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Abstract

Regression analysis, for prediction purposes, with compositional data is the subject of this

paper. We examine both cases when compositional data are either response or predictor vari-

ables. A parametric model is assumed but the interest lies in the accuracy of the predicted

values. For this reason, a data based power transformation is employed in both cases and the

results are compared with the standard log-ratio approach. There are some interesting results

and one advantage of the methods proposed here is the handling of the zero values.

Keywords: Compositional data, regression, prediction, α-transformation, principal compo-

nent regression

Mathematics Subject Classification: Primary 62J02, Secondary 62H99

1 Introduction

Compositional data are positive multivariate data whose vector elements sum to the same constant

usually taken to be 1 for convenience purposes. Data of this type arise in many disciplines, such as

geology, ecology, archaeology, economics, geochemistry, biology, bioinformatics, political sciences

and forensic sciences among others. In mathematical terms, their sample space, called simplex, is

given by

S
d =

{

(x1, ..., xD)
T

∣

∣

∣

∣

xi ≥ 0,

D
∑

i=1

xi = 1

}

, (1)

where D denotes the number of variables (better known as components) and d = D − 1.

There are various techniques for regression analysis with compositional data being the response

variables. See for example Aitchison (2003) who used classical methods on a log-ratio transformed

space and Stephens (1982) and Scealy and Welsh (2003) who transformed the data on the surface

of a unit hyper-sphere using the square root transformation. Dirichlet regression models have been

employed by Gueorguieva et al. (2008) and Maier (2011).

When zero values exist in data, Dirichlet models and the log-ratio transformation suggested by

Aitchison (1982, 2003) and Egozcue et al. (2003) will not work unless a zero value imputation

is applied first. The square root transformation on the other hand treats them naturally (Scealy

and Welsh , 2003), but the procedure is not easy to implement.
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We propose the use of a newly suggested data based power transformation Tsagris et al.

(2011) to perform regression analysis. The multivariate logit link function is necessary to ensure

that the fitted values lie within the simplex. The free parameter of the power transformation is

chosen such that that the discrepancy between the observed and the fitted values is minimized.

This implies that the use of Kullback-Leibler divergence will be of great importance in achieving

this goal.

The big advantage of this type of regression is that a) zeros are handled naturally and thus no

zero imputation technique prior to the analysis is necessary and b) more accurate fitted values can

be obtained. The disadvantage on the other hand is that we loose in terms of statistical properties

of the estimated coefficients. Hence, this is more a data mining procedure.

The inverse situation, where compositional data are in the predictor variables side has not been

looked at, thoroughly, in the literature as far as we are aware of. One possible solution would be

to apply the isometric log-ratio transformation (Egozcue et al. , 2003) (see 4) and then standard

techniques, see for example Egozcue et al. (2011) and Hron et al. (2012). But this approach has

two drawbacks: first it does not account for any collinearity between the components and second

it is not applicable when zero values are present.

Collinearity problems can be attacked by principal component regression. Zero values require

imputation, so that the isometric log-ratio transformation can be applied. This however means

that the values of the rest components of each vector, which contains at least one zero value, will

have to change. In some data sets, there can be many zeros spread in many observations. That

would mean that many observations would have to change values, even slightly. This adds extra

variation to the data though.

In this paper we propose a novel parametric regression method whose ultimate purpose is

prediction inference. A data based power transformation (Tsagris et al. , 2011) involving one

free parameter, α is employed at first. We suggest a way to choose the value of α which leads

to the optimal results. The results show that prediction can be more accurate when one uses a

transformation other than the isometric (Egozcue et al. , 2003) or the additive log-ratio (Aitchison

, 1982).

A similar approach is exhibited when for the case of compositional data being predictor vari-

ables. Thus, this extends the work by Hron et al. (2012) who used the isometric log-ratio trans-

formation only. However, our work focuses mainly on prediction and not on inference regarding

the regression coefficients.

