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November 2015

Abstract

Concerns over the re-distributive effects of individual transferable quotas (ITQ’s) have led to
restrictions on their tradability. We consider a general equilibrium model with firm dynam-
ics to evaluate the redistributive impact of changing the tradability of ITQs. A change in
tradability would happen, for example, if permits are allowed to be traded as a separate asset
from ownership of an active firm. If the property right is associated with ownership of an
active firm, the permit can be leased in each period but it is not possible to exit the industry
and keep the right. However, allowing the permits to be traded as a separate asset has two
effects. First, it leads to a greater concentration of production in the industry. Second, it
directly converts a non-tradable asset into a tradable one, and this is equivalent to giving
a lump sum transfer to all firms. The first effect implies a concentration in revenues, while
the second implies a redistribution of wealth. We calibrate our model to match the observed
increase in revenue inequality in the Northeast Multispecies (Groundfish) U.S. Fishery. We
show that although observed revenue inequality –measured by the Gini coefficient– increases
by 12%, wealth inequality is reduced by 40%.
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1 Introduction

A crucial question in environmental and resource economics is why tradable output per-

mits are not more widely adopted as a solution for environmental problems. The consensus

appears to be that equity concerns are one important reason for the reluctance to use indi-

vidual transferable quotas (ITQs) more widely.1 In particular, the literature argues that the

efficiency gains associated with tradable quotas will not be captured by small firms.2

These distributional concerns lead to restrictions in tradability of output permits, implying

incompleteness of the right. For instance, in fisheries regulated with ITQs, if the property

right is associated with ownership of an active eligible vessel the permit can be leased in each

period but it is not possible to exit the fishery and keep the right. If the property right is

assigned instead to the owner of the vessel and divorced from ownership of an active vessel,

it could actually be traded as a separate asset and constitute a complete property right.

We show that a reform consisting of allowing the permits to be traded as a separate asset has

two effects. On one hand, it leads to a greater concentration of production in the industry,

as the most efficient firms will produce more. Second, it directly converts a non-tradable

asset into a tradable one. This is equivalent to giving a lump sum transfer to all firms. The

first effect implies a concentration in revenues, while the second implies a redistribution of

wealth.

We consider a model of firm dynamics that builds on Weninger and Just (2002), Hopenhayn

and Rogerson (1993) and Da-Rocha et al. (2014a). Firms are heterogeneous, but in contrast

with the standard framework their distribution is not exogenous but rather determined

endogenously by entry/exit decisions made by firms themselves.

1See Brandt (2005).
2In fisheries, for instance, there is an extensive literature on the relationship between tradability of ITQs

and consolidation. See, for instance, Grafton et al. (2000), Fox et al. (2003), Kompas and Nu (2005) among
others. There is also literature arguing that efficiency gains will be captured only by larger producers. See,
for example Libecap (2007) or Olson (2011).
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We extend the model in Weninger and Just (2002)’s to a general equilibrium framework. The

definition of a stationary equilibrium in a general equilibrium model with heterogeneous

agents requires an invariant distribution of firms which is determined by agents’ optimal

policies, and also determines the agents’ optimal choices. We use the Kolmogorov-Fokker-

Planck equation to find that distribution.3 We use the model to investigate the impact of

changing the tradability of property rights on wealth distributions. The change in transfer-

ability affects entry/exit decisions, and also wealth distributions, which are endogenous in

the economic environment.

The Northeast Multispecies (Groundfish) U.S. fishery provides a good numerical example

to illustrate the model. In 2010, a new management program implemented two significant

changes: first, permits were allowed to participate in Leasing and Transfer Programs without

being activated by being placed onto a vessel and second, several constraints imposed on

trade were removed.4

The 2010 Final Report on the Performance of the Northeast Multispecies (Groundfish) Fish-

ery reports the impact of the implementation of the New Management Plan. After remaining

stable from 2007 to 2009, revenue inequality, measured by Gini coefficients, increased by 12%

in 2010.

We calibrate our model to match the observed increase in revenue inequality in that fishery

after the reform and then use the model to compute the resulting unobserved change in wealth

inequality. Our simulations show that when the property right is assigned to a person and

3The Kolmogorov-Fokker-Planck equation is widely used to describe population dynamics in ecology,
biology, and finance, among other sciences. It has been used in economics by Merton (1975) in neoclassical
growth models, by Dixit and Pindyck (1984) in a renewable resources model and by Da-Rocha and Pujolas
(2011b) in fisheries. The use of Kolmogorov-Fokker-Planck equation to characterize the distribution of firms
was suggested by Dixit and Pindyck (1994). There is a growing literature on general equilibrium models
with heterogeneous firms that uses the Kolmogorov-Fokker-Planck equation to characterize the equilibrium
invariant distribution of firms as in Luttmer (2007), Da-Rocha and Pujolas (2011a), Luttmer (2011), Luttmer
(2012), Impullitti et al. (2013), Gourio and Roys (2014), Da-Rocha et al. (2014a), Da-Rocha et al. (2014b)
and Da-Rocha et al. (2015), among others. Two good surveys are Gabaix (2009) and Luttmer (2010).

4Those changes are reported in Measure 10 of the Magnuson-Stevens Fishery Conservation and Man-
agement Act Provisions; Fisheries of the Northeastern United States; Northeast (NE) Multispecies Fishery;
Amendment 16; Final Rule.
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divorced from the ownership of an active vessel, transferability of ITQs squeezes out small

vessels but efficiency gains can also be captured through increases in the lease price for small

owners by leasing quota, and wealth inequality is reduced by 40%.

Our paper is also related to the literature on the distributional implications of alternative

market-based control mechanisms. The ”mechanism” that generates redistribution in our

model is supported by the empirical findings of Brandt (2007). Furthermore, we are also able

to show that wealth distribution among fishermen would actually improve with tradability.

Because it computes how differences in the transferability of property rights affect market

outcomes, the paper is also related to Gomez-Lobo et al. (2011), Grainger and Costello

(2014) and Grainger and Costello (2015). A key difference between these papers and ours is

that we compute the full wealth distribution, which is an endogenous object in our model.

The rest of the paper is organized as follows: Section 2 describes the economic environment.

In Section 3 we characterize the equilibrium of the model and solve the closed form for the

stationary distribution of firms’ wealth. Section 4 calibrates the model with data from the

US Northeast Multispecies Fishery, and finally Section 5 assesses the impacts of introducing

free transferability into wealth distribution.

2 The Economic Environment

Assume a natural resource industry that is managed with tradable output permits q, where

firms must own permits to exploit the resource legally. Total quota is determined exoge-

nously, and for the sake of simplicity we normalize it to 1.

There are four markets in the economy: final goods, labor, an output permit lease market

where trade takes place between incumbent firms, and a permit market where trade takes

place between entrants and exiting firms. Taking output price as the numeraire, we denote
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by w, rq and pq, the labor, quota lease and quota ownership prices, respectively.5

We assume that all firms are ex-ante identical. However they are ex-post differentiated by

a firm specific shock to production which is drawn from a distribution function g(c).6 We

assume that the entry problem produces two decision rules: one for the optimal choice of the

number of quotas, and, the other for the optimal entry decision. That is, firms choose how

many quotas to hold and, at the same time, decide whether to enter the fishery. They decide

to enter by assessing the expected value of operating a unit of capital (a vessel). Entry is

costly and its cost is valued in terms of labor services, so if a firm decides to enter cew has to

be paid. If W (c) denotes the value of operating a vessel when the shock is c and, c∗, the entry

threshold, the expected value of entry can be expressed as: W e =

∫ c∗

0

W (c)g(c)dc−cew−pqq.

