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Abstract 

 
The St. Petersburg paradox refers to a gamble of infinite expected value, where people 
are likely to spend only a small entrance fee for it. There is a huge volume of literature 
that mostly concentrates on the psychophysics of the game; experiments are scant. Here, 
rather than focusing on the psychophysics, we offer an experimental, “physical” 
solution as if robots played the game. After examining the time series formed by one 
billion plays, we: confirm that there is no characteristic scale for this game; explicitly 
formulate the implied power law; and identify the type of  -stable distribution 
associated with the game. We find an 1   and, thus, the underlying distribution of the 
game is a Cauchy flight, as hinted by Paul Samuelson. 
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1. Introduction 

 
The St. Petersburg game is a simple, coin-tossing game that first appeared in 1738 in a 
memoir by Daniel Bernoulli, who attributed it to his cousin Nicholas Bernoulli. Daniel 
Bernoulli first aired it as a commentary of the St. Petersburg Academy [1], thus its 
name. The house offers to flip a coin, and one receives the coin if it shows tails. The 
prize doubles with every successive toss that shows tails. The game ends when the coin 
shows heads for the first time. Formally [2], a single trial in the St. Petersburg game 
consists of tossing a true coin until it falls as heads. If it falls as heads at the nth throw, 

the gambler receives 2𝑛−1 coins. These independent random variables assume the 

values 0 1 22 ,2 ,2 ,...  with corresponding probabilities 1 2 32 ,2 ,2 ,...   . Their expectation is 

defined by ( )n nc f c  with 12n

nc   and ( ) 2 n

nf c  , so that each term of the series 

equals 1. 
How much should one pay as an entrance fee for the game? Because the prize 

keeps growing forever, the expected value is infinite. The paradox? Most people wish to 
pay only a small entrance fee. The paradox is perennial in literature because authors mix 
the psychophysics of the game (how people mentally react to it) with the pure physics 
of the game. However, there is no paradox if one considers its physics properly. 



Physically speaking, the first aspect to consider is that the gain has no finite 
expectations, and thus both the law of large numbers and the central limit theorem are 
inapplicable [2]. The St. Petersburg game is not “fair,” so there is no “fair” entrance fee. 
One cannot consider the expectation ( )E X    as a fair entrance fee. A game like 

this would be fair if the expectation was finite ( ) 0E X    and, for a large number of 

single trials n , the ratio of the accumulated gain nS  to the accumulated entrance fees ne  

approached 1. However, because   does not exist, the entrance fees cannot be constant 

and should depend on the number of single trials [2]. As a result, the following limit 

theorem applies [2]: A game with accumulated entrance fees ne  is fair if for every 0, 

 1 0n

n

S

e
P    . This is the analogue of the law of large numbers [2], where ne n , 

and which means (in a physical sense) that the average of n  independent measurements 

approaches  . In particular, for this limit theorem, the average of n  measurements 

approaches ne n . Interestingly, however, the St. Petersburg game turns fair if 

2logne n n , where 2log n  is the logarithm to the base 2 [2]. 

The St. Petersburg game is not frivolous in that it offers an example of the 
simple random walk usually considered as the prototype for many stochastic processes 
in physics and economics [2]. For a physics example [3], the calculation of the 
resistivity at the critical filling for finite lattices is shown to be simply related to the 
Petersburg game. In economics, the game provides insight for growth stock valuation. 
For example [4], consider the question: “What should one be willing to pay for a very 
small probability that a company can grow its cash flows by a very significant amount 
forever?” It is not surprising then that the game has attracted the attention of famous 
writers and economists from past and present-day academics, such as Cramer, De 
Morgan, Condorcet, Euler, Poisson, Gibbon, Cournot, Marschack, Von Mises, Ramsey, 
Keynes, Samuelson, Arrow, Stigler, and Aumann. 

