 

 

Recall(90), that is,  

 

 0 T L 0 K L 0(w * w *) ' (w * w *) 'T T K KH a a     <0. (143) 

 

Transform this:  

 

 
T L 0

0 K L 0

K L 0

(w * w *) '
(w * w *) ' { }

(w * w *) '

K K
T T

T T

a
H a

a





  


 

 
TL

KL 0 0

KL

W
W ' { } 0

W
T T KTa      . (144) 

 

We have KL T 0W ( ),a ' ( )    . Hence, we derive  
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 0
TL

KT

KL

W

W
  

 . (145) 

 

Hence, point A is on the R.H.S. of point B (see(71)). From (137) and(140), both of point A and B 

exist in quadrant IV. Hence, the point of ( ', ')S U exists on the line-segment AB, which exists in quad. 

IV.  

 From the above, if we assume sign C holds, the point of ( ', ')S U satisfies as follows:  

 

 0 '
TL

KT

KL

W
S

W
  

  , 0 U'
L LT

K KT

W

W





  . (146) 

 

Hence, we derive 

 

 ( ', ') ( , )S U      , ,( ,T, ) ( ) ( , , )LK LT KTS U g g g     . (147) 

 

This implies that factors T and K are economy-wide complements. In sum, the following result has 

been established. 

 

Theorem 3. If we assume  

 

 P<0, T L Kw * w * w *X Z Y     , 0 0 0( ', ', ') ( , , )T K La a a     , (148) 

 

we derive 

 0 '
TL

KT

KL

W
S

W
  

  , 0 U'
L LT

K KT

W

W





  , (149) 

 ( ', ') ( , )S U      , ,( ,T, ) ( ) ( , , )LK LT KTS U g g g     . (150) 

 

This implies that extreme factors are economy-wide complements.  

 

 On the other hand, we can show that if sign D holds, point A is on the L.H.S. of point B. We 

can do the similar analysis. But I omit.  

 

Subsection 9.2. A sufficient condition for a certain Stolper-Samuelson sign pattern to hold  

 

 We assume (148) holds, hence, (149)and(150) hold. We can analyze similarly to 

Subsection 8.2. I show only one example for a certain Stolper-Samuelson sign pattern to hold. For the 
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analysis shown below, compare (149) with the results in Nakada (2015, example 2 in section 11).  

 

(i)Example 1.  

 If we assume  

 

 
1

0

1

0 '
TL K

KT

KL T

W
S

W

 



    , (151) 

 

EWS-ratio vector exists in the subregion P3. Hence, we derive 

 

 
* *

sign[ ]
i jw p

P


=
   
    

. (152) 

 

What is the sufficient condition for(151)? If (151) holds, we have  

 

 00 KT  ; (153) 

 
1

1

TL K

KL T

W

W





  L 1w * p * ( ) 0    . (154) 

 

(153) holds, because we assume (142). In sum, if (154) holds, (151) holds. Hence, (152) holds.  

 

Section 10. Conclusion  

 

 I assumed a certain pattern of factor intensity ranking, including that of middle factor. In 

general, I can estimate the position of EWS-ratio vector, ( ', ')S U  to some extent. It is because EWS-

ratio vector exists on the line-segment AB (or EWS-ratio vector line-segment). Therefore, if we know 

the position of point A and B, we can estimate the position of EWS-ratio vector. Point A and B are the 

intersection points of EWS-ratio vector line and EWS-ratio vector boundary. Hence, we can know 

which Stolper-Samuelson sign pattern holds to some extent.  

 In other words, if the data available satisfies a certain condition, we can estimate the position 

of EWS-ratio vector to some extent. I have deepened the analysis in Nakada (2015).  

 Especially, I have derived a sufficient condition for extreme factors to be economy-wide 

complements, which implies ( ', ') ( , )S U    . In this case, we can derive 3 patterns of Stolper-

Samuelson sign patterns. Next, I have derived a sufficient condition for a certain Stolper-Samuelson 

sign pattern to hold. These results suggest that if we have the appropriate data available, we can specify 

only one Stolper-Samuelson sign pattern.  
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  Of course, we can apply these results. In order to apply, we need the data about the change 

in some variables, which requires the data on 2 time-points. That is, the change in relative price of a 

commodity, in real factor price measured by both goods, and in input-output coefficient. On the other 

hand, normal CGE (or computable general equilibrium) analysis only needs the data only on 1 time-

point in order to estimate the value of basic parameters.  

 This article suggests as follows. Sometimes it is not plausible to assume the functional form 

of production functions, such as Cobb-Douglas, or all-constant CES in each sector. It is because they 

do not allow any 2 factors to be Allen-complements. It is because extreme factors can be economy-

wide complements.  
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Fig. 2 Illustration of EWS-ratio boundary and EWS-ratio line 
Note: S'=S/T=gLK/gLT, U'=U/T=gKT/gLT
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