After entry, entrants become incumbents.

Although we are interested in the stationary competitive equilibrium distribution of firms,

note that individual firms change over time. Some of them expand production, hiring staff

and borrowing quotas; others contract production, firing staff and leasing out quotas; and

others exit the industry and sell their quotas. Therefore, the incumbent firms’ decision

problem produces two types of decision rule. On one hand, there are continuous decision

rules for the optimal choice of output y(c), labor l(c) and the net demand for quotas (i.e.

the number of quotas leased) y(c) − q, and, on the other hand, there is a discrete decision

rule d(c) for the optimal stay/exit decision.

We also assume that there is a fixed operating cost of cf . If a firm wants to remain active

then it must pay the fixed cost. The decision to exit depends on this period’s employment

l(c), output y(c), and permit leasing decisions y(c)− q. Conditional on this period’s choices,

5We do not consider many other types of distortion or other issues that could appear when regulating
the environment with output permits. Examples of such distortions include imperfect enforcement as in
Chavez and Salgado Cabrera (2005) and Hansen et al. (2014); international price externalities as in Burguet
and Sempere (2010); transboundary resources as Garza-Gil (1998); distributional deadweight losses as in
Thompson (2013); market power in intertemporal settings as in Armstrong (2008); and joint-ownership
fishing exploitation as Escapa and Prellezo (2003).

6This is a standard assumption in models with firm dynamics. See Hopenhayn (1992), Hopenhayn and
Rogerson (1993) or Restuccia and Rogerson (2008).
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c > c∗ exit

Incumbentfirms ր
g(c) , ց

c ≤ c∗ stay

ց
New Incumbent firms

ր g(c)

enter with c ∈ (0, c∗]

ր
Potential entrants

W e =

∫ c∗

0

W (c)g(c)dc− cew − pqq

Figure 1: entrants and incumbents decision

l(c), y(c) and y(c)− q), the firm must assess the expected value of remaining in the industry,

and must compare it to the present discounted value of profits associated with exiting the

industry pqq.

Given an initial guess for the exit threshold c∗ made by rational expectations (a fixed point

algorithm), potential entrants and incumbent firms can calculate the value of entry and,

given market prices, solve their individual problems. Note that the distribution of firms

for characteristic c depends on the support [0, c∗). Therefore a (stationary) competitive

equilibrium is a fixed point in a set of distributions g(c) ∈ [0, c∗). This sequence of decisions

by entrants and incumbent firms is explained graphically in Figure 1.

3 Equilibrium

We consider a general equilibrium model with heterogeneous firms. First we solve the model

when ITQs are permanent and fully tradable. This could be interpreted as the ITQ being
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dissociated from ownership of an active vessel, i.e. this is the case in which quotas can be

leased for the current period but also permanently transferred without owning an active

vessel. Later, we analyze the case in which ITQs can be leased for a given period but must

to be associated with an active vessel.

3.1 The problem of incumbent firms

Firms maximize profits subject to their available technology, y =

√

l

c
. Note that we extend

the model in Weninger and Just (2002) to a world in which quotas are a continuous variable

and firms can lease part of their quota.7 Also notice that when a firm chooses y, it is also

implicitly choosing the net demand for quotas. Thus, intra-temporal profits are given by

Π = max
l,y

y − wl + rq(q − y)− cf ,

s.t.











y =

√

l

c
,

q ≥ y.

That is, profits are defined as output, y, minus labor costs, wl, plus net revenue from

leasing quotas, rq(q − y), minus the fixed operating cost, cf . From the f.o.c. we have,

l(w, rq, c) =

(

1− rq
2w

)2

c−1, y(w, rq, c) =

(

1− rq
2w

)

c−1, and profits are given by

Π(w, rq, c, q) = π(w, rq)c
−1 + rqq − cf .

where π(w, rq) =
(1−rq)2

4w
.

Now the inter-temporal decision making of firms can be assessed. As in Weninger and

Just (2002), we assume that the productivity shock c follows a geometric Brownian motion

7Our technology is in accordance with the fifty-fifty rule, i.e. 50% of net revenues are accounted for by
payments to crew members.
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stochastic process with a positive expected growth rate, µ, i.e.

dc

c
= µdt+ σdz,

where σ is the per-unit time volatility, and dz is the random increment to a Weiner process.

Each firm has to weigh up its current and future potential profits against the benefits of

selling its quota. Formally

W (c) = max
d∈{stay,exit}

{

π(w, rq)c
−1 + (rqq − cf ) + (1 + ρdt)−1EW (c+ dc), pqq

}

s.t.
dc

c
= µdt+ σdz,

where (1+ρdt)−1 is the discount factor, EW (c+dc) are the expected future profits, and pqq

are the benefits of selling the permits and exiting the market. It is important to notice that in

the competitive equilibrium all firms, regardless of their cost or productivity, sell their quotas

at the same competitive price. That is, the price of quotas is independent of idiosyncratic

characteristics. Finally, note that the value matching and smooth pasting conditions at the

switching point c∗ where firms choose to exit are W (c∗) = pqq and W ′(c∗) = 0, respectively.8

The value function, W (c), is obtained by solving the following ordinary second-order differ-

ential equation.

ρW (c) = π(w, rq)c
−1 + (rqq − cf ) + µW ′(c) +

σ2

2
W ′′(c)

with boundary conditions W (c∗) = pqq and W ′(c∗) = 0. Proposition 1 characterizes the

value function and the switching point.

8See Dixit and Pindyck (1994) Chapter 4 for a formal definition and justification of these conditions.
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Proposition 1. The exit threshold, c∗, and the value function, W (c), are given by

c∗ =
(1 + β)

β

ρ

(ρ+ µ− σ2)

(

π(w, rq)

ρpqq + cf − rqq

)

,

and

W (c) =

(

pqq −
(rqq − cf )

ρ

)

β

1 + β

(

c

c∗

)β

+
π(w, rq)c

−1

ρ+ µ− σ2
−
(

cf − rqq

ρ

)

,

where β =
(

1
2
− µ

σ2

)

+
√

(

1
2
− µ

σ2

)2
+ 2ρ

σ2 > 1 is the root of the standard quadratic equation

associated with the geometric Brownian motion.

Proof See Appendix A.1.

3.2 Invariant distribution of firms

For prices to be calculated the distribution of firms must be computed. In our economy,

the distribution of firms is determined endogenously by entry/exit decisions made by firms

themselves. To find that distribution we start by rewriting the model in logarithms, i.e.

x = log(c/c∗), and apply the the Fokker-Planck-Kolmogorov equation

∂M(x, t)

∂t
= −µ̂

∂M(x, t)

∂x
+

σ2

2

∂2M(x, t)

∂x2
+ εM(x, t).

of the stochastic process dx = µ̂dt+σdz, where M(x, t) is the mass of firms over the variable

x, εM(x, t) represents the new firms that enter with productivity x at time t, and µ̂ = µ− σ2

2
.9

The partial differential equation is supplemented by the boundary condition M(0, t) = 0.

This boundary condition guarantees that the mass of firms at the boundary, where firms

decide to leave, is zero.

