
Munich Personal RePEc Archive

Inconsistency between a criterion and

the initial conditions

Bazhanov, Andrei

Far Eastern National University, Queen’s University

2 January 2008

Online at https://mpra.ub.uni-muenchen.de/6792/

MPRA Paper No. 6792, posted 18 Jan 2008 01:57 UTC



Inconsistency between a criterion and the
initial conditions∗

Andrei V. Bazhanov†

January 2, 2008

Abstract

What if an unsustainable economy decides to switch in finite time
to a sustainable path of a nonrenewable resource extraction which is
optimal with respect to some criterion? We consider this problem on
the example of the Dasgupta-Heal-Solow-Stiglitz model (DHSS) using
constant consumption over time as a criterion. It turns out that if the
criterion has no connections with the “opportunities” of the economy
(initial conditions) then the resulting “optimal” path of consumption
can be inferior to the one along some sub-optimal sustainable paths
of extraction calibrated on the original initial conditions. In our case
we have obtained under the standard Hartwick Rule bounded and
unbounded growth of consumption along these sub-optimal paths.
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1 Introduction

The Hartwick Investment Rule (Hartwick, 1977) for the Dasgupta-Heal-

Solow-Stiglitz (DHSS) model (Dasgupta and Heal, 1974; Solow, 1974; Stiglitz,

1974) implies constant consumption over time. Solow (1974) used the constant-

consumption criterion as a result of application of the maximin (Rawls, 1971)

to the question of just intertemporal allocation of an essential nonrenewable

resource. Constant consumption in this model is obtained under the Hotelling

Rule as a condition of efficient extraction. This condition for our model im-

plies that the rate of extraction r(t) must be always declining including the

starting point (ṙ(0) < 0). Moreover, the value of ṙ(0) is strictly defined by

the initial rate of extraction r(0), amount of reserve s0 and technological

parameters of the economy.

But what if the economy’s technology and (or) the initial conditions are

not compatible with the requirements of the criterion which the economy de-

cided to use?1 For example, if the elasticity of factor substitution is less than

unity then the economy with a nonrenewable resource will collapse regardless

any efforts in saving (Dasgupta and Heal, 1979) and therefore this economy is

not compatible with the criteria implying nondecreasing consumption. The

unit-elasticity Cobb-Douglas economy can exhibit various patterns of declin-

1We assume here that stickiness of both the extraction and saving prevents the economy
from changing the initial conditions in discontinuous way.
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ing, growing, and constant per capita consumption depending on the paths of

saving and extraction and on the initial conditions. Therefore it is natural to

expect that some plausible criterion implying a sustainable path of consump-

tion can be “inferior” to this economy combined with the initial conditions if

this criterion is not “linked” parametrically to the potential opportunities of

the economy which are expressed in technological parameters and the initial

conditions.

We assume here that the economy is non-sustainable at the initial mo-

ment due to some externalities implying the modified Hotelling Rule and

unsustainable pattern of extraction (ṙ(0) > 0). In general case the economic

non-sustainability can be two-dimensional when an economy in addition to

unsustainable extraction follows unsustainable pattern of saving. For sim-

plicity we assume that our economy invests in the optimal with respect to

our criterion way, namely it follows the Hartwick Saving Rule.2

In our numerical examples we have shown that the consumption along

some sub-optimal sustainable paths of extraction linked to the initial condi-

2There is empirical evidence (e.g. Pearce and Atkinson 1993) that net investment,
which takes into account natural capital, is around zero for some countries (Mexico, Philip-
pines) and is mixed positive and negative for some others. Hamilton et al (2006) also
obtained mixed result examining the satisfaction of the Hartwick Rule for 70 countries.
Therefore our use of zero net investment (Hartwick Rule) has some justification. In a
specific case, when investment behaviour is different from that for a sustainable path, the
current pattern of saving must be also adjusted during the transition period. This is a
separate complicated problem which also can not be solved immediately as was mentioned
in (e.g. Kuznets 1946; Poterba 1988) because household saving behavior is slow to change
despite changes of governments and government policy. We discussed in detail the question
of sticky extraction and saving patterns in (Bazhanov 2007c).
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tions can be superior to the one along the “optimal” path after the moment

of switching with the initial conditions adjusted during the transition period.

Namely, we have obtained bounded and unbounded growth of consumption

(depending on the extraction path) under the standard Hartwick Rule what

looks more attractive than the positive net saving (Hamilton et al, 2006) since

it does not require decreasing of consumption for the present generation.

We describe the model in Section 2; discuss the nature of the extraction

and saving stickiness (which imply the necessity of the transition period)

in Section 3; consider different formulations of the problem of optimal ad-

justment of the initial conditions in finite time (Section 4); in Section 5 we

describe the properties of the extraction paths which we use for the transition

period; Section 6 provides theoretical result on impossibility of switching in

finite time to the “optimal” path along the “optimal” transition path; Sec-

tion 7 offers the opportunities of approximations for the problem of finite-

time switching; Section 8 provides the numerical examples of approximate

solutions for the finite-time switching; Section 9 considers an example of

changing of saving rule which is necessary to compare correctly the patterns

of consumption along different extraction paths; Section 10 concludes.

4



2 The model

We use the DHSS model with the Cobb-Douglas technology. For simplicity

we consider the case with zero population growth3, zero cost of extraction

and technological progress compensating for capital depreciation. The last

assumption allows to consider the basic DHSS model for the cases with a

growing economy what is important for our numerical examples. Plausible

patterns of technological progress compensating for capital depreciation were

examined in (Bazhanov 2007b). All the paths in our economy such as output

q(t), consumption c(t), produced capital k(t) and so on are defined below in

per capita units. For our case we have output q = f(k, r) = kαrβ where r

- current resource use, r = −ṡ, s - per capita resource stock (ṡ = ds/dt), α,

β ∈ (0, 1) are constants. Prices of capital and the resource are fk = αq/k

and fr = βq/r where fx = ∂f/∂x. Per capita consumption is c = q− k̇. The

Hartwick Saving Rule implies c = q − rfr or, substituting for fr, we have

c = q(1− β), which means that instead of ċ = 0 we can check q̇ = 0. Hence,

the efficient path of extraction in our simple case can be derived from the

standard Hotelling Rule ḟr/fr = fk which implies αβq/k+ ṙ(β−1)/r = fk =
3In fact, numerous literature on sustainable development starting T. Malthus work in