The St. Petersburg paradox is relevant for practical investors in two important 
ways: “The first is that the distribution of stock market returns does not follow the 
pattern that standard finance theory assumes [5].” The distribution is Paretian rather 
than Gaussian. “This deviation from theory is important for risk management, market 
efficiency, and individual stock selection [5].” The second idea relates to the 
aforementioned valuing growth stocks: “One of the major challenges in investing is 
how to capture (or avoid) low-probability, high-impact events. What do you pay today 
for a business with a low probability of an extraordinarily high payoff? This question is 
more pressing than ever in a world with violent value migrations and increasing returns. 
Consider, for example, that of the nearly 2,000 technology initial public offerings since 
1980, only 5 percent account for over 100 percent of the $2-trillion-plus in wealth 
creation. And even within this small wealth generating group, only a handful delivered 
the bulk of the huge payoffs. Given the winner-take-most characteristics of many 
growth markets, there is little reason to anticipate a more normal wealth-creation 
distribution in the future. Like the St. Petersburg game, the majority of the payoffs from 
future deals are likely to be modest, but some will be huge [5].” 

We move on and present the game in more detail [6] before discussing its 

statistical physics. Suppose the house flips a coin 1n  times. A gambler wins 12n  

coins for the n  tails that occur before the first heads occurs. If heads appears in the first 

attempt, another attempt is allowed until it shows tails, when 1n   (first row and 
column I in Table 1). The house will flip the coin in a second attempt, because it always 

flips it 1n  times. If heads appears after one tails, the gambler wins one coin: 



1 1 1 02 2 2 1n     (first row and column II in Table 1). The odds of tails is 1
2

 for each 

independent toss (first row and column III). The gambler’s expected gain (first row and 
column IV) is the expected outcome (column II) times the probability of each outcome 

(column III). The gambler always wins a coin if it shows tails with probability 1
2

.The 

gambler does not win if it shows heads with probability 1
2
. Thus,    1 1 1

2 2 2
1 0    . 

Now consider the second row in Table 1. Two tails appear before it shows 

heads. The gambler wins two coins: 1 2 1 12 2 2 2n    . The odds are 1
4

: the chance of 

appearing the first tails ( 1
2
) times the chance of appearing the second tails ( 1

2
), because 

these are independent events. The expected gain is then 1 1
4 2

2  . For the remaining 

rows, the expected gain will always be 1
2
. Thus, the cumulative expected gain will be 

infinite: 1 1
2 2
    . From the house’s point of view, its cumulative expected loss will 

be equally infinite. (Ref. [7] provides lots of detailed examples of variants of the St. 
Petersburg game.) 

The early difficulties in dealing with the paradox may have come from the fact 
that the notion of expectation in the classical theory of probability was not clearly 
disassociated from the definition of probability itself, and no mathematical treatment 
existed to surpass the difficulty posed by the paradox [2]. Once this formalism became 
available, it is surprising that one can still see any paradox in the St. Petersburg game 
[2]; physically speaking, not psychologically. 
 
Table 1. The St. Petersburg game 

I 
Number of times the 

coin is tossed, n 

II 
Quantity of coins that 

can be won, nc  

III 
Probability of winning, 

w 

IV = II  III 
Expected gain 

1 1 1
2  1 1

2 2
1   

2 2  2
1 1
4 2
  

1 1
4 2

2   

3 4  3
1 1
8 2
  

1 1
8 2

4   

    
n  12n   1

2

n
 

1
2

 

    

 
 From the point of view of modern statistical physics, and econophysics in 
particular, one can say there is no fair entrance fee for the St. Petersburg game because 
it is a stochastic process with no characteristic scale [6]. In making this connection, here 
we unveil the particular power law implicated in the St. Petersburg game. Moreover, we 
exactly identify the type of  -stable distribution underlying the game. The next section 
justifies the methodology employed, while the results are shown in Section 3. A 
discussion follows (Section 4), and then we conclude the study. 
 

