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INTERDEPENDENT PREFERENCES, POTENTIAL GAMES AND HOUSEHOLD

CONSUMPTION

RAHUL DEB†

ABSTRACT. This paper presents a nonparametric model of interdependent preferences, where an in-

dividual’s consumption may be an externality on the preferences of other consumers. We assume that

individual price consumption data is observed for all consumers and prove that the general model

imposes few restrictions on the observed data, where the consistency requirement is Nash rationaliz-

ability. We motivate potential games as an important sub class of games where the family of concave

potential games is refutable and imposes stronger restrictions on observed data. As an application of

this model, we discuss inter-household consumption data. Finally, we use this framework to extend

the analysis of Brown and Matzkin (1996) on refutable pure exchange economies to pure exchange

economies with externalities.

1. INTRODUCTION

In general, economic theory assumes individual demand is the result of consumers maximiz-

ing independent utility functions subject to budget constraints. Some economists however, have

questioned this assumption of convenience. As early as 1899, Veblen observed that social sta-

tus was an important consideration for the nouveau riche of 19th century capitalist societies and

used the term ‘conspicuous consumption’ to describe the practice of lavish spending to display

wealth. Duesenberry in his classic work (Duesenberry (1949)) concerning the consumption func-

tion problem, attempted to explain the statistical discrepancy between Kuznet’s data on aggregate

savings and income in the period 1869-1929, and budget study data for 1935-1936 and 1941-1942,

by challenging the conventional assumption of independent preferences. Work on interdependent

preferences can also be found in Hopkins and Kornienko (2004), Pollak (1976), Postlewaite (1998),

Schall (1972) and Sobel (2005).

The empirical research on interdependent preferences assume parametric specifications. Our anal-

ysis is nonparametric and extends Afriat’s seminal nonparametric analysis of independent prefer-

ences (Afriat (1967)) to interdependent preferences. Afriat provides nonparametric necessary and

sufficient conditions for a finite set of observations on prices and individual demands to be con-

sistent with independent utility maximization. The consistency requirement for interdependent
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preferences is pure-strategy Nash equilibrium. We begin, by analyzing a general model of interde-

pendent agent preferences. This general framework imposes very weak restrictions on observed

data.

Bracha (2005) introduced potential games as a model for interdependent preferences in the context

of individual decision making under uncertainty and risk. We characterize differentiable potential

games and show that for two data points, potential games impose the same weak restrictions on

the data as the general model. Our main result is that the class of utility functions which gener-

ate concave potentials impose refutable restrictions on observed data while still encompassing a

large set of preferences. That is, we present necessary and sufficient conditions for constructing a

concave potential function which Nash rationalizes the data.

Our model of interdependent preferences can be extended to study aggregate data. Carvajal (2007)

also studies interdependent preferences (using aggregate data) where he fixes a single good as the

externality good. His results are largely negative unless separability in the externality is imposed.

Our general model imposes no restriction if we consider aggregate data. The concave potential

model however, does impose refutable restrictions on aggregate data. We show that this is a

strengthening of the results of Brown and Matzkin (1996) on refutable pure exchange economies

to pure exchange economies with interdependent preferences.

The initial motivation for this paper came from the problem of studying household consumption

data. There has been a substantial amount of research on household consumption. The introduc-

tion of the collective household model of Chiappori (1988,1992) was the first notable divergence

from the unitary approach, which modeled the household as a single unit, where members of the

household were assumed to have common goals. This divergence was necessary as there was

mounting empirical evidence that the unitary model was rejected on household data (for example

Blundell, Pashardes and Weber (1993), Browning and Meghir (1991)). The collective model allows

the members of the household to have different preferences and allows a household member’s

private unobserved consumption to act as an externality on another household member. In con-

trast, our framework assumes household member’s have common goals (as in the unitary model)

but allows a household’s consumption to act as an externality on another household. An example

of this, is the well known phenomenon of “keeping up with the Joneses”. We discuss the applica-

tion of our model to household data in section 4.3.

The paper is organized as follows. In section 2, we describe and characterize a general model

of interdependent preferences. In section 3, we describe the class of potential games and charac-

terize differentiable potential games. In section 4, we characterize observed data for consistency

with potential games and concave potential games, as well as provide an example of data which

refutes the latter model. We also discuss the application to household consumption data in this

section.
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2. THE GENERAL MODEL

The economy consists of N individuals and L goods. Person i’s consumption bundle is de-

noted by xi ∈ RL
+. Person i has a utility function ui : RNL

+ → R. Person i’s utility level is

ui(x1, . . . , xi, . . . , xN ) (henceforth represented as ui(xi, x−i) ) which depends not only on her con-

sumption xi but also on the consumption of the other individuals x−i in the economy. Prices are

denoted by p. When we consider aggregate data we will denote person i’s income by Ii and ag-

gregate consumption by w.

We first consider the case where we observe market prices and individual level consumption data.

The data consists of repeated observations of prices and consumption bundles in the economy.

Hence, the observed data is of the form D = {(pt, x
1
t , . . . , x

i
t, . . . , x

N
t )}T

t=1, where the subscripts

denote the time period of the observation. We pose the following question- when is the observed

data consistent with utility maximization, where utility functions are interdependent? The rele-

vant notion of individual optimization is Nash equilibrium. We say this data is Nash Rationalizable,

if there exist utility functions ui such that for all i and t, we have

xi
t = argmax

ptx≤ptx
i
t

ui(x, x−i
t )

That is, each player chooses a consumption bundle in her budget set which is a best response to

every other player’s actions in each observation. Following Varian (1982), we define an intuitive

necessary condition, Conditional GARP (CGARP). For player i, it can be thought that for the

subset of the data where every other players’ actions stay the same, there are no externalities.