Alternatively, if the number of explanatory variables is rather small, standard linear regression

analysis can be carried out. In either case, the α-transformation handles zero values in the data

naturally (if present) and principal component or k-NN regression handles possible collinearity

problems. The key message is that a transformation other than the log-ratio family can lead to

better results in terms of prediction accuracy.

Regression analysis when compositional data are the response variables is described in Section

2. Simulation studies and a real data example illustrates the methodology. Section 3 describes the

principal component regression when compositional data are the predictor variables. A real data

example shows interesting results. Finally, conclusions close this paper.
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2 The α-transformation for compositional data

The α-transformation was proposed by Tsagris et al. (2011) as a more general than the isometric

log-ratio transformation (Egozcue et al. , 2003) and is a data based power transformation involving

one free power parameter, similarly to the Box-Cox transformation. The power transformation

suggested by Aitchison (2003) is

u =

(

xα1
∑D

j=1
xαj

, . . . ,
xαD

∑D
j=1

xαj

)

, (2)

and in terms of that define

z =
1

α
H (Du− jD) , (3)

where x ∈ S
d, H is the d ×D Helmert sub-matrix (the Helmert matrix Lancaster , 1965 without

the first row) and jD is the D-dimensional vector of 1s. Note that the power transformed vector

u in (2) remains in the simplex Sd, whereas z is mapped onto a subset of Rd. Note also that (3)

is simply a linear transformation of (2) and moreover as α → 0, (3) converges to the isometric

log-ratio transformation (Egozcue et al. , 2003) defined as

v = H



log x1 −
1

D

D
∑

j=1

log xj , . . . , log xD −
1

D

D
∑

j=1

log xj





T

. (4)

We can clearly see that when there are zero values in the compositional data the isometric

log-ratio transformation (4) is not applicable because the logarithm of zero is undefined. For this

reason, we will also examine the zero value imputation briefly mentioned in the next Section.

2.1 The α-regression

We will use the inverse of the additive logistic transformation, combined with the α-transformation,

as a link function. This is a new regression using the α-transformation (3) which allows for more

flexibility even in the presence of zero values. Another feature of this method is that the line is

always curved (unless α is far away from zero) and so it can be seen not only as a generalization

of the log-ratio regression but also as a flexible type compositional regression in the sense that the

curvature of the line is chosen based on some discrepancy criteria, examined later.

In order for the fitted values to satisfy the constraint imposed by the simplex we model the

inverse of the additive logistic transformation of the mean response. Hence, the fitted values will

always lie within Sd and we also retain the flexibility the α-transformation offers.

We assume that the conditional mean of the observed composition can be written as a non-

linear function of some covariates

µ1 =
1

1+
∑d

j=1
e
x
Tβββj

µi =
ex

Tβββi

1+
∑d

j=1
e
x
Tβββj

for i = 2, ..., D,
(5)
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where

βββi = (β0i, β1i, ..., βpi)
T , i = 1, ..., d and p denotes the number of covariates.

Then a multivariate linear regression is applied to the α-transformed data

l (α) = −
n

2
log
∣

∣

∣
Σ̂ΣΣ
∣

∣

∣
−

1

2
tr
[

(Yα −Mα) Σ̂ΣΣ
−1

α (Yα −Mα)
T
]

, (6)

where Yα and Mα are the α-transformed response and fitted compositional vectors. We have

ignored the Jacobian determinant of the α-transformation since it plays no role in the optimization

process and the choice of α For each value of α we maximize the value of this objective function

(6). The Σ̂ΣΣ needs not be numerically estimated, since B̂, the matrix of the estimates and Σ̂ΣΣ are

statistically independent (Mardia et al. , 1979). The maximum likelihood estimator of ΣΣΣ is (Mardia

et al. , 1979)

Σ̂ΣΣα = n−1YT
αPYα,

where P = In−X
(

XTX
)

−1
XT . But since this covariance is not unbiased we will use the unbiased

estimator

Σ̂ΣΣα = (n− p− 1)−1
YT

αPYα,

where X is the design matrix and p is the number of independent variables.