9The Kolmogorov-Fokker-Planck equation is obtained by applying a simple Markov principle to the
transition density function of the continuous stochastic process. Kolmogorov in the 1930’s and Feller at
the end of the 40’s characterized the Kolmogorov-Fokker-Planck equation in such a way. For a formal
characterization of the forward Kolmogorov equation and its relationship with the Markov stochastic process,
see Mangel (2006).
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We are interested in the steady state distribution with a constant mass of firms, M(x, t) =

Mf(x). Therefore the Fokker-Planck-Kolmogorov equation becomes

M ′(x, t)

M
f(x) = −µ̂f ′(x) +

σ2

2
f ′′(x) + εf(x) = 0.

The stationary pdf is the solution of the boundary-value problem that consists of solving the

following second order differential equation:

f ′′(x)− γ1f
′(x) + γ2f(x) = 0,

where the constants γ1 and γ2 are given by γ1 =
2µ̂
σ2 > 0 and γ2 =

2ε
σ2 > 0, with the boundary

condition f(0) = 0.

Proposition 2. The solution of the stationary pdf satisfies γ2
1 = 4γ2. Therefore, the sta-

tionary entry rate ε is
µ̂2

2σ2
.

Proof See Appendix A.2.

We solve the boundary-value problem using Laplace transforms.10 Applying Laplace trans-

forms to the second order differential equation, we have

(s2 − γ1s+ γ2)L [f(x)]− (s− γ1)f(0)− f ′(0) = 0.

Using γ2
1 = 4γ2 and the boundary condition, we find:

L [f(x)] =
f ′(0)

(s− r)2
,

10Laplace transforms are given by L [f ′(x)] = sL [f(x)]−f(0) and L [f ′′(x)] = s2L [f(x)]−sf(0)−f ′(0).
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where r =
µ̂

σ2
> 0. We obtain the solution by solving the Laplace inverses, L −1, given by

f(x) = L
−1

[

f ′(0)

(s− r)2

]

= f ′(0)xerx.

Finally

∫ 0

−∞

f(x) = f ′(0)

∫ 0

−∞

xerx = 1 implies that f(x) = xerx.

Note that f(x) is bounded and well defined. The distribution is stationary because the

stochastic effect compensates the deterministic drift effect. Although c increases in expected

terms given enough time, some of the firms are lucky and c decreases.

Moreover at the limit, firms do not leave the distribution. The exit rate at x = −∞

is −µf(−∞) + σ2/2f ′(−∞).11 At the lower bound, −∞, the exit rate is zero. That is,

x = −∞ is a natural reflecting barrier. The distribution is only loosing firms at x = 0,

because firms find optimal to leave the industry. Therefore, an endogenous pdf can be found

without imposing an exogenous reflecting barrier.12 Finally, using c = c∗e
x, we recover the

stationary cost distribution. Proposition 3 summarizes our findings.

Proposition 3. The invariant distribution of firms is g(c) = −(1 + ξ)2

c∗
log(c/c∗)

(

c

c∗

)ξ

where the tail index is ξ =
µ

σ2
− 3

2
.

Note the measures used in the report about the performance of the Northeast Multispecies

fishery include the Lorenz curves of revenue13. It must be remarked that Lorenz curves are

well defined for infinite support just as the equilibrium distribution of firms in our model

is.14

11See Appendix A.2. Dixit and Pindyck (1994) offers an intuitive argument.
12With an exogenous reflecting barrier, the solution would be a bounded Pareto distribution. In fact, if it

is assumed that c ⊂ [c, c∗] with an exogenous reflecting barrier at c, the solution can be obtained by solving
a two-boundary value problem. However this solution would depend on the (exogenous) reflecting barrier
imposed.

13See Kitts et al. (2011).
14Infinite support is standard in wealth studies. Heterogeneity in wages is assumed to be Log-normal

distributed (with infinite support). Other empirical studies use statistics based on distributions with infinite
supports. For example, Zwip’s low (applied to cities, landscape, etc.) is based on GBM with infinite supports.
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3.3 Problem of entrants

Given the value function W (c), the gross value of entry W e can be computed by using g(c).

That is

W e =

∫ c∗

0

W (c)g(c)dc− wce − pqq.

Potential entrants choose the number of quotas by solving

q∗ ∈ argmax
q

∫ c∗

0

W (c)g(c)dc− wce − pqq.

Notice that since entrants are ex-ante identical they all choose the same value for q. Entrants

decide to enter if W e > 0 for the chosen q. The result below provides a non arbitrage

condition relating the price of permanently selling an ITQ to the leasing price. It implies

equivalence between selling the permit and leasing it for an infinite number of periods.

Proposition 4. In an equilibrium with exit, the no-arbitrage condition pq =
rq
ρ
holds.

Proof See Appendix A.3.

Finally, notice that in an equilibrium with entry W e must be zero, since otherwise additional

firms would enter.

3.4 Feasibility conditions

To close the model we need to define feasibility conditions. Feasibility in the model requires

resource balance in the output market, the leasing quota market and the labor market. By

normalizing the total quota at 1, it results that feasibility in the output market is given by

Mq = 1. Feasibility in the leasing ITQ market implies that the aggregate excess demand

12



function M(

∫ c∗

0

y(c)g(c)dc− q) is equal to zero. That is

q =

∫ c∗

0

y(c)g(c)dc.

Finally, equilibrium in the labor market implies that

1− εMce = M

∫ c∗

0

l(c)g(c)dc,

where the total labor supply is normalized to 1, and εMce, the entry cost multiplied by the

mass of entrants, is the labor force allocated to produce the entry cost.

3.5 Definition of equilibrium

A stationary equilibrium is an invariant cost distribution g(c), a mass of firms M , a number

of permits q, permit prices pq and rq, wage rate w, incumbents and entrants value functions

W (c), W e, individual decision rules l(c), y(c), π(c) and a threshold c∗, such that:

i) (Firm optimization) Given prices (rq, pq, w), the entry functions, and W (c) and W e

solve incumbent and entrant problems, l(c), y(c) , π(c) are optimal policy functions

and and c∗ is the threshold associated with the optimal exit rule.

ii) (Free-entry and optimal quota) Potential entrants choose quotas q and make zero

profits, i.e. W e = 0.

iii) (non-arbitrage condition) pq =
rq
ρ
.
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iv) (Market clearing-feasibility) Given individual decision rules, prices (rq, pq, w) solve

1− εMce = M

∫ c∗

0

l(c)g(c)dc,

q =

∫ c∗

0

y(c)g(c)dc,

Mq = 1.

v) (Invariant distribution) g(x), satisfies the Kolmogorov-Fokker-Planck equation.

Note that the definition of equilibrium is similar to the standard definition in Hopenhayn and

Rogerson (1993) and Restuccia and Rogerson (2008). The main difference is that Hopenhayn

and Rogerson (1993) and Restuccia and Rogerson (2008) consider a discrete time model.

However, obvious equivalences appear. In fact, assuming Brownian motion is equivalent to

assuming an AR(1) stochastic process, and the Kolmogorov-Fokker-Planck equation is the

continuous time version of the (endogenous) discrete Markovian chain.

3.6 Equilibrium when quotas are not fully tradable

In some fisheries distribution and other concerns have led to limits being placed on the

trading of quotas. These limits on transferability can be implemented in many different

ways. For example, Arnason (2002) reports that in most Canadian quota-managed fisheries

ITQs are only transferable within the year, that is quotas can be leased only for a given

period and therefore are not permanent and fully transferable.15 In other fisheries, ITQs are

distributed on an active vessel basis, and not directly to vessel owners. This means that only

those individuals or firms that own eligible active vessels can hold quotas.

