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Joint inference on market and estimation risks in dynamic

portfolios

Christian Francq∗and Jean-Michel Zakoïan†

Abstract

We study the estimation risk induced by univariate and multivariate methods for evaluating

the conditional Value-at-Risk (VaR) of a portfolio of assets. The composition of the portfolio

can be time-varying and the individual returns are assumed to follow a general multivariate

dynamic model. Under sphericity of the innovations distribution, we introduce in the multi-

variate framework a concept of VaR parameter, and we establish the asymptotic distribution

of its estimator. A multivariate Filtered Historical Simulation method, which does not rely on

sphericity, is also studied. We derive asymptotic confidence intervals for the conditional VaR,

which allow to quantify simultaneously the market and estimation risks. The particular case

of minimal variance and minimal VaR portfolios is considered. Potential usefulness, feasibility

and drawbacks of the different approaches are illustrated via Monte-Carlo experiments and an

empirical study based on stock returns.

Keywords: Confidence Intervals for VaR, DCC GARCH model, Estimation risk, Filtered Historical

Simulation, Optimal Dynamic Portfolio.

1 Introduction

A large strand of the recent literature on quantitative risk management has been concerned with

risk aggregation (see for instance Embrechts and Puccetti (2010) and the references therein). For a

vector of one-period profit-and-loss random variables ǫ = (ǫ1, . . . , ǫm)′, risk aggregation concerns the
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risk implied by an aggregate financial position defined as a real-valued function of ǫ. For instance,

under the terms of Basel II, banks often measure the risk of a vector ǫ of financial positions by

the Value-at-Risk (VaR) of a1ǫ1 + · · · + amǫm where the ai’s define the composition of a portfolio.

Exact calculation of the risk associated with an aggregate position can represent a difficult task, as

it requires knowledge of the joint distribution of the components of ǫ.

It is even more difficult, in a dynamic framework, to evaluate the conditional risk of a portfolio

of assets or returns. The current regulatory framework for banking supervision (Basel II and Basel

III), allows large international banks to develop internal models for the calculation of risk capital.

The so-called advanced approaches are based on conditional distributions, that is, conditional on

the past, rather than marginal ones. In this article, we will focus on the VaR, arguably the most

popular risk measure in finance and insurance due to its importance within the Basel II capital

adequacy framework.

1.1 Conditional VaR of a dynamic portfolio

Let pt = (p1t, . . . , pmt)
′ denote the vector of prices of m assets at time t. Let ǫt = (ǫ1t, . . . , ǫmt)

′

denote the corresponding vector of log-returns, with ǫit = log(pit/pi,t−1) for i = 1, . . . ,m. Let Vt

denote the value at time t of a portfolio composed of µi,t−1 units of asset i, for i = 1, . . . ,m:

V0 =

m∑

i=1

µipi0, Vt =

m∑

i=1

µi,t−1pit, for t ≥ 1 (1.1)

where the µi,t−1 are measurable functions of the prices up to time t− 1, and the µi are constants.

The return of the portfolio over the period [t− 1, t] is, for t ≥ 1, assuming that Vt−1 6= 0,

Vt

Vt−1
− 1 =

m∑

i=1

ai,t−1e
ǫit − 1 ≈

m∑

i=1

ai,t−1ǫit + a0,t−1

where

ai,t−1 =
µi,t−1pi,t−1∑m
j=1 µj,t−2pj,t−1

, i = 1, . . . ,m and a0,t−1 = −1 +
m∑

i=1

ai,t−1.

We assume that, at date t, the investor may rebalance his portfolio under a "self-financing" con-

straint.

SF: The portfolio is rebalanced in such a way that
∑m

i=1 µi,t−1pit =
∑m

i=1 µi,tpit.

In other words, the value at time t of the portfolio bought at time t− 1 equals the value at time t

of the portfolio bought at time t. An obvious consequence of the self-financing assumption SF, is
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that the change of value of the portfolio between t− 1 and t is only due to the change of value of

the underlying assets:

Vt − Vt−1 =

m∑

i=1

µi,t−1(pi,t − pi,t−1).

Another consequence is that the weights ai,t−1 sum up to 1, that is a0,t−1 = 0. Thus, under SF we

have Vt
Vt−1

− 1 ≈ ǫ
(P )
t , where

ǫ
(P )
t =

m∑

i=1

ai,t−1ǫit = a
′
t−1ǫt, ai,t−1 =

µi,t−1pi,t−1∑m
j=1 µj,t−1pj,t−1

, (1.2)

for i = 1, . . . ,m, and at−1 = (a1,t−1, . . . , am,t−1)
′. The conditional VaR of the portfolio’s return

process (ǫ
(P )
t ) at risk level α ∈ (0, 1), denoted by VaR

(α)
t−1(ǫ

(P )), is defined by

Pt−1

[
ǫ
(P )
t < −VaR

(α)
t−1(ǫ

(P ))
]
= α, (1.3)

where Pt−1 denotes the historical distribution conditional on {pu, u < t}.

1.2 Univariate vs multivariate modeling of the portfolio’s dynamic

In order to estimate the conditional risk of the portfolio’s return ǫ
(P )
t from observations ǫ1, . . . , ǫn,

two strategies can be advocated. A multivariate strategy requires a dynamic model for the vector

of risk factors ǫt, while a univariate approach will be based on a dynamic model for the portfolio’s

return (ǫ
(P )
t ). According to Bauwens, Laurent and Rombouts (2006), "it is probably simpler to

use the univariate framework if there are many assets, but we conjecture that using a multivariate

specification may become a feasible alternative. Whether the univariate "repeated" approach is

more adequate than the multivariate one is an open question." These issues were tackled, by means

of Monte-carlo experiments and real data analysis, by McAleer and da Veiga (2008), and Santos,

Nogales and Ruiz (2013).

In fact, deriving a univariate model for the portfolio’s return may raise several difficulties.

i) Without further constraints on the past-dependent weights ai,t−1, the resulting process (ǫ
(P )
t )

might not be stationary (details will be given below). Needless to say that developing statistical

inference procedures in this situation can be cumbersome.

ii) By embedding the weights into the stochastic process, the univariate approach does not fa-

cilitate portfolio comparison. For instance the determination of an optimal portfolio in the

mean-variance sense requires knowledge of the first two conditional moments of the vector

process.
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iii) More importantly, the univariate approach provides a VaR defined by

P ∗
t−1

[
ǫ
(P )
t < −VaR

(α)∗
t−1 (ǫ

(P ))
]
= α, (1.4)

where P ∗
t−1 denotes the distribution conditional on {ǫ(P )

u , u < t}, which is different from the

VaR defined in (1.3). The latter takes into account the full information brought by the past

prices.

We now describe more thoroughly the multivariate approach.

1.3 Multivariate modeling of the risk factors

The multivariate approach is based on a model which is independent of the weight sequence. Con-

sider a general multivariate model of the form

ǫt = mt(ϕ0) +Σt(ϑ0)ηt, (1.5)

where (ηt) is a sequence of independent and identically distributed (iid) R
m-valued variables with

zero mean and identity covariance matrix; the m×m non-singular matrix Σt(ϑ0) and the m×1 vector

mt(ϕ0) are specified as functions parameterized by a d-dimensional parameter θ0 = (ϕ′
0,ϑ

′
0) ∈

R
d1 × R

d2 of the past values of ǫt:

mt(ϕ0) = m(ǫt−1, ǫt−2, . . . ,ϕ0), Σt(ϑ0) = Σ(ǫt−1, ǫt−2, . . . ,ϑ0). (1.6)

For the sake of generality, we do not consider a particular specification of the conditional mean mt,

or the conditional variance Σt.
1

In view of (1.2)-(1.5), the portfolio’s return satisfies

ǫ
(P )
t = a

′
t−1mt(ϕ0) + a

′
t−1Σt(ϑ0)ηt, (1.7)

from which it follows that its conditional VaR at level α is given by

VaR
(α)
t−1(ǫ

(P )) = −a
′
t−1mt(ϕ0) + VaR

(α)
t−1

(
a
′
t−1Σt(ϑ0)ηt

)
. (1.8)

The VaR formula can be simplified if we assume that the errors ηt have a spherical distribution,

that is, Pηt and ηt have the same distribution for any orthogonal matrix P . This is equivalent to

assuming that

1 The most widely used specifications of multivariate GARCH models are discussed in Bauwens, Laurent and

Rombouts (2006), Silvennoinen and Teräsvirta (2009), Francq and Zakoïan (2010, Chapter 11), Bauwens, Hafner and

Laurent (2012), Tsay (2014, Chapter 7). Model (1.6) also includes multivariate extensions of the double-autoregressive

models studied by Ling (2004).
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A1: for any non-random vector λ ∈ R
m, λ′ηt

d
= ‖λ‖η1t,

where ‖ · ‖ denotes the euclidian norm on R
m, ηit denotes the i-th component of ηt, and

d
= stands

for the equality in distribution. 2 Under the sphericity assumption A1 we have

VaR
(α)
t−1(ǫ

(P )) = −a
′
t−1mt(ϕ0) +

∥∥a′t−1Σt(ϑ0)
∥∥VaR(α) (η) , (1.9)

where VaR(α) (η) is the (marginal) VaR of η1t.

1.4 Estimation risk

Estimation risk refers to the uncertainty implied by statistical procedures in the implementation of

risk measures. Uncertainty affects the estimation of risk measures, as well as the backtesting proce-

dures used to assess the validity of risk measures. As far as the VaR of a portfolio is concerned, as

defined in (1.9), it is clear that uncertainty results from the estimation of the model parameter θ0, as

well as from the estimation of the VaR of η1t. The econometric literature devoted to the estimation

risk in dynamic models is scant. Christoffersen and Gonçalves (2005), and Spierdijk (2014) used re-

sampling techniques to account for parameter estimation uncertainty in univariate dynamic models.

Escanciano and Olmo (2010, 2011) proposed corrections of the standard backtesting procedures in

presence of estimation risk (and also of model risk). Gouriéroux and Zakoïan (2013) showed that

estimation induces an asymptotic bias in the coverage probabilities and proposed a corrected VaR.

Francq and Zakoïan (2015a) introduced the notion of risk parameter (to be discussed below) and

derived asymptotic confidence intervals for the conditional VaR of univariate returns.

1.5 Aims of the paper

The first aim of this paper is to study the asymptotic properties of different multivariate approaches

for estimating the conditional VaR of a portfolio of risk factors (returns). One approach for estimat-

ing conditional VaR’s requires sphericity of the innovations distribution. Based on formula (1.9), it

consists in estimating parameter θ0 in the first step, and replacing the VaR of ηt by an empirical

quantile of the residuals. An alternative approach, known as the Filtered Historical Simulation

(FHS) method in the literature (see Barone-Adesi, Giannopoulos and Vosper (1999), Mancini and

Trojani (2011) and the references therein), is assumption-free on the innovations distribution. The

second aim is to provide a method for constructing confidence intervals for the conditional VaR of

2Note that the choice of any other norm in this assumption would not be compatible with the assumed unit

covariance matrix for ηt. Indeed, under A1 we have Var(λ′ηt) = λ′λ = ‖λ‖2Var(η1t) = ‖λ‖2.
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portfolios, that is, a way to visualize the estimation risk. The third aim is to provide a framework

for selecting portfolios, on the basis of their estimated conditional risks. The goal is to estimate

the composition, as well as the risk, of dynamic "optimal portfolios" (in the sense of minimal con-

ditional variance or minimal conditional VaR). The last aim is to compare, from a practical point

of view, the univariate and multivariate approaches. Despite the previously underlined difficulties,

the univariate approach is popular among practitioners because of its simplicity, and may provide

good results in certain situations.

The rest of this paper is organized as follows. Section 2 is devoted to the asymptotic properties

of the estimators of the conditional VaR under the sphericity assumption. This assumption is

relaxed in Section 3. Comparisons of the different approaches are proposed in Section 4. Proofs

and complementary results are collected in the Appendix.

2 Conditional VaR estimation under sphericity

Under the sphericity assumption A1, a natural strategy for estimating the conditional VaR of a

portfolio is to estimate θ0 by some consistent estimator θ̂n = (ϕ̂′
n, ϑ̂

′
n)

′ in a first step, to extract the

residuals and to estimate VaR(α) (η) in a second step. For the first step, we will consider a general

estimator satisfying some regularity conditions. For the second step, the sphericity assumption will

allow us to interpret VaR(α) (η) as the (1 − 2α)-quantile ξ1−2α of the absolute residuals, and to

estimate this quantile by an empirical quantile using all components of the first-step residuals.

Let Θ = Θϕ ×Θϑ denote the parameter space, and assume θ0 ∈ Θ. Let θ̂n = (ϕ̂′
n, ϑ̂

′
n)

′ denote

an estimator of parameter θ0, obtained from observations ǫ1, . . . , ǫn and initial values ǫ̃0, ǫ̃−1, . . . .