Hence, it follows from Afriat’s theorem that player i’s actions must satisfy GARP on this subset of

data. It is surprising that this condition is also sufficient for rationalizing the data. More formally:

Di
t = {(pt′ , x

i
t′) : x−i

t′ = x−i
t , 1 ≤ t′ ≤ T}

In words Di
t is the set of all price consumption bundles of person i when everyone else is con-

suming the same as they did in period t. We now define the standard Generalized Axiom of

Revealed Preference as in Varian (1982). The following definition assumes that only the consump-

tion of a single individual is observed.

Definition 2.1 (GARP). Given arbitrary data set D = {(pt, xt)}
T
t=1. For any two consumption

bundles xt and xt′ we say xt ≻R0 xt′ if ptxt ≥ ptxt′ . We say xt ≻P xt′ if ptxt > ptxt′ . Finally we

say xt ≻R xt′ if for some sequence of observations (xt1 , xt2 , . . . , xtm) we have xt ≻R0 xt1 , xt1 ≻R0

xt2 , . . . , xtm ≻R0 xt′ . In other words relation ≻R is the transitive closure of ≻R0
. The data D

satisfies GARP if

xt ≻R xt′ =⇒ xt′ ⊁P xt ∀xt, xt′

This leads to the following definition of CGARP.

Definition 2.2 (CGARP). The data set D = {(pt, x
1
t , . . . , x

i
t, . . . , x

N
t )}T

t=1 satisfies CGARP if for all

i ∈ N and all t ∈ T , Di
t satisfies GARP.

We can now characterize data that is Nash rationalizable.
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Theorem 2.1. For an observed data set D = {(pt, x
1
t , . . . , x

i
t, . . . , x

N
t )}T

t=1 the following are equivalent

(1) The data set is Nash rationalized by utility functions which are non-satiated in the individual con-

sumption.

(2) The data set satisfies CGARP.

(3) The following system of inequalities

U i
t′ ≤ U i

t + λi
tpt(x

i
t′ − xi

t) +
∑

j 6=i

µij
t (xj

t′ − xj
t )

for i, j = 1, 2, . . . , N and t, t′ = 1, 2, . . . , T

has positive solutions for utility values U and strictly positive solutions for marginal utilities λ, µ

where µ is a vector.

(4) The data set is Nash rationalized by utility functions which are strictly monotone, continuous and

concave in all arguments.

The following is an example of data which violates CGARP.

Example 2.1. Consider a two person economy with two goods and the following data set consist-

ing of two observations

p1 = (1, 2) x1
1 = (0, 1) x2

1 = (0, 1)

p2 = (2, 1) x1
2 = (1, 0) x2

2 = (0, 1)

Clearly as person 2’s consumption does not change even with the change in prices, person 1’s

choices cannot violate GARP, and it is straightforward to check that they do. Thus the above data

will violate the inequalities of Theorem 1 and is not Nash rationalizable.

The above example shows that the general model is refutable although it imposes weak re-

strictions on data (due to the unrestrictive nature of CGARP). To show that the general model

of interdependent preferences is refutable, we need to show that the multivariate polynomial in-

equalities of theorem 2.1 are refutable. To show that the system of inequalities is consistent we can

construct an example of data which satisfies them (consider two observations where both people

consume different bundles). To show that the inequalities are not always satisfied, it suffices to

construct an example of data which violates CGARP which is example 2.1. Hence it follows from

the Tarski-Seidenberg theorem (Tarski (1951)) that the system of inequalities are refutable as the

inequalities are solvable for some but not all consumption data sets (see Brown and Kubler (2008)

for discussion). Carvajal (2007) finds the same result for an economy where only one good acts as

an externality.

3. POTENTIAL GAMES

In this section we study the important class of potential games and do not restrict the discussion

to interdependent preferences and consumption. Potential games were introduced in Monderer

and Shapley (1996). A classical example of a potential game is a Cournot oligopoly game. Mon-

derer and Shapley (1996) show that every congestion game (Rosenthal (1973)) is a potential game.
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Other studies which use potential games are Mäler et al (2003) in their study of the economics of

shallow lakes, Konishi et al (1998) study a poll tax scheme for the provision for a public good,

Garcia and Arbeláez (2002) evaluate impacts of mergers in Colombian wholesale market for elec-

tricity. Bracha and Brown (2007) propose a behavioral theory of choice, where the individual is a

composite agent consisting of a rational and emotional process which is represented as a potential

game.

Let Γ(u1, . . . , uN ) be a game of N players where player i has strategy set Y i ⊆ Rni (ni being a

positive integer). Player i’s payoff function is ui : Y → R where Y = Y 1 × · · · × Y N . A function

P : Y → R is an ordinal potential if for every i ∈ N and for every y−i ∈ Y −i

ui(x, y−i) − ui(z, y−i) > 0 iff P (x, y−i) − P (z, y−i) > 0 for all x, z ∈ Y i

An exact potential or simply a potential is a function P : Y → R such that for every i ∈ N and for

every y−i ∈ Y −i

ui(x, y−i) − ui(z, y−i) = P (x, y−i) − P (z, y−i) for all x, z ∈ Y i

Γ is called an ordinal potential game if it admits an ordinal potential and a potential game if

it admits an exact potential. Monderer and Shapley (1996) characterize potential games and the

associated characterization problem for ordinal potential games was solved by Voorneveld and

Norde (1997). Here we characterize differentiable potential games using Poincaré’s lemma for

differential forms (see Weintraub (1996)). The characterization below has a nice intuitive interpre-

tation.