2. Materials and methods 

 

Let ( ) 2 n

np P N n
   , 1,2,n   , be the distribution of the number of coin flipping 

N  until the first heads appears. If the gambler wins randomly 12N
X

  coins, as 

observed, his probability distribution is straightforward: ( ) ( ) 2 n

n nf c P X c    . 



However, because 12n

n
c   then 21 log nn c  . Therefore, in terms of the quantity of 

coins that can be won nc , there is the power law distribution: 

 

 2(1 log ) 1
( ) 2 2

2
ncn

nw P X c
c

      ,                                                               (1) 

 

where 1,2,4,8,16,32,nc  . Equation (1) gives the law governing the St. Petersburg 

game. It shows nc  and w  inversely related precisely as follows. 

 
St. Petersburg game power law: Double the probability of winning and the prize 

(quantity of coins that can be won) is reduced by half. 

 
To illustrate it, one can look at the game backwards in Table 1 to realize that as w  is 

doubled from, say, 1
8

 to 1
4
, then nc  is cut by half, from 4 to 2. 

 The same power law given by Eq. (1) can be found from the first 100 
realizations of the game as in Table 1. First, we hypothesize the law describing the 

relationship between nc  and w   as a power law of the form: 

 

 b

n
c aw .                                                                                                             (2) 

 

This means nc  changes as if it were a power of w . The problem is then to verify the 

conjecture by determining a  and b . 
 Taking the logarithm to base 10 on both sides of Eq. (2): 
 

 log log lognc b w a  .                                                                                       (3) 

 
(Any base works, of course, including base 2). Figure 1 shows a straight line in a log-

log plot of Eq. (3), where b  is the slope, and log a  is the y-intercept = d. Thus, 10da  . 

From a fitting line of the observations in Figure 1, we find: 
 

 log log 0.301nc w   ,                                                                                      (4) 

 

and a  and b  can be found in turn. The slope is 1b   , and 0.301d   ; thus, 
0.30110 0.5a   .  The values for a  and b  can then be inserted back into Eq. (2) to 

exactly produce the power law in Eq. (1). 
As observed [8], “despite the age and the importance of the problem only a few 

experiments on the Petersburg gamble have been documented.” Here, we perform such 
an experiment. To dismiss any psychophysics explanations from the start, we offer a 
“physical” solution, as if robots played the game. We run one billion single trials of the 
game, collect each prize, and build a time series of the prizes. This approach is the only 
one that is empirically viable, and therefore is preferable to considering the realizations 
of the game as displayed in Table 1. This is so because the series grows explosively in 
the realizations in Table 1. As a result, one cannot get a time series large enough to 
allow for an analysis of the tails distribution of the game. This can be appreciated in 
Figure 2, which shows a histogram of the first 100 realizations of the game. 
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Figure 1. The St. Petersburg game power law for the first 100 realizations. 
   

However, even for 100 realizations, Table 2 suggests some lessons can be 
learned. Table 2 presents the results for 30, 60, and 100 realizations, which are 
amenable to analysis. It suggests the realizations of the game are not Gaussian, as the 
excess kurtosis departs from three and keeps growing far away from it. Not only fat tails 
are involved, but also the probability density function is heavily skewed (Figure 2 
again). A test of Gaussianity shows the distribution of the first 100 realizations fail to be 
Gaussian. We consider an Anderson-Darling normality test, which modifies the 
Kolmogorov-Smirnov test to give more weight to the tails. Its critical values are 
distribution-free, and a p-value < 0.05 suggests, the distribution is not Gaussian. The 
data for the 100 realizations present a p-value < 0.004, and thus are unlikely to be 
modeled by the Gaussian. This result suggests the St. Petersburg game power law 
reflects non-Gaussian scaling. 