The vector of residuals is defined by η̂t = Σ̃
−1

t (ϑ̂n){ǫt − m̃t(ϕ̂n)}) = (η̂1t, . . . , η̂mt)
′. Let m̃t(ϕ) =

m(ǫt−1, . . . , ǫ1, ǫ̃0, ǫ̃−1, . . . ,ϕ), Σ̃t(ϑ) = Σ(ǫt−1, . . . , ǫ1, ǫ̃0, ǫ̃−1, . . . ,ϑ), for t ≥ 1 and (ϕ′,ϑ′)′ ∈
Θ. For α ∈ (0, 1), let qα(S) denote the α-quantile of a set S ⊂ R. In view of (1.9), an estimator

based on the spherical assumption of the conditional VaR at level α is

V̂aR
(α)

S,t−1(ǫ
(P )) = −a

′
t−1m̃t(ϕ̂n) + ‖a′t−1Σ̃t(ϑ̂n)‖ξn,1−2α, (2.1)

where ξn,1−2α = q1−2α ({|η̂it|, 1 ≤ i ≤ m, 1 ≤ t ≤ n}). The latter estimator takes advantage of the

fact that the components of ηt are identically distributed under A1.
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2.1 Asymptotic joint distribution of θ̂n and a quantile of absolute returns

We start by introducing the assumptions that are employed to establish the asymptotic distribution

of (θ̂
′
n, ξn,1−2α).

A2: (ǫt) is a strictly stationary and nonanticipative3 solution of Model (1.5)-(1.6).

This assumption can be made explicit for particular classes of MGARCH models satisfying Model

(1.5)-(1.6). We now assume that the estimator θ̂n admits a Bahadur representation.

A3: We have θ̂n → θ0, a.s. Moreover, the following expansion holds

√
n
(
θ̂n − θ0

)
oP (1)
=

1√
n

n∑

t=1

∆t−1V (ηt), (2.2)

where V (·) is a measurable function, V : Rm 7→ R
K for some positive integer K, and ∆t−1

is a d×K matrix, measurable with respect to the sigma-field generated by {ηu, u < t}. The

variables ∆t and V (ηt) belong to L2 with EV (ηt) = 0, var{V (ηt)} = Υ is nonsingular

and E∆t = Λ =


 Λϕ

Λϑ


 is full row rank.

Assumption A3 holds for a variety of MGARCH models and estimators4 (see Appendix A for

examples).

A4: For all x ∈ R
K ,y ∈ R

m,

x′V (ηt) + y′να(ηt) = 0, a.s. =⇒ x = 0K , y = 0m,

where να(ηt) = (1{|η1t|<ξ1−2α} − 1 + 2α, . . . ,1{|ηmt |<ξ1−2α} − 1 + 2α)′.

Assumption A4 will be used to ensure the invertibility of the asymptotic covariance matrix of

(θ̂
′
n, ξn,1−2α). It is, in particular, satisfied if the random vectors ηt and V (ηt) have a positive

density over R
m and R

K , respectively. The next assumption imposes smoothness of the functions

m and Σ with respect to the parameter.

3In the sense that ǫt is a measurable function of the variables ηu with u ≤ t.
4In the univariate setting, the asymptotic theory of estimation for GARCH parameters has been extensively

studied, in particular for the QMLE by Berkes, Horváth and Kokoszka (2003) and for the LAD (Least Absolute

Deviation) estimator by Ling (2005). In the multivariate setting, the asymptotic properties of the QMLE or alternative

estimators were established, for particular classes, by Comte and Lieberman (2003), Boswijk and van der Weide (2011),

Francq and Zakoian (2012), Pedersen and Rahbek (2014), Francq, Horváth and Zakoian (2015) among others.
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A5: The functions ϕ 7→ m(x1, x2, . . . ;ϕ) and ϑ 7→ Σ(x1, x2, . . . ;ϑ) are continuously differentiable

over Θϕ and Θϑ respectively.

The next theorem establishes the asymptotic normality of (θ̂
′
n, ξn,1−2α). Let Ψ =

E(∆tΥ∆
′
t) =


 Ψϕϕ Ψϕϑ

Ψϑϕ Ψϑϑ


 = (Ψ·ϕ Ψ·ϑ), Ω = E

[{
vec
(
Σ

−1
t

)}′ { ∂
∂ϑ′ vec (Σt)

}]
,

W α = Cov(V (ηt), Nt), γα = var(Nt), with Nt =
∑m

j=1

(
1{|ηjt|<ξ1−2α} − 1 + 2α

)
, and,

denoting by f the density of |η1t|, Ξθξ = −1
m

{
ξ1−2αΨ·ϑΩ

′ + 1
f(ξ1−2α)

ΛW α

}
, ζ1−2α =

1
m2

{
ξ21−2αΩΨϑϑΩ

′ + 2ξ1−2α

f(ξ1−2α)
ΩΛϑW α + γα

f2(ξ1−2α)

}
.

Theorem 2.1. Assume that A1-A5 hold. Let α ∈ (0, 0.5). Suppose that |η1t| admit a density f

which is continuous and strictly positive in a neighborhood of ξ1−2α. Then

√
n


 θ̂n − θ0

ξn,1−2α − ξ1−2α


 L→ N


0,Ξ :=


 Ψ Ξθξ

Ξ
′
θξ ζ1−2α




 . (2.3)

Moreover, Ξ is nonsingular.

Details on how to estimate the asymptotic covariance matrix Ξ can be found in Appendix C.

2.2 Conditional VaR parameter

The notion of VaR parameter, introduced for univariate GARCH models by Francq and Zakoïan

(2015a), allows to summarize the conditional risk, that is the joint effects of the volatility coefficients

and the tails of the innovation process, in a single vector of coefficients. Its extension to the

multivariate framework requires the following assumption.

A6: There exists a continuously differentiable function G : Rd2+1 7→ R
d2 such that for any

ϑ ∈ Θϑ, any K > 0, and any sequence (xi)i on R
m

KΣ(x1,x2, . . . ;ϑ) = Σ(x1,x2, . . . ;ϑ
∗), where ϑ∗ = G(ϑ,K).

In other words, a change of the scale in the components of η can be compensated by a change of

the variance parameter. This assumption is obviously satisfied for all commonly used parametric

forms of Σt(ϑ).
5 Under sphericity and the stability-by scale assumption A6 on the volatility

function Σt(·), the conditional VaR can be expressed in function of the expected returns vector and

5For instance, in the case of the BEKK-GARCH(1,1) model (C.1), with ϑ = (vec(A)′, vec(B)′, vec(C)′)′, we find

ϑ∗ = (Kvec(A)′, vec(B)′,K2vec(C)′)′.
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a reparameterized volatility matrix. Let α < 1/2, so that VaR(α) (η) > 0 under A1. It follows from

A6 that

VaR
(α)
t−1(ǫ

(P )) = −a
′
t−1mt(ϕ0) + ‖a′t−1Σt(ϑ

∗
0)‖ (2.4)

where

ϑ∗
0 = G

{
ϑ0,VaR(α) (η)

}
. (2.5)

The new parameter θ∗
0 = (ϕ′

0,ϑ
∗′
0 )

′ is referred to as the conditional VaR parameter, for a given

risk level. It does not depend on the portfolio composition. An estimator of the conditional VaR

parameter can be defined as

θ̂
∗
n = (ϕ̂′

n, ϑ̂
∗′
n )

′ where ϑ̂
∗
n = G

{
ϑ̂n, V̂aR

(α)

n (η)

}

with obvious notations. The asymptotic properties of θ̂
∗
n are a direct consequence of Theorem 2.1.

Corollary 2.1 (CAN of the VaR-parameter estimator). Under the assumptions of Theorem 2.1,
√
n
(
θ̂
∗
n − θ∗

0

)
L→ N

(
0,Ξ∗ := ĠΞĠ

′)
where

Ġ =




Id1 0d1×(d+1)

0(d+1)×d1

[
∂G(ϑ,ξ)
∂(ϑ′,ξ)

]
(ϑ0,ξ1−2α)


 .

The asymptotic distribution of θ̂
∗
n provides a quantification of the estimation risk.

2.3 Asymptotic confidence intervals for the VaR’s of portfolios

In view of (2.4), the estimator in (2.1) of the conditional VaR of the portfolio at level α writes

V̂aR
(α)

S,t−1(ǫ
(P )) = −a

′
t−1mt(ϕ̂n) + ‖a′t−1Σt(ϑ̂

∗
n)‖. (2.6)

Let Ξ̂
∗

denote a consistent estimator of Ξ
∗. By the delta method, an approximate (1 − α0)%

confidence interval (CI) for VaRt(α) has bounds given by

V̂aR
(α)

S,t−1(ǫ
(P ))± 1√

n
Φ−1(1− α0/2)

{
δ′t−1Ξ̂

∗
δt−1

}1/2
, (2.7)

where

δ′t−1 =

(
a
′
t−1

∂m̃(ϕ̂n)

∂ϕ′
1

2‖a′t−1Σ̃t(ϑ̂
∗
n)‖

(a′t−1 ⊗ a
′
t−1)

∂vecH̃ t(ϑ̂
∗
n)

∂ϑ′

)
,

H̃ t(·) = Σ̃t(·)Σ̃
′
t(·), and Φ−1(u) denotes the u-quantile of the standard Gaussian distribution,

u ∈ (0, 1). Drawing such CIs allows to take into account the estimation risk inherent to the
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Figure 1: True 1%-VaR (full black line) and estimated 95%-confidence interval (dotted blue line) for the

1%-VaR, on a simulation of a fixed portfolio of a bivariate BEKK.

evaluation of the VaR of the portfolio. Note that the level α0 of risk estimation is independent from

the market risk level α.

An illustration is displayed in Figure 1, for the simulation of a bivariate BEKK model. The

model parameters were estimated on 700 observations. The figure provides the true and estimated

conditional 1%-VaRs, for t > 700, as well a CIs at 95% for the true conditional VaR, of a portfolio

with fixed composition. This graph allows to visualize simultaneously the market risk (through the

magnitude of the VaR) and the estimation risk (through the width of the CIs).

2.4 Optimal dynamic portfolios

The portfolio with the smallest variance (the mean-variance efficient portfolio, that we call hereafter

Markowitz’s portfolio) is

ǫ
(P )∗
t = ǫ′ta

∗
0,t−1, a∗

0,t−1 =
Σ

−2
t (ϑ0)e

e′Σ−2
t (ϑ0)e

. (2.8)

The theoretical conditional VaR of this portfolio is obtained by computing the opposite of the

α-quantile of a∗′
0,t−1Σt(ϑ0)η1, which is simply given by

VaR
(α)
t−1

(
ǫ
(P )∗
t

)
=
∥∥∥a∗′

0,t−1Σt(ϑ0)
∥∥∥ ξ1−2α =

1√
e′Σ−2

t (ϑ0)e
ξ1−2α (2.9)

under the sphericity assumption. Different alternative types of optimal portfolios have been intro-

duced in the finance literature. In particular, several papers developed portfolio selection based on
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VaR (see for instance Alexander and Baptista (2002), Campbell, Huisman and Koedijk (2001)). In

the following, we derive the optimal dynamic composition of a portfolio that minimizes the VaR at

level α. Such a portfolio can be called optimal-VaR portfolio at level α.

Under the sphericity assumption A1, the conditional VaR of the portfolio’s return process (ǫ
(P )
t )

at risk level α is given by (1.9) which, omitting the parameter, writes

VaR
(α)
t−1(ǫ

(P )) = −a
′
t−1mt +

∥∥a′t−1Σt

∥∥ ξ1−2α := qt−1(at−1),

where at−1 satisfies e′at−1 = 1. Let a∗
α,t−1 := arg min{a|e′a=1} qt−1(a), the composition of the

optimal-VaR portfolio in the spherical case. Let

∆
(α)
t−1 =

(
e′Σ−2

t mt

)2 −
(
e′Σ−2

t e
) (

m′
tΣ

−2
t mt

)
+
(
e′Σ−2

t e
)
ξ21−2α. (2.10)

Proposition 2.1. Under the sphericity assumption A1, the optimal-VaR portfolio at time t exists

and is unique if and only if ∆
(α)
t−1 > 0. The optimal composition is given by

a∗
α,t−1 =

Σ
−2
t (mt + λe)

e′Σ−2
t (mt + λe)

where λ =
−e′Σ−2

t mt +

√
∆

(α)
t−1

e′Σ−2
t e

(2.11)

and the optimal VaR is qt−1(a
∗
α,t−1) = λ.

In the particular case where mt and e are colinear, that is mt = mte where mt ∈ R, we find

that a∗
α,t−1 reduces to

Σ
−2
t e

e′Σ−2
t e

:= a∗
0,t−1, which is the optimal composition in the mean-variance

sense. Note that a∗
0,t−1 = limα→0 a

∗
α,t−1. In this case, the optimal-VaR portfolio coincides with the

Markowitz portfolio and this portfolio does not depend on α. Interestingly, this property no longer

holds when mt 6= mte: the optimal portfolio in (2.11) clearly depends on the risk level α. More

precisely, the difference between the VaRs of the optimal-VaR and the Markowitz portfolios is

qt−1(a
∗
0,t−1)− qt−1(a

∗
t−1) =

(
e′Σ−2

t e
) (

m′
tΣ

−2
t mt

)
−
(
e′Σ−2

t mt

)2
(
e′Σ−2

t e
)
τt−1

≥ 0,

where τt−1 =
(
e′Σ−2

t e
)1/2

ξ1−2α +

√
∆

(α)
t−1. The nonnegativity of the numerator follows from the

Cauchy-Schwarz inequality. This inequality is strict unless if mt and e are colinear. Notice that

the difference between the two VaRs increases with the non colinearity of theses two vectors. On

the other hand, when α tends to 0, the difference vanishes.

3 Conditional VaR estimation without the sphericity assumption

In this section, we develop a method which does not require symmetries of the conditional distri-

bution, inherent to the sphericity assumption.
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3.1 FHS estimator and asymptotic CIs

To derive asymptotic results, we slightly modify the statistical framework by assuming that the

estimator θ̂n is based on past observations ǫt−n, . . . , ǫt−1. We will use the FHS approach which

relies on

i) interpreting the conditional VaR at time t as the α-quantile of a linear combination (depending

on t) of the components of the innovations;

ii) replacing the innovations by the GARCH residuals and computing the empirical α-quantile of

the estimated linear combination.