Theorem 3.1. Given a game Γ. Assume the utility of each player is defined on an open convex set 1 Z such

that Y1 × · · · × YN ⊆ Z, or in other words ui : Z → R. Moreover assume the utility functions are twice

continuously differentiable on Z. Then Γ is a potential game if and only if

∂2ui

∂yi
mi

∂yj
mj

=
∂2uj

∂yj
mj∂yi

mi

for every i, j ∈ N and for all 1 ≤ mi ≤ ni, 1 ≤ mj ≤ nj

This result implies that existence of a potential is merely a restriction on the mixed partial

derivatives of the utility functions. This restriction requires symmetry on how a player’s action

can affect the marginal utility of another player. The special case where strategies are intervals of

real numbers appears in Monderer and Shapley (1996).

In most games, strategy sets are usually closed and convex, but it is straightforward to smoothly

extend the utility function to an open convex set containing the strategy set.

1More generally, utilities need only be defined on an open contractible set.
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4. POTENTIAL GAMES AND INTERDEPENDENT PREFERENCES

An example to motivate potential games is the following. Assume that the Smith’s and the

Jones’ utility functions are composed of two separate additive components- utility from consump-

tion and utility from ‘status’. Then a potential game implies that the Smiths and the Joneses care

equally about status (that is, they have the same status term), however they may get different

utilities from consumption. For example, although both the Smiths and the Joneses want to have

a better car than their neighbor’s, the Smiths settle for the minivan as they get more utility from

going out to expensive dinners, even though they both have the same status terms in their utility

functions. This can be modeled by making the consumption term of the Smiths, large with respect

to the status term in their utility function. Moreover, by making the consumption term of the

Smiths arbitrarily large, we can approximately model the case where the Joneses try to compete

with the Smiths but not vice versa. Thus, although potential games do restrict the possible set of

preferences, they impose a reasonable restriction which still encompasses a large set of interde-

pendent preferences. Concavity is motivated as an assumption in section 4.2.

4.1. Potential Games. We first consider the general class of potential games. As was shown in

section 3, the restriction to utility functions which generate a potential is simply a restriction on

the mixed partial derivatives, much like concavity is a restriction on the Hessian. This class of

games is large and it allows goods to be either positive or negative externalities, and this could

differ across players. However, the potential function itself must be strictly monotone in all argu-

ments. This reflects the fact that each player’s utility function is strictly monotone in individual

consumption.

In order to characterize data for consistency with utility functions that generate a potential, we

employ an argument different from the standard proofs inspired by Afriat (1967). Our approach

uses the extension theorem of Herden (2008) that does not depend on the properties of concave

functions and can be used to test the refutability of models with externalities. The following is the

result for two data points

Theorem 4.1. For an observed data set D = {(pt, x
1
t , . . . , x

i
t, . . . , x

N
t )}t∈{1,2} the following are equivalent

(1) The data set is Nash rationalized by utility functions which are non-satiated in the individual con-

sumption.

(2) The data set satisfies CGARP.

(3) The data set is Nash rationalized by utility functions which admit a continuous, strictly monotonic,

potential function.

The above result says that if the data is Nash rationalizable, then it is Nash rationalizable by a

potential game. Hence, for two data points, potential games have the same explanatory power as

the general model. However, this implies that the class of potential games also imposes only weak

restrictions on observed data. The same conclusions will also hold for the more general class of

pseudo-potential games defined in Dubey et al. (2006).
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4.2. Concave Potential Games. Concavity is a desirable property of potential functions as it is for

utility functions. In a smooth potential game with a concave potential function, a strategy profile

is a pure-strategy Nash equilibrium, if and only if, it is a potential maximizer. In addition, if the

potential function is strictly concave then there is a unique equilibrium. Neyman (1997) shows

that smooth strictly concave potential games have a unique Nash equilibrium and a unique cor-

related equilibrium. Since our characterization of concave potential games is constructive, this

uniqueness allows us to predict future consumer behavior, by utilizing the tools developed in

Bracha and Brown (2007), who use the potential function to predict affective demand in insurance

markets.

Hence, we now restrict our attention to utility functions which generate a potential which is con-

cave in all arguments. This does not require utility functions themselves to be concave in all ar-

guments. As with non-concave potentials, this allows for both positive and negative externalities.

The following is an example of a concave potential game where individual utilities are not concave

in all arguments and the externalities are negative. Consumers get utility from the consumption

of their bundle as well as from their relative consumption. This relative consumption paradigm

was suggested by Duesenberry (1949). Consider the case of two investment bankers. Investment

banker A owns a Porsche 911 Carrera which by virtue of allowing her to drive to work, provides

her with a certain level of utility. However, her utility decreases when her coworker B, purchases a

Lamborghini Murcielago. The decrease in utility can be attributed to relative consumption. Below

is an example of such a model.

Example 4.1. Consider the case of two investment bankers who consume two goods (suits and

cars) where each individual has the following utility function

ui(xi, x−i) = vi(xi
1, x

i
2) + ln

(

xi
1

x1
1 + x2

1

)

+ ln

(

xi
2

x1
2 + x2

2

)

where i ∈ {1, 2} and vi is concave. The interpretation of the above utility function is as follows.

Each person gets utility vi from the consumption of the goods she purchases. The second term is

the relative utility she gets with regard to what her coworker is consuming.

Clearly ui is concave in xi fixing x−i. However ui is not concave in x−i. This model corresponds

to the following concave potential function.