Consider the case where quotas must be associated with an active vessel.16 In that case,

15That is, from a legal standpoint an individual fishing quota is simply a fishing license with a certain
tuple of stipulations.

16We are indebted to an anonymous referee for suggesting us this exposition.
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one must own an eligible vessel to own a quota. As in the fully transferable case, there is

an equilibrium at which some extremely unproductive vessels exit permanently, and some

intermediate vessels fish the minimum amount required for them to be considered active,

and lease the (remaining) quota if lease prices are high enough to justify paying the idling

(or storage, or minimum activity) costs. That is, once one has an eligible vessel one can

obtain revenues from leasing one’s quota.

In the limited transferability case a permanent transfer of the quota should include the cost

of the quota and the cost of the boat. That is, the price of the “package” is the expected

value of operating the boat, W (c). The question then is what the relevant “exit option” is

when the quota is tied to an eligible vessel. The “net” option of the exiting party is the

benefit from leaving the market when productivity is so low that the revenues from leasing

the quota do not justify paying the idling (or storage, or minimum activity) costs. That is,

the equilibrium is the limit case of the full transferable case when pq → 0. Thus firms solve

the following optimization problem

W (c) = max
d∈{stay,exit}

{

π(w, rq)c
−1 + (rqq − cf ) + (1 + ρdt)−1EW (c+ dc), 0

}

s.t.
dc

c
= µdt+ σdz.

in which the profits from operating a vessel are contrasted with the value of exiting the

industry (which is normalized to zero).17 There is a cost, c∗, for which owners find it optimal

to exit the industry.

Corollary 1. When pq = 0, c∗ and W (c) are given by

c∗ =
(1 + β)

β

ρ

(ρ+ µ− σ2)

(

π(w, rq)

cf − rqq

)

,

17Those who cease activity cannot lease quota.
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and

W (c) =
(cf − rqq)

ρ

β

1 + β

(

c

c∗

)β

+
π(w, rq)c

−1

ρ+ µ− σ2
−
(

cf − rqq

ρ

)

.

Summarizing, there is a key difference between the lessor of quotas in the limited transfer-

ability case and the lessor of quotas in the non limited transferability case. With permanent

transferability, the landlord of the quota can rent the whole quota as it does not need to be

included in the group of vessels that makes at least one trip per year. This is the type of

landlord reported by Brandt (2007): they are quota owners who choose to cease harvesting.

However, in the case of non permanent transferability the lessor of quotas must necessarily

be included in the group of vessels that makes at least one trip per year, and therefore has

to incur the cost of idling.

4 The Northeast Multispecies (Groundfish) Fishery

The New England fishery is located in portions of the Atlantic Ocean off the States of Maine,

New Hampshire, Massachusetts, Rhode Island, and Connecticut (See the Magnuson-Stevens

Fishery Conservation and Management Act, SEC. 302.). Two primary regulatory bodies

govern the conservation and management of this fishery: the New England Fishery Manage-

ment Council and the North East Regional Office of the National Oceanic and Atmospheric

Administration (NOAA).

On 1 May 2010, a new management program was implemented for the New England Ground-

fish Fishery.18 The new Groundfish management program contained two significant changes.19

The first allowed permits held in confirmation of permit history to participate in the Leasing

and Transfer Programs without being activated by being placed onto a vessel.20 The second

18Amendment 16 to the Northeast Multispecies Fishery Management Plan (FMP).
19Final ACT: Federal Register / Vol. 75, No. 68 / Friday, April 9, 2010 / Rules and Regulations.
20 See, Measure 10. Magnuson-Stevens Fishery Conservation and Management Act Provisions; Fisheries

of the Northeastern United States; Northeast (NE) Multispecies Fishery; Amendment 16; Final Rule.
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consisted of removing several constraints imposed on trade.21 In particular taxes and caps

on quota leasing were removed.22

The 2010 Final Report on the Performance of the Northeast Multispecies (Groundfish) Fish-

ery reports the impacts of the New Management Plan in 2010. The report shows a structural

change in revenue concentration. After remaining stable from 2007 to 2009, revenue inequal-

ity, measured by Gini coefficients, increased by 12% in 2010. 23 Moreover, the number of

active vessels decreased by 32% (from 658 to 450).24

Our main objective is to study the quantitative impact of the quota Leasing and Transfer

Program changes approved in Amendment 16 on wealth distribution of active and non active

quota holders. Therefore, we calibrate the model so that the equilibrium statistics match

the observed quantitative impact on the (observable) revenue distribution and the reduction

in active vessels.

4.1 Calibration

We start the calibration by matching the Lorenz curves associated with the Gini coefficients

reported in the 2010 Groundfish Final Report.

GBM process and Revenue Lorenz curves: The Lorenz curve plots the cumulative

proportion of revenues as a function of the cumulative proportion of active vessels. The

invariant distribution for the revenue of active vessels, y(w, rq, c) =

(

1− rq
2w

)

c−1, generated

21The rationality of this measure is explained as Removing the cap will facilitate effective use of the leasing

program and will provide the ability for some vessels to acquire enough DAS to be profitable. See p 127 of

the FINAL Amendment 16 To the Northeast Multispecies Fishery Management Plan. Northeast Multispecies

FMP Amendment 16. October 16, 2009
22Those changes are similar to the ones reported by Brandt (2005) in the Atlantic Surf Clam and Ocean

Quahog Fishery.
23 Gini coefficients were 0.663 in 2007; 0.678 in 2008: 0.684 in 2009 and 0.76 in 2010. See Kitts et al.

(2011) et al. (2011) Table 36, page 63 and Figure 21 page 96.
24 See Kitts et al. (2011) et al. (2011) second paragraph of p. 22.
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by the model,25

F (y) =

∫ y

y∗

f(y)dy = 1−
(

y∗
y

)ξ+1 [

1− (1 + ξ) ln

(

y∗
y

)]

,

and the cumulative proportion of revenues as a function of the cumulative proportion of the

vessels

F (c) =

∫ c

c∗

f(c)dc = 1−
(c∗
c

)ξ−1 [

(1− ξ) ln
(c∗
c

)

+ 1
]

,

are functions of the tail index of the of the invariant cost distribution, ξ.

To calibrate the GBM parameters we use the property of the model which states that in

the stationary equilibrium the tail index of the cost distribution ξ is a function of µ and

σ. Therefore, we calibrate the GBM parameters to match the values of the tail index in

2007 and 2010 that reproduce the Revenue Lorenz curve in each year.26 Figure 2 shows the

calibration of Lorenz curves of nominal revenues from groundfish among vessels for 2007 and

2010. The circles represent the observed data and the crosses the prediction by the model.

As is well known, the area between the Lorenz curve and the (equal income) straight line is

the Gini coefficient.27

Table 1: Revenue Distribution (Lorenz curves)

2007
bottom 10 20 30 40 50 60 80 90 top 10

Data 0.00 0.10 0.30 1.00 2.80 5.70 10.20 22.30 57.60
Model 0.00 0.50 0.50 1.00 2.80 5.40 11.60 23.10 55.10

2010
bottom 10 20 30 40 50 60 80 90 top 10

Data 0.10 0.40 1.50 3.29 5.79 8.68 13.37 21.06 45.81
Model 0.10 0.60 1.30 2.50 4.90 8.10 13.80 23.00 45.70

25CDF of revenue are characterized in Appendix A.4.
26Appendix A.7 shows the relationship between Lorenz curves and CDF’s via a simple example.
27Note that a Lorenz curve always starts at (0,0) and ends at (1,1), independently of the support of the

variable.
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Figure 2: Lorenz Curve calibration. The Figure shows the calibration of the changes observed
in revenue distribution. The circles represent the observed data and the crosses the prediction
by the model. The curve shows what percentage (y%) of the total revenues is accounted
for by the bottom x% of vessels. The percentage of vessels is plotted on the x-axis, and the
percentage of revenues on the y-axis. As is well known, the area between the Lorenz curve
and the (equal income) straight line is the Gini coefficient. The higher the coefficient, the
more unequal the distribution is.