The conditional VaR of the portfolio return is VaR
(α)
t−1(ǫ

(P )) =

VaR
(α)
t−1

{
a
′
t−1mt(ϕ0) + a

′
t−1Σt(ϑ0)ηt

}
= −a

′
t−1mt(ϕ0) − qα(t;ϑ0) where qα(t;ϑ) denotes the

theoretical α-quantile of c′t(ϑ)η1, with the (considered as) non random vector c′t(ϑ) = a
′
t−1Σt(ϑ).

The conditional VaR at time t can thus be interpreted as the sum of the conditional mean and

a quantile of a time-varying linear combination of the components of the iid noise. It can be

estimated by

V̂aR
(α)

FHS,t−1(ǫ
(P )) = −a

′
t−1mt(ϕ̂n)− qn,α(t; θ̂n),

where qn,α(t; θ̂n) = qα

(
{c′t(ϑ̂n)η̂s, t− n ≤ s ≤ t− 1}

)
.

Let c : Θϑ 7→ R
m and b : Θϕ 7→ R denote continuously differentiable vector-valued functions.

Let ξα(θ) denote the theoretical α-quantile of b(ϕ)+c′(ϑ)ηt(θ), where ηt(θ) = Σ
−1
t (ϑ){ǫt−mt(ϕ)}.

Let ξn,α(θ) = qα ({b(ϕ) + c′(ϑ)ηt(θ), 1 ≤ t ≤ n}). We need to introduce the following identifiability

assumption.

A7: For all x ∈ R
K , y ∈ R,

x′V (ηt) + y(1b(ϕ0)+c′(ϑ0)ηt<ξα(θ0) − α) = 0, a.s. =⇒ x = 0K , y = 0.

Let Aα = Cov(V (ηt),1{b(ϕ0)+c′(ϑ0)ηt<ξα(θ0)}),

ω′ =

[
c′(ϑ0)E(C t)−

∂b

∂ϕ′ (ϕ0) d′
α

{
(c′(ϑ0)⊗ Im)E(Ω∗

t )−
∂c

∂ϑ′ (ϑ0)

}]
,

12



where dα = E(ηt | b(ϕ0) + c′(ϑ0)ηt = ξα(θ0)) and

Ω
∗
t =




Im ⊗ e′1
...

Im ⊗ e′m


 (Im ⊗Σ

−1
t )

∂

∂ϑ′ {vec(Σt)} ,

Ct =

{
Im ⊗ vec′

(
∂mt

∂ϕ′

)}



Id1 ⊗Σ
−1
t e1

...

Id1 ⊗Σ
−1
t em


 .

The following result establishes the asymptotic distribution of ξn,α(θ̂n).

Theorem 3.1. Assume that A2, A3, A7 hold. Suppose that the variable c′(ϑ0)ηt admits a density

fc which is continuous and strictly positive in a neighborhood of x0 = ξα(θ0)− b(ϕ0). Then

√
n{ξn,α(θ̂n)− ξα(θ0)} L→ N

(
0, σ2 := ω′

Ψω + 2ω′
ΛAα +

α(1 − α)

f2
c (x0)

)
.

Moreover σ2 > 0.

This theorem can be used to derive CIs for the conditional VaR at time t of the portfolio return,

with b(ϕ) = a
′
t−1mt(ϕ) and c′(ϑ) = a

′
t−1Σt(ϑ). A Nadaraya-Watson estimator of dα is, with

standard notation,

d̂α,t =

∑t−1
s=t−n η̂sKh

(
b(ϕ̂n) + c′(ϑ̂n)η̂s − ξn,α(θ̂n)

)

∑t−1
s=t−nKh

(
b(ϕ̂n) + c′(ϑ̂n)η̂s − ξn,α(θ̂n)

) .

A consistent estimator σ̂2
t−1 of σ2 (based on the n observations anterior to time t − 1) can be ob-

tained by replacing the other theoretical quantities introduced before the theorem by their empirical

counterparts, and by using the approach described in Appendix C to compute the derivatives of Σt

and mt for particular models. An approximate (1− α0)% CI for VaR
(α)
t−1(ǫ

(P )) is thus given by

V̂aR
(α)

FHS,t−1(ǫ
(P ))± 1√

n
Φ−1(1− α0/2)σ̂t−1. (3.1)

3.2 Efficiency comparisons in the static case

In this section, we compare the efficiencies of the multivariate and univariate approaches for es-

timating the VaR of a simplistic portfolio. We consider a static framework in which, in (1.5),

m(·) = 0 and the matrix Σt(ϑ0) is constant and diagonal, Σt(ϑ0) = Σ(ϑ0) = diag(σ01, . . . , σ0m),

with ϑ0 = (σ2
01, . . . , σ

2
0m)′. Moreover, the portfolio satisfies

at−1 = a = (a1, . . . , am)′, where a1, . . . , am ≥ 0, and

m∑

j=1

aj = 1.
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Such a portfolio can be called static and it is obtained by taking in (1.1) the dynamic weights

µi,t−1 = Vt−1ai/pi,t−1.
6 The return’s portfolio a

′ǫt is thus iid and its conditional VaR is constant.

Under the sphericity assumption A1, we have

VaR
(α)
t−1(ǫ

(P )) = ‖a′Σ(ϑ0)‖ξ1−2α = {ã′ϑ0}1/2ξ1−2α,

where ã = (a21, . . . , a
2
m)′. Let ϑ̂n = (σ̂2

n1, . . . , σ̂
2
nm)′ the Gaussian QMLE of ϑ0, with σ̂2

ni =

1
n

∑n
t=1 ǫ

2
it. Under the sphericity assumption, the (constant) conditional VaR can be estimated by

V̂aR
(α)

S,t−1(ǫ
(P )) = ‖a′Σ(ϑ̂n)‖ξn,1−2α = {ã′ϑ̂n}1/2ξn,1−2α.

On the other hand, the FHS method, without the sphericity assumption, reduces to a univariate

method in this setting. Indeed,

c′t(ϑ̂n)η̂s = a′
Σ(ϑ̂n)Σ

−1(ϑ̂n)ǫs = a′ǫs,

and the estimator V̂aR
(α)

FHS,t−1(ǫ
(P )) is simply −qα ({a′ǫ1, . . . ,a′ǫn}). An alternative uni-

variate method exploits the symmetry of the distribution of a
′ǫt: let V̂aR

(α)

U,t−1(ǫ
(P )) =

q1−2α ({|a′ǫ1|, . . . , |a′ǫn|}) .
The following result compares the asymptotic distributions of those three estimators of

VaR
(α)
t−1(a

′ǫt), when the distribution of ηt is Gaussian. Let φ denote the probability density function

of the standard normal law.

Corollary 3.1. For the static model ǫt = Σ(ϑ0)ηt, where Σ(ϑ0) = diag(σ01, . . . , σ0m) and ηt ❀

N (0, Im) we have

√
n

{
V̂aR

(α)

S,t−1(ǫ
(P ))− VaR

(α)
t−1(a

′ǫt)

}
L→ N

(
0, σ2

S(α,a)
)
,

√
n

{
V̂aR

(α)

FHS,t−1(ǫ
(P ))− VaR

(α)
t−1(ǫ

(P ))

}
L→ N

(
0, σ2

FHS(α,a)
)
,

√
n

{
V̂aR

(α)

U,t−1(ǫ
(P ))− VaR

(α)
t−1(ǫ

(P ))

}
L→ N

(
0, σ2

U (α,a)
)
,

where

σ2
S(α,a) =

ξ21−2α

2

{∑m
i=1 a

4
i σ

4
0i∑m

i=1 a
2
i σ

2
0i

−
∑m

i=1 a
2
iσ

2
0i

m

}
+

2α(1 − 2α)

4φ2(ξ1−2α)

∑m
i=1 a

2
iσ

2
0i

m
,

σ2
FHS(α,a) =

α(1 − α)

φ2(ξ1−2α)

m∑

i=1

a2iσ
2
0i, σ2

U (α,a) =
2α(1 − 2α)

4φ2(ξ1−2α)

m∑

i=1

a2iσ
2
0i.

Moreover, σ2
S(α,a) < σ2

U(α,a) < σ2
FHS(α,a) when m ≥ 2.

6Symmetrically, it is possible to take fixed units of each asset in the composition of the portfolio. A portfolio will

be called crystallized if, for each i = 1, . . . m, we have µi,t−1 = µi for all t.
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Remark 3.1. For the static Gaussian model with m ≥ 2, the multivariate estimator is thus asymp-

totically strictly more efficient than the univariate estimator, and the efficiency ratio is given by

σ2
S(α,a)

σ2
U (α,a)

=
1

m

[
1 +

ξ21−2αφ
2(ξ1−2α)

α(1 − 2α)

{
1
m

∑m
i=1 a

4
iσ

4
0i(

1
m

∑m
i=1 a

2
iσ

2
0i

)2 − 1

}]
.

It follows that

1

m
≤ σ2

S(α,a)

σ2
U (α,a)

≤ 1

m

[
1 + (m− 1)

ξ21−2αφ
2(ξ1−2α)

α(1− 2α)

]
. (3.2)

The lower bound is reached when the weight of each asset i in the portfolio is proportional to 1/σi.

The upper bound is reached when the portfolio reduces to one asset (aoi = 0 for all except one i).

It is maximized, for α = 0.069..., by 0.652 + 0.348
m .

Remark 3.2. The computations required to obtain the asymptotic variance σ2
S(α,a) are hardly

extendable to the case where ηt follows another spherical distribution than the Gaussian. Simulation

experiments reported in Appendix E show that for some fat tailed distributions the univariate

method may be more accurate than the multivariate method.

Remark 3.3 (Estimation effect on the asymptotic accuracies). In the multivariate estimation of the

VaR, the estimation of ϑ0 occurs in two places: in the estimation of {ã′ϑ0}1/2 and in the estimator

ξn,1−2α of the residuals quantile. To separate the two effects, let us introduce the infeasible estimator

of the VaR

ṼaR
(α)

t−1(a
′ǫt) = {ã′ϑ0}1/2ξn,1−2α.

The asymptotic variance σ̃2
S(α,a) of

√
n

(
ṼaR

(α)

t−1(a
′ǫt)− VaR

(α)
t−1(a

′ǫt)

)
is given by

σ̃2
S(α,a) =

1

m

m∑

i=1

a2iσ
2
0i

(
−ξ21−2α

2
+

2α(1 − 2α)

4φ2(ξ1−2α)

)

and the ratio of asymptotic efficiency of the univariate estimator with respect to this theoretical

estimator is independent of the portfolio,

σ̃2
S(α,a)

σ2
U (α,a)

=
1

m

{
1− ξ21−2αφ

2(ξ1−2α)

α(1− 2α)

}
.

Unsurprisingly, this ratio varies in 1/m, the quantile ξn,1−2α being based on m times more obser-

vations than the univariate estimator of the VaR. The negative second term in the bracket comes

from the fact that, in the Gaussian framework, quantiles based on residuals are more accurate than
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quantiles based on observations of the i.i.d. process (see for instance Francq and Zakoïan (2015a)).

It follows that

σ2
S(α,a)

σ2
U (α,a)

=
σ̃2
S(α,a)

σ2
U (α,a)

+
1

m

ξ21−2αφ
2(ξ1−2α)

α(1 − 2α)

1
m

∑m
i=1 a

4
i σ

4
0i(

1
m

∑m
i=1 a

2
iσ

2
0i

)2 ,

where the first term in the right-hand side represents the effect of the estimation of ϑ0 on the

quantile of the iid process. The second term represents the price paid, in the multivariate method,

for the estimation of ϑ0 in {ã′ϑ0}1/2.

3.3 Optimal-VaR portfolios

In the spherical case, the optimal-VaR portfolio is obtained in closed form, by Proposition 2.1, and

it coincides with the Markowitz portfolio in the absence of conditional mean (mt(ϑ0) = 0). None

of these properties continues to hold in the non-spherical case. The portfolio with the smallest VaR,

at a given level α, is defined by

ǫ
(α)
t = ǫ′ta

(α)
t−1, a

(α)
t−1 = arg min

a:a′e=1
VaR

(α)
t−1

{
a′mt(ϑ0) + a′

Σt(ϑ0)ηt

}
. (3.3)

In practical situation, θ0 is unknown but the optimal-VaR portfolio can be estimated by ǫ̂
(α)
t =

ǫ′tâ
(α)
t−1 where

â
(α)
t−1 = arg min

a:a′e=1
−qα

{
a′mt(ϑ̂n) + a′

Σ̃t(ϑ̂n)η̂u, u = 1, . . . , n
}
.

4 Numerical illustrations

The first two parts of the section presents a selection of Monte-Carlo experiments aiming at studying

the performance of the previous approaches in finite sample. Real data examples will be presented

in the third part.7

4.1 Invalidity of the univariate approach when the composition is time varying

For simplicity, we consider a crystallized equally weighted portfolio of 3 assets (of initial price

pi0 = 1000) Vt =
∑3

i=1 pit. Thus, the return portfolio composition is time varying, with coefficients

7 The code and data used in the paper are available on the web site

http://perso.univ-lille3.fr/~cfrancq/Christian-Francq/VaRPortfolio.html
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at−1 = (a1,t−1, a2,t−1, a3,t−1)
′ and ai,t−1 = pi,t−1/

∑3
j=1 pj,t−1. Assume that the vector of the log-

returns is iid, centered, with variance Var(ǫt) = Σ
2 = DRD, with

D =




0.01 0 0

0 0.02 0

0 0 0.04


 , R =




1 −0.855 0.855

−0.855 1 −0.810

0.855 −0.810 1


 .