P (x1, x2) = v1(x1
1, x

1
2) + v2(x2

1, x
2
2) + ln

(

x1
1x

2
1

x1
1 + x2

1

)

+ ln

(

x1
2x

2
2

x1
2 + x2

2

)

This example shows that utility functions which generate a concave potential need not be con-

cave themselves. Ui (2007) shows that requiring the potential to be concave imposes an addi-

tional constraint on the gradients of the utility functions. He shows that a smooth potential game

has a concave potential, if and only if, the gradients of the utility functions are monotone. This

additional restriction makes concave potential games refutable as can be seen by the following

characterization of concave potential games.
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Theorem 4.2. For an observed data set D = {(pt, x
1
t , . . . , x

i
t, . . . , x

N
t )}T

t=1 the following are equivalent

(1) The data set is Nash rationalized by utility functions which admit a strictly monotonic, concave,

ordinal potential function.

(2) The following system of inequalities

Vt′ ≤ Vt +
N

∑

i=1

λi
tpt(x

i
t′ − xi

t)

have positive solutions for potential values V and strictly positive solutions for marginal utilities λ

for all i, t, t′.

(3) The data set is Nash rationalized by utility functions which admit a continuous, strictly monotonic,

concave potential function.

We can also consider the implications of this model on aggregate data in an exchange economy,

where consumers have interdependent preferences. The relevant notion of equilibrium is Nash-

Walras equilibrium (see Ghoshal and Polemarchakis (1997)). Since our aim is to rationalize the

data, we can follow Brown and Matzkin (1996) and ignore the fact that we are no longer simply

dealing with a consumption game but instead are in the setting of an abstract economy (see chap-

ter 19 of Border (1989)). This is clearly illustrated by the following.

An observed aggregate data set D = {(pt, {I
i
t}

N
i=1, wt)}

T
t=1 is consistent with Nash-Walras equi-

librium, if we can find feasible consumptions xi
t for each individual i at each observation t, such

that ptx
i
t ≤ Ii

t and
∑N

i=1 xi
t = wt, and each consumption bundle xi

t is a best response to x−i
t for all

t, i. Since rationalization merely involves finding feasible consumption bundles such that pt is an

equilibrium price vector, we can avoid the complications of redefining our setting as an abstract

economy.

The analogue of theorem 4.2 for aggregate consumption data can be written as follows and the

proof is omitted as it is a straightforward extension of theorem 4.2.

Theorem 4.3. For an observed data set D = {(pt, {I
i
t}

N
i=1, wt)}

T
t=1 the following are equivalent

(1) There exist utility functions which admit a strictly monotonic, concave ordinal potential function

such that at each observation t, pt is a Nash-Walras equilibrium price vector for the exchange econ-

omy.

(2) The following system of inequalities

Vt′ ≤ Vt +

N
∑

i=1

λi
tpt(x

i
t′ − xi

t)

ptx
i
t = Ii

t

N
∑

i=1

xi
t = wt
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have positive solutions for potential values V , feasible consumptions x and strictly positive solutions

for marginal utilities λ for all i, t, t′.

(3) There exist utility functions which admit a continuous, strictly monotonic, concave potential func-

tion such that at each observation t, pt is a Nash-Walras equilibrium price vector for the exchange

economy.

We will concentrate on the implications of the latter result. Any refutable restrictions on aggre-

gate data will carry over to individual data. Theorems 2.1 and 4.1 imply that the general model

and the potential game impose no restrictions on aggregate data, as it is easy to find feasible bun-

dles which will not violate CGARP (by virtue of having each person consuming a different bundle

in each time period). This is not the case with the concave potential game.

The inequalities of theorem 4.3 are simply the sum of the equilibrium inequalities of theorem 2

in Brown and Matzkin (1996). This means that any aggregate data set that satisfies their inequal-

ities will also satisfy ours. Hence, their model is a special case of our concave potential model. A

more intuitive explanation is the following.

Brown and Matzkin find necessary and sufficient conditions for the existence of independent util-

ity functions and feasible consumption bundles, so that the observed aggregate data corresponds

to an equilibrium of the exchange economy. These conditions are also necessary and sufficient

for there to exist concave independent utility functions and feasible consumption bundles, so that

the observed aggregate data corresponds to an equilibrium of the exchange economy. Concave

independent utility functions constitute a concave potential game where the potential function is

simply the sum of the utility functions. Hence, the exchange economy with independent prefer-

ences is a special case of a concave potential game. We now construct an example of aggregate

data which satisfies the inequalities of theorem 4.3 but does not satisfy the equilibrium inequalities

of Brown and Matzkin. Hence, theorem 4.3 is a true generalization of their results.

Example 4.2. Consider the following aggregate consumption data

p1 = (1, 2) I1
1 = 14 I2

1 = 1 w1 = (3, 6)

p2 = (2, 1) I1
2 = 14 I2

2 = 1 w1 = (6, 3)

For player 1, every feasible consumption bundle in observation 1 is affordable under observation

2 and vice versa. However the same is not true for player 2. In particular the bundle (1, 0) is

affordable for player 2 under period 1 prices and income but not under those of period 2. Thus

although these observations would not satisfy the inequalities of Brown and Matzkin (1996), we

can find potential levels V and Lagrangian multipliers λ such that they satisfy the inequalities of

theorem 4.3.

It is surprising to find that a general equilibrium model, where we allow interdependent pref-

erences, has refutable restrictions on aggregate data. But this is in fact the case for the concave

potential model as is shown by the following example.