We were unable to find data to compute the vessel lifespan for the Northeast Multispecies

(Groundfish) Fishery, so we calibrate the vessel lifespan to match the value of the drift

estimated by Weninger and Just (2002) in 2007.28 The other GBM parameters that match

the Lorenz curve can be computed using propositions 2 and 3. That is, the process µ and σ

is chosen by minimizing the distance of the Lorenz curve generated by the model to the one

generated by the data. Table 1 summarizes how the model matches the Lorenz curves and

Table 2 summarizes targets and GBM parameters.

The size of the revenue support in our data (computed as top 10 / bottom 10) is ≃ 576 % and

458 % in each year. Although this support is higher that the revenue support computed by

28Weninger and Just (2002) assumed that c is the unit operating cost. This unit operating cost is assumed
to be distributed over a bounded support [c, c∗). Therefore, the GBM process (µ and σ) and the support, c,
can be estimated using average variable cost data. They use a sample of 22 vessels from the Mid-Atlantic
surf clam and ocean quahog fishery to estimate µ = 0.04, σ2 = 0.16 and c∗0 = .62.
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Table 2: GBM Parameters Calibration

Parameter Target
Stochastic process in 2010

µ2010 drift 0.0400 Weninger and Just (2002)
µ2007 drift 0.0431 Lorenz2007
σ2 volatility 0.0121 Lorenz2010

Weninger and Just (2002), we estimate that σ2 is 1.21%, i.e. lower than the 16.00% estimated

by Weninger and Just (2002).29 That is, higher vessel samples reduce volatilities.30 Finally,

the model shows that the reform reduces drift (µ2010 < µ2007).
31

It is important to notice that the reduction in the drift parameter (from 0.0431 to 0.0400)

could be interpreted as an increase in efficiency due to the removal of restrictions on leasing

quotas. This increase in efficiency can be rationalized, at least partially, as the result of

having more complete markets that foster investment in more efficient production processes.

Other parameters: Given the GBM process, it is necessary to calibrate three parameters

cf , ce and ρ. We start by selecting a value of the annual interest rate ρ = 0.04 which

is standard for the US economy in macroeconomic literature.32 We calibrate the other two

parameters by solving the equilibrium of the model and making sure the equilibrium statistics

match statistics from the fishery. In particular, we calibrate the entry cost ce and the fixed

cost to match the reduction observed in the number of active vessels between 2007 and 2010,

and the leasing quota prices in 2010.33 Finally, the TAC is normalized to 1 so that in each

year q = 1/M . The parameter values are summarized in Table 3.

29The support of the distribution is given by the size of c∗, which is endogenous in the model. They find that
the abandonment cost threshold is c∗ = 5.57, 278% greater than the cost of the most efficient vessel. They
set the price at 7.60. Therefore, the size of the revenue, p−c, support is equal to (7.60−0.62)/(7.60−5.57) ≃
344%.

30The 2007 and 2010 Lorenz curves were obtained using data from 658 and 450 vessels, respectively.
31This is consistent with the empirical evidence. For example Morrison Paul et al. (2009) found significant

growth in economic productivity after a property rights-based management reform.
32See, for instance Restuccia and Rogerson (2008).
33See Kitts et al. (2011) Table 26, page 55.
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Table 3: Other Model Parameter Calibration

Discount factor, (ρ = 0.05)
Parameter Target

Costs
cf fix cost 0.31 ∆fleet2010 1−M 0.32
ce entry cost 9.19 margin with entry (p− rq) 0.60

Table 4: Model equilibria

2007 2010
Efficiency Gains

π(w, rq) profit (per unit of productivity) 0.5556 0.6414
c∗ maximum cost 1.2000 0.8247
c average cost 0.9037 0.4478

Fleet squeeze
M industry size 1.0000 0.6839
q effective quota utilized by active firms 1.0000 1.4622

Endogenous prices
w effort cost 0.2988 0.4117
pq permanent sell price — 10.0000

Table 4 shows the equilibria generated with the parameters. The model reduces the aban-

donment threshold by 31% to match the fleet squeeze. The average cost, c =
∫

cg(c)dc, is

reduced by 50%. In our model c−1 is a TFP shifter that can not be estimated directly from

the data. But there is indirect evidence of these efficiency gains. For example, average trip

costs per day for vessels between 50’ and < 75’ fell by 26% between 2007 and 2010 and TFP

measures for vessels affected by the regulatory changes were up by 12%.34 Moreover, observe

that active firms are more productive and demand more than one permit (as q = 1.4622).

Finally, the equilibrium quota price is 10.00.

34See Kitts et al. (2011) Table 15, page 47 and Table 20, page 51.
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5 Wealth Distribution

We quantify the impact of allowing participation in the Leasing and Transfer Programs

without the requirement of owning an active vessel on firm value and wealth distribution by

comparing these statistics for 2010, (when quotas were attached to vessel owners) with the

equivalent statistics for 2007 (when quotas were attached to vessels).

In both economies the value of the firms, W (c), includes the value of the vessel (the capital)

and the value of the quota.35 In both economies some less productive active firms (vessels)

lease part of the quota, i.e. q − y(c) > 0.

The key differences between these economies are related to the number of assets in each one.

When the property right is attached to the vessel there is only one asset in the economy: the

vessel with the attached permit to operate in the industry. Firms operate capital and stay

active if they find it optimal to pay the idling cost, cf . Note that the marginal firm (the less

efficient vessel) is indifferent between paying the idling cost to fish the minimum amount to

be considered active, y(c∗), which enables it to lease the remaining quota, q − y(c∗), and

exiting the market. This marginal firm makes negative instantaneous profits and the total

expected value of operating the vessel is zero. Therefore, if the marginal active firm decides

to leave the market, it obtains this value, W (c∗) = 0.

Figure 3 shows that allowing total transferability of quotas shifts the value function upwards

via the exit constraint W (c) ≥ pqq. It also shows that increasing the value of exiting changes

the incentives to exit.

When the property right is attached to the owner of the vessel and divorced from ownership

of an active vessel it can be traded as a separate asset. Active firms can decide to cease

activities and become a lessors of quotas if they find it optimal to (permanently) lease their

quotas. The marginal firm (the least efficient vessel) is indifferent between paying the idling

35Note that, as in Weninger and Just (2002), firms are operating one unit of capital.