Experimentally, one can detect a Gaussian after a closer look at its tails [9]. Take 
the variable height. The standard deviation away from the average (  ) is around 8 to 
10 centimeters for height, and the probability of exceeding: 
 
0  = 1 in 2 times  

1  = 1 in 6.3 times 

2  = 1 in 44 times 

3  = 1 in 740 times 

4  = 1 in 32,000 times 

5  = 1 in 3,500,000 times 

6  = 1 in 1,000,000,000 times 

7  = 1 in 780,000,000,000 times 

8  = 1 in 1,600,000,000,000,000 times 

9  = 1 in 8,900,000,000,000,000,000 times 

10  = 1 in 130,000,000,000,000,000,000, 000 times 

  
20  = 1 in 

36,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,00
0,000,000,000,000, 000 times. 



The tails decay grows exponentially. By contrast, the distribution of wealth, for 
instance, is not like the distribution of height, where the tails decay is exponential. It is 
Paretian rather than Gaussian. Take the odds of encountering a millionaire in Europe 
[9]: 
 
Richer than 1 million: 1 in 62.5 
Richer than 2 million: 1 in 250 
Richer than 4 million: 1 in 1,000 
Richer than 8 million: 1 in 4,000 
Richer than 16 million: 1 in 16,000 
Richer than 32 million: 1 in 64,000 
Richer than 320 million: 1 in 6,400,000. 

 
Thus, the analysis of tails decay shows that when the number is doubled, the incidence 
goes down by four. The tails decay is constant. This is a power law distribution. 

 
Figure 2. Histogram of the first 100 realizations of the St. Petersburg game. 
 
Table 2. Descriptive statistics for the first 100 realizations of the St. Petersburg game. 
Statistic Realizations   

Sample size 30 60 100 
Range 5.37E+8 5.76E+17 6.34E+29 
Mean 3.58E+7 1.92E+16 1.27E+28 
Variance 1.19E+16 7.12E+33 5.25E+57 
Standard deviation 1.09E+8 8.44E+16 7.24E+28 
Coefficient of variation 3.05 4.40 5.71 
Standard error 1.99E+7 1.09E+16 7.24E+27 
Skewness 3.9249 5.652 7.348 
Coefficient of skewness 0.985 0.682 0.525 
Excess kurtosis 16.375 34.413 58.432 

Note: As the sample size increases, the four moments of the underlying distribution also increase. The 
coefficient of skewness is the only quantity that declines. 



 To confirm the St. Petersburg power law stated in the previous section for 100 
realizations in Table 1, we consider one billion single trials and find a distribution 
similar to the second example above, as follows. 
 
Prize of 32: 1 in 64 
Prize of 64: 1 in 128 
Prize of 128: 1 in 256 
Prize of 256: 1 in 512 
Prize of 512: 1 in 1,024 
Prize of 1,024: 1 in 2,048. 

 
Thus, as the prize (the quantity of coins that can be won) doubles, the probability of 
winning is reduced by half. 
 

3. Results 

 

Figures 3 and 4 first show one million single trials. (The dataset is publicly available at 
http://dx.doi.org/10.6084/m9.figshare.1468405.) Figure 3 shows the number of rounds 

actually played, and Figure 4 shows the quantity of coins actually won ( 510 ). 

 
Figure 3. Number of rounds actually played from one million single trials of the St. 
Petersburg game. 
 

Figure 5 replicates the power law of the game by considering one billion single 
trials. The straight line is given by: 
 

log log 1nc w   .                                                                                              (5) 

 
Thus, 1  , which means a stable Cauchy. 

http://dx.doi.org/10.6084/m9.figshare.1468405


 
Figure 4. Quantity of coins actually won (×105) from one million single trials of the St. 
Petersburg game. 
   

  
Figure 5. The St. Petersburg game power law for one billion single trials. 

 



Figure 6 shows a standardized histogram of the one billion single trials, and 
Table 3 shows a statistical summary. Of note, the quartiles stabilize as the number of 
single trials n  grows in Table 3. Such a result is analytically expected. By definition 
[10], for discrete random variables geometrically distributed, the qth quartile of the 

number of single trials n  is a number 
q , such that 

4

4
( ) q

qP n     and 4
( ) q

qP n   , 

with 1,2,3.q   In particular, 1 1  , 2 1  , and 3 2  . Thus, because 12n
X

  is a 

one-to-one transformation, the first, the median, and the third quartile of X  are, 
respectively, 1, 1, and 2. 