10 RAHUL DEB

FIGURE 1

FIGURE 2

Example 4.3. Consider the following aggregate consumption data.

p1 = (1, 2) I1
1 = 7 I2

1 = 7 w1 = (2, 6)

p2 = (2, 1) I1
2 = 7 I2

2 = 7 w1 = (6, 2)

The observed aggregate consumption only allows feasible individual consumptions that lie in

the Edgeworth boxes shown in figures 1 and 2. Figure 1 is similar to figure 1 in Brown and Matzkin

(1996) and it shows that for player 1, every feasible consumption bundle in observation 1 is afford-

able under observation 2 income and prices and vice versa. The feasible bundles for player 1 are

shown by the dark shaded line in each box. Figure 2 provides an equivalent analysis for player

2. This is the key difference between this example and that of Brown and Matzkin. The situation

described by figure 1 was sufficient to violate their equilibrium inequalities. We now show that

these data points cannot satisfy the inequalities of theorem 4.3.

Let us individually consider the two inequalities which need to be satisfied.
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V1 ≤ V2 + λ1
2p2(x

1
1 − x1

2) + λ2
2p2(x

2
1 − x2

2)(1)

V2 ≤ V1 + λ1
1p1(x

1
2 − x1

1) + λ2
1p1(x

2
2 − x2

1)(2)

For any feasible consumption bundles for player 1, we know from Fig 1 that p2(x
1
1 − x1

2) < 0

and p1(x
1
2 − x1

1) < 0. Similarly from Fig 2 we know that the same holds for player 2, that is,

p2(x
2
1 − x2

2) < 0 and p1(x
2
2 − x2

1) < 0. Hence, inequality (1) will imply V2 > V1 as the λ’s must be

strictly positive. Similarly, (2) will imply V1 > V2 which is the contradiction we seek.

Finally to end this section, we would like to provide an example which reiterates the importance

of concavity in potential games. This example shows that the weaker assumption of a biconcave

potential game imposes substantially weaker restrictions on observed data than the concave po-

tential game. Biconcave potentials are generated by utility functions which are concave only in

individual consumption. Biconcave potentials are hence concave in consumption xi of arbitrary

player i ∈ N for fixed x−i of the other players, but need not be concave in all arguments. Strict

biconcavity ensures unique best responses.

Example 4.4. Consider the following two person, two good example where each person has the

same following utility function

u1(x1, x2) = u2(x1, x2) = P (x1, x2) = x1
1x

2
1 + x1

2x
2
2

We observe that this potential function is biconcave, as it linear in x1 when we fix x2 and vice

versa. The following observations are equilibria of the above game.

pt = (2, 1) x1
t = x2

t = (1, 0)

pt′ = (1, 2) x1
t′ = x2

t′ = (0, 1)

Using an identical argument to that of example 4.3, it can be shown that these observations will

violate the equilibrium inequalities of theorem 4.2.

4.3. Potential Games and the Household. A natural application of concave potential games is

to analyze household consumption data. By assuming members of the household have common

goals, the preferences of the household can be modeled by a single utility function and we can use

theorem 4.2 on household consumption data. In practice, it is easier to get consumption data at

the level of the household, than it is to get consumption data for individuals within the household.

Unobserved private consumption of household members is the reason that makes nonparametric

tests of the collective model difficult to implement.

Browning and Chiappori (1998) provide a rigorous theoretical framework for testing consistency

of data with the collective model. They assume members of the household may have different,

possibly divergent preferences, where each a household member’s private consumption might
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act as an externality for another household member. The only assumption is that regardless of

how decisions are made, the outcome must be efficient. Thus, if the household consists of a hus-

band and a wife whose utilities are given by uh and uw, efficiency implies that the household’s

utility is given by uh + λuw, where λ is a measure of the “distribution of power”. The model’s ex-

planatory power lies in the fact that although the utility functions stay the same, λ can be different

across different observations. Lastly, they assume individual consumption is not observed. They

provide a parametric characterization of this model.

The assumption of changing “distributions of power” across observations seems somewhat ad

hoc. Also, empirical studies such as Udry (1996) show that even the assumption of efficiency is

not as innocuous as it may seem. Finally, nonparametric tests of the this model (Cherchye et al.

(2007)) are only testable for a special case of the collective model, moreover, Deb (2007) shows

them to be computationally inefficient even for this special case.

By contrast, the nonparametric test for the concave potential model is easily and efficiently im-

plemented, since, if we observe household consumption, then the inequalities (of theorem 4.2)

are linear in the unknowns. Moreover, the assumption that households violate the unitary model

because their preferences are influenced by the consumption of others is intuitive and the simplic-

ity of the nonparametric test makes testing such a model an interesting empirical exercise. The

intrahousehold collective model derives its explanatory power by allowing private consumptions

of household members which in practice are unobserved. In contrast, our interhousehold model

utilizes the observed consumptions of the other households in the economy in order to rationalize

the consumption of a particular household. Lastly, our approach is also constructive. We construct

a concave potential function which Nash rationalizes the data, and this allows us to use the tools

in Bracha and Brown (2007) to predict future household behavior.
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APPENDIX A. PROOFS OF THEOREM 2.1

Proof of Theorem 2.1. (1) =⇒ (2)

Let us consider arbitrary Di
t. If it is a singleton set then it trivially satisfies GARP. For non single-

ton sets the proof is identical to the first step of the proof of Afriat’s theorem in the appendix of

Varian (1982).

(2) =⇒ (3)

This is the main step in the proof. Consider arbitrary person i. First consider each Di
t. From

Afriat’s theorem, we know for all xi
t1

, xi
t2

∈ Di
t we can find positive numbers V i

t1
, V i

t2
and strictly
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positive ζi
t1

such that V i
t2

≤ V i
t1

+ ζi
t1

pt1(x
i
t2
− xi

t1
) because Di

t satisfies GARP. Having found such

numbers for each Di
t let us define η as follows.