The consistency of the estimators of the parameters is not an issue in our case since we focus

on prediction inference. Since the estimation of the parameters depends upon the value of α,

the estimates will not be consistent, unless that is the true assumed model. The multivariate

normal is defined in the whole of Rd but the α-transformation maps the data onto a subset of Rd.

Thus, unless there is not too much probability left outside the simplex, the multivariate normal

distribution might not be the best option.

The α-transformation what it does essentially is to contract the simplex, center it to the origin

and then project it on a subspace of Rd by using the Helmert sub-matrix (Lancaster , 1965). So

if the fitted multivariate normal has high dispersion that will lead to probability left outside the

simplex. The multivariate t distribution was used by Lange et al. (1989) as a more robust, in

comparison to the multivariate normal, model but even so, it will not be the best option, mainly

for two reasons. Even if the multivariate t distribution could provide flatter tails, there would still

be some probability (even less than the normal) left outside the simplex. Secondly, in a regression

setting, the number of parameters we would have to estimate numerically is increased and this

would make the maximization process more difficult.

A final key feature we have to note is that when α → 0 we end up with the additive log-ratio

regression (9).

2.1.1 Choosing the optimal α using the Kullback-Leibler divergence

The disadvantage of the profile log-likelihood, for choosing the value of α, is that it does not allow

zeros. On the other hand, it provides the maximum likelihood estimates which are asymptotically

normal. Furthermore, confidence intervals for the true value of α can be constructed.

We suggest an alternative and perhaps better way of choosing the value of α. Better in the
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sense that it is trying to take into account the proximity between the observed and the fitted

values. The criterion is to choose the α which minimizes twice the Kullback-Leibler divergence

(Kullback , 1997)

KL = 2
n
∑

j=1

D
∑

i=1

yij log
yij

ŷij
, (7)

where yij is the observed compositional point and ŷij is the corresponding fitted value. The form

of the deviance for the log-linear models and the logistic regression has the same expression as

well. Hence, we transfer the same form of divergence to compositional data. For every value of α

we estimate the parameters of the regression and choose the value of α which minimizes (7).

The number 2 is there because in the case of D = 2 we end up with the log-likelihood of the

binary logistic regression. The Kullback-Leibler divergence (7) takes into account the divergence

or the distance of each of the observed values from the fitted values.

Since we are interested in prediction analysis we should use cross-validation to choose the value

of α. The reason why we did not choose to go down this road is because of time. The estimation

of the parameters for a single value of α requires some seconds in a fine desktop. The search

over many possible values of α requires a few minutes. Thus, even a 1-fold cross validation would

require a few hours and as the number of independent variables, and/or the sample size increase

the computational time will increase as well. So, for the shake of speed we avoided this way.

2.2 Additive log-ratio regression

The additive log-ratio transformation is defined as

zi = log

(

yi

yD

)

for i = 1, . . . , d, (8)

where d = D − 1, yD is the last component playing the role of the common divisor, but by

relabelling any component can play this role. We will now show the additive log-ratio regression.

At first we will see a nice property of the logarithms and its implications on the additive log-ratio

regression.

log

(

yi

yD

)

= xTβββi ⇔ log yi = log yD + xTβββi, i = 1, . . . , d (9)

where xT is a column vector of the design matrix X, D is the number of components and

βββi = (β0i, β1i, ..., βpi)
T , i = 1, ..., d

are the regression coefficients and p is the number of independent variables.

We see from (9) that when the dependent variable is the logarithm of any component, the

logarithm of the common divisor component can be treated as an offset variable; an independent

variable with coefficient equal to 1.