22



0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

c

P
D

F
CDF with p

q
 > 0

CDF with p
q
 = 0

0 0.2 0.4 0.6 0.8 1 1.2
0

5

10

15

20

25

30

35

40

c

V
a

lu
e

 F
u

n
c
ti
o

n
s

Value Function with p
q
 > 0

Value Function with p
q
 = 0

Figure 3: Changes in cost distribution and value functions under the two market struc-
tures. A decrease in maximum cost (a fleet squeeze) is shown that generates an increase in
productivity (the efficiency gain).
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cost to fish the minimum amount required for it to be considered active y(c∗), which allows

it to lease the remaining quota, q− y(c∗), and permanently leasing its quota without paying

the idling cost. Note that when firms are allowed to lease quotas without being active the

marginal firm becomes more efficient.36 Moreover, by allowing active vessels to trade quotas

as a separate asset the value of the active firms is increased. If the marginal active firm

decides to cease its activity it obtains the value of selling the right, W (c∗) = pqq, without

paying the idle cost. Figure 3 shows the impact of changes in efficiency (in the abandonment

threshold) on cost distribution and on the value functions.

We are interested in exploring the distributional impact of these changes. We divide the

section into three parts. First, we study the impact on the value of active firms. More

precisely, we show that by raising the value at the margin, the change in transferability

generates a redistributive effect which is similar to giving a fixed transfer to each firm.

Second, we construct the wealth distribution for the whole economy: including the inactive

quota owners and the active firms; and third, we compare the impact of (potential) changes

in innovation rates on wealth distribution.

5.1 The effect of a lump sum transfer on active firms

Table 5 represents the wealth distribution of active firms in 2007 and 2010. For instance, the

numbers under “bottom 5%” represent the proportion of the total wealth that goes to the

poorest 5% of the active firms and the numbers under the quartiles represent the amount of

wealth that goes to the corresponding quartile.37

In 2007 the model generates more inequality in wealth than in income. That is, the Gini

coefficient of the wealth distribution (0.88) is higher than the Gini coefficient of income

36It is clear that a firm which is fishing the “minimum” to be considered active y(c∗) → 0, finds it optimal
to lease its quota without paying the idle cost, rather than paying the idling cost to lease the quota.

37We compute the wealth distribution by using W (c) and f(c) for each economy.

24



Table 5: Wealth Distribution with fully tradable ITQs (Active firms)

2007
bottom quartiles top
5% q1 q2 q3 q4 5% mean Gini

wealth (%) 0.01 0.04 0.85 5.46 93.65 67.66 100 0.88
mean 0.01 0.02 0.03 0.22 3.75 13.53 1.00

2010
bottom quartiles top
5% q1 q2 q3 q4 5% mean Gini

wealth (%) 0.73 3.92 11.47 20.73 63.87 30.82 100 0.54
mean 0.14 0.16 0.46 0.83 2.55 6.16 1.00

distribution (0.70).38 This is a stylized fact of the US Economy.39 The top 5% in the mean

wealth ratio is 13.53.40 Note also that firms at the bottom are very poor. This is because

they are obtaining negative profits and waiting for better times.41

Table 5 shows that wealth distribution in 2010 is less concentrated. This reduction in

inequality comes from the exit condition, which implies W (c) ≥ pqq, which in turn implies

that with permanent transferable quotas the marginal firm has a positive value. That is,

giving full transferability to fishing rights is equivalent to giving a lump sum transfer (of the

same amount) to all firms in the market independently of their wealth levels. This reduces

inequality as the hypothetical transfer to the poorer firms is larger in proportion to their

original wealth than that given to the richer ones.

Consider an example to explain the impact of a lump sum transfer on the Gini coefficient and

the Lorenz curve. The example shows that this redistributive mechanism reduces the Gini

coefficient. Consider an economy with 3 agents and an initial endowment of W0 = [0 5 10].

That is, agent 1 has zero wealth, agent 2 has 5 units and agent 3 has 10 units of wealth.

38Appendix A.7 describes the Brown Formula used to compute the Gini coefficient.
39See Diaz-Gimenez et al. (2011).
40This ratio for the total US Economy (i.e. including households) is 8.1631
41This is a well known result. See Weninger and Just (2002).
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Table 6: Gini Index: Impact of a Transfer

terciles
t1 t2 t3 mean Gini

initial wealth (%) 0.00 0.33 0.66 100 0.44
wealth after a transfer (%) 0.17 0.33 0.50 100 0.22

If each agent receives a transfer of 5 units of wealth, the new endowment distribution is

W1 = [0 5 10]. Table 6 shows that the Gini coefficient is 0.44 before the transfer and

0.22 after the transfer. Moreover, if the Lorenz curves of these two economies are plotted a

transfer of these characteristics shifts the Lorenz curve to the right.

5.2 Wealth distribution for quota owners

Table 7: Wealth levels

inactive active
landlords vessels

bottom quartiles top Gini
5% q1 q2 q3 q4 5%

mass with pq = 0 31.64 3.42 17.09 17.09 17.09 17.09 3.42
wealth pq > 0 10.00 14.62 15.76 46.05 83.23 256.44 618.75 0.48

Tables 5 compares only the wealth levels of active firms. However, in the 2010 economy

there is a new class of quota landlords who decide to cease activity but lease their quotas.

Table 7 compares total wealth changes.42

The model predicts that firms that cease activities (31.64% in Table 7) are the least efficient

42We computed wealth distribution in 2010 by using

W =







pqq if c ∈ (c2010∗ , c2007∗ ]

W 2010(c) if c ∈ (0, c2007∗ ]
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in the 2007 economy. In the 2010 economy, they find it optimal to cease activities and

permanently lease their ITQs at a price pq (10.00). The wealth of these small owners is

therefore multiplied by 500. In the same table, the top 5% represents the most efficient,

which own many quotas. Their wealth is therefore multiplied by a factor of less than 10.

Therefore, total wealth is less concentrated than the wealth of active vessels.

5.3 Wealth and innovation rate

The experiments described below explore the impact of higher innovation rates on the wealth

inequality calculated by our model.43 We expect that better functioning markets, with more

complete and transferable property rights, foster innovation. Table 8 reports Gini coefficients

for active and total owners, and the percentage of exiting firms for four different levels of µ.

Notice that if more tradability of ITQs generates an increase in the innovation rate this is a

force for increasing the level of inequality. In our model, in order to generate more inequality

than in the case with restricted tradability (remember that in that case the Gini coefficient

was 0.88), the innovation rate must increase by 50% (compared to the innovation rate of

just 6% suggested by the data), which would be associated with a fleet shrinkage of around

90%.

Table 8: Wealth and innovation rate

active vessels owners
innovation rate Gini exit Gini

µ 0.5414 31.64 0.4853
3/4µ 0.6613 52.94 0.6576
2/3µ 0.7093 66.01 0.7547
1/2µ 0.8016 98.36 0.9748

43We are indebted to an anonymous referee for this suggestion.
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6 Conclusions

Much of the reluctance to use individual transferable quotas in the US is due to the concern

that ITQs will change participants’ relative positions in the fishery and, in particular, to the

fear that small-scale fishermen will be disadvantaged relative to larger producers. However

Brandt (2005) shows that in the US mid-Atlantic clam fishery no segment of the industry

was disproportionately adversely affected by the regulatory change. In this paper we build a

formal model that supports these findings. Moreover, we find that allowing fully transferable

rights is equivalent to giving a lump sum transfer (of the same amount) to all firms in the

market which is independent of their wealth level. This reduces inequality as the transfer to

the poorer is larger in proportion to their original wealth than that to the richer.