The composition at−1 of the portfolio is plotted in Figure 2. It can be shown that this vector is non

stationary8. More precisely, by the Chung-Fuks theorem, more and more frequently the composition

at−1 of the portfolio approaches one of the three single-asset portfolios (1, 0, 0), (0, 1, 0) and (0, 0, 1).

It is thus non surprising to see that the univariate return series ǫ
(P )
t (not reported here) exhibits

some nonstationarity features, in particular marginal heteroscedasticity. However, because the series

also presents conditional heteroscedasticity, we fitted a GARCH(1,1) model which corresponds to

common practice. The parameters of this model are estimated online, starting from t = 200. As

in Section 3.2, V̂aR
(α)

FHS,t−1(ǫ
(P )) = −qα

(
{a′

t−1ǫ1, . . . ,a
′
t−1ǫt−1}

)
. These empirical quantiles were

computed starting from t = 150. The spherical method, based on the estimation of Σ, was computed

on the same range of observations. Figure 3 displays the sample paths of the true conditional VaR

as well as the 3 estimated VaRs. It can be seen that the spherical method converges faster to the

true value than the FHS method. On the other hand, the univariate method fails to converge to

the theoretical conditional VaR. This can be explained by the difference between the information

sets (point iii) in Section 1.2), and also by the non stationarity of the univariate series of portfolio

returns. appropriate for this non stationary series.

The results of this section are in agreement with Santos et al. (2013) who found that, on real

and simulated series, multivariate models outperform univariate models. Therefore, we shall not

consider the univariate approach in the subsequent illustrations.

4.2 Comparison of the multivariate approaches on DCC models

In this section, we consider more involved/realistic models, namely the Dynamic Conditional Cor-

relation (DCC) GARCH model (see Appendix D for a presentation).

We simulated N independent trajectories of length n for the corrected DCC (cDCC)

GARCH(1,1) model of Aielli (2013). On each simulation, the first n1 observations are used to

8Indeed, the ratio log (a1,t/a2,t) =
∑t

k=1 (ǫ1,k − ǫ2,k) is non stationary: the non-singularity of Σ entails that the

variance of ǫ1,k − ǫ2,k is non degenerated. This property holds under more general assumptions, for instance if the

sequence (ǫ1,k − ǫ2,k) is mixing and nondegenerated.
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Figure 2: Time-varying composition of the crystallized portfolio.
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Figure 3: True and estimated VaRs of the crystallized portfolio.
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obtain an estimator ϑ̂n1 of ϑ0 by the three-step estimator defined in Appendix D, and to com-

pute ξn1,1−2α = q1−2α {|η̂it|, i = 1, . . . ,m, t = 1, . . . , n1}. On the last n − n1 simulations, i.e. for

t = n1+1, . . . , n, we compared the theoretical VaR
(α)
t−1

(
ǫ
(P )∗
t

)
of the Markowitz portfolio (2.8) with

the two estimates obtained from the spherical and FHS methods, given respectively by

V̂aR
(α)

S,t−1(ǫ
(P )∗) =

ξn1,1−2α√
e′Σ̃

−2

t (ϑ̂n1)e

(4.1)

and

V̂aR
(α)

FHS,t−1(ǫ
(P )∗) = −qα

({
e′Σ̃

−1

t (ϑ̂n1)η̂u

e′Σ̃
−2

t (ϑ̂n1)e
, u = 1, . . . , n1

})
. (4.2)

We considered portfolios of m = 2 assets. The different designs, displayed in Appendix D, corre-

spond to spherical (designs A-H) or non spherical (designs A∗-H∗) distributions.

We took N = 100 independent replications, and n − n1 = 1000 out-of-sample predictions for

each simulation. In each design, we then compared the corresponding 10, 000 theoretical values

of the VaR defined by (2.9) with their estimates (4.1)-(4.2) obtained by the spherical and FHS

methods. Denote by MSES and MSEFHS the mean square errors (MSE) of prediction of the two

methods. Table 1 displays the relative efficiency (RE) of the spherical method with respect to the

FHS method, as measured by the ratio MSEFHS/MSES . In Designs A-H, the spherical method is

generally more efficient than the FHS method (for Designs C and D, the spherical method can be

two times more efficient than the other method). This is not surprising because the distribution of

the innovations is spherical in each of the designs A-H. The bottom panel of Table 1 shows that,

when the density is strongly asymmetric, the FHS method can be much more efficient than the

spherical method. It can be seen that the empirical REs decrease when the sample size increases,

reflecting the inconsistency of the spherical method.

From Table 1 and other simulations experiments conducted with crystallized and minimal-VaR

portfolios (see Appendix E), the two multivariate methods appear comparable when the conditional

distribution is spherical. Both are quite satisfactory and in agreement with the theoretical results.

In the non spherical case, the spherical approach is no longer reliable contrary to the FHS method.

4.3 Optimal portfolios of exchange rates

We considered the daily returns of 5 exchange rates against the Euro: the Canadian Dollar (CAD),

the Chinese Yuan (CNY), the British Pound (GBP), the Japanese Yen (JPY) and the United States
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Table 1: Relative efficiency of the Spherical method with respect to the FHS method for the Markowitz portfolio.

n1 α A B C D E F G H

500 1% 1.181 1.109 2.567 2.350 1.076 1.174 1.232 1.424

5% 1.209 1.029 1.813 1.403 1.181 1.115 1.122 1.186

1000 1% 1.301 1.105 2.354 1.623 1.533 1.511 1.572 1.549

5% 1.144 1.025 2.070 0.999 1.249 1.077 1.332 1.011

A∗ B∗ C∗ D∗ E∗ F∗ G∗ H∗

500 1% 0.077 0.061 0.027 0.037 0.115 0.104 0.102 0.122

5% 0.325 0.321 0.133 0.250 0.447 0.518 0.462 0.526

1000 1% 0.079 0.032 0.016 0.018 0.059 0.030 0.029 0.036

5% 0.344 0.188 0.094 0.108 0.304 0.239 0.211 0.290

Dollar (USD). The data come from the European Central Bank and cover the period from January

14, 2000 to May 5, 2015. The total number of observations is n = 2582.

We first estimated a BEKK model on the 5 exchange rates over the whole sample except the

last 100 returns. We consider an equally-weighted crystalized portfolio (µi = 1 for i = 1, . . . , 5).

Figure 4, displaying the last 100 returns of the portfolio, shows that one return (23/01/20159)

is clearly below the lower bound of the 95%-CI of the 1%-VaR. For such a return, there is strong

evidence of violation of the theoretical VaR. For three other returns belonging to the CI (18/12/2014,

15/01/2015 and 25/02/2015), violation can be suspected.

A standard approach for evaluating VaR models is to use backtesting. Instead of the BEKK,

we estimated the more popular DCC-GARCH(1,1) model on the first n1 = 2000 observations and

computed the residuals η̂u, u = 1, . . . , n1. Instead of crystalized portfolios, we considered optimal

portfolios. The top panels of Figure 5 display the returns of the estimated Markowitz portfolio

ǫ̂
(P )∗
t =

e′Σ̃
−2

t (ϑ̂n1)ǫt

e′Σ̃
−2

t (ϑ̂n1)e
, t = n1 + 1, . . . , n

together with V̂aR
(1%)

S,t−1(ǫ
(P )∗) (left panel) and V̂aR

(1%)

FHS,t−1(ǫ
(P )∗) (right panel), as defined by

(4.1)-(4.2). The most striking output is that the two methods give virtually indistinguishable

estimated VaRs for the Markowitz portfolio. The bottom panels present the sample paths of

the portfolios ǫ̂
(α)
t of minimal VaR (at levels 1% and 5%) together with their VaRs defined by

9The European Central Bank announced a large-scale bond-buying program to address the risks of deflation in

Eurozone which entailed large exchange rates variations.
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Figure 4: Returns of the portfolio (dark line) for the period 09/12/2014 to 05/05/2015, estimated 1%-VaR

and 95%-confidence interval (full and dotted blue lines), based on the estimation of a BEKK model for the

exchange rates.

−qα

(
{η̂′

uΣ̃t(ϑ̂n1)â
(α)
t−1, u = 1, . . . , n1}

)
. The global shapes of these portfolios paths are similar

to Markowitz portfolio’s path, but they differ at some points. In the spherical case the optimal

portfolios (VaR and Markowitz) should coincide, but the difference could be due to estimation

or optimization. Applying the sphericity test recently proposed by Francq, Jimenez Gamero and

Meintanis (2015), we found that the sphericity hypothesis cannot be rejected at any reasonable

level.10 Table 2 provides the p-values of three backtests (see Christoffersen (2003) for details): the

unconditional coverage (UC) test that the probability of violation is equal to the nominal level

α, the independence (IND) test that the violations are independent, and the conditional coverage

(CC) test. The VaR estimation procedures clearly pass the backtests, except in two cases. For

the Markowitz portfolio and, to a lesser extent for the 5% minimal VaR portfolio, with both VaRs

estimated by FHS, the numbers of violations are below the 5% level. In view of the sphericity test

and these backtests, the spherical approach seems more reliable than the FHS on these data.

10Applying the KS(2) test of Section 6 with L = 8, and B = 100 bootstrap replications, we obtained an empirical

p-value equal to 0.73.
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5 Conclusion

This paper develops a unified theory for the inference of conditional VaRs of dynamic portfolios.

The dynamics of the underlying vector process of returns is governed by a quite general stationary

multivariate GARCH-type model. The portfolio is based on a combination of individual returns

which can be time-varying. We showed that, by circumventing the non stationarity of the resulting

portfolio, multivariate approaches are more reliable than the univariate approach based on the sole

univariate modeling of the portfolio’s returns. Moreover, they account for richer information than

aggregate information conveyed by the past portfolio returns. Beyond these intuitive arguments, we

established, both theoretically and empirically, the invalidity of the univariate approach. We also

showed that the sphericity assumption on the innovations distribution allows i) to define the concept

of VaR parameter for which we provided an asymptotically Gaussian estimator; ii) to quantify the

estimation risk via asymptotic IC’s on the VaR parameter; iii) to obtain the minimal-VaR portfolios

in closed form and estimate their conditional VaRs. Without the sphericity assumption, asymptotic

results were also derived for the FHS estimator. For both approaches, with or without the sphericity

assumption, we showed how to build asymptotic CIs for the conditional VaR and thus to visualize

on the same graph both market and estimation risks. As far as the comparison between the two

approaches is concerned, our results and experiments allow us to draw the following lessons, by

distinguishing three different problems:

i) Estimating the conditional VaR by the spherical method is simpler and more accurate

when sphericity holds. On the other hand, it may yield inconsistent VaR estimators when

sphericity is in failure. The FHS method performs well in both cases and outperforms the first

approach in the absence of sphericity.

ii) Determining optimal-VaR portfolios is greatly facilitated under the sphericity assumption.

Without this assumption, the composition of an optimal-VaR portfolio has to be determined

numerically, which can be cumbersome in high dimension.

iii) Evaluating the asymptotic accuracy of the conditional VaR estimators can be achieved

using Theorems 2.1 and 3.1. Implementation of the latter asymptotic results is more involved

but is worthwhile when sphericity is doubtful.

The practical implications of our results concern the derivation of reserves for financial positions.

By neglecting the estimation risk, practitioners may erroneously believe that the risk is controlled at
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Figure 5: Returns of estimated optimal portfolios of 5 exchange rates and their estimated VaR’s.

a given level. The problem is even more important in highly volatile periods, for which the accuracy

of risk estimators tends to lower. Our results could clearly be extended to other risk measures, but

we leave these extensions for future research.
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Table 2: p-values of three backtests

Portfolio Method α % of Viol UC IND CC

Markowitz Spherical 1% 2/582 0.065 0.906 0.182

Markowitz FHS 1% 2/582 0.065 0.906 0.182

Minimal 1%-VaR FHS 1% 3/582 0.195 0.860 0.426

Markowitz Spherical 5% 20/582 0.067 0.232 0.092

Markowitz FHS 5% 18/582 0.023 0.283 0.043

Minimal 5%-VaR FHS 5% 19/582 0.041 0.257 0.065
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Appendices

A Illustrations of the Bahadur representation A3

A.1 For the Gaussian QML

Let us illustrate (2.2) in Assumption A3 when m(·) = 0 and the criterion used to estimate θ0 = ϑ0

is the Gaussian QML. We have

θ̂n = arg min
θ∈Θ

n−1
n∑

t=1

ℓ̃t(θ) (A.1)

where

ℓ̃t(θ) = ǫ′tH̃
−1

t (θ)ǫt + log |H̃ t(θ)|, H̃ t(θ) = Σ̃t(θ)Σ̃
′
t(θ)

and

Σ̃t(θ0) = Σ(ǫt−1, . . . , ǫ1, ǫ̃0, ǫ̃−1, . . . ,θ0),

where ǫ̃−i, for i ≥ 0, denote arbitrary initial values. Under appropriate assumptions not discussed

here, we have the following expansion

√
n
(
θ̂n − θ0

)
oP (1)
= J−1 1√

n

n∑

t=1

∂ℓt(θ0)

∂θ
,

where

J = E

(
∂2ℓt(θ0)

∂θ∂θ′

)
and ℓt(θ) = ǫ′tH

−1
t (θ)ǫt + log |H t(θ)|,

with

H t(θ) = Σt(θ)Σ
′
t(θ), Σt(θ0) = Σ(ǫt−1, . . . , ).