1798 and some recent papers, e.g., (Brander 2007) consider the population growth as the
main threat to sustainability. The debates on this problem are concentrating around the
estimate of the constant which could be the limit to the population growth. Hence, we
can assume that the population is already stabilized on this limit.
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αq/k or

ṙ/r = −αq/k. (1)

Then

q̇/q = αk̇/k + βṙ/r = β(αq/k + ṙ/r) = 0, (2)

which means that we really have q̇ = ċ = 0 or q = const. Then rfr = βq =

const and we have k̇ = βq = const for deriving k(t) and (1) for deriving

r(t). We can find two constants of integration k0 for k(t) = k0 + βqt and

the constant of equation ṙ/r = −1/ (k0/αq + βt/α) using initial conditions

r(0) = r0 and s(0) = s0, where s0 is the given resource stock which must be

used for production over infinite time: s0 =
∞
0
r(t)dt. Then we have

r(t) = r0 [1 + r0βt/s0(α− β)]−α/β , (3)

where α > β (Solow condition) and

ṙ(t) = −s̈(t) = −αr20/s0(α− β) [1 + r0βt/s0(α− β)]−(α+β)/β . (4)

Since we assume that our economy depends on the resource essentially,

the path r(t) (Hartwick curve (3)), asymptotically approaches zero (dotted

line on Fig. 1 a) is RHart(t)− in absolute units) and the path of extraction

changes ṙ(t) (or negative acceleration of stock s(t) diminishing, dotted line

on Fig. 1 b)) also approaches zero, but starting from negative value

ṙ0 = −αr20/s0(α− β). (5)
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Figure 1: World oil a) extraction (mln t/year); b) per capita extraction ac-
celerations: historical data (before 2006); Hartwick curve (dotted); transition
curve (solid).

However, according to our assumptions about stickiness of extraction and

saving, we are not able to realize the efficient Hartwick’s curve at t = 0 and

we must switch to the optimal path along some “smooth continuation” (solid

line on Fig. 1 a) after 2006).4 Our definitions in the next section reflect these

restrictions.

4In the current paper we assume that there exists a path of tax (or policy which can be
expressed in terms of tax) which can influence the rate of extraction in a corresponding way.
So we will concentrate on some normative and technical problems which can arise during
the switching in finite time to the path with desirable properties. There is literature on the
design of government interventions for realizing sustainable resource use via price changes.
For example, Karp and Livernois (1992) obtained the tax which brings the monopolist
extraction to an efficient path . A review on regulation under asymmetric information is
in (Caillaud et al 1988) and a recent review of sustainability and environmental policies
can be found in (Pezzey 2002). Government can influence the extraction activity directly
(using regulations as in (Davis and Cairns 1999) or affecting the households’ demand with
environmental policy as in (Grimaud and Rouge 2005; Pezzey 2002).
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3 Feasibility, efficiency, and restrictions on ṙ

The constant per capita consumption over time in our case is the result of

1) total investment of oil rent in capital (k̇ = rfr) and

2) fulfillment of the standard Hotelling Rule (ḟr/fr = fk).

In our case the Hotelling Rule is modified by some externalities at the

initial point, namely ḟr/fr = fk + τ(t), where τ(0) 9= 0. These externalities

cause inefficient extraction in terms of the standard Hotelling Rule5 or we

will say that the path of extraction is “τ−zero inefficient”. Technical and po-

litical restrictions prevent us from starting the extraction using the “τ−zero

efficient” path and so we must find the optimal path in the first (transition)

period among τ−zero inefficient curves.6 We set down these assumptions

below in the definitions 1 and 2 and the Propositions 1 and 2.

Definition 1 An intertemporal program kf(t), c(t), k(t), r(t)l∞t=0 is a set

of paths f(t), c(t), k(t), r(t), t ≥ 0 such that f(t) = f [k(t), r(t)] and c(t) =

f(t)− k̇(t).

We use below the notation (x1, . . . xn) 0 if xi > 0 for all i = 1, n.

Definition 2 For positive initial stock of capital and resource (k0, s0) 0

the set of the programs F = {kf(t), c(t), k(t), r(t)l∞t=0} is a feasible sheaf at
5The most recent analysis of the reasons of distortion in the Hotelling Rule in its original

form and alternative formulations of the Rule, reconciling it with the patterns of price and
extraction, can be found in (Gaudet 2007).

6For simplicity we will omit below the expression “τ−zero” assuming that “efficiency”
means satisfaction of the standard Hotelling Rule.
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t = 0 and each of the paths f(t), c(t), k(t), r(t) is a feasible path if any

program kf(t), c(t), k(t), r(t)l∞t=0 from F for all t ≥ 0 satisfies the conditions:

1) (f(t), c(t), k(t), r(t)) 0;

2) r(t), k(t), c(t) are continuously differentiable and supt |ṙ(t)| ≤ ṙmax <

∞;

3) f(t) is twice continuously differentiable;

4)
∞
t
r(t)dt ≤ s(t);

5) k(0) = k0, c(0) = c0, r(0) = r0, ṙ(0) = ṙ0 ≤ ṙmax.

Definitions 1 and 2 are based on the definition of the interior feasible

path in (Asheim et al, 2007). The differences reflect our assumptions: a)

population is constant; b) the speed of change of the extraction rate ṙ is

limited and continuous for all t including t = 0 . Henceforth, a “program”

and a “path” will refer to a feasible program and a feasible path.

We use below the notions of intertemporally inefficient and efficient pro-

grams which are introduced in (Dasgupta and Heal 1979 p 214). We denote

the set of the efficient programs as E.

Proposition 1 If ḟr(0)/fr(0) 9= fk(0) then F ∩ E = ∅ or all the feasible

paths are inefficient.

Proof is in (Bazhanov 2007d).

Now we will show that in our assumptions (zero extraction cost) all the

growing paths of extraction are inefficient.
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Proposition 2 For an economy with technology q = kαrβ where α, β ∈

(0, 1); k(t), r(t) > 0 and k̇(t) < q(t) for all t, the path of extraction is ineffi-

cient if there is t ≥ 0 such that ṙ(t) > 0.

Proof is in (Bazhanov 2007d).