In our model heterogeneity is generated by firm-specific shocks to production opportunities.

However, the same result could be achieved with other firm-specific shocks, e.g. differences

in prices and demands driven by the composition of catches and/or quality.44 In that case,

perhaps a more precise statement of the results would be that if agent heterogeneity is high

enough then trading of permits does not necessarily increase wealth inequality.

Finally, as in Weninger and Just (2002) we introduce capital as the static decision as to

whether to buy a vessel (interpreted as consisting of a unit of capital). Given that our

model is concerned with the stationary equilibrium we can abstract from capital dynamics.45

However, capital dynamics are important for understanding transitions.46 We leave this

analysis for future research.

44For instance, in Da-Rocha and Pujolas (2011a) heterogeneity comes by differences in the species com-
position of vessel catches.

45Veracierto (2001) founds that capital is not important for understanding the stationary equilibrium. For
this reason, the literature refrains from considering capital, or introduces it as a static decision.

46See Lai (2007) and Hannesson (1996).
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A Appendix

A.1 Proof of Proposition 1

Let J(x, t) be the Value function associated with the following problem

J(c, t) = max
d∈{stay,exit}

{

max
u

∫ t+dt

t

π(c, u)e−ρsds+ EdcJ(c+ dc, t+ dt), pqq

}

,

where c follows a Geometric Brownian Motion, dc = µcdt+ σcdw, u is a vector of control variables
and pqq is the termination payoff. Using a Taylor expansion, the following can be written

J(c+ dc, t+ dt) = J(c, t) + Jt(c, t)dt+ Jc(c, t)dc+
1

2

{

Jtt(c, t)dt
2 + Jtc(c, t)dtdc+ Jcc(c, t)dc

2
}

.

Using Ito’s calculus and taking limits, dt → 0, the Hamilton-Jacobi-Bellman equation is obtained

−Jt(c, t) = max
d∈{stay,exit}

{

max
u

π(c, u)e−ρt + µJc(c, t) +
σ2

2
Jcc(c, t), pqq

}

.

Given that π(c, u) is autonomous, there is a stationary solution J(c, t) = e−ρtW (c). Then the
(stationary) Hamilton-Jacobi-Bellman equation is

ρW (c) = max
d∈{stay,exit}

{

max
u

π(c, u) + µcW ′(c) +
σ2c2

2
W ′′(c), pqq

}

.

Assume that c∗ is the optimal exit point such that

d =







stay if c ≤ c∗

exit if c > c∗,

and max
u

π(c, u) = π(w, rq)c
−1. Then the optimal policy satisfies

ρW (c) = π(w, rq)c
−1 + (rqq − cf ) + µcW ′(c) +

σ2c2

2
W ′′(c),

subject to the boundary conditions W (c∗) = pqq and W ′(c∗) = 0. Guessing that W (c) = A1c
β +

A2c
−1 +A3, the JHB equation becomes equal to:

ρ
(

A1c
β +A2c

−1 +A3

)

= π(w, rq)c
−1 + (rqq − cf ) + µc

(

βA1c
β−1 −A2c

−2
)

+
(σc)2

2

(

β(β − 1)A1c
β−2 + 2A2c

−3
)

.

Rearranging terms we have

0 = β2 −
(

1

2
− µ

σ2

)

β +
2ρ

σ2
,

A2 =
π(w, rq)

ρ+ µ− σ2
,

A3 = (rqq − cf ).
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Finally we use the boundary conditions

W (c∗) = A1c
β +

π(w, rq)c
−1

ρ+ µ− σ2
+ (rqq − cf )

∣

∣

∣

∣

c=c∗

= pqq,

c∗W
′(c∗) = βA1c

β +
π(w, rq)c

−1

ρ+ µ− σ2

∣

∣

∣

∣

c=c∗

= 0,

to obtain A1 and c∗. That is

c∗ =
(1 + β)

β

ρ

(ρ+ µ− σ2)

(

π(w, rq)

ρpqq + cf − rqq

)

,

A1 =

(

pqq −
(rqq − cf )

ρ

)

β

1 + β

(

1

c∗

)β

.

Hence, the value function of an individual is

W (c) =

(

pqq −
(rqq − cf )

ρ

)

β

1 + β

(

c

c∗

)β

+
π(w, rq)c

−1

ρ+ µ− σ2
−
(

cf − rqq

ρ

)

.

A.2 Proof of Proposition 2

Applying Laplace transforms in f ′′(x)− γ1f
′(x) + γ2f(x) = 0, gives:

(s2 − γ1s+ γ2)L [f(x)]− (s− γ1)f(0)− f ′(0) = 0.

Using the boundary condition f(0) = 0 we find:

L [f(x)] =
f ′(0)

(s2 − γ1s+ γ2)
.

Note that γ1 = 2µ̂
σ2 > 0 and γ2 = 2ε

σ2 > 0 implies that only solutions with positive roots can exist.
The solution that depends on the number of (positive) roots of the equation s2 − γ1s+ γ2 = 0.

First, consider a solution with two different roots, i.e. ri =
γ1±

√
γ2

1
−4γ2

2 ∀i = 1, 2. With two
different (positive) roots the solution of the second order differential equation becomes:

L [f(x)] =
f ′(0)

(s− r1)(s− r2)
.

We obtain the solution by solving the Laplace inverses given by:

f(x) = L
−1

[

f ′(0)

(s− r1)(s− r2)

]

=
f ′(0)

(r1 − r2)
(er1x − er2x) .

Note that f(0) = f ′(0) = f ′(−∞) = 0. Since f(x) is a pdf we also require that

∫ 0

−∞
f(x) =
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f ′(0)

(r1 − r2)

(

1

r1
− 1

r2

)

= 1. Therefore f ′(0) = −r1r2. By integrating

M ′(x, t)

M
f(x) = ηf(x) = −µ̂f ′(x) +

σ2

2
f ′′(x) + εf(x)

we know that entry rate, ε, satisfies

η1

∫ 0

−∞
f(x)dx =

(

−µ̂f(x) +
σ2

2
f ′(x)

)
∣

∣

∣

∣

x=0

−∞

+ ε

∫ 0

−∞
f(x)dx = 0.

Therefore ε = −σ2

2 f ′(0) = σ2

2 r1r2 = σ2

2 4γ2 = 4ε, which is a contradiction. Therefore, the solution
satisfies r = r1 = r2.

A.3 Proof of Proposition 3

First note that

∫ c∗

0
cag(c)dc =

(

1 + ξ

1 + ξ + a

)2

ca∗. Taking expectations, and using the value of c∗,

we have that

W e =

∫ c∗

0
W (c)g(c)dc− wce − pqq

=
(ξ + 1)2

(1 + β)(ξ + 1 + β)2

(

pqq −
(rqq − cf )

ρ

)

+
(ξ + 1)2

ξ2

(

(p− rq)
2

4w

c−1
∗

ρ+ µ− σ2

)

+
(rqq − cf )

ρ
− wce − pqq

=

(

pqq −
(rqq − cf )

ρ

)[

(1 + ξ)2

(1 + β + ξ2)(1 + β)
+

β(1 + ξ)2

(1 + β)ξ2
− 1

]

− wce.