η = max
i∈N

max
t,t′∈T

V i
t′ − V i

t − ζi
tpt(x

i
t′ − xi

t)

If η < 0 then, for all j, t we can set U i
t = V i

t , λi
t = ζi

t and we can set µij
t as strictly positive

and small in order to satisfy the inequalities and we are done. If η > 0 then we take any smooth,

strictly monotone and strictly concave function f : R(N−1)L
+ → R+ and define W i

t = f(x−i
t ) and

µij
t = ∂f(x−i

t )/∂xj . Finally we define γ as follows

γ = max
x−i

t 6=x−i

t′

W i
t′ − W i

t −
∑

j 6=i

µij
t (xj

t′ − xj
t )

Since f is strictly concave we will get γ < 0 (η > 0 implies there exists t, t′ such that x−i
t′ 6= x−i

t ).

Hence, we can set U i
t = W i

t −
γ
η
V i

t and λi
t = −

γζi
t

η
and hence we have found positive solutions for

U i
t′ − U i

t − λi
tpt(x

i
t′ − xi

t) −
∑

j 6=i

µij
t (xj

t′ − xj
t ) ≤ 0

for t, t′ = 1, 2, . . . , T

For η = 0 we can do the same as when η > 0. In this case, γ ≤ 0 and hence we set U i
t = W i

t + V i
t

and λi
t = ζi

t and we are done. We repeat this for all i to get solutions to the desired inequalities.

(3) =⇒ (4)

For any (xi, x−i) define

ui(xi, x−i) = min
t

[

U i
t + λi

tpt(x
i − xi

t) +
∑

j 6=i

µij
t (xj − xj

t )

]

We first show ui(xi
t, x

−i
t ) = U i

t . This can be shown as follows

ui(xi
t, x

−i
t ) = U i

t′ + λi
t′pt′(x

i
t − xi

t′) +
∑

j 6=i

µij
t′ (x

j
t − xj

t′) for some t′

≤ U i
t + λi

tpt(x
i
t − xi

t) +
∑

j 6=i

µij
t (xj

t − xj
t )

= U i
t

This inequality cannot be strict as it would violate condition (3) and hence ui(xi
t, x

−i
t ) = U i

t .

Finally, for each t and i if ptx
i ≤ ptx

i
t then

ui(xi, x−i
t ) ≤ U i

t + λi
tpt(x

i − xi
t) +

∑

j 6=i

µij
t (xj

t − xj
t )

= U i
t + λi

tpt(x
i − xi

t)

≤ U i
t
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Hence, each person is best responding. Since the minimum of concave functions is concave, ui

is a concave function. Since λ and µ are strictly positive, ui is strictly monotone.

(4) =⇒ (1)

This is obvious and it completes the proof. �

APPENDIX B. PROOF OF THEOREM 3.1

Proof of Theorem 3.1. We first show the necessity. Since Γ is a potential game, for every i ∈ N and

for every y−i ∈ Y −i we have

ui(x, y−i) − ui(z, y−i) = P (x, y−i) − P (z, y−i) for all x, z ∈ Y i

Since ui is differentiable it is straightforward to observe that P is a potential function if and only

if P is differentiable and

∂ui

∂yi
mi

=
∂P

∂yi
mi

∂uj

∂yj
mj

=
∂P

∂yj
mj

for every i, j ∈ N and for all 1 ≤ mi ≤ ni, 1 ≤ mj ≤ nj

Differentiating the first equation with respect to yj
mj and the second with respect to yi

mi
we get

∂2ui

∂yi
mi

∂yj
mj

=
∂2P

∂yi
mi

∂yj
mj

=
∂2P

∂yj
mj∂yi

mi

=
∂2uj

∂yj
mj∂yi

mi

for every i, j ∈ N and for all 1 ≤ mi ≤ ni, 1 ≤ mj ≤ nj

which proves the necessity.

We now prove the sufficiency using Poincaré’s lemma. This result states that if a differentiable

p form defined on a contractible open subset of Rn is closed then it is also exact. Since every

convex set is contractible, hence each ui is defined on an open contractible set and we can use

Poincaré’s lemma. Since each ui is differentiable we can define the following 1-form

α =

N
∑

i=1

ni
∑

mi=1

∂ui

∂yi
mi

dyi
mi

Since ui is twice differentiable we can take the derivative of the above 1-form to get

dα =

N
∑

i=1

[

∑

1≤li,mi≤ni

∂2ui

∂yi
mi

∂yi
li

dyi
mi

dyi
li

+

ni
∑

mi=1

∑

j 6=i

nj
∑

mj=1

∂2ui

∂yi
mi

∂yj
mj

dyi
mi

dyj
mj

]

From elementary properties of differential forms we know that ∂2ui

∂yi
mi

∂yi
mi

dyi
mi

dyi
mi

= 0 and,

∂2ui

∂yi
mi

∂yi
li

dyi
mi

dyi
li

= − ∂2ui

∂yi
li

∂yi
mi

dyi
li
dyi

mi
for all i, mi and li hence dα is simply
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dα =
N

∑

i=1

[ ni
∑

mi=1

∑

j 6=i

nj
∑

mj=1

∂2ui

∂yi
mi

∂yj
mj

dyi
mi

dyj
mj

]

But by assumption, we know that ∂2ui

∂yi
mi

∂y
j
mj

= ∂2uj

∂y
j
mj

∂yi
mi

, for all mi, mj when i 6= j. Also

∂2uj

∂yi
mi

∂y
j
mj

dyi
mi

dyj
mj = − ∂2uj

∂y
j
mj

∂yi
mi

dyj
mjdyi

mi
and therefore dα = 0. Hence α is closed. But by

Poincaré’s lemma we know that there must exist a twice differentiable 0-form P such that dP = α.