 
Figure 6. Standardized histogram of one billion single trials of the St. Petersburg game. 
 

4. Discussion 

 
In his classic statistics textbook, Feller [2] warned us that there is no paradox in the St. 
Petersburg game simply because it is not a fair game and thus there is no such thing as a 
fair entrance fee. It makes no sense to consider the mean as the fee because the law of 
large numbers and the central limit theorem are applicable only for finite expectations, 
and, in the St. Petersburg game, expectations are infinite. Here, we explored further the 
statistical physics of the game, having in mind Samuelson’s observation [11] that “when 
you have defanged a paradox with the texture of the St. Petersburg puzzle, the problem 
does not disappear or fade away into banality.” By considering one billion single trials, 
we could generate a time series large enough to be amenable to the analysis of the tails 
distribution. We showed the game is Paretian and its underlying distribution is scale-
free. We then unveiled the St. Petersburg power law: When the probability of winning 
doubles, the prize is reduced by half. 

Talking about the game, Samuelson [11] had already speculated that it is 
governed by a Cauchy: “Mother Nature might present Paul with a Cauchy distribution 
for extreme positive gains in the right-hand tail: Peter, the casino owner, would never be 



willing to do so or even ever be able to do so.” The Cauchy (or Lorentzian for the 
physicist) is a member of the Lévy family [12] of stable distributions, which presents 
non-Gaussian scaling and thus has no characteristic scale [6]. The Gaussian is also a 
member of the Lévy family, though it presents characteristic scale. The Pareto stable 
distribution [13] encompass the Lévy family. Strictly speaking, the Cauchy distribution 
is defined for continuous random variables. Benoit Mandelbrolt [14] used the term 
“Cauchy flight” for the case where the distribution of discrete step sizes is a Cauchy 
distribution. Thus, for the Petersburg game we should use the term Cauchy flight. 

Kenneth Arrow [15] observed that “not all stochastic processes can be ordered 
by the expected value of their utility outcomes.” This is most certainly true regarding 
the St. Petersburg game despite that, since its very beginning, discussions of the 
paradox raised by the game have received rationales based on its psychophysics. 

Daniel Bernoulli himself observed that the utility of the prizes grows much more 
slowly than the prize itself, which explains why the gamble is not attractive and most 
people do not think the gamble is worth more than a few coins. Bernoulli suggested a 
gamble should be assessed not by its expected value (a weighted average of the possible 
outcomes, where each outcome is weighted by its probability), but by the psychological 
values of the outcomes: their utilities. Because people dislike risk, if they are offered a 
choice between a gamble and an amount equal to its expected value, they will go for the 
sure thing [16]. Bernoulli then launched the expected utility theory still taught in 
today’s financial textbooks, almost 300 years later. 
 
Table 3. Statistical summary of one billion single trials of the St. Petersburg game. 