According to our formulation of the problem and the definition of the

feasible paths, we have the restriction on changes in extraction: supt |ṙ(t)| ≤

ṙmax <∞. This condition means that the extraction can be reduced without

losing consumption only with the rate not exceeding ṙmax which is defined by

the rate of introducing the substitute technology. It is interesting to examine

the behavior of the model depending on the specific functions introducing

substitute technology. However we think that this problem needs special

careful consideration in a separate paper.

For the purpose of the current paper we assume that the feasible dynamics

of introducing substitute technology affects the path of extraction only at the

point with maximum |ṙ| . Therefore for the numerical examples below it is

enough to estimate ṙmax from historical data (Fig. 1 b)).

The methodology of estimation of ṙ(t) for historical data is described in

(Bazhanov 2006b). It is shown, that there is empirical evidence that the

Hamilton variation principle holds in economics of nonrenewable resources.

Then the changes of the rates of extraction can be estimated as follows:

ṙi = 2[si − ri(ti+1 − ti)− si+1]/(ti+1 − ti)2 where si, si+1− reserves at ti and
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ti+1; ri− rate of extraction at ti; [ti, ti+1) - the period when the sum of all the

reasons influencing the resource extraction can be considered as a constant.

The reserve at initial point of extraction was considered as the sum of the final

historical reserve estimate and the sum of all historical extractions. Since

acceleration is proportional to the generalized force (reason of changes), the

values of ṙi can be considered as the indices of the resource market. We can

add to the results in (Bazhanov 2006b) that a coefficient of proportionality

(inertia coefficient or coefficient of stickiness) between force and acceleration

can be obtained from the Hotelling Rule. In our case with zero extraction

cost (resource price equals to per unit rent) it has the form of ṗ(t) = p(t)ρ

where p(t) - current price and ρ - interest rate. It can be rewritten as [dp/dr]·

[dr/dt] = − [dp/dr] s̈ = p(t)ρ. The reason of extraction (force) here is rent

p(t) which is expressed via the acceleration of the resource extraction s̈ as

follows: p(t) = m(t)s̈. This expression is equivalent to the Newton’s second

law which is the corollary of the Hamilton variation principle. The stickiness

or inertia coefficient is m(t) = [−dp/dr] /ρ or it can be also expressed via

the price elasticity: m(t) = p(t)/ [εr(p)r(t)ρ] . The less is the marginal price

−dp/dr (with ρ fixed) the less must be an effort (e.g., tax imposed on p) in

order to obtain the unity change in s̈.

We turn to estimation of ṙmax for our numerical examples. Note that ṙ

oscillated around 0.2 before 1980 (Fig. 1 b)). As a result of energy crises
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in 1973 and 1979-80 it was a period of introducing new technologies. Then

after 1980 per capita accelerations oscillated already around zero. But these

energy crises followed by declines in output and consumption. Hence, since

we consider the problem of switching to sustainable path without losing con-

sumption we can take as a reasonable estimate for our simplified economy

ṙmax = 0.1.

4 Formulations of the transition problem

For the economy q = kαrβ given the initial reserve s(0) = s0 and the initial

conditions r0, ṙ0, q̇0/q0 (which imply the expressions for k0 (Section 8), q0,

and k̇0 = βq0) we are going to find among the feasible paths (definition 2,

Section 3) such a path of extraction r(t) and such a finite moment of time t

that r(0) = r0, ṙ(0) = ṙ0, and

ṙ(t) = −αr2(t)/ s(t)(α− β)

In other words a finite moment of time t must be such that the change of the

rate of extraction along the transition path coincides with the initial change

of the rate of extraction for the Hartwick’s curve given the current state as

the initial. Besides these conditions we can require the optimality of the

transition path r(t) with respect to some criterion consistent with our main

goal - constant consumption over time.
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For example, we could formulate the problem of optimality of the transi-

tion path in the following way: find t and r(t) such that

t

0

U [c(r(t))] dt→ max
t,r(t)

where U(·) is monotonically nondecreasing. However this approach implies

t→∞. If we consider the problem with a fixed t then this criterion will be

a “dictatorship of the present” (Chichilnisky, 1996) and it will imply that

almost all the resource reserve must be extracted in period 0, t in order to

maximize consumption in this period.

We can reformulate this criterion making use of the fact that our goal is

the constant consumption over time. Then we can require that the path of

consumption during the transition period must be as close to a constant as

possible. Using the least-square approach it can be formulated as follows

t

0

c(r(t))− c(t, r(t)) 2 dt→ min
t,r(t)

where c(t, r(t)) is the constant path of consumption after the moment of

switching t. The level c must depend on the rest of reserve s(t) and so it

depends on the pattern of extraction in previous period r(t). However this

problem has no solution in continuous functions because the value of the

criterion will be infinitely approaching zero with the path of consumption

(and corresponding path of extraction) approaching discontinuous function

c(t) =
c0, t = 0,
c̄, t > 0.
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which is not feasible in our problem.

We will obtain the same result if we remember that the reason of the

“wrong” behaviour of extraction and consumption in our case is the distortion

τ(t) in the Hotelling Rule by some externality. In this case the Hotelling Rule

is ḟr/fr = fk + τ(t). Requiring

t

0

[τ(t, r(t))]2 dt→ min
t,r(t)

we will also obtain the solution as a discontinuous (unfeasible) function

τ(t) =
τ 0, t = 0,
0, t > 0.

Another approach is to use our stickiness argument in order to justify the

restriction on the change of accelerations of the extraction, namely, require

that |r̈| ≤ r̈max. Then the problem of transition to the path with desirable

properties in minimal time is

t(r) → min
r(t)

s.t. r(0) = r0; ṙ(0) = ṙ0; |r̈| ≤ r̈max,

where t is the minimal positive solution of equation ṙ(t) = −αr2(t)/ s(t)(α− β) .

In this case the problems which have no solutions in continuous functions

will have corner solutions. For example, in the last problem we will have

the solution with r̈(t) ≡ −r̈max for all t ∈ [0, t], which implies r(t) =

−0.5r̈maxt2+ ṙ0t+r0. However this path is not feasible (r(t) must be positive

for all t ≥ 0) and so it can be used only for the transition period.
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Despite these technical difficulties in formulation of the problem of op-

timal transition path, which can be compared with the optimal path after

switching, we can find the answer on our main question7 using some particu-

lar class of functions. These functions must be such that they can be used to

describe the path of extraction with the specific initial conditions, they must

be feasible, and they must allow for sustainable paths of consumption. Then

if we show that for some functions from this particular class, calibrated on

the initial conditions, the path of consumption can be superior to the one,

which is optimal with respect to our criterion, then it will mean that our

criterion is “inefficient” for our economy (the reverse in this case is not true

because we use specific functions as sub-optimal solutions). As a particular

class of functions satisfying these conditions we will consider the transition

paths offered in (Bazhanov, 2007c).