Moreover, for j = 1, . . . , d, we have, using the equality Tr(A′B) = vec′(A)vec(B),

∂ℓt(θ0)

∂θj
= Tr

{
(Σ−1

t (θ0))
′(Im − ηtη

′
t)Σ

−1
t (θ0)

∂H t(θ0)

∂θj

}

= vec′
{
∂H t(θ0)

∂θj

}
vec
{
(Σ−1

t (θ0))
′(Im − ηtη

′
t)Σ

−1
t (θ0)

}

= vec′
{
∂H t(θ0)

∂θj

}{
Σ

−1
t (θ0)⊗Σ

−1
t (θ0)

}′
vec
{
Im − ηtη

′
t

}
.

It follows that

∂ℓt(θ0)

∂θ
=

∂vec′H t(θ0)

∂θ

{
Σ

−1
t (θ0)⊗Σ

−1
t (θ0)

}′
vec
{
Im − ηtη

′
t

}
.

Hence (2.2) holds with

∆t−1 = J−1∂vec′H t(θ0)

∂θ

{
Σ

−1
t (θ0)⊗Σ

−1
t (θ0)

}′
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and

V (ηt) = vec
{
Im − ηtη

′
t

}
.

A.2 For the EbE estimator of generalized CCC models

Francq and Zakoian (2015b) studied the asymptotic properties of the so-called Equation-by-

Equation (EbE) estimation method. In this approach, instead of estimating a m-multivariate

volatility model, m univariate GARCH-type models are estimated EbE in the first step, and a

correlation matrix is estimated in the second step. Let m(·) = 0, and assume

Σt(ϑ0) = DtR
1/2

where Dt = diag(σ1t, . . . , σmt) and R = (Rij) is a constant correlation matrix. Suppose that that

σ2
kt is parameterized by some parameter ζ

(k)
0 , so that





ǫkt = σktη
∗
kt,

σkt = σk(ǫt−1, ǫt−2, . . . ; ζ
(k)
0 ),

(A.2)

where σk is a positive function and η∗kt is the k-th component of R1/2ηt (see Francq and Zakoian

(2015b) for precise assumptions). Each volatility being allowed to depend on the past of all com-

ponents of ǫt, the model can be called generalized CCC. The parameter ϑ = θ := (ζ ′,ρ′)′ here

consists in the volatility parameters ζ = (ζ(1)
′
, . . . , ζ(m)′)′ and the correlation parameters

ρ = (R21, . . . , Rm1, R32, . . . , Rm2, . . . , Rm,m−1)
′.

The components of ζ are estimated in a first step by the QML method applied to each volatility

equation, while the correlation matrix is estimated by the sample autocorrelation. Equation (B.2)

in Francq and Zakoian (2015b) shows that (2.2) in Assumption A3 holds for the EbE estimator of

the generalized CCC model.

A.3 For the VTE of the CCC model

Consider the CCC-GARCH(p, q) model





ǫt = H
1/2
t ηt,

H t = DtR0Dt, D2
t = diag(ht),

ht − h0 =
∑q

i=1A0i

(
ǫt−i − h0

)
+
∑p

j=1B0j

(
ht−j − h0

)
,

(A.3)
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where ǫt =
(
ǫ21t, · · · , ǫ2mt

)′
and R0 is a correlation matrix. The matrices A0i and B0j are matrices

of size m×m with positive coefficients and h0 is a vector of dimension m such that

{
Im −

r∑

i=1

(A0i +B0i)

}
h0

has strictly positive coefficients (with r = max{p, q}). The parameter vector is denoted ϑ = (h′,γ′)′,

with

γ = (α′
1, . . . ,α

′
q,β

′
1, . . . ,β

′
p,ρ

′)′,

where

ρ′ = (ρ21, . . . , ρm1, ρ32, . . . , ρm2, . . . , ρm,m−1) ∈ R
m(m−1)/2

αi = vecAi ∈ R
m2

, i = 1, . . . , q,

and

βj = vecBj ∈ R
m2

, j = 1, . . . , p.

Using initial values, for any γ belonging to some compact set Θγ , the H̃ t’s are recursively defined,

for t ≥ 1, by





H̃ t = D̃tRD̃t, D̃t = {diag(h̃t)}1/2,

h̃t = h̃t(ϑ) = h+
∑q

i=1 Ai

(
ǫt−i − h

)
+
∑p

j=1Bj

(
h̃t−j − h

)
.

The VTE of the parameter h0 is defined by the empirical mean

ĥn =
1

n

n∑

t=1

ǫt.

The VTE of the parameter γ0 is then defined by γ̂n = arg minγ∈Θγ
L̃n(γ), where

L̃n(γ) = n−1
n∑

t=1

ℓ̃t,n

and

ℓ̃t,n = ℓ̃t(ĥn,γ), ℓ̃t = ℓ̃t(h,γ) = ǫ′tH̃
−1

t ǫt + log |H̃ t|.

Letting ϑ̂n = (ĥ
′
n, γ̂

′
n)

′, the VTE of ϑ0, Francq, Horváth and Zakoïan (2015) showed that

√
n
(
ϑ̂n − ϑ0

)
= LnXn (A.4)
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where Ln converges in probability to some positive-definite matrix L,

Xn :=




√
n
(
ĥn − h0

)

1√
n

∑n
t=1

∂
∂γ ℓ̃t(ϑ0)


 =




C√
n

∑n
t=1(U

2
t − Im)ht

1√
n

∑n
t=1 Φt−1V t


+ oP (1),

where C is a non-random matrix, Φt−1 is a matrix which is measurable with respect to the past,

and

U t = diag(R
1/2
0 ηt), V t = vec(Im −R

−1/2
0 ηtη

′
tR

1/2
0 ).

It can be noted that

(U2
t − Im)ht = D2

tη
∗
t
,

where

η∗
t
=
(
η∗21t − 1, · · · , η∗2mt − 1

)′

and

η∗
t = (η∗1t, · · · , η∗mt)

′ = R
1/2
0 ηt.

Note that Eη∗
t
= 0.

Thus, (2.2) in Assumption A3 holds for the VTE of the CCC model with, in particular,

V (ηt) =
(
η∗′
t
,V ′

t

)′
.

B Proofs

B.1 Proof of Theorem 2.1

Note that

ξn,1−2α = argmin
z∈R

1

n

n∑

t=1

m∑

k=1

ρ1−2α(|η̂kt| − z),

where ρ1−2α(u) = u(1− 2α− 1{u≤0}). Thus

√
n(ξn,1−2α − ξ1−2α) = argmin

z∈R
Qn(z)

where

Qn(z) =

m∑

k=1

n∑

t=1

{
ρ1−2α

(
|η̂kt| − ξ1−2α − z√

n

)
− ρ1−2α(|ηkt| − ξ1−2α)

}
.
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Let ek denote the k-th column of the m ×m identity matrix Im. Let Σt = Σt(ϑ0). Let ηt(θ) =

Σ
−1
t (ϑ){ǫt −mt(ϕ)} = (η1t(θ), . . . , ηmt(θ))

′. We have, for j = 1, . . . , d1,

∂ηkt
∂θj

(θ0) = −e′kΣ
−1
t

∂mt

∂θj

and for j = d1 + 1, . . . , d,

∂ηkt
∂θj

(θ0) = −e′kΣ
−1
t

∂Σt

∂θj
Σ

−1
t {ǫt −mt(ϕ0)}

= Tr

{
−ηte

′
kΣ

−1
t

∂Σt

∂θj

}
= −

m∑

ℓ=1

ηℓte
′
kΣ

−1
t

{
∂

∂θj
Σ·ℓ,t

}
,

where Σ·ℓ,t is the ℓ-th column of Σt. Let

Ω
∗
kt = (Im ⊗ e′kΣ

−1
t )

∂

∂ϑ′ {vec(Σt)} , Ckt = vec

{
e′kΣ

−1
t

∂mt

∂ϕ′

}
, M ′

kt =
(
C ′

kt η′
tΩ

∗
kt

)
.

A Taylor expansion of ηkt(θ) around θ0 thus yields, with obvious notations for the components of

ϕ and ϑ,

η̂kt = ηkt −
d1∑

j=1

e′kΣ
−1
t

∂mt

∂ϕj
(ϕ̂nj − ϕ0j)

−
d2∑

j=1

m∑

ℓ=1

ηℓte
′
kΣ

−1
t

{
∂

∂ϑj
Σ·ℓ,t

}
(ϑ̂nj − ϑ0j) + oP (n

−1/2)

= ηkt −C ′
kt(ϕ̂n −ϕ0)− η′

tΩ
∗
kt(ϑ̂n − ϑ0) + oP (n

−1/2)

= ηkt −M ′
kt(θ̂n − θ0) + oP (n

−1/2). (B.1)

Note that for any sequence (bn) tending to zero and any real number a, we have, for n large enough,

|a− bn| = |a| − ubn where u = 1 if a > 0 or if a = 0 and bn < 0, and u = −1 otherwise. It follows

that

|η̂kt| =
∣∣∣ηkt −M ′

kt(θ̂n − θ0)
∣∣∣+ oP (n

−1/2) = |ηkt| − uktM
′
kt(θ̂n − θ0) + oP (n

−1/2),

where ukt = ±1, the sign of ukt being equal to that of ηkt when ηkt 6= 0, and to the sign of

−M ′
kt(θ̂n − θ0) when ηkt = 0.

Using the identity

ρ1−2α(u− v)− ρ1−2α(u) = −v(1 − 2α − 1{u<0}) +
∫ v

0

{
1{u≤s} − 1{u<0}

}
ds

for u 6= 0 (see Equation (A.3) in Koenker and Xiao, 2006), we thus have

Qn(z) =
m∑

k=1

zXn,k + Yn,k + In,k(z) + Jn,k(z),
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where

Xn,k =
1√
n

n∑

t=1

(1{|ηkt|<ξ1−2α} − 1 + 2α),

Yn,k =
1√
n

n∑

t=1

Rt,n,k(1{|ηkt|<ξ1−2α} − 1 + 2α),

In,k(z) =

n∑

t=1

∫ z/
√
n

0
(1{|ηkt|≤ξ1−2α+s} − 1{|ηkt|<ξ1−2α})ds,

Jn,k(z) =

n∑

t=1

∫ (z+Rt,n,k)/
√
n

z/
√
n

(1{|ηkt|≤ξ1−2α+s} − 1{|ηkt|<ξ1−2α})ds,

with Rt,n,k
oP (1)
= uktM

′
kt

√
n(θ̂n − θ0). We have In,k(z) → z2

2 f(ξ1−2α) in probability as n → ∞
(see Appendix B.2). Moreover, by the change of variable u = s − z/

√
n, we have Jn,k(z) =

J
(1)
n,k(z) + J

(2)
n,k(z) where

J
(1)
n,k(z) =

n∑

t=1

∫ Rt,n,k/
√
n

0

(
1{|ηkt|−ξ1−2α−z/

√
n≤u} − 1{|ηkt|−ξ1−2α−z/

√
n<0}

)
du,

J
(2)
n,k(z) =

n∑

t=1

∫ Rt,n,k/
√
n

0

(
1{|ηkt|−ξ1−2α−z/

√
n<0} − 1{|ηkt|−ξ1−2α<0}

)
du.

Let 1
∗
{X∈(a,b)} = 1{X<b} − 1{X<a} for any real numbers a, b and any real random variable X. We

have

J
(2)
n,k(z) =

n∑

t=1

{
uktM

′
kt(θ̂n − θ0) + oP (n

−1/2)
}
1
∗
{|ηkt|−ξ1−2α∈(0,z/

√
n)}

oP (1)
=

(
1√
n

n∑

t=1

ukt1
∗
{|ηkt|−ξ1−2α∈(0,z/

√
n)}M

′
kt

)
√
n(θ̂n − θ0)

=

(
1√
n

n∑

t=1

ukt1
∗
{|ηkt|−ξ1−2α∈(0,z/

√
n)}C

′
kt

)
√
n(ϕ̂n −ϕ0)

+

(
1√
n

n∑

t=1

ukt1
∗
{|ηkt|−ξ1−2α∈(0,z/

√
n)}η

′
tΩ

∗
kt

)
√
n(ϑ̂n − ϑ0).

Note that, for z > 0,

E(ukt1
∗
{|ηkt|−ξ1−2α∈(0,z/

√
n)})

= E(1{ηkt−ξ1−2α∈(0,z/
√
n)})− E(1{−ηkt−ξ1−2α∈(0,z/

√
n)}) = 0,

in view of the symmetry of the distribution of ηkt under the sphericity assumption A1. The same

equality holds for z ≤ 0.
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Now, for z > 0 and ℓ 6= k,

E(uktηℓt1
∗
{|ηkt|−ξ1−2α∈(0,z/

√
n)})

= E(ηℓt1{ηkt−ξ1−2α∈(0,z/
√
n)})− E(ηℓt1{−ηkt−ξ1−2α∈(0,z/

√
n)}) = 0,

because (ηℓt, ηkt) and (ηℓt,−ηkt) have the same distribution under A1. For k = ℓ we have

E(|ηkt|1∗{|ηkt|−ξ1−2α∈(0,z/
√
n)}) = ξ1−2αf(ξ1−2α)

z√
n
+ o(1/

√
n).

The same equalities hold for z ≤ 0. Thus, we have

E

(
1√
n

n∑

t=1

ukt1
∗
{|ηkt|−ξ1−2α∈(0,z/

√
n)}M

′
kt

)

oP (1)
= zξ1−2αf(ξ1−2α)

[
01×d1 e′kE

(
Σ

−1
t

{
∂

∂ϑ′Σ·k,t

})]
.