The main disadvantage of this type of regression is that it does not allow zero values in any of

the components, unless a zero value imputation technique Martin et al. (2012) is applied first. Its

advantage though is that after the additive log-ratio transformation (8) we can do the standard

multivariate regression analysis. As for the fitted value they are back transformed into the simplex
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using the inverse of (8).

2.3 Example: Foraminiferal compositions with some zero values

This data set consists of foraminiferal (marine plankton species) compositions at 30 different depths

(1-30 metres) and can be found in (Aitchison , 2003, pg. 399). There are 5 compositions with a

zero value, either in the third or the fourth component. The data were analysed by Scealy and

Welsh (2003) who performed regression by employing the Kent distribution using the logarithm of

the depth as the independent variable. Since the data contain zero values, the α-regression allows

only strictly positive values for α. Since the composition belongs to S3 we cannot use the ternary

plot; we could though use a 3-dimensional pyramid, but it would not show the structure of the

data clearly. For this reason we will use a barplot.
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Figure 1: The foraminiferal compositions as a function of the logarithm of the sea water depth.

A zero value imputation method suggested by Martin et al. (2012) can be briefly summarised

as follows: Replace the zero values by 65% of a threshold value using the non parametric method

described by (Martin et al. , 2003). The threshold value is different for each component. We used

the minimum, non zero, value of each component as that threshold. Then the isometric log-ratio

transformation (4) is applied. An E-M algorithm substitutes the replaced values with a value less

than the chosen threshold. In the end, the data are transformed back to the simplex. This method,

like all zero value imputation methods, results in all the components of each compositional vector

being changed, even slightly. A tolerance value (say 0.01) is used as convergence criterion between

successive iterations.

We will use this method in order to allow for the additive log-ratio regression to be performed.

In this case the Kullback-Leibler divergence (7) will be calculated for the initial, not the zero

imputed data.

The value of the divergence (7) when regression is applied to the original data with α = 1 is

equal to 6.123. The value of the divergence (7) when regression is applied to the zero imputed

data data with α = 0 is equal to 7.112 and when α = 1 is equal to 6.123. Thus a value of α

other than zero leads to better predictions with without zero value imputation. Scealy and Welsh

(2003) used the same dataset treating the compositional data as directional by applying the square

root transformation. Their suggested Kent regression (no zero imputation is necessary) produced

a divergence value equal to 6.344, still lower than the additive log-ratio regression.
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Figure 2: Twice the Kullback-Leibler divergence (7) as a function of α. Graph (a) refers to the
original data and graph (b) refers to the zero imputed data.

As earlier stated, the purpose of this regression is to provide better fittings to the observed

data. It is more a data mining procedure than it is a statistical one, from the point of view that

we are interested in estimating/predicting future observations with as high accuracy as possible.

We are not interested in making inference about the regression coefficients.

In the next Section, the reverse scenario is of interest, that of the compositional data (containing

zero values again) playing the role of the covariates.

3 Principal component regression with compositional data being

the predictor variables

As the title of this Section suggests we will focus only in the principal component regression, even

though we could mention regression analysis in general. The reason for not doing so is because

Hron et al. (2012) has already covered this case and we are interested in generalising this idea to

cover the case of multicollinearity as well.

Principal component regression is based on principal component analysis and hence we will

not spend too much time. The algorithm to perform principal component regression (PCR) can

be described as follows

1. At first standardize the independent variables. This way, XTX (the n × p design matrix,

which includes the p independent variables but not the intercept term) is proportional to the

correlation matrix for the predictor variables (Jolliffe , 2005). The n stands for the sample

size.

2. Perform eigen analysis on XTX and calculate the matrix of the eigenvectors V and the scores

Z = XV.

3. Estimate the regression coefficients by

B̂ = V
(

ZTZ
)

−1
ZTy,
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where y is the vector containing the values of the dependent variable.