5 Transition curves

For the transition period we can use the constant-consumption curve offered

in (Bazhanov 2007c). This path is optimal among the transition curves with

respect to our criterion. The transition path belongs to the same class of

rational functions as the Hartwick curve (3). The difference is in the numer-

ator, which in the expression for the changes of extraction rate ṙ depends on t

7Namely, if the criterion which we use can be “inefficient” for our economy.
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with a negative coefficient to control “smooth breaking” in the neighborhood

of t = 0. Namely, ṙ(t) has the form of

ṙ(t, b, c, d) = (ṙ0 + bt)/(1 + ct)
d, (6)

where b < 0, c > 0, d > 1 (for convergence ṙ(t)→−0 with t→∞). We have

r0 = r(0) to express b and then r(t) has a dependence on c and d in

r(t) = r0 (1 + brt) /(1 + ct)
d−1 (7)

where br = c(d−1)+ ṙ0/r0. Coefficient c is expressed from the condition that

resource is finite s0 =
∞
0
r(t)dt :

c(d) = r0/(d− 3) + r20/(d− 3)2 + s0ṙ0/[(d− 3)(d− 2)]
0.5

/s0. (8)

Hence, we have a single independent parameter d which defines the shape

of the curve (including its peak) and we can use this parameter as a control

variable in some selected optimization problem

F [r(t, d)]→ max
d

which can be connected with the short- or long-run policy in output or in

consumption. The dependence of the long-run consumption on parameter d

and technological parameters of the economy α and β is formulated in the

following proposition.
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Proposition 3 If an economy with technology q = kαrβ is such that α,β ∈

(0, 1); β < α and

1) resource rent is completely invested in capital;

2) there is no time lag between the moment of investment and the corre-

sponding increase in capital;

3) rate of extraction r(t) is such that

ṙ(t) = (ṙ0 + bt)/(1 + ct)
d, b < 0, c > 0, d > 3,

where b = b(r0), c = c(s0), then consumption c(t) is

1) asymptotically decreasing if d > α/β + 2;

2) asymptotically constant if d = α/β + 2;

3) asymptotically growing if 3 < d < α/β + 2.

Proof of the Proposition is in (Bazhanov 2006a & 2007c). According to

this proposition the transition path with d = α/β + 2 is optimal among the

transition paths with respect to the constant-consumption welfare criterion.

6 Switching to the “optimal” path

We define the moment of shifting to the second period t0 (the period of

“efficient and optimal” extraction) as a solution of the “smooth switching”

problem. Namely, the economy enters the optimal path when the change of

rate of extraction (acceleration) ṙ along the transition curve is equal to the
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initial acceleration of the optimal path which is being constructed at the each

current moment. In our case the optimal curve (3) is being dynamically con-

structed with the use of “floating” initial conditions r0(t), ṙ0(t), s0(t) which

are being calculated along the transition path. Equations (5) and (6) for the

accelerations imply that t0 must be a solution of the equation

(ṙ0 + bt0)/(1 + ct0)
d = −αr(t0)2/ s0(t0)(α− β) (9)

where r(t0) = r0(t0) is defined by equation (7) and the rest of resource s0 at

t0 is s0(t0) = s0 − t0
0
r(t)dt. Since our efficient curve (3) with the Hartwick

Investment Rule gives us constant consumption over time, it is natural to con-

struct the transition path (7) which is consistent with the same welfare crite-

rion. Namely, according to Proposition 3, the curve (7) with d = α/β+2 im-

plies asymptotically constant consumption. This path is optimal in the class

of rational functions (7), e.g., with respect to the following criterion, consis-

tent with constant consumption over time: F (d) = mindmaxt |cmax − c(t)| ,

where cmax− asymptote for the path with asymptotically constant consump-

tion. Indeed, for any d1and d3 such that d1 < d2 = α/β+2 < d3 Proposition

3 implies that F (d1) =∞ > F (d3) = cmax ≥ F (d2) = cmax − c0.

The following propositions show that the finite solution of equation (9)

does not exist.

Proposition 4 Equation (9) has real roots if and only if the value of d in
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Figure 2: Changes in extraction rates for the transition curve (left hand
side of equation (9), dotted line) with a) d = α/β + 2 = 8; b) ε−optimal
transition curve with d = 5.875; the solid line for both cases is a plot of
the initial accelerations for the Hartwick’s curve (right hand side of equation
(9)), constructed along the transition path.

(7) is such that

d ≤ α/β + 2. (10)

There are two real roots if inequality (10) is strict and one real root if it

holds as an equality.

Proof (Appendix 1).

Proposition 5 Equation (9) has only one real finite positive root if and only

if d < α/β + 2.

Proof (Appendix 2).
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Proposition 5 implies that the transition path with d = α/β + 2, which

is optimal with respect to our criterion, does not give us the opportunity to

switch to the efficient path in finite time. As an illustration of Proposition

5 we consider an example with world oil extraction data. The accelerations

of the transition path (7) with d = α/β + 2 (left hand side of equation (9))

and dynamically constructed initial accelerations of the efficient curve (right

hand side of equation (9)) are shown on Fig. 2 a). It can be seen that the

residual of equation (9) approaches zero only asymptotically which means

that our problem of “smooth switching” in finite time has no solution in this

framework

7 Approximations of the “smooth switching”

problem

In our numerical examples below we use ṙ0 = 0.08 and as world oil reserves

and extraction on January 1, 2007 (Oil & Gas J 2006, 104(47): 20-23.): R0 =

72, 486.5 [1,000 bbl/day] ×365 = 26, 457, 572 [1,000 bbl/year] (or 3.6243 bln

t/year); S0 = 1, 317, 447, 415 [1,000 bbl] (or 180.47 bln t). We use coefficient

1 ton of crude oil = 7.3 barrel.

We will consider two approaches to the approximate solution of the prob-

lem (9).

(a) “ ε−smooth switching” which means that the economy will enter the
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efficient curve of extraction in a “regime shifting” way when the residual of

equation (9) is small enough. For example, using our historical data estimate

for ṙmax we can define this moment as t0 such that

|ṙtrans − ṙHart| = (ṙ0 + bt0)/(1 + ct0)
d + αr(t0)

2/ s0(t0)(α− β)

≤ ε = 0.1ṙmax = 0.01.