n   
nc   Counts Relative frequency Cumulative frequency 

1 1 499989691 5.00E-01 5.00E-01 
2 2 250016460 2.50E-01 7.50E-01 
3 4 124993624 1.25E-01 8.75E-01 
4 8 62492742 6.25E-02 9.37E-01 
5 16 31255491 3.13E-02 9.69E-01 
6 32 15629774 1.56E-02 9.84E-01 
7 64 7812976 7.81E-03 9.92E-01 
8 128 3904127 3.90E-03 9.96E-01 
9 256 1953042 1.95E-03 9.98E-01 
10 512 975896 9.76E-04 9.99E-01 
11 1024 487560 4.88E-04 1.00E+00 
12 2048 244569 2.45E-04 1.00E+00 
13 4096 122154 1.22E-04 1.00E+00 
14 8192 61122 6.11E-05 1.00E+00 
15 16384 30439 3.04E-05 1.00E+00 
16 32768 15185 1.52E-05 1.00E+00 
17 65536 7590 7.59E-06 1.00E+00 
18 131072 3719 3.72E-06 1.00E+00 
19 262144 1893 1.89E-06 1.00E+00 
20 524288 995 9.95E-07 1.00E+00 
21 1048576 473 4.73E-07 1.00E+00 
22 2097152 227 2.27E-07 1.00E+00 
23 4194304 122 1.22E-07 1.00E+00 
24 8388608 67 6.70E-08 1.00E+00 
25 1.7E+07 33 3.30E-08 1.00E+00 
26 3.4E+07 19 1.90E-08 1.00E+00 
27 6.7E+07 5 5.00E-09 1.00E+00 
28 1.3E+08 3 3.00E-09 1.00E+00 
29 2.7E+08 1 1.00E-09 1.00E+00 
31 1.1E+09 1 1.00E-09 1.00E+00 

 



 It is then no surprise that, as Samuelson [11] observed, “even for Lévy 
distributions with no finite integral moments, the expectation of the utility of wealth is 
finite, being bounded by the bounds of the utility of wealth.” In particular, Bernoulli 
used what is called today Weber’s law, according to which most psychophysical 
functions relating the subjective quantity in the observer’s mind and the objective 
quantity in the material world are logarithm. Coins in the material world and the utility 
of coins in people’s mind are related by a logarithm function. 

By considering logs, one can turn the St. Petersburg game fair, as observed by 
Feller [2]. So, by proposing expected utility theory, Bernoulli turned the St. Petersburg 
game fair. However, this is psychophysics. In line with Bernoulli, a huge literature 
followed through the centuries by considering only the psychophysics of the game. The 
psychophysics of the St. Petersburg game is valuable in itself, and is now maturing 
through a neuroscience perspective [7]. However, the original game is not a fair one, 
and the psychophysics approach is talking about a different game. 

In this connection, take this comment by Samuelson [11]: “A different line of 
reasoning, which is less to my liking, runs as follows: Because of the need to avoid the 
St. Petersburg paradox, it is necessary in axiomatizing stochastic choice theory to 
assume the axiom that people do not have linear utility.” In terms of our findings, if the 
St. Petersburg has any implication for stochastic choice theory, that is, the game offers a 
counter-example that no theory of risky choice can afford to neglect. One theory cannot 
be extended to random variables with infinite expectations, in which case there is no 
characteristic scale, and the mean and higher moments are not a meaningful way to 
characterize data. 
 Moreover, an infinite mean would be feasible only in the presence of infinite 
single trials, which is unfeasible in practice. Thus, because the quartiles of the 
distribution do not grow (as we showed), a theoretical mean only signifies the 
distribution of a quantity of coins does not reach an equilibrium. For practical purposes, 

then, taking 2log nn c  makes the moments finite. Such a procedure is analogous to the 

common practice in finance of taking log returns of financial time series. 
 Finally, we have to mention that the authors in Refs. [5] and [17] already came 
across the power law in Figure 1 considering one million single trials. However, they 
did not formulate the law explicitly, as we did. Nor did they perform the statistical 
physics analysis to uncover the underlying stable distribution of the game. 
 

5. Conclusion 

 
The St. Petersburg paradox presents a counter-example for any devised theory of risky 
choice in which random variables with infinite expectations are present, and thus there 
is no characteristic scale. No choice theory can exist in such a polar situation. Despite 
the huge volume of literature of the paradox, there are few examples of empirical 
studies. Here, we offer an empirical approach where one billion single trials of the game 
generate a time series that can be analyzed through statistical physics methods. We 
formulate the power law governing the St. Petersburg game (“when the probability of 
winning doubles, the prize is reduced by half”) and show that its underlying stable 
distribution is a Cauchy flight, as hinted in the past by Paul Samuelson.  
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