4. Estimate the covariance matrix of the estimated regression coefficients by

V ar
(

B̂
)

= σ2V
(

ZTZ
)

−1
VT ,

where σ2 is the conditional variance of the dependent variable calculated from the classical

multiple regression analysis based upon the given number of principal components. It is the

error variance, whose estimate is the (unbiased) mean squared error.

The key point is that we can have p different sets of estimated regression coefficients, since we

can use the first eigenvector (or principal component), the first two eigenvectors or all of them. If

we use all p of them, then we end up with the same regression coefficients as if we performed a

classical multiple regression analysis.

Since we are not interested in statistical inference regarding the coefficients of the principal

components we can ignore their variance matrix. Another key point that is worthy to mention

is that we can also use the principal scores as the new predictor variables and do the classical

regression. The fitted values will be exactly the same.

The idea here is simple, apply the α-transformation (3) to the compositional data and then

perform principal component regression. The value of α and the number of principal components

which lead to the optimal results are chosen via cross validation. The optimal results in our case

will refer to minimization of the mean squared error of prediction.

3.1 Example: Glass data and refractive index (zero values present)

In optics the refractive index of a substance (optical medium) is a ”clean” number that describes

how light, or any other radiation, propagates through that medium. It is defined as RI = c
v
, where

c is the speed of light in vacuum and v is the speed of light in the substance. The refractive index

of water, for example, is 1.33. This means that the speed of light in water is reduced by 24.8%
[(

1− 1

1.33

)

%
]

.

Surprisingly enough, negative refractive values are also possible, when if permittivity and per-

meability have simultaneous negative values. This can be achieved with periodically constructed

metamaterials. The negative refraction index (a reversal of Snell’s law) offers the possibility of the

superlens and other exotic phenomena.

The glass dataset available from UC Irvine Machine Learning Repository contains 214 obser-

vations regarding glass material from crime scenes. with information about 8 chemical elements,

in percentage form. These chemical elements are sodium (Na), Magnesium (Mg), aluminium (Al),

silicon (Si), potassium (K), calcium (Ca), barium (Ba) and iron (Fe). The variable whose values

we wish to predict based on knowledge of the chemical composition is the refractive index (RI) of

each glass.

The category of glass is also available (for example vehicle headlamps, vehicle window glass,

tableware et cetera). This extra information can be taken into account by principal component

regression easily. For the kernel regression though, an extra kernel for this discrete variable has to

be fitted and the final kernel is the product of the two kernels (one for the continuous variables and

one for this discrete variable). So, the inclusion of non continuous or different types of continuous

data is not an easy task when kernel regression is to be used.
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We have also included a second PCR model which includes the extra information about the

data, the category of the glass. The difference from the PCR described is that now we will

use the scores of the principal component analysis (see the second key point in Section 3) to do

regression. In this way we will also add the categorical variable indicating the category of each

glass measurement. Table 1 summarizes the results of the five regression models.

Regression model for the original data
Method Chosen parameters MSPE Adjusted R2

PCR α = 1 and 7 PCs 1.237 0.891
PCR with the glass

category α = 1 and 7 PCs 1.02 0.903
Regression model for the zero value imputed data

Method Chosen parameters MSPE Adjusted R2

PCR α = 0 and 7 PCs 2.403 0.784
PCR α = 0.95 and 7 PCs 1.239 0.890

PCR with the glass
category α = 1 and 6 PCs 1.016 0.863

Table 1: Mean squared error of prediction (MSPE) for each regression model applied to the glass
data. The adjusted coefficient of determination (R2) is calculated using the fitted values from
principal component regression.

We can see from Table 1 that even if we replace the zero values the result is the same. The

isometric log-ratio transformation when applied to the zero imputed data does not lead to the

optimal results. A value of α far from zero led to much better results, the adjusted R2 increased

from 0.772 to 0.89 and the mean squared error of prediction was less than half. Martin et al.

(2012) also used a robust E-M algorithm by employing MM estimators (Maronna et al. , 2006).