As an approximate solution of this problem we can take t0 = 30 (see Fig.

2 a)).

(b) “ ε−optimal transition curve” which means that using the result of

Proposition 5 the economy will follow some ε−optimal (with respect to con-

stant consumption over time) transition curve with d < α/β + 2 for which

equation (9) has a single finite positive root. For the comparison between

consumption paths in cases (a) and (b) we will take d = 5.875 (given α = 0.3

and β = 0.05). For this value of d we have the same moment of switching

t0 = 30 (see Fig. 2 b)). The difference between two cases is that in case

(a) we must apply some “additional efforts” at the moment t0 to make dis-

continuous switch to the efficient path while in case (b) realization of the

transition path with d < α/β + 2 needs more efforts during all transition

period (substitute technologies must be introduced faster).

Note that for α = 0.2 and β = 0.05 estimated in (Nordhaus and Tobin

1972) the prospects for growth along the rational paths are less optimistic.

The peak of oil extraction for the “borderline”-transition path with d =
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α/β + 2 must be closer which implies that the substitute technologies must

be introduced faster, and the level of asymptote for consumption in the case

with α = 0.2 is less than for α = 0.3 (see Bazhanov 2007a).

8 Consumption along the

“approximate switching”

scenarios of extraction

The Hartwick saving rule implies that the consumption path is c = q − k̇

= (1−β)q = (1−β)kαrβ where r(t) is a known combination of the transition

and efficient paths and k(t) is an unknown path of capital. We can calculate

k(t) from the equation for the saving rule k̇ = βkαrβ assuming that we have

estimation of k0. From (2) we have q̇/q = β(αq/k + ṙ/r) which implies the

expression for k0, given r0, ṙ0, and output percent change (q̇/q)0 :

k0 = [(q̇/q)0 /β − ṙ0/r0] / αrβ0
1/(α−1)

. (11)

Using (q̇/q)0 = 0.04 and estimates of ṙ0, r0 for world oil extraction we have

k0 = 0.2810456 and c0 = 0.692337 which gives us the paths of consumption

along the transition curves. In order to construct the consumption path

along the Hartwick’s curve (3) we must assume that we manage not only to

change instantly acceleration of the extraction at the moment of switching t0

but also to stop the growth of our economy. The last requirement connected

with condition q̇ = 0 along the Hartwick’s curve including the initial point t0.
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Figure 3: Switching the extraction from the transition curve (dotted line) to
the efficient curve (solid line). Case (a): “ε−smooth switching”; case (b):
switching from the “ε−optimal transition curve”.

Note that at the moment of switching to the Hartwick’s curve (t0 = 30) we

have output growth at rate (q̇/q)t0 = 0.00886 for the case (a) and (q̇/q)t0 =

0.00881 for the case (b). Substituting for ṙ0Hart = −αr0(t0)2/ s0(t0)(α− β)

and q̇ = 0 into (11) we have the expression of capital in “different units”:

k0 = 30.47656. Since physical capital is the same at this moment,
8 we must

adjust its value using scale factor in order to obtain paths of consumption

expressed in the “same units”.

For our numerical example the process of switching from the transition

path with d = α/β + 2 to the efficient curve (case (a)) is depicted on the

8By the time t0 = 30 for our example the value of capital along the transition curve
with d = 5.875 is k(t0) = 1.8206 and for the path with d = 8 it is 1.8251.
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Figure 4: Consumption along the transition curve (solid) and the Hartwick’s
curve (circles) for switching a) in case (a); b) in case (b).

Fig. 3 a). Consumption paths are on the Fig. 4 a). The dash line is

the limit (cmax = 2.480) for the growth of consumption along the transition

path.The process of switching from the ε−optimal transition path with d <

α/β+2 to the efficient curve (case (b)) is on Fig. 3 b) and the corresponding

consumption paths are on Fig. 4 b). Note that according to Proposition 3

consumption along the rational curve with d < α/β + 2 grows with no limit

which looks more attractive than opportunity of unbounded consumption

obtained with positive net saving (Hamilton et al, 2006) because positive net

saving requires sacrificing of consumption from the present generation while

in our case the economy follows the standard Hartwick Rule. We can see on

Fig. 4 b) that consumption along this path exceeds the limit for the path

24



with d = α/β + 2 (dash line).

Hence, in both cases (a) and (b) our attempts to switch to the efficient

sustainable path of extraction gave us unexpected and seemingly paradoxi-

cal results. Consumption along the efficient path of extraction (circled lines

on Fig. 4 a) and Fig. 4 b)) is inferior to the consumption along the inef-

ficient transition path at all moments of time except the point of switching

t0 = 30 where they are equal. At first glance the example contradicts the

definition of inefficient curve (Dasgupta and Heal 1979 p 214) according to

which everything must be exactly vice versa. However this definition works

only for the feasible paths r(t), k(t), c(t) which according to definition 2 must

be continuously differentiable and f(t) must be twice continuously differen-

tiable. This implies the continuity of the output percent change q̇/q but in

our “approximate solutions” we violated this requirement assuming that we

manage to stop the growth of economy at the moment of switching to the

efficient path. This violation explains also the big differences in consumption

along the transition and the efficient paths (Fig. 4 a) and Fig. 4 b)) despite

very small residual in extractions (Fig. 3 a) and Fig. 3 b)). So, if it is really

possible to change the economy in a “regime shifting” manner as a result

of some political actions or natural disaster, then we can not be sure that

the continuation of the inefficient program from the “previous life” would be

inferior to our efficient program which we have managed to realize.
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For our economy with technology q = kαrβ and the Hartwick Rule output

can be only growing (q̇ > 0) for all t when ṙ > 0. This implies that for our

model consumption must exhibit an infinite growth along the sustainable

(in the weak sense) patterns of the resource use (limited growth as in case

(a) along the transition curve or unlimited as in case (b)). Otherwise, if we

discontinuously switch our economy into “different world” which is inferior

with respect to future levels of consumption, the comparison of consumption

along the paths from these “different worlds” will be incorrect.