Similar arguments show that

Var

(
1√
n

n∑

t=1

ukt1
∗
{|ηkt|−ξ1−2α∈(0,z/

√
n)}C

′
kt

)

=
1

n

n∑

t=1

E(1∗{|ηkt|−ξ1−2α∈(0,z/
√
n)})E(C ′

ktCkt) = o(1),

Var

(
1√
n

n∑

t=1

ukt1
∗
{|ηkt|−ξ1−2α∈(0,z/

√
n)}η

′
tΩ

∗
kt

)

=
1

n

n∑

t=1

Var
(
ukt1

∗
{|ηkt|−ξ1−2α∈(0,z/

√
n)}η

′
tΩ

∗
kt

)
= o(1).

It follows that

J
(2)
n,k(z)

oP (1)
= zξ1−2αf(ξ1−2α)

[
01×d1 e′kE

(
Σ

−1
t

{
∂

∂ϑ′Σ·k,t

})]√
n(θ̂n − θ0)

oP (1)
= zξ1−2αf(ξ1−2α)e

′
kE

(
Σ

−1
t

{
∂

∂ϑ′Σ·k,t

})√
n(ϑ̂n − ϑ0),

and
m∑

k=1

J
(2)
n,k(z)

oP (1)
= zξ1−2αf(ξ1−2α)

m∑

k=1

e′kE

(
Σ

−1
t

{
∂

∂ϑ′Σ·k,t

})√
n(ϑ̂n − ϑ0).

Moreover,
m∑

k=1

e′kE

(
Σ

−1
t

{
∂

∂ϑ′Σ·k,t

})
=

m∑

k=1

E

[(
ek ⊗

{
∂

∂ϑ′Σ·k,t

})′
vec
(
Σ

−1
t

)]′

= E

[
{
vec
(
Σ

−1
t

)}′ m∑

k=1

(
ek ⊗

{
∂

∂ϑ′Σ·k,t

})]

= E

[{
vec
(
Σ

−1
t

)}′
{

∂

∂ϑ′vec (Σt)

}]
= Ω.
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As in Francq and Zakoian (2015a), it can be shown that
∑m

k=1 J
(1)
n,k(z) converges in distribution to

a variable which does not depend on z. Therefore,
m∑

k=1

Jn,k(z)
oP (1)
= zξ1−2αf(ξ1−2α)Ω

√
n(ϑ̂n − ϑ0) +A

where A is a random variable which is independent of z. By the arguments given in Francq and

Zakoïan (2015a), we can conclude that

√
n(ξn,1−2α − ξ1−2α)

oP (1)
= −ξ1−2α

m
Ω
√
n(ϑ̂n − ϑ0)−

1

f(ξ1−2α)

1

m
√
n

n∑

t=1

e′να(ηt). (B.2)

In view of A3 we have

Covas

(
√
n(θ̂n − θ0),

1

m
√
n

n∑

t=1

e′να(ηt)

)
=

1

m
ΛW α,

and thus,

Varas{
√
n(ξn,1−2α − ξ1−2α)} =

1

m2

{
ξ21−2αΩΨϑϑΩ

′ +
2ξ1−2α

f(ξ1−2α)
ΩΛϑW α +

γα
f2(ξ1−2α)

}
,

Covas

(√
n(θ̂n − θ0),

√
n(ξn,1−2α − ξ1−2α)

)
=

−1

m

{
ξ1−2αΨ·ϑΩ

′ +
1

f(ξ1−2α)
ΛW α

}
.

The convergence in distribution (2.3) follows by the Central Limit Theorem of Billingsley (1961)

for ergodic, stationary and square integrable martingale differences, applied to the sequence
 ∆t−1V (ηt)

e′να(ηt)


.

To conclude, we prove the nonsingularity of matrix Ξ. Suppose that (x′, y)Ξ(x′, y)′ = 0 where

x ∈ R
d, y ∈ R. In view of the expansion

√
n


 θ̂n − θ0

ξn,1−2α − ξ1−2α




oP (1)
=


 Id 0

− ξ1−2α

m [01×d1 Ω] −1
f(ξ1−2α)






1√
n

∑n
t=1 ∆t−1V (ηt)

1
m
√
n

∑n
t=1 e

′να(ηt)




we must have

x′
∆t−1V (ηt) + y

{
−ξ1−2α

m
[01×d1 Ω]∆t−1V (ηt)−

1

mf(ξ1−2α)
e′να(ηt)

}
= c, a.s.

for some constant c. Because V (ηt) and να(ηt) are centered, we must have c = 0. By A4, it follows

that x′
∆t−1− y ξ1−2α

m [01×d1 Ω]∆t−1 = 0 and y 1
mf(ξ1−2α)

e = 0. The last equality entails y = 0 from

which it follows that x′
∆t−1 = 0 = x′

Λ. Because Λ is full row rank, this entails x = 0 and the

proof is complete. ✷
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B.2 Proof that In,k(z) → z2

2
f(ξ1−2α) in probability as n → ∞

For ease of notation, we omit the index k. Write ηt instead of ηkt and In(z) instead of In,k(z). Note

that

In(z) =

n∑

t=1

1{|ηt|>ξ1−2α}

∫ z/
√
n

0
1{|ηt|≤ξ1−2α+s}ds

=
n∑

t=1

1{|ηt|>ξ1−2α}1{|ηt|−ξ1−2α≤z/
√
n}

∫ z/
√
n

|ηt|−ξ1−2α

ds

=

n∑

t=1

(
z√
n
−Xt

)
10<Xt<z/

√
n, Xt = |ηt| − ξ1−2α.

Let

Wn,t =

(
z√
n
−Xt

)
10<Xt<z/

√
n − E

{(
z√
n
−Xt

)
10<Xt<z/

√
n

}
.

We have, for any integer p > 0,

E

{(
z√
n
−Xt

)p

10<Xt<z/
√
n

}

=

∫ z/
√
n

0

(
z√
n
− x

)p

f(x+ ξ1−2α)dx

= n−(p+1)/2

∫ z

0
(z − u)p f{(u+ ξ1−2α)/

√
n}du

∼ zp+1

p+ 1
f(ξ1−2α)n

−(p+1)/2, as n → ∞.

Thus, by Markov’s inequality, for any ǫ > 0,

P

(∣∣∣∣∣
n∑

t=1

Wn,t

∣∣∣∣∣ > ǫ

)
≤ E (

∑n
t=1 Wn,t)

2

ǫ2

=

∑n
t=1 EW 2

n,t

ǫ2
∼ z3

3ǫ2
f(ξ1−2α)n

−1/2

= o(1), as n → ∞.

It follows that
∑n

t=1 Wn,t → 0, in probability as n → ∞. Thus, as n → ∞

In(z) ∼ nE

{(
z√
n
−Xt

)
10<Xt<z/

√
n

}
∼ z2

2
f(ξ1−2α),

in probability as n → ∞. ✷
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B.3 Proof of Corollary 2.1

The asymptotic normality follows from Theorem 2.1 and the following Taylor expansion of G around

(ϑ0, ξ1−2α)

√
n
(
ϑ̂
∗
n − ϑ∗

0

)
=

[
∂G(ϑ, ξ)

∂(ϑ′, ξ)

]

(ϑ0,ξ1−2α)




√
n
(
ϑ̂n − ϑ0

)

√
n(ξn,1−2α − ξ1−2α)


+ oP (1).

✷

B.4 Proof of Proposition 2.1

Using the Lagrangian method, define L(a, λ) = qt−1(a) − λ(e′a − 1) for λ ∈ R. The first order

conditions write

∂L(a, λ)
∂a

= −mt +
ξ1−2α

‖a′Σt‖
Σ

2
ta− λe = 0, e′a = 1.

The optimum is thus of the form a = KΣ
−2
t (mt + λe), for some constant K. Provided that α is

small enough so that ξ1−2α > 0, the first order conditions entail

K > 0,
{
(mt + λe)′Σ−2

t (mt + λe)
}1/2

= ξ1−2α, Ke′Σ−2
t (mt + λe) = 1. (B.3)

The first equality has two solutions in λ, provided that

(
e′Σ−2

t mt

)2 −
(
e′Σ−2

t e
) (

m′
tΣ

−2
t mt

)
+
(
e′Σ−2

t e
)
ξ21−2α > 0. (B.4)

This condition is satisfied for α small enough. Taking into account the first and third conditions of

(B.3), there is a unique solution for the Lagrangian multiplicator λ. Finally, the optimal composition

is given by (2.11) and the optimal VaR is qt−1(a
∗
α,t−1) = λ. ✷

B.5 Proof of Theorem 3.1

Noting that ξn,α(θ̂n) = argminz∈R
1
n

∑n
t=1 ρα{b(ϕ̂n) + c′(ϑ̂n)η̂t − z}, we have

√
n{ξn,α(θ̂n)− ξα(θ0)} = argmin

z∈R
On(z)

where

On(z) =
n∑

t=1

{
ρα

(
b(ϕ̂n) + c′(ϑ̂n)η̂t − ξα(θ0)−

z√
n

)
− ρα{b(ϕ0) + c′(ϑ0)ηt − ξα(θ0)}

}
.
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It follows from (B.1) that

η̂t = ηt −Ct(ϕ̂n −ϕ0)− (Im ⊗ η′
t)Ω

∗
t (ϑ̂n − ϑ0) + oP (n

−1/2).

Noting that c(ϑ0)
′(Im ⊗ ηt)

′
Ω

∗
t =

∑m
j=1 cj(ϑ0)η

′
tΩ

∗
jt = η′

t{c′(ϑ0) ⊗ Im}Ω∗
t , a Taylor expansion

around θ0 thus yields

b(ϕ̂n) + c′(ϑ̂n)η̂t − {b(ϕ0) + c′(ϑ0)ηt}

=

{
∂b

∂ϕ′ (ϕ0)− c′(ϑ0)Ct

}
(ϕ̂n −ϕ0)

+ η′
t

{
∂c

∂ϑ′ (ϑ0)− (c′(ϑ0)⊗ Im)Ω∗
t

}
(ϑ̂n − ϑ0)

=n′
t(θ̂n − θ0) + oP (n

−1/2),

where n′
t is the row vector

n′
t =

[
∂b

∂ϕ′ (ϕ0)− c′(ϑ0)Ct η′
t

{
∂c

∂ϑ′ (ϑ0)− (c′(ϑ0)⊗ Im)Ω∗
t

}]
:=
[
c′t η′

tF t

]
.

Proceeding as in the proof of Theorem 2.1, we find that

On(z) = zXn + Yn + In(z) + Jn(z), where

Xn =
1√
n

n∑

t=1

(1{b(ϕ0)+c′(ϑ0)ηt<ξα(θ0)} − α),

Yn =
1√
n

n∑

t=1

St,n(1{b(ϕ0)+c′(ϑ0)ηt<ξα(θ0)} − α),

In(z) =

n∑

t=1

∫ z/
√
n

0
(1{b(ϕ0)+c′(ϑ0)ηt≤ξα(θ0)+s} − 1{b(ϕ0)+c′(ϑ0)ηt<ξα(θ0)})ds,

Jn(z) =

n∑

t=1

∫ (z+St,n)/
√
n

z/
√
n

(1{b(ϕ0)+c′(ϑ0)ηt≤ξα(θ0)+s} − 1{b(ϕ0)+c′(ϑ0)ηt<ξα(θ0)})ds,

with St,n
oP (1)
= −n′

t

√
n(θ̂n − θ0). By arguments already used, we have In(z) → z2

2 fc{x0} in proba-

bility as n → ∞, and Jn(z) = J
(1)
n (z)+ J

(2)
n (z) where J

(1)
n (z) converges in distribution to a variable

which does not depend on z and

J (2)
n (z) =

n∑

t=1

∫ St,n/
√
n

0

(
1{−x0+c′(ϑ0)ηt−z/

√
n<0} − 1{−x0+c′(ϑ0)ηt<0}

)
du

=
n∑

t=1

{
−n′

t(θ̂n − θ0) + oP (n
−1/2)

}
1
∗
{−x0+c′(ϑ0)ηt∈(0,z/

√
n)}

oP (1)
=

(
−1√
n

n∑

t=1

1
∗
{−x0+c′(ϑ0)ηt∈(0,z/

√
n)}n

′
t

)
√
n(θ̂n − θ0).
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First suppose for z > 0. We have, Now, in view of the independence between ηt and F t, we have,

for z > 0,

E
(
η′
t1

∗
{−x0+c′(ϑ0)ηt∈(0,z/

√
n)}F t

)

= E

{
η′
tF t | −x0 + c′(ϑ0)ηt ∈

(
0,

z√
n

)}{
z√
n
fc(x0) + o

(
1√
n

)}

=
z√
n
fc(x0)d

′
αE(F t) + o

(
1√
n

)
.

Similar computations show that the last equality continues to hold for z < 0. Similarly,

E
(
1
∗
{−x0+c′(ϑ0)ηt∈(0,z/

√
n)}c

′
t

)
=

z√
n
fc(x0)E(c′t) + o

(
1√
n

)
.

By arguments already used, it follows that

J (2)
n (z)

oP (1)
= zfc(x0)

[
−E(c′t) − d′

αE(F t)
]√

n(θ̂n − θ0) = zfc(x0)w
′√n(θ̂n − θ0).

Finally,

On(z) =
z2

2
fc(x0) + z

{
Xn + fc(x0)w

′√n(θ̂n − θ0)
}
+OP (1).