The results (not presented here) when robust imputation was performed were slightly worse than

the ones presented in Table (1).

Even if we impute the zero values, the estimated MSPE, when the isometric log-ratio trans-

formation is used (α = 0), is much higher than with a value of α close to 1 and the value of the

adjusted R2 is lower.

−5 0 5 10 15

−
5

0
5

10
15

Observed refractive index values

E
st

im
at

ed
 r

ef
ra

ct
iv

e 
in

de
x 

va
lu

es

Corr=0.946

−5 0 5 10 15

−
5

0
5

10
15

Observed refractive index values

E
st

im
at

ed
 r

ef
ra

ct
iv

e 
in

de
x 

va
lu

es

Corr=0.953

−5 0 5 10 15

−
5

0
5

10

Observed refractive index values

E
st

im
at

ed
 r

ef
ra

ct
iv

e 
in

de
x 

va
lu

es

Corr=0.889

(a) (b) (c)

Figure 3: Observed versus estimated refractive indices. Plots (a) and (b) correspond to α = 1
with 7 PCs without and with information about the glass category, using in the original data. The
third plot (c) corresponds to α = 0 with 7 PCs using the zero imputed data.

We also used kernel regression and k-NN regression using many different metrics or distances
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with and without the α-transformation but none of them was as successful as the principal com-

ponent regression. We also tried robust principal component regression for the second example

but the results were not better either.

The best model is the one using all 7 principal components coming from the α-transformed

data with α = 1 and using the information about the category of glass as we can see in Table 1.

In mathematical terms it is written as

R̂I = 1.345− 0.081S1 + 1.368S2 + 0.161S3 − 0.801S4 + 2.533S5 − 1.618S6 − 1.329S7

−1.567WinF− 1.460WinNF− 2.445Veh− 1.165Con− 1.177Tabl,

where Si, for i = 1, . . . , 7 stands for the scores of each principal component and WinF and WinNF

stand for the window float and window non-float glass respectively. Veh stands for vehicle window

glass, Con for containers, Tabl for tableware. The vehicle headlamps is the reference glass category.

We do not show the standard errors since the choice of the number of principal components, and

the inclusion of the information about the glass categories was based on the MSPE (Table 1).

The normality of the residuals was rejected according to the Shapiro test (p-value< 0.001). As

for the independence assumption by looking at Figure 4 we can see that it looks acceptable. There

are a few outliers in the residuals space as we can see from Figure 4. The α used in this model

was equal to 1 as we mentioned before. Different values of α will lead to different values bering

detected as potential outliers. In addition, we detected some outliers in the residuals space and

not in the space spanned by the 7 principal components.
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Figure 4: Fitted values versus the standardised residuals for the model. The two horizontal lines
indicate the region of outliers in the residuals space.

4 Conclusions

There are two key messages this paper tries to convey. The first is that a transformation other

than the isometric of the additive log-ratio transformation should be considered for compositional

data analysis. It was evident from the example that when the data contain zero values the α-

transformation handles the data naturally without changing their values even to the slightest. The

log-ratio transformations require zero value imputation prior to their applications, a requirement

not met by the α-transformation.

One can argue though that in both examples values of α close to 1 produced similar results
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as α = 1. This was something to be expected for the data in the first example, but even then,

this discourages the use of log-ratio as the panacea for all compositional data analysis. We do not

disqualify though the use of log-ratio but rather try to show that this very popular transformation

for compositional data has some drawbacks and in some cases other transformations could be

applied. In both examples, the differences in the Kulback-Leibler divergence or the MSPE were

small, but still indicative.

The second key message is that when compositional data analysis are on the covariates side

standard regression techniques after the α-transformation should be used with caution. Since

the data represent percentage allocation, it is very natural that correlations exist even after the

transformation and thus, multicollinearity should be examined first. In addition, if there are many

components then variable selection could be applied. These are some reasons why we preferred to

perform principal component regression.
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