Then, from the f.o.c. of the entering firm’s problem we have

(

pq −
rq
ρ

)[

(1 + ξ)2

(1 + β + ξ2)(1 + β)
+

β(1 + ξ)2

(1 + β)ξ2
− 1

]

= 0 ⇒ pq =
rq
ρ
.

A.4 Cumulative distribution function

Revenue y(w, rq, c) =

(

1− rq
2w

)

c−1 is non linear in c. However, the invariant distribution of revenue

is a simple change in the power of the invariant cost distribution. That is,

f(y) = −(α− 1)2

y∗

(

y∗
y

)ξ+2

ln(y∗/y).

We calculate

F (y) =

∫ y

y∗

f(y)dy =

∫ y

y∗

−(α− 1)2

y∗

(

y∗
y

)ξ+2

ln(y∗/y)dy.
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Trivial manipulation implies that the cumulative distribution function is

F (y) =

∫ y

y∗

f(y)dy = 1−
(

y∗
y

)ξ+1 [

(−ξ − 1) ln

(

y∗
y

)

+ 1

]

.

A.5 Calibration

We proceed as follows. Given µ and σ, first we set M = 1 −∆fleet2010 and p − rq = margin2010,
and we compute

cf =
margin2010

2(1−∆fleet2010)2

(

ξ

ξ + 1

)2 (1 + β)

β

(

ρ

(ρ+ µ− σ2)

)

,

ce =
1

entry

[

1

(1−∆fleet2010)
− 2cf

(

ξ + 1

ξ

)2 β

(1 + β)

(

(ρ+ µ− σ2)

ρ

)

]

,

w =
cf
ρce

[

(1 + ξ)2

(1 + β + ξ)2(1 + β)
+

β(1 + ξ)2

(1 + β)ξ2
− 1

]

,

c∗ =
(margin2010)

2

4w

1

cf

(1 + β)

β

(

ρ

(ρ+ µ− σ2)

)

.

Finally we compute c∗ in 2007 to match ∆fleet2010. That is

∆fleet2010 =

∫ c2007
∗

c∗

−(1 + ξ2007)
2

c2007∗

log(x/c2007∗ )

(

x

c2007∗

)ξ2007

dx.

A.6 Solving for the Equilibrium

Given µ and σ, the equilibrium, w, rq pq, M , and c∗, are given by the following set of five equations.
First, entry condition

w =
1

ce

(

cf
ρ

)[

(1 + ξ)2

(1 + β + ξ)2(1 + β)
+

β(1 + ξ)2

(1 + β)ξ2
− 1

]

.

From the labour market condition, we can obtain the mass of firms M ,

1−Mε× ce = M

∫ c∗

0
l(c)g(c)dc = M

(

(p− rq)

2w

)2(ξ + 1

ξ

)2

c−1
∗ .

From the output market, we have

1 = Mq = M2

∫ c∗

0
y(c)g(c)dc = M2 (p− rq)

2w

(

ξ + 1

ξ

)2

c−1
∗ .

and the maximum cost c∗, is

c∗ =
(1 + β)

β

(p− rq)
2

4w

1

(ρ+ µ− σ2)

(

ρ

cf

)

,
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and pq is such that pq =
rq
ρ
. Simple manipulation allows us to find the close-form solution:

w =
cf
ρce

[

(1 + ξ)2

(1 + β + ξ)2(1 + β)
+

β(1 + ξ)2

(1 + β)ξ2
− 1

]

,

1

M
= ceε+ 2cf

(

ξ + 1

ξ

)2 β

(1 + β)

(

(ρ+ µ− σ2)

ρ

)

,

(p− rq) = 2cfM
2

(

ξ + 1

ξ

)2 β

(1 + β)

(

(ρ+ µ− σ2)

ρ

)

,

c∗ =
(p− rq)

2

4cfw

(1 + β)

β

(

ρ

(ρ+ µ− σ2)

)

.

A.7 The computation of Gini coefficients and Lorenz curve

In order to compute the Gini coefficients in our calibrations we use the approximation by trapezoids
known as Brown’s formula. Formally, define p(n) as the density and P (n) as the accumulated
proportion of the population variable, forn = 0, with N being the types of individuals differentiated
by wealth (and ordered from least to greatest wealth), with P (0) = 0 and P (N) = 1. Define as
w = 0....W the different wealth levels (where wealth is ordered in a non decreasing fashion) and
let f(w) be the density and F (w) be the cumulative proportion of the wealth variable. The Gini
coefficient can then be defined as

Gini = 1−
∑

i

(P (i)− P (i− 1))(F (i) + F (i− 1))

An application that measures the effect of a lump sum transfer on the Gini coefficient is presented
in Table 9. Column 1 is the amount transferred. Column 2 is the proportion of the population in
each wealth level. Columns 3 and 4 are the wealth levels before and after the transfer, respectively.
Column 5 represents the cumulaivte distribution of people and columns 6 and 7 the cumulative
distribution of wealth before and after the transfer. The rest of the columns are helpful in computing
Brown’s formula. It is immediately apparent by straightforward application of the formula that
the Gini coefficient is 0.44 before the transfer and 0.22 after it.

Table 9: Gini Index: Impact of a Transfer

Transfer p(n) w0 w1 P(i) F(i) F(w1) A=P(i)-P(i-1) B=F(i)+F(i-1)
5.00 0.33 0.00 5.00 0.33 0.00 0.17 0.33 0.00 0.17
5.00 0.33 5.00 10.00 0.67 0.33 0.50 0.33 0.33 0.67
5.00 0.33 10.00 15.00 1.00 1.00 1 0.33 1.33 1.50
Total 1.00 15.00 30.00 1 – – –

The Lorenz curve plots the cumulative proportion of wealth as a function of the cumulative pro-
portion of the population. Table 10 shows the calculation and the effect on the Lorenz curve of
the transfer discussed in Table 9. As before, Column 1 is the amount transferred. Column 2 is the

38



proportion of the population in each wealth level. Columns 3 and 4 are the wealth levels before
and after the transfer, respectively. Column 5 and 6 represent the proportion of wealth belonging
to each type of agent before and after the transfer. The Lorenz curve corresponding to the case
without the subsidy plots column 7 in the horizontal axis and column 8 in the vertical axis (the
Lorenz curve corresponding to the economy with the subsidy is symmetrically defined using column
9).

Table 10: Lorenz curve: Impact of a Transfer

Transfer p(n) w0 w1 f(i) f(i) p(i)+p(i-1) f(i)+f(i-1)
5.00 0.33 0.00 5.00 0.00 0.17 0.33 0.00 0.17
5.00 0.33 5.00 10.00 0.33 0.33 0.66 0.33 0.67
5.00 0.33 10.00 15.00 0.67 0.50 1 1 1
Total 1.00 15.00 30.00 1.00 1.00 – – –

39


	Introduction
	The Economic Environment
	Equilibrium
	The problem of incumbent firms
	Invariant distribution of firms
	Problem of entrants
	Feasibility conditions
	Definition of equilibrium 
	Equilibrium when quotas are not fully tradable

	The Northeast Multispecies (Groundfish) Fishery
	Calibration

	Wealth Distribution
	 The effect of a lump sum transfer on active firms
	Wealth distribution for quota owners
	Wealth and innovation rate

	Conclusions
	Appendix
	Proof of Proposition 1
	Proof of Proposition 2
	Proof of Proposition 3
	Cumulative distribution function
	Calibration
	Solving for the Equilibrium
	The computation of Gini coefficients and Lorenz curve