We conclude that, similarly to (B.2),

√
n{ξn,α(θ̂n)− ξα(θ0)}

oP (1)
= −w′√n(θ̂n − θ0)−

1

fc(x0)

1√
n

n∑

t=1

(1{b(ϕ0)+c′(ϑ0)ηt<ξα(θ0)} − α).

The convergence in distribution follows. The positivity of σ2 is established using A4∗ and the

arguments given to prove the non singularity of Ξ in Theorem 2.1. ✷

B.6 Proof of Corollary 3.1

The first convergence in distribution is obtained by applying Theorem 2.1. Note that f(x) =

2φ(x)1x>0 and ξ1−2α = Φ−1(1 − α). We thus have Ψ = 2Σ4(ϑ0). The other terms involved in

Theorem 2.1 are as follows. We have

Ω =
1

2

(
σ−2
01 , . . . , σ

−2
0m

)′
, V (ηt) = (η21t − 1, . . . , η2mt − 1)′,

∆t−1 = Λ = Σ
2(ϑ0),

W α = 2φ′(ξ1−2α)e, γα = 2mα(1 − 2α),

Ξϑξ = 0m, ζ1−2α =
1

2m

(
−ξ21−2α +

α(1− 2α)

φ2(ξ1−2α)

)
.
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Thus, we have

√
n

(
V̂aR

(α)

S,t−1(a
′ǫt)− VaR

(α)
t−1(a

′ǫt)

)

=
√
n
(
{ã′ϑ̂n}1/2 − {ã′ϑ0}1/2

)
ξn,1−2α +

√
n{ã′ϑ0}1/2(ξn,1−2α − ξ1−2α)

d
=

(
ξ1−2αã

′

2{ã′ϑ0}1/2
, {ã′ϑ0}1/2

)√
n


 ϑ̂n − ϑ0

ξn,1−2α − ξ1−2α




L→ N


0,

(
ξ1−2αã

′

2{ã′ϑ0}1/2
, {ã′ϑ0}1/2

)
 Ψ Ξϑξ

Ξ
′
ϑξ ζ1−2α






ãξ1−2α

2{ã′ϑ0}1/2

{ã′ϑ0}1/2




 .

The first convergence in distribution follows. The two other convergences are standard results for

the empirical quantiles of iid variables. The inequality σ2
S(α,a) < σ2

U(α,a) follows from (3.2) and

the fact that ξ21−2αφ
2(ξ1−2α)/2α(1 − 2α) < 0.326.

Note that the asymptotic variance of the FHS estimator can be retrieved by applying Theorem

3.1: we find that ω = 0 and

x0 = −
(

m∑

i=1

a2i σ
2
0i

)1/2

φ−1(1− α).

✷

C Estimating the asymptotic covariance matrix

In Theorem 2.1, most quantities involved in the asymptotic covariance matrix Ξ can be estimated

by empirical means, replacing θ0 by the estimate θ̂n and the ηt’s by the corresponding residuals.

We focus on the estimation of Ω, which is the most delicate problem due to the presence of the

derivatives of Σt.

If a recursive linear relationship between Σt and its past-values existed, then the derivatives

could be computed recursively (as the derivatives of the σt or σ2
t in standard univariate GARCH

models). Unfortunately, the standard multivariate volatility models do not allow to derive such a

recursive relationship. Let us distinguish two general class of models, depending on the type of

stochastic recursive equation (SRE) involved in the dynamics.

C.1 Linear SRE on H t

A typical example is the BEKK model of Engle and Kroner (1995). As in Pedersen and Rahbek

(2013), we focus on the BEKK-GARCH(1,1) model, in which Σt(ϑ0) is the symmetric square root
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of H t, given by

ǫt = H
1/2
t ηt, H t = C0 +A0ǫtǫ

′
tA

′
0 +B0Ht−1B

′
0 (C.1)

where A0,B0 and C0 are real m×m matrices, with C0 positive definite, such that H t is a positive

definite matrix. For some m ×m matrices A,B and C > 0, let ϑ = (vec(A)′, vec(B)′, vec(C)′)′.

The derivatives of vec(H t) can be computed as follows, omitting ϑ for ease of notation. From

vec(H t) = vec(C) + (A⊗A)vec(ǫtǫ
′
t) + (B ⊗B)vec(H t−1), it follows that, for j = 1, . . . , 3d,

∂vec(H t)

∂ϑj
=

∂vec(C)

∂ϑj
+

∂(A⊗A)

∂ϑj
vec(ǫtǫ

′
t)

+
∂(B ⊗B)

∂ϑj
vec(H t−1) + (B ⊗B)

∂vec(H t−1)

∂ϑj
.

For any m × n matrix M , let the dm × n matrix ∂M =
(
∂M ′

∂ϑ1
, . . . , ∂M

′

∂ϑd

)′
. Let Xt =

(vec′(H t), {∂vec(H t)}′)′. We have, in block matrix notation,

Xt =


 B ⊗B 0

∂(B ⊗B) Id ⊗ (B ⊗B)


Xt−1 + et, (C.2)

where

et =


 vec(C)

∂vec(C)


+


 A⊗A

∂(A⊗A)


 vec(ǫtǫ

′
t).

Equation (C.2) allows to compute recursively the matrix H t and its derivatives, provided that some

initial values are chosen.

It remains to compute the derivatives of Σt = H
1/2
t . Without generality loss, this matrix can

be assumed to be symmetric and positive definite. We note that

Σt
∂Σt

∂ϑi
+

∂Σt

∂ϑi
Σt =

∂H t

∂ϑi
.

Thus

(Im ⊗Σt +Σt ⊗ Im) vec

(
∂Σt

∂ϑi

)
= vec

(
∂H t

∂ϑi

)
, (C.3)

which allows to compute the derivative of Σt provided Im ⊗Σt +Σt ⊗ Im is non-singular. In fact

Im ⊗Σt +Σt ⊗ Im = (Im ⊗Σt)(Im2 +Σt ⊗Σ
−1
t ).

The eigenvalues of Σ−1
t and Σt being positive, the eigenvalues of the latter parenthesis are larger

than 1. The invertibility of Im ⊗Σt +Σt ⊗ Im follows and we have

vec

(
∂Σt

∂ϑi

)
= (Im ⊗Σt +Σt ⊗ Im)−1 vec

(
∂H t

∂ϑi

)
.
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C.2 Linear SRE’s on the individual volatilities and the conditional correlation

matrix

Consider parameterizations of the form Σt(ϑ) = Dt(ϑ)R
1/2
t (ϑ) where Dt(ϑ) is the diagonal matrix

of the individual volatilities (at ϑ0), and R
1/2
t (ϑ) denotes the symmetric positive definite square-

root of the conditional correlation matrix Rt(ϑ) (that is {R1/2
t (ϑ)}2 = Rt(ϑ)). For all commonly

used models, the derivatives of the individual volatilities (or their squares) can be straightforwardly

computed, using the SRE on the vector of individual volatilities. The matrix ∂
∂ϑi

Dt(ϑ) follows, for

any component ϑi of ϑ. Turning to the derivatives of R
1/2
t (ϑ), we note that, similar to (C.3),

vec

(
∂R

1/2
t

∂ϑi

)
=
(
Im ⊗R

1/2
t +R

1/2
t ⊗ Im

)−1
vec

(
∂Rt

∂ϑi

)
.

Usual DCC models provide a SRE on the conditional correlation matrix Rt, from which the deriva-

tives of R
1/2
t can be computed using the previous equality. Consider the cDCC model (see Appendix

D). We have Rt = Q
∗−1/2
t QtQ

∗−1/2
t , and

Qt = (1− α− β)S + αQ
∗1/2
t−1 D

−1
t−1ǫt−1ǫ

′
t−1D

−1
t−1Q

∗1/2
t−1 + βQt−1,

where S is a correlation matrix. The diagonal terms of Qt are given by

qii,t = (1− α− β) +

(
α
ǫ2i,t−1

σ2
i,t−1

+ β

)
qii,t−1,

from which the derivatives of Q∗
t can be recursively computed. The derivatives of Q

∗1/2
t follow

from (C.3), which in the diagonal case reduces to
∂Q

∗1/2
t

∂ϑi
= 1

2Q
∗−1/2
t

∂Q∗
t

∂ϑi
. Now we turn to the non

diagonal terms. We have, for i 6= j,

qij,t = (1− α− β)Sij + α
√
qii,t−1

ǫi,t−1

σi,t−1

√
qjj,t−1

ǫj,t−1

σj,t−1
+ βqij,t−1,

from which the derivatives of qij,t follow recursively. The conclusion follows.

D DCC-GARCH dynamic portfolios

In this appendix, we consider the case where the return vector ǫt follows a DCC GARCH model of

the form ǫt = Σt(ϑ0)ηt with Σt(ϑ0) = DtR
1/2
t . The diagonal matrix Dt = diag(σ1t, . . . , σmt) is

assumed to satisfy the GARCH(1,1) equation

ht = ω0 +A0ǫt−1 +B0ht−1 (D.1)
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where ht =
(
σ2
1t, · · · , σ2

mt

)′
, ǫt =

(
ǫ21t, · · · , ǫ2mt

)′
, A0 and B0 are m × m matrices with positive

coefficients, ω0 is a vector of strictly positive coefficients, and B0 is assumed to be diagonal. Assume

also that the correlation matrix Rt satisfies the cDCC version of Aielli (2013), which is a modification

of the original DCC formulation introduced by Engle (2002). The cDCC model is defined by

Rt = Q
∗−1/2
t QtQ

∗−1/2
t , Qt = (1− α0 − β0)S0 + α0Q

∗1/2
t−1 η

∗
t−1η

∗′
t−1Q

∗1/2
t−1 + β0Qt−1,

where α0, β0 ≥ 0, α0 + β0 < 1, S0 is a correlation matrix, Q∗
t is the diagonal matrix with the same

diagonal elements as Qt, and η∗
t = D−1

t ǫt. The unknown parameter ϑ0 contains the volatility

parameters ω0, A0 and diag(B0), and the conditional correlation parameters α0, β0 and the sub-

diagonal elements of S0.

To estimate ϑ0, we used a three-step estimation procedure similar to that employed by Aielli

(2013). The individual volatility parameters ω0, A0 and B0 are estimated equation-by-equation,

from the m augmented univariate GARCH models followed by the components of ǫt (see Appendix

A.2). This step is slightly different from Step 1 in Definition 3.2 of Aielli (2013) because we do

not assume that A0 is diagonal in (D.1), which allows for possible volatility spillovers. The two

other steps are unchanged: α0 and β0 are estimated by maximizing a QML of the EbE residuals

η̂∗
t = D̂

−1

t ǫt, and the last parameter S0 is estimated empirically. More precisely, let R̂t = R̂t(α, β)

with

R̂t = Q̂
∗−1/2

t Q̂tQ̂
∗−1/2

t , Q̂t = (1− α− β)Sn + αQ̂
∗1/2
t−1 η̂

∗
t−1η̂

∗′
t−1Q̂

∗1/2
t−1 + βQ̂t−1,

Sn = Sn(α, β) =
1

n

n∑

t=1

Q̂
∗1/2
t η̂∗

t η̂
∗′
t Q̂

∗1/2
t , Q̂

∗
t = diag(q̂11,t, . . . , q̂mm,t)

and q̂ii,t = (1−α−β)+(αη̂∗2i,t−1+β)q̂ii,t−1 for i = 1, . . . ,m. The estimators of the DCC parameters

are then defined by

(α̂n, β̂n) = arg min
(α,β)

n∑

t=1

η̂∗′
t−1R̂

−1

t η̂∗
t−1 + log

∣∣∣R̂t

∣∣∣ ,

Ŝn = S∗−1/2
n (α̂n, β̂n)Sn(α̂n, β̂n)S

∗−1/2
n (α̂n, β̂n),

with S∗
n(α̂n, β̂n) = diagSn(α̂n, β̂n) and usual notations.

The parameters used in the Monte-Carlo experiments of Section 4.2 are displayed in Table

3. In Designs A-D the first return is less volatile and less conditionally heteroscedastic than the

second return, whereas the two returns have the same dynamic in Designs E-H. Two sets of designs

are also distinguished by strong dynamic correlations (α0 + β0 = 0.99) with a strong correlation

between the returns (S0(1, 2) = 0.7) or constant conditional correlations with null cross-correlation
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(α0 = β0 = 0 and S0(1, 2) = 0). Finally, the designs are distinguished by the distribution of

the innovations, which can be the standard normal or the Student distribution with 7 degrees of

freedom St7 (standardized to obtain unit variance). For generating non spherical distributions,

we simulated vectors ηt with independent components, distributed according to the Asymmetric

Exponential Power Distribution (AEPD) introduced by Zhu and Zinde-Walsh (2009). This class

of distributions allows for skewness with different decay rates of density in the left and right tails.

This led to the new Designs A∗-H∗, in which the N (0, I2) is replaced by the AEPD with parameters

α = 0.4, p1 = 1.182 and p2 = 1.802 (which are the values estimated by Zhu and Zinde-Walsh on

the S&P500), and the Student distribution St7 is replaced by the AEPD with parameters α = 0.5,

p1 = 1 and p2 = 2 (which gives a strongly asymmetric density). The AEPD densities have also

been standardized to obtain zero mean and unit variance.

Table 3: Design of Monte Carlo experiments.

ω′
0 (vecA0)

′ diagB0 S0(1, 2) α β Pη

A (10−6, 4× 10−6) (0.01, 0.01, 0.01, 0.07) (0, 0.92) 0.7 0.04 0.95 N (0, I2)

B (10−6, 4× 10−6) (0.01, 0.01, 0.01, 0.07) (0, 0.92) 0.7 0.04 0.95 St7
C (10−6, 4× 10−6) (0.01, 0.01, 0.01, 0.07) (0, 0.92) 0 0 0 N (0, I2)

D (10−6, 4× 10−6) (0.01, 0.01, 0.01, 0.07) (0, 0.92) 0 0 0 St7
E (10−5, 10−5) (0.07, 0.00, 0.00, 0.07) (0.92, 0.92) 0.7 0.04 0.95 N (0, I2)

F (10−5, 10−5) (0.07, 0.00, 0.00, 0.07) (0.92, 0.92) 0.7 0.04 0.95 St7
G (10−5, 10−5) (0.07, 0.00, 0.00, 0.07) (0.92, 0.92) 0 0 0 N (0, I2)

H (10−5, 10−5) (0.07, 0.00, 0.00, 0.07) (0.92, 0.92) 0 0 0 St7
Designs A∗-H∗ are the same as Designs A-H, except that Pη follows an asymmetric AEPD.

E Additional numerical illustrations

We will first complete the asymptotic results of Corollary 3.1 by some finite sample experiments,

also allowing for non-Gaussian errors distributions. Then, we will illustrate the nonstationarity of

the portfolio’s returns. The last part of the section is devoted to dynamic portfolios generated by

the DCC GARCH.
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E.1 Relative efficiency comparisons in the static case

The computations required to obtain the asymptotic variance σ2
S(α,a) in Corollary 3.1 are elemen-

tary but tedious, and they are hardly extendable to the case where ηt follows another spherical

distribution than the Gaussian. We will compare the asymptotic distributions of the two VaR

estimators V̂aR
(α)

S,t−1(ǫ
(P )) and V̂aR

(α)

U,t−1(ǫ
(P )) with their empirical distributions, on simulations of

ǫt ∼ N (0, Im) with m = 6 individual returns; we will also compare the two estimators when ηt

follows a bivariate Student spherical distribution, standardized so that var(ηt) = I2. The latter dis-

tribution is obtained by setting ηt = wtZt, where (wt) and (Zt) and two independent iid sequences

such that (ν − 2)/w2
t ∼ χ2

ν and Zt ∼ N (0, I2). Figure 6 displays the boxplots of the estimation

errors for the two methods, over 10,000 independent replications of samples of length n = 500. As

expected from the theory, the multivariate method is more efficient than the univariate method in

the normal case (top panels), especially when the portfolio is equally weighted (diversified portfo-

lio). In agreement with Remark 3.1, the effect is less pronounced when only one asset is present

(undiversified portfolio). The ratio of the empirical MSE’s of the univariate over the multivariate

methods is 6.08 in the diversified case, and 1.40 in the undiversified case, which closely corresponds

to the values provided by the asymptotic theory (respectively 6 and 1.408). The two bottom panels

correspond to the Student spherical distribution of parameter ν = 5. In that case (and for the

undiversified (single-asset) portfolio with α = 0.069), the univariate method can be more accurate

than the multivariate method. The intuition behind this result is that the multivariate method

requires empirical moments of order two, for which the variances are very large when ν = 5. Figure

7 compares the three methods on Gaussian innovations. Recall that the FHS method coincides with

the univariate method without the symmetry assumption (hence the label Asym). The ranking of

the three methods on finite sample (n = 500) coincides with the asymptotic ranking.

E.2 Sample path of returns of the crystallized portfolio in the static model

The nonstationarity of the univariate return series ǫ
(P )
t was shown in Section 4.1. Figure 8 illustrates

this feature. The increased variance in the second part of the sample reflects the fact that the

portfolio tends to be less and less diversified (see Figure 2).
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Figure 8: Returns of the crystallized portfolio.

E.3 Sample paths of returns and VaRs of portfolios for DCC models

As a complement to Section 4.2, simulations experiments were conducted with crystallized and

minimal-VaR portfolios. With the spherical method, as already seen, the minimal-VaR portfolio

coincides with the Markowitz portfolio. Using the FHS method, the portfolio with the smallest

α-level conditional VaR can be estimated by

ǫ̂
(α)
t = ǫ′tâ

(α)
t−1, â

(α)
t−1 = arg min

a:a′e=1
−qα

{
a′
Σ̃t(ϑ̂n1)η̂u, u = 1, . . . , n1

}
.

where qα(S) denotes the α-quantile of a set S of real values. In Figure 9, we visualize a typical

result obtained for Design D with n1 = 1000 and n − n1 = 1000. This figure displays the returns

of the crystallized portfolio obtained by taking an identical proportion of the two components

of the portfolio (i.e. µ1,t = µ2,t for all t), and also the same initial values for the components

(i.e. p1,0 = p2,0). As can be seen, the variability of this portfolio is much higher than that of

the minimal variance portfolio ǫ
(P )∗
t defined by (2.8). The bottom panels display the estimated

optimal portfolio ǫ̂
(P )∗
t obtained by replacing ϑ0 with ϑ̂n in ǫ

(P )∗
t . In can be seen that ǫ

(P )∗
t and

ǫ̂
(P )∗
t are very close. Similarly VaR

(α)
t−1(ǫ

(P )) at level α = 1% (top-right panel) and its estimates

V̂aR
(α)

S,t−1(ǫ
(P )) and V̂aR

(α)

FHS,t−1(ǫ
(P )) are virtually indistinguishable. On the contrary, Figure 10

shows that V̂aR
(α)

S,t−1(ǫ
(P )) may have a much more important bias than V̂aR

(α)

FHS,t−1(ǫ
(P )) when

the distribution of ηt is not spherical. The minimal variance (Markowitz) portfolio and its 1%

conditional VaR are displayed in the top right panel. The FHS-estimates given in the bottom-right

panel are very accurate, whereas the estimate VaR given by the spherical method (bottom-left

panel) is clearly too small. The top panels of Figure 10 represent the returns of the Markowitz and

minimal 1%-VaR portfolios, together with their 1%-VaR. With the spherical method, the estimated
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minimal 1%-VaR (bottom-left panel) is actually the estimated Markowitz portfolio (because under

the sphericity assumption these two portfolios coincide). The estimation provided by the FHS

method (bottom-right panel) is more satisfactory because it resembles more the top-right panel.

From these figures and Table 1, the FHS method seems to be more attractive than the method

based on the sphericity assumption.
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47



1000 1200 1400 1600 1800 2000

−
0
.1

0
−

0
.0

5
0
.0

0
0
.0

5
0
.1

0

Exact Markowitz portfolio 
with its true 1%−VaR

t

R
e
tu

rn
 a

n
d
 −

1
%

V
a
R

1000 1200 1400 1600 1800 2000

−
0
.1

0
−

0
.0

5
0
.0

0
0
.0

5
0
.1

0
Exact minimal 1%−VaR portfolio 

with its true 1%−VaR

t

R
e
tu

rn
 a

n
d
 −

1
%

V
a
R

1000 1200 1400 1600 1800 2000

−
0
.1

0
−

0
.0

5
0
.0

0
0
.0

5
0
.1

0

Estimated Markowitz portfolio  
with its S−estimated 1%−VaR

t

R
e
tu

rn
 a

n
d
 −

1
%

V
a
R

1000 1200 1400 1600 1800 2000

−
0
.1

0
−

0
.0

5
0
.0

0
0
.0

5
0
.1

0

FHS−estimated minimal  1%−VaR portfolio 
with its FHS−estimated 1%−VaR

t

R
e
tu

rn
 a

n
d
 −

1
%

V
a
R

Figure 11: As Figure 10, but for the minimum VaR portfolio.

48



Campbell, R., Huisman, R. and K. Koedijk Optimal portfolio selection in a value-at-Risk

framework. Journal of Banking & Finance 25, 1789–1804.

Christoffersen, P.F. (2003) Elements of financial risk management. Academic Press, London.

Christoffersen, P.F. and S. Gonçalves (2005) Estimation Risk in Financial Risk Management.

Journal of Risk 7, 1–28.

Comte, F. and O. Lieberman (2003) Asymptotic Theory for Multivariate GARCH Processes.

Journal of Multivariate Analysis 84, 61–84.

Embrechts, P. and G. Puccetti (2010) Risk Aggregation. In P.Jaworski et al. (eds.), Copula

Theory and Its Applications, Lecture Notes in Statistics 198, Springer, Berlin/Heidelberg.

Engle, R.F. (2002) Dynamic conditional correlation: a simple class of multivariate generalized au-

toregressive conditional heteroskedasticity models. Journal of Business and Economic Statis-

tics 20, 339–350.

Engle, R.F. and K. Kroner (1995) Multivariate simultaneous GARCH. Econometric Theory 11,

122–150.

Escanciano, J.C., and J. Olmo (2010) Backtesting parametric VaR with estimation risk. Jour-

nal of Business and Economic Statistics 28, 36–51.

Escanciano, J.C. and J. Olmo (2011) Robust backtesting tests for value-at-risk models. Jour-

nal of Financial Econometrics 9, 132–161.

Francq, C., Horváth, L. and J.M. Zakoïan (2015) Variance targeting estimation of multivari-

ate GARCH models. Forthcoming in the Journal of Financial Econometrics.

Francq, C., Jiménez Gamero, M.D. and S. Meintanis (2015) Tests for sphericity in multi-

variate GARCH models. MPRA Paper No. 67411.

Francq, C., and J.M. Zakoïan (2010) GARCH models: structure, statistical inference and fi-

nancial applications. Chichester: John Wiley.

Francq, C., and J.M. Zakoïan (2012) QML estimation of a class of multivariate asymmetric

GARCH models. Econometric Theory 28, 179–206.

49



Francq, C. and J.M. Zakoïan (2015a) Risk-parameter estimation in volatility models. Journal

of Econometrics 184, 158–173.

Francq, C. and J.M. Zakoïan (2015b) Estimating multivariate GARCH models equation by

equation. Forthcoming in the Journal of the Royal Statistical Society: Series B (Statisti-

cal Methodology).

Gouriéroux, C. and J.M. Zakoïan (2013) Estimation adjusted VaR. Econometric Theory 29,

735–770.

Koenker, R. and Z. Xiao (2006) Quantile autoregression. Journal of the American Statistical

Association 101, 980–990.

Ling, S. (2004) Estimation and testing stationarity for double-autoregressive models. Journal of

the Royal Statistical Society B 66, 63–78.

Ling, S. (2005) Self-weighted least absolute deviation estimation for infinite variance autoregressive

models. Journal of the Royal Statistical Society B 67, 381–393.

Mancini, L. and F. Trojani (2011) Robust Value-at-Risk prediction. Journal of Financial

Econometrics 9, 281–313.

McAleer, M. and B. da Veiga (2008) Single-index and portfolio models for forecasting Value-

at-Risk. Journal of Forecasting 27, 217–235.

Pedersen, R.S. and A. Rahbek (2014) Multivariate variance targeting in the BEKK-GARCH

model. The Econometrics Journal 17, 24–55.

Silvennoinen, A. and T. Teräsvirta (2009) Multivariate GARCH models. Handbook of Finan-

cial Time Series T.G. Andersen, R.A. Davis, J-P. Kreiss and T. Mikosch, eds. New York:

Springer.

Santos, A.A.P., Nogales F.J. and E. Ruiz (2013) Comparing univariate and multivariate

models to forecast portfolio Value-at-Risk. Journal of Financial Econometrics 11, 400–441.

Spierdijk, L. (2014) Confidence Intervals for ARMA-GARCH Value-at-Risk: The Case of Heavy

Tails and Skewness. Computational Statistics and Data Analysis, forthcoming.

Tsay, R.S. (2014) Multivariate time series: with R and financial applications. John Wiley.

50



Zhu, D. and V. Zinde-Walsh (2009) Properties and estimation of asymmetric exponential

power distribution. Journal of Econometrics 148, 86–99.

51


	Introduction
	Conditional VaR of a dynamic portfolio
	Univariate vs multivariate modeling of the portfolio's dynamic
	Multivariate modeling of the risk factors
	Estimation risk
	Aims of the paper

	Conditional VaR estimation under sphericity
	Asymptotic joint distribution of bold0mu mumu cmyk 0 0 0 0"0362bold0mu mumu cmyk 0 0 0 0n and a quantile of absolute returns
	Conditional VaR parameter
	Asymptotic confidence intervals for the VaR's of portfolios
	Optimal dynamic portfolios

	Conditional VaR estimation without the sphericity assumption
	FHS estimator and asymptotic CIs
	Efficiency comparisons in the static case
	Optimal-VaR portfolios

	Numerical illustrations
	Invalidity of the univariate approach when the composition is time varying
	Comparison of the multivariate approaches on DCC models
	Optimal portfolios of exchange rates

	Conclusion
	Illustrations of the Bahadur representation A3
	For the Gaussian QML
	For the EbE estimator of generalized CCC models
	For the VTE of the CCC model

	Proofs
	Proof of Theorem 2.1
	Proof that In,k(z)z22f(1-2) in probability as n
	Proof of Corollary 2.1
	Proof of Proposition 2.1
	Proof of Theorem 3.1
	Proof of Corollary 3.1

	Estimating the asymptotic covariance matrix
	Linear SRE on bold0mu mumu HHcmyk 0 0 0 0HHHHt
	Linear SRE's on the individual volatilities and the conditional correlation matrix

	DCC-GARCH dynamic portfolios
	Additional numerical illustrations
	Relative efficiency comparisons in the static case
	Sample path of returns of the crystallized portfolio in the static model
	Sample paths of returns and VaRs of portfolios for DCC models