But then, this function then has the property that

∂ui

∂yi
mi

=
∂P

∂yi
mi

for every i ∈ N and for all 1 ≤ mi ≤ ni

and hence P is a potential function for game Γ and this completes the proof. �

APPENDIX C. PROOF OF THEOREMS 4.1 AND 4.2

Before we can prove theorem 4.1 we need the following notation. Let (X, t) be a topological

space, C a subset of X , - a preorder and f a function on X. Then t|C is the relativized topology on

C, that is the topology induced by t, -|C is the restriction of - to C and f|C is the restriction of f to

C. - is said to be closed if - is a closed subset of X ×X endowed with the product topology t× t.

Finally, tnat is the natural topology on Rn. We are now in a position to define the lifting theorem

of Herden (2008).

Theorem C.1. Let (X, t) be a locally compact and second countable Hausdorff-space that is endowed with

a preorder -. Then the following assertions are equivalent:

(1) - is closed.

(2) For every compact subset C of X and every continuous and strictly increasing function f : (C,-|C

, t|C) → (R,≤, tnat), there exists a continuous and strictly increasing function F : (X, -, t) →

(R,≤, tnat) such that F|C = f .

For every natural number n ≥ 1 Euclidean space Rn endowed with the natural topology is a

locally compact and second countable Hausdorff-space. Moreover, the product ordering ≤ on Rn

(or the natural partial order) that is induced by the natural linear ordering on R is closed with

respect to tnat× tnat. Hence on Rn we can always extend a strictly monotone and continuous func-

tion defined on a compact set to the entire space preserving the continuity and strict monotonicity.

Now we are in a position to show our result.

Proof of Theorem 4.1. (1) =⇒ (2) follows from the same step of theorem 2.1. We now show the

critical step.

(2) =⇒ (3)

We will show this step for the case when there are two people in the economy or N = 2. For N > 2

the proof remains the same however the notation becomes cumbersome.
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Consider an economy with 2 individuals where our data set consists of 2 data points or D =

{(p1, x1, y1), (p2, x2, y2)} where xt is the consumption of player 1 at observation t and yt is the con-

sumption of player 2 at observation t. This is an abuse of notation and is used in order to make

the proof more transparent.

The intuition of the proof is as follows. We will define a potential function V on a closed sub-

set of R2L
+ such that the data set D is rationalized if and only if it is rationalized on this subset. We

will then use the lifting theorem to extend the potential function to the rest of R2L
+ .

We consider the case where x1 6= x2 and y1 6= y2. If either x1 = x2 or y1 = y2, then CGARP

will imply that the inequalities of theorem 4.2 will be satisfied and our result is trivially true. Also

we restrict our attention to the case where p1x1 ≥ p1x2, p2x2 ≥ p2x1 and p1y1 ≥ p1y2, p2y2 ≥ p2y1.

This was true of the data in Example 4.3 and it is easy to show that this data cannot be rationalized

by a concave potential. If this is not true then the data can be rationalized by a concave potential

as we can satisfy the inequalities of theorem 4.2.

We will use the following notation

(◦, y) = {(x, y) : x ∈ RL
+} ⊂ R2L

+

(x, ◦) = {(x, y) : y ∈ RL
+} ⊂ R2L

+

We define C = (x1, ◦) ∪ (x2, ◦) ∪ (◦, y1) ∪ (◦, y2). We will now define a potential function V :

C → R which will rationalize the data. We will do so by finding a positive solution to the following

system of inequalities for scalar V ’s and for strictly positive vectors µ’s, λ’s

V11 ≤ V12 + µ12(y1 − y2)

V12 ≤ V11 + µ11(y2 − y1)

V22 ≤ V12 + λ12(x2 − x1)

V12 ≤ V22 + λ22(x1 − x2)

V22 ≤ V21 + µ21(y2 − y1)

V21 ≤ V22 + µ22(y1 − y2)

V11 ≤ V21 + λ21(x1 − x2)

V21 ≤ V11 + λ11(x2 − x1)

where λ11 = α1p1, λ22 = α2p2 for positive scalars α1, α2 and µ11 = β1p1, µ22 = β2p2 for positive

scalars β1, β2.
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Let us assume we have positive solutions to the above system. We then define V as follows

V : (◦, y1) → R, V (x, y1) = min
t∈{1,2}

{

Vt1 + λt1(x − xt)
}

V : (◦, y2) → R, V (x, y2) = min
t∈{1,2}

{

Vt2 + λt2(x − xt)
}

V : (x1, ◦) → R, V (x1, y) = min
t∈{1,2}

{

V1t + µ1t(y − yt)
}

V : (x2, ◦) → R, V (x2, y) = min
t∈{1,2}

{

V2t + µ2t(y − yt)
}

We need to show that this function is well defined on C. As x1 6= x2 and y1 6= y2, (x1, ◦)∩(x2, ◦) = φ

and (y1, ◦) ∩ (y2, ◦) = φ. Also (x1, ◦) ∩ (◦, y1) = {(x1, y1)}, (x1, ◦) ∩ (◦, y2) = {(x1, y2)} etc.