In order to estimate the amount of consumption which we lose due to the

inefficient extraction, we must compare correctly the consumption behavior

along the transition and the efficient paths. To draw this comparison we

will construct a saving rule for the transition path which implies q̇(t) = 0 at

the moment of switching to the Hartwick’s curve and which also is “close”

asymptotically to the Hartwick rule. We will use this saving rule in the second

period only as an artificial tool for correct comparison of the consumption

along our paths. This means that the efficient Hartwick’s curve will be used in

the second period with another saving rule which will lead to the consumption

behavior different from the constant over time. We consider this case in the

following section.
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9 Constant output

at the moment of switching

Technical and political restrictions (definition 2) imply, that given q̇(0) > 0,

there is no saving rule which will give us q̇(t) ≡ 0 for all t in the transition

period including the moment of switching t. Then we will construct a saving

rule for which q̇(t) = 0 and q̇(t) has arbitrary (feasible) values at all other

moments t in the transition period t ∈ [0, t). Another requirement for this

saving rule is that it must have a feasible continuation for the second period

of efficient extraction (t ∈ [t,∞)) in order to draw the correct comparison

of the consumption paths for this rule. Note that in our formulation we can

not find this saving rule in the class of the rules with constant saving rates

k̇ = δq because we will obtain qualitatively the same behavior of consumption

which will vary only in parameters. For example, for the transition path with

d = α/β+2, which implies asymptotically constant consumption we will have

different levels of asymptote cmax for different δ with monotonically growing

consumption c and output q. So we will construct a feasible function δ(t)

which gives us q̇(t) = 0. Since δ(t) has some level of arbitrariness, we can

construct it in such a way that q(t) is nonmonotonic in transition period

and δ(t) asymptotically approaches β. Then our saving rule asymptotically

approaches the Hartwick rule and the consumption paths will have to be

asymptotically constant. Thus, for our numerical example we can find δ(t),
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Figure 5: An example of saving rate δ(t) in the transition period (solid line)
and the Hartwick saving rate (dotted line).

for example, in the following form (Fig. 5):

δ(t) = δ0 − (δ0 − β) exp −ν(t− t∗)2/(1 + t)3

with parameters δ0 = 0.5, ν = 20, and t
∗ defined from the condition q̇(t) =

0 using an iterative numerical procedure. The condition q̇(t) = 0 implies

that the expression αkα−1rβk̇ + βrβ−1kαṙ or (substituting for k̇ = δq and

expressing k)

k(t)− −βṙ(t)/ αδ(t)r(t)β+1
1/(α−1)

(12)

must be equal to zero. Then for defining t∗ we can use the following proce-

dure:

(1) set t∗0, iterative parameter i = 0, and define δi(t) = δ0 − (δ0 −
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Figure 6: Output q(t) along the transition curve (for d = α/β + 2) with the
saving rule k̇ = δ(t)q; t- the moment of switching to the efficient path.

β) exp [−ν(t− t∗i )2/(1 + t)3];

(2) calculate (from equation 2)

ki0 = [(q̇/q)0 − βṙ0/r0] / δi(t)αrβ0
1/α−1

.

Note, that for δi(t) ≡ β this formula coincides with (11).

(3) given ki0 solve differential equation k̇ = δikαrβ for k(t);

(4) if the expression in (12) is close enough to zero then t∗ = t∗i and

our saving rule is constructed; else change t∗i to reduce the residual in (12),

i := i+ 1, and go to (2).

Since δ(t) can be chosen in such a way that output q is nonmonotonic

along δ(t) (see Fig. 6) and since points with q̇(t) = 0 depend on parameter t∗,

it can be shown that the procedure converges. For our numerical example we

29



Figure 7: Consumption with the saving rate δ(t) along the Hartwick’s curve
(circled) and the transition curve with d = α/β+2 (solid); the line in crosses
is the asymptote for the Hartwick’s path, dotted line - asymptote for the
transition path.

obtained t∗ = t−3.48946 which gave us the difference (12) equal to 7.8 ·10−7.

Now, given the saving rate δ(t) which implies q̇(t) = 0, we can cor-

rectly switch at t to the efficient Hartwick’s curve and compare the levels

of consumption (Fig. 7). Note that when q̇(t) = 0, the estimates for the

capital value at the moment of switching coincide for the transition and the

efficient paths and we have no scaling problem for the correct comparison.

The Hotelling Rule modifier τ(t) asymptotically approaches zero along the

transition path (Fig. 8a) and in combination with the modified saving rule

k̇ = δ(t)q(t) its convergence to zero is much faster (Fig. 8b).

We can see from Fig. 7 that consumption along the efficient curve is
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Figure 8: The paths of additive modifier for the Hotelling Rule τ(t) : (a) for
the transition extraction path with the standard Hartwick Rule; (b) for the
transition path with the modified saving rule k̇ = δ(t)q(t).

always superior to the consumption along the transition path except the

point of switching t where they are the same. The asymptote for the efficient

path (crosses) cmaxHart = 2.6145 is also higher then the one for the transition

path (dotted) cmax trans = 2.4802. Hence, we can conclude that it makes sense

to control the efficiency of the extraction path because, as we can see, the

economy in our example is losing more than 5% of consumption at each

moment of time in the long run along the sustainable but inefficient path of

extraction.

An interesting source for contemplation is the example for “correct switch-

ing” in case (b), when we use “ε−optimal” transition path with d = 5.875 <

α/β + 2. Using the described above procedure we obtained that in this case

the consumption path along the efficient curve is also superior but only in the
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Figure 9: Consumption with the saving rate δ(t) along the Hartwick’s curve
(circled) and the transition curve with d = 5.875 (solid); the line in crosses
is the asymptote for the Hartwick’s path (a - short run; b - long run).

short run (Fig. 9 a). Then consumption is growing along the transition path

with no limit (Proposition 3) while along the efficient curve it is decreasing

to the same asymptote depicted with crosses (Fig. 9 b).

Of course, our comparison of the satisfactoriness of the extraction paths

in this case is problematic because the transition curve is optimal with re-

spect to a different welfare criterion, one which implies unlimited growth of

consumption. But the example is interesting from the point of view of select-

ing a criterion. We can see how small sacrifices of consumption in the short

run yield large future benefits even for the case when an “almost superior”

but inefficient path of consumption is constructed.

32



10 Concluding remarks

An economy can enter the “inferior” path of consumption if the economy

is controlled by the criterion which is not linked to the economy’s “abilities

to grow”. These abilities or the “potential for the sustainable growth” are

connected with the initial conditions of the economy and with the properties

of the production function.

We have obtained this result for the Dasgupta-Heal-Solow-Stiglitz model

(DHSS) with constant consumption over time as an example of plausible

criterion for sustainable development. We assumed that the initial conditions

of the economy did not satisfy the necessary implications of our criterion,

namely, that the output and the rates of extraction were growing at the

initial moment. We also assumed stickiness of extraction and saving paths

or, in other words, a restricted rate of substitution between the resource and

man-made capital. We think that this restriction is plausible when the man-

made capital is represented by new technologies (e.g. solar plants), rather

than financial capital in some fund. The restriction implies the necessity of a

transition period in order to adjust the initial conditions in accord with the

criterion requirements. We have constructed sub-optimal transition paths of

extraction in a specific class of functions which allowed the economy to enter

the “optimal” path in finite time.

However the level of consumption along these sub-optimal paths of ex-
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traction was always superior to the one along the “optimal” path after the

moment of switching.9 Namely, we have obtained bounded and unbounded

growth of consumption under the standard Hartwick Rule what looks more

attractive than the positive net saving (Hamilton et al, 2006) since it does

not require an additional sacrificing of consumption from the present gen-

eration. This means that an economy with growing extraction and output

can follow some more attractive sustainable program than the one implying

constant per capita consumption. It raises a question of construction of a

criterion which is consistent with the initial conditions of the economy and

implies the corresponding pattern of sustainable growth. For example we

can use a variant of the generalized maximin (Bazhanov 2006a) in a form of

ċγc1−γ = U = const which implies quasi-arithmetic growth c(t) = c0(1+ϕt)γ

where ϕ = U/c0
1/γ
/γ. There is also a question about technical possibil-

ity for an unsustainable economy to adjust its initial conditions in order to

“catch-up” a “superior” criterion which the economy can not “afford” at the

current moment. We think that this problems deserve a separate investiga-

tion.

9Except the case when we adjusted the saving rule during the transition period in order
to obtain zero growth at the moment of switching (q̇ = 0). This artificial step brought
different patterns of extraction under the same efficiency conditions and made it possible
to compare correctly the level of consumption along the efficient and transition paths.
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12 Appendix 1

In order to proof the main statement of Proposition 4 we will state some

auxiliary facts which we will formulate as

Lemma 1 The rational curve of extraction (7) is such that

a) s0 =
r0p0
c(d−2) ;

b) the rest of the resource s(t) along this curve at t ≥ 0 is

s(t) = s0 −
t

0

r(t)dt =
r0

c(d− 2)
p0 + p1t

1 + ct
d−2 = s0

1 + p1
p0
t

1 + ct
d−2

where p0 = 1 +
br

c(d−3) , p1 =
br(d−2)
d−3 ;

r0 = r(0)− initial rate of extraction, s0− initial stock;

br = br(d), c = c(d), and d are the parameters of the curve (7).

Proof. a) By the construction of r(t) and since d > 3 we have

s0
r0

=
∞

0

(1 + ct)1−ddt+ br
∞

0

t(1 + ct)1−ddt =
1

c(d− 2) 1 +
br

c(d− 3)
=

p0
c(d− 2) .

b) By direct calculations we have

s(t) = s0 −
t

0

r(t)dt = s(t) = s0 − r0
1

c(d− 2) 1− 1 + ct
2−d

+ brI(t)

(13)

where

I(t) =
1

c2
1

d− 3 1− 1 + ct
3−d − 1

d− 2 1− 1 + ct
2−d
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=
1

c2 (d− 2) (d− 3)
× (d− 2) 1− 1 + ct 1 + ct

2−d − (d− 3) 1− 1 + ct
2−d

=
1

c2 (d− 2) (d− 3)
× 1 + ct

2−d
(d− 3)− (d− 2) 1 + ct + (d− 2)− (d− 3)

=
1

c2 (d− 2) (d− 3) 1− 1 + (d− 2) ct
1 + ct

d−2 .

Then the bracket [·] in (13) is

[·] =
1

c(d− 2)

×
1 + ct

d−2 − 1
1 + ct

d−2 +
br

c2 (d− 2) (d− 3)
1 + ct

d−2 − 1− (d− 2) ct
1 + ct

d−2

=
1

c (d− 2) 1 + ct d−2

× 1 +
br

c (d− 3) 1 + ct
d−2 − 1 +

br
c (d− 3) −

br (d− 2)
(d− 3) t

=
1

c (d− 2) p0 −
p0 + p1t

1 + ct
d−2 .

Then (13) can be rewritten as follows

s(t) = s0 −
r0

c (d− 2) p0 −
p0 + p1t

1 + ct
d−2 .

Using the result of the case a) we have

s(t) =
r0

c (d− 2)
p0 + p1t

1 + ct
d−2 = s0

1 + p1
p0
t

1 + ct
d−2

or the assertion of the case b)
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Proof of Proposition 4. We will show that the equation defining the

moment t0 of “smooth switching” to the efficient curve

ṙ0 + bt0

(1 + ct0)d
= − αr2(t0)

s0(t0)(α− β)
(14)

has real roots if and only if parameter d of the rational curve (7) is such that

d ≤ α

β
+ 2

and that there are two real roots if the last inequality is strict and one real

root if it holds as an equality.

Substituting for r(t0) and multiplying both sides of (14) by 1 + ct0
d
we

have

ṙ0 + bt0 = −
αr20

s0(t0)(α− β)

1 + brt0
2

1 + ct0
d−2 .

Applying assertion b) of Lemma 1 it can be written as

ṙ0 + bt0 = −
αr20

s0(α− β)

1 + brt0
2

1 + p1
p0
t0

which means that the moment of “smooth switching” t0 is a solution of

quadratic equation

ṙ0 + bt0 1 +
p1
p0
t0 +

αr20
s0(α− β)

1 + brt0
2
= 0

or

λ2t
2
0 + λ1t0 + λ0 = 0 (15)
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where λ2 = bp1
p0
+

b2
r
αr2

0

s0(α−β) , λ1 =
p1
p0
ṙ0 + b +

2brαr20
s0(α−β) , λ0 = ṙ0 +

αr2
0

s0(α−β) . This

equation has at least one real root (two if inequality is strict) if and only if

D = λ21 − 4λ2λ0 ≥ 0 where

λ21 =
1

s20(α− β)2

×
p1
p0
ṙ0 + b

2

s20(α− β)2 + 4brαr
2
0

p1
p0
ṙ0 + b s0(α− β) + 4b2rα

2r40

λ2λ0 =
1

s20(α− β)2
b
p1
p0
ṙ0s

2
0(α− β)2 + s0(α− β) b2rαr

2
0ṙ0 + b

p1
p0

αr20 + b2rα
2r40

Cancelling like terms and multiplying by s0(α − β) > 0 we can write our

condition as D ≥ 0 where

D = s0(α− β)
p1
p0
ṙ0 + b

2

− 4bp1
p0
ṙ0

+4 brαr
2
0

p1
p0
ṙ0 + b − b2rαr20a0 − b

p1
p0

αr20

Note that the first bracket [·] in this expression is

p1
p0
ṙ0 + b

2

− 4bp1
p0
ṙ0 =

p1
p0
ṙ0 − b

2

and the second bracket is

brαr
2
0

p1
p0
ṙ0 + b − b2rαr20ṙ0 − b

p1
p0
αr20 = αr20 brṙ0

p1
p0
− br + b br −

p1
p0

= αr20
p1
p0
− br (brṙ0 − b) .

Then the condition of the root existence is

D = s0(α− β)
p1
p0
ṙ0 − b

2

+ 4αr20
p1
p0
− br (brṙ0 − b) ≥ 0 (16)
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where

p1
p0
ṙ0 − b = c(d− 2)r0br + ṙ0

br(d− 2)
d− 3

c(d− 3)
c(d− 3) + br

= brc(d− 2) r0 +
ṙ0

c(d− 3) + br

= brc(d− 2)r0
c(d− 3) + br + ṙ0

r0

c(d− 3) + br

= brc(d− 2)r0
c(d− 3) + c(d− 1) + ṙ0

r0
+ ṙ0

r0

c(d− 3) + c(d− 1) + ṙ0
r0

= 2brc(d− 2)r0
c(d− 2) + ṙ0

r0

2c(d− 2) + ṙ0
r0

,

p1
p0
− br =

br(d− 2)
d− 3

c(d− 3)
c(d− 3) + br

− br = br
c(d− 2)

c(d− 3) + br
− 1

= br
c(d− 2)− c(d− 3)− br

2c(d− 2) + ṙ0
r0

= −br
c(d− 2) + ṙ0

r0

2c(d− 2) + ṙ0
r0

,

brṙ0 − b = brṙ0 + brc(d− 2)r0 = brr0 c(d− 2) + ṙ0
r0

.

Substituting for these expressions in (16) we obtain

D = s0(α− β)4b2rc
2(d− 2)2r20

c(d− 2) + ṙ0
r0

2c(d− 2) + ṙ0
r0

2

≥ 4αr30b
2
r

c(d− 2) + ṙ0
r0

2c(d− 2) + ṙ0
r0

c(d− 2) + ṙ0
r0

or

s0(α− β)c2(d− 2)2
2c(d− 2) + ṙ0

r0

≥ αr0.

Substituting for s0 (Lemma 1, a)) into the LHS we have

p0c(d− 2)
2c(d− 2) + ṙ0

r0

≥ α

α− β
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and substituting for p0 we obtain

(d− 2)
(d− 3)

2c(d− 2) + ṙ0
r0

2c(d− 2) + ṙ0
r0

≥ α

α− β

or

1− β

α
≥ 1− 1

d− 2 .

The last expression gives us 1
d−2 ≥

β
α
or d ≤ α

β
+ 2
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13 Appendix 2

Proof of Proposition 5. We will show that the equation defining the

moment t0 of “smooth switching” to the optimal curve

ṙ0 + bt0

(1 + ct0)d
= − αr2(t0)

s0(t0)(α− β)
(17)

has only one real finite positive root if and only if d < α
β
+ 2.

It was shown in the Appendix 1 that equation (17) is equivalent to the

quadratic equation (15) which using lemma 1 is equivalent to equation

μ2t
2
0 + μ1t0 + μ0 = 0 (18)

where

μ2 = bp1 +
b2rr0αc(d− 2)

α− β
,

μ1 = p1ṙ0 + bp0 +
2brr0αc(d− 2)

α− β
,

μ0 = ṙ0p0 +
r0αc(d− 2)

α− β
.

Substituting for b, p0, p1, and reorganizing we have

μ2 = −brc(d− 2)r0
br(d− 2)
d− 3 +

b2rr0αc(d− 2)
α− β

= b2rr0c(d− 2)
α

α− β
− d− 2
d− 3

=
b2rr0c(d− 2)
(α− β)(d− 3) [β(d− 2)− α] .

Note that in our formulation of the problem the multiplier b2
r
r0c(d−2)

(α−β)(d−3) in the

last formula is always positive since d > 3, α > β, r0 > 0, ṙ0 > 0 and it
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follows c > 0. Then the sign of μ2 is defined by the sign of β(d − 2) − α.

Namely, μ2 is negative when d <
α
β
+ 2, positive when d > α

β
+ 2, and zero

when d = α
β
+ 2.

Coefficient μ1 is

μ1 =
br(d− 2)
d− 3 ṙ0 − brc(d− 2)r0 1 +

br
c(d− 3) +

2brr0αc(d− 2)
α− β

= br(d− 2)
ṙ0
d− 3 − r0

2c(d− 2) + ṙ0
r0

d− 3 +
2r0αc

α− β

= br(d− 2)
ṙ0 − 2r0c(d− 2)− ṙ0

d− 3 +
2r0αc

α− β
.

Finally we have

μ1 = 2brr0c(d− 2)
α

α− β
− d− 2
d− 3 .

Note that br is also positive in our formulation (because of the growing rate

of extraction in the neighborhood of t = 0). Then the sign of μ1 like the

sign of μ2 is completely defined by the same expression β(d− 2)− α. It can

be shown that μ0 > 0 for a0 > 0. The peak of parabola (18) is defined by

equation

t∗ = − μ1
2μ2

= −2brr0c(d− 2) [β(d− 2)− α]

2b2rr0c(d− 2) [β(d− 2)− α]
= − 1

br
< 0.

Hence our parabola is convex for d < α
β
+ 2 and has only one positive

finite root (Fig. 10). With d→ α
β
+2−0 parabola degenerates into a positive

constant and the root goes to infinity
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Figure 10: The root of equation (9) for d = 5.875.
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