Using an identical argument to step 3 in the proof of theorem 2.1, we can show V (x1, y1) =

mint∈{1,2}

{

Vt1 + λt1(x1 − xt)
}

= mint∈{1,2}

{

V1t + µ1t(y1 − yt)
}

= V11 and similarly V (x1, y2) = V12,

V (x2, y1) = V21 and V (x2, y2) = V22. Hence, V is well defined. Moreover, V is trivially continuous

on C. We now verify that V is strictly monotone on C with respect to the standard partial order

on Euclidean spaces.

Since x1 6= x2 and p1x1 ≥ p1x2, p2x2 ≥ p2x1, it is the case that x1 � x2 and x2 � x1. Hence for any

(x1, y) ∈ (x1, ◦) and (x2, y
′) ∈ (x2, ◦) it must be the case that (x1, y) � (x2, y

′) and (x2, y
′) � (x1, y).

We can make the same argument for sets (◦, y1) and (◦, y2). Consider arbitrary (x1, y) > (x, y1)

where (x1, y) ∈ (x1, ◦) and (x, y1) ∈ (◦, y1). It must be the case that (x1, y) ≥ (x1, y1) ≥ (x, y1)

where one of the inequalities is strict. By construction we know that V is strictly monotone on

(x1, ◦) and V is strictly monotone on (◦, y1). Hence, V (x1, y) ≥ V11 ≥ V (x, y1) where one of the in-

equalities is strict. We can extend this argument to all of C to conclude that V is strictly monotone

on C.

We now need to verify that V rationalizes our data. For any p1x ≤ p1x1 we have

V (x, y1) = Vt1 + λt1(x − xt) for some t ∈ {1, 2}

≤ V11 + λ11(x − x1)

= V11 + α1p1(x − x1)

≤ V11

Therefore when player 2 consumes y1, x1 is a best response for player 1. We can do the same for

player 2 at observation 1 and for both players at observation 2. Hence V rationalizes the data.

Consider a large closed ball C ′. We consider V restricted to C ∩ C ′. As C ′ is large is contains all

points (x, y1) such that p1x ≤ p1x1, (x1, y) such that p1y ≤ p1y1 etc. Hence, V restricted to C ∩ C ′

is sufficient to rationalize the data. Now we can use the lifting theorem to extend V|C∩C′ to all of

R2L
+ (as C is closed and hence C ∩ C ′ is compact) in a strictly monotonic and continuous way and

hence we have a strictly monotonic and continuous potential function which rationalizes the data.

It remains to be shown that we can solve the above inequalities. We now construct a solution to

the inequalities. We assign arbitrary strictly positive values to V11 and V22. Assign 0 < V12, V21 <
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min{V11, V22}. Now we assign values to λ, µ to satisfy the first four inequalities and then we can

do the same for the last four.

Since y1 � y2 and y2 � y1 we can always find strictly positive vector µ12 such that µ12(y1−y2) > 0.

We can make µ12(y1−y2) > 0 arbitrarily large and hence we can satisfy V11 ≤ V12+µ12(y1−y2). By

construction since V11 > V12, we can take β1 small so that β1p1(y2 − y1) < 0 is small and inequality

V12 ≤ V11 + µ11(y2 − y1) is satisfied.

Since x1 � x2 and x2 � x1 we can always find strictly positive vector λ12 such that λ12(x2−x1) > 0.

We can make λ12(x2 − x1) > 0 arbitrarily large and hence we can satisfy V22 ≤ V12 + λ12(x2 − x1).

By construction since V22 > V12, we can take α2 small so that α2p2(x1 − x2) < 0 is small and in-

equality V12 ≤ V22 + λ22(x1 − x2) is satisfied.

We can do the same for the remaining four inequalities. Setting each person’s utility function

equal to the potential function V completes the step.

(3) =⇒ (1) is obvious and this completes the proof. �

Proof of Theorem 4.2. (1) =⇒ (2)

Since the potential function V is concave, it is continuous and subdifferentiable and hence a Nash

equilibrium must satisfy

∂V (xi
t, x

−i
t )

∂xi
≤ λi

tpt for all i and t

where λi
t are the strictly positive Lagrangian multipliers. Also since V is concave we must have

V (x1
t′ , . . . , x

N
t′ ) ≤ V (x1

t , . . . , x
N
t ) +

N
∑

i=1

∂V (x1
t , . . . , x

N
t )

∂xi
(xi

t′ − xi
t)

=⇒ V (x1
t′ , . . . , x

N
t′ ) ≤ V (x1

t , . . . , x
N
t ) +

N
∑

i=1

λi
tpt(x

i
t′ − xi

t)

Setting Vt = V (x1
t , . . . , x

N
t ) for all t, we have the required solutions for the inequalities.

(2) =⇒ (3)

For arbitrary consumption bundles x1, . . . , xN we define the potential as follows

V (x1, . . . , xN ) = min
1≤t≤T

[

Vt +

N
∑

i=1

λi
tpt(x

i − xi
t)

]

Using an identical argument to theorem 2.1 we can show V (x1
t , . . . , x

N
t ) = Vt for 1 ≤ t ≤ T .

Finally, for arbitrary person i, if ptx
i ≤ ptx

i
t then
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V (xi, x−i
t ) ≤ Vt + λi

tpt(x
i − xi

t) +
∑

j 6=i

λi
tpt(x

j
t − xj

t )

= Vt + λi
tpt(x

i − xi
t)

≤ Vt

Hence, each person is best responding. Since the minimum of concave functions is concave,

V is a concave function. Clearly it is also continuous and strictly monotone. Setting everyone’s

utility function equal to the potential function we have (3).

(3) =⇒ (1)

This is obvious and it completes the proof. �


