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Abstract

Recent literature has shown that all-pay auctions raise more money for charity than either

winner-pay auctions or lotteries. We demonstrate that first-price and second-price winner-

pay auctions have a better revenue performance than first-price and second-price all-pay

auctions when bidders are sufficiently asymmetric. Lotteries can also provide higher revenue

than all-pay auctions. To prove this, we consider a framework with complete information.

Complete information is helpful and may reflect events that occur, for instance, in a local

service club (such as a voluntary organization) or at a show-business dinner.
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1 Introduction

The recent literature of fundraising mechanisms is not conclusive about the relative performance

of all-pay auctions, winner-pay auctions and lotteries. Theoretical results (Goeree, Maasland,

Onderstal and Turner (2005), Engers and McManus (2007)) and experimental results (Schram

and Onderstal (2009)) show, in a symmetric independent private values model, that all-pay

auctions raise more money for charity than winner-pay auctions and lotteries. A field experiment

by Carpenter et al. (2008)) concludes in favor of winner-pay auctions instead of all-pay auctions.

We show that the asymmetry among bidders’ values in a complete information framework

can lead winner-pay auctions to raise more money for charity than all-pay auctions and lotter-

ies. This invalidates the theoretical and experimental results of Goeree et al. (2005), Engers

and McManus (2007)) and Schram and Onderstal (2009), and might support the field expriment

results of Carpenter et al. (2008). More precisely, our purpose is twofold. First, we would like

to determine if the results found theoretically and confirmed in a lab experiment that all-pay

auctions raise more money for charity than winner-pay auctions and lotteries are robust. Agents

do not usually have the same preferences. Thus a way to test the robustness of results found in

theoretical and experimental literature is to consider asymmetry either in the evaluation for the

item sold or in altruism. Second, we would like to investigate if bidders’ asymmetry could ex-

plain the results from the field experiment (Carpenter, Homes and Matthews (2008)), which are

that the winner-pay auctions can raise more money than the first-price all-pay auction. Indeed,

Carpenter, Homes and Matthews’s (2010) theoretical investigation of endogenous participation

shows that participations cost do not provide a convincing explanation. Therefore, we compare

five mechanisms: the first and second-price all-pay auctions, the first and second-price winner-

pay auctions and the lotteries in a complete information framework.

Why are charity auctions interesting to analyze? Charity auctions have been held in the

United States and in Europe for many years now.1 At such auctions, an item (for example a

key case of zero value or an item donated by a luxury brand) is sold and the proceeds go to

charity. Although many charity auctions are held on the Internet some are conducted among

wealthy guests at charity dinners. These events may occur at local service clubs (such as the

Rotary Club2, the Lions Club3 and other (types of) voluntary organizations) or at show-business

dinners. Potential bidders tend to be acquainted with each other in varying degrees. Beyond

the item’s value, the valuations of potential bidders vary with their interest in the voluntary

organization (their altruism or philanthropy). Thus, potential bidders make a trade-off between

giving money for fundraising and keeping it for some other personal use. Unlike non-charity

auctions, though, here the amount paid is “never lost”. Since the money raised is used to finance

1Although historically more common in the United States, charity auctions have long been held in Eu-

rope, e.g. the Hospices de Beaune wine auctions, http://www.france.fr/en/celebrations-and-festivals/

hospices-de-beaune-wine-auctions-ancestral-event.html.
2The Rotary Club is a worldwide organization of business and professional leaders that provides humanitarian

services, encourages high ethical standards in all vocations, and helps build goodwill and peace in the world. There

are about 32,000 clubs in 200 countries and geographical areas and 1,000 clubs in France including in Paris, of

course, but also small towns like Niort. http://www.rotary.org/
3http://www.lionsclubs.org/
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a charitable purpose, every participant in the charity auction may benefit from it, independently

of the winner’s identity. More specifically, the money raised by each potential bidder impacts the

utility of all participants as they take advantage of an externality of the money raised for charity.

Under complete information, such auctions can be compared to those described in Ettinger

(2010) who analyzes a general winner-pay auction framework with financial externalities.4 These

externalities are independent of the winner’s identity and can be applied to charity auctions in

which only the winner pays.5 Moreover, he shows that there is no “revenue equivalence” with

these externalities.6 Maasland and Onderstal (2007) investigate winner-pay auctions with this

kind of linear externalities in an independent private signals model. Their paper can also be

applied to charities. They find similar qualitative predictions to Ettinger (2010): the second-

price winner-pay auction outperforms7 the first-price winner-pay auction. Goeree et al. (2005)

analyze charity auctions in the symmetric independent private values model. They show that,

given the externality, all-pay auctions raise more money for charity than both winner-pay auc-

tions (second-price outperforms first-price) and lotteries. In particular, they determine that the

optimal fundraising mechanism is the lowest-price all-pay auction with an entry fee and a reserve

price. The lab experiment conducted by Schram and Onderstal (2009) show results similar to

Goeree et al. (2005), namely that the first-price all-pay auction leads to a higher revenue than

winner-pay auctions and lotteries. Bos (2011) compares in a complete information framework

the first-price all-pay auction and lotteries with asymmetric agents. In this paper, it is shown

that the result of Goeree et al. (2005) can be reversed under complete information, which means

that lotteries outperform all-pay auctions, if agents are asymmetric enough. Engers and Mc-

Manus (2007) report findings similar to Goeree et al. (2005). Contrary to Goeree et al. (2005), a

psychological effect comes into play: the winner benefits from a higher externality with her own

bid, the others’ bids having a lower effect on her. In their setting, as in Goeree et al. (2005),

first-price all-pay auctions and second-price winner-pay auctions raise more money than first-

price winner-pay auctions. Moreover, first-price all-pay auctions outperform each winner-pay

auction only for a sufficiently high number of bidders.

Carpenter et al. (2008) report testing the predictions of Engers and McManus (2007) and

Goeree et al. (2005) in a field experiment. Similar objects were sold in four American pre-schools

through three different mechanisms which were the first-price all-pay auction and the first-price

and second-price winner-pay auctions. They studied the determinants of the bidders’ behavior

and the revenue raised. Contrary to the theoretical predictions, first-price all-pay auctions did

not produce higher revenues than winner-pay auctions. One main explanation for the gap be-

4To the best of our knowledge, Ettinger (2010) is the only one to consider general externalities which could

be non-linear.
5Actually, Ettinger (2010) investigates a framework with two kinds of externalities. One is independent of the

winner’s identity and the other depends on the winner’s identity.
6The revenue equivalence principle (see Myerson (1981)) is one of the most famous and important results

in auction theory. It determines that every auction mechanism, under some assumptions such as available

information on the bidders’ type and neutral-risk aversion, leads to the same expected revenue independently of

the payment rule. For more details the textbook of Krishna (2009) makes for useful preliminary reading.
7In the following, outperform means generate higher revenue than.
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tween theory and the field experiment could be a non-participation effect (see Carpenter, Homes

and Matthews (2010)), due to unfamiliarity with these mechanisms and their complexity: the

participants did not know the all-pay design and few took part in second-price auctions on the

Internet.

We consider a complete information framework to analyze the revenue performance of all-pay

auctions, winner pay-auctions and lotteries. Complete information can help to provide analyses

which are not available from the usual incomplete information.

First, complete information makes it easier to analyze asymmetries among bidders in a

charity setting. In the current setting we are able to distinguish how altruism and asymmetry

can independently affect bidding strategies and expected revenue.

Second, as recently pointed out by Damianov and Peeters (2012), complete information leads

to a better understanding of the payment rule effects (through altruism) on bidding strategies and

revenue raised. Damianov and Peeters (2012) distinguish three externalities attributable to the

payment rule which can be analyzed separately in a complete information setting. In the second-

price all-pay and winner-pay auctions, the highest bidder benefits from a positive externality:

an increase in her bid raises her probability of winning without affecting her payment. A second

positive externality is attributable to the bid of the second highest bidder. Any increase in her bid

will raise the winner’s payment by the same amount and so improve the second highest bidder’s

payoff. Finally, following Damianov and Peeters (2012) and Morgan (2000), the second-price

all-pay auction leads to a negative externality due to the expected increase of revenue relative

to the first-price all-pay auction.

Third, as Damianov and Peeters (2012) write, “the complete information model helps us fur-

ther clarify the reasons for the superiority of auctions”. While their setting features symmetric

participants, their intuition to explain why all-pay auctions can outperform lotteries can still be

applied here. Following Morgan (2000), they suggest that exernalities are greater from auctions

than lotteries.

We analyze first-price and second-price all-pay auctions for charity and compare this analysis

to known results of winner-pay auctions and lotteries. In this framework, the externalities are

such that every bidder derives as much advantage (obtains as much utility) from her own bid

as from her rival’s bid. Additionally, bidder i’s adjusted-value is the ratio of her valuation of

the item sold and the fraction of her payment which she perceives as a cost given her altruism

for the charitable cause. Bidders are then arranged in such a way that the adjusted-values and

valuations are ranked in the same order. This ranking and its consequences are discussed.

The first-price all-pay auction equilibrium is characterized and the expected revenue com-

puted. As in a case without externalities, there is no pure strategy Nash equilibrium and only

the two bidders with the highest adjusted-values are active.

The equilibrium in the second-price all-pay auction is also characterized and the expected

revenue computed. The results are then compared to those of Ettinger (2010) and Bos (2011)

who analyze winner-pay auctions and lotteries with externalities that do not depend on the

winner’s identity and which could be applied to charity auctions.

The expected revenue from all-pay auctions can be dominated by the revenue from winner-
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pay auctions and lotteries contrary to the results of Goeree et al. (2005). Actually, above a certain

threshold of asymmetry in the bidders’ valuations, winner-pay auctions and lotteries can raise

more money for charity than all-pay auctions. These results might also be related to the work of

Carpenter et al. (2008). Their findings could be due to strong asymmetry between bidders, even

if unlike the present results they have more than two participants, which makes a big difference.

The present results are examined by analyzing the bidders’ altruism. Additionally, revenues of

winner-pay auctions and lotteries are compared.

2 The model

At a charity dinner, an indivisible object (or prize) is sold through an auction. This prize is allo-

cated to one of the potential bidders N = {1, ..., n} contingent upon their bids x = (x1, ..., xn) ∈

R
n
+. As the bidders usually meet each other at these kinds of events, the willingness to pay and

the valuation ranking of each bidder, v1 > v2 > ... > vn, are common knowledge.8 In the fol-

lowing the function ti represents for each bidder i her payment ti(x) to the charity organization

for the vector of bids x.

Bidders look to raise the maximum amount of money for charity and are risk neutral. Each

bidder benefits from her own participation in the charity auction and from others’ as well. In

other words, the money raised by each potential bidder impacts the utility of all the participants

including herself. Thus, the bidder’s utility function includes an externality which depends on

the amount of money raised for the charity. Accordingly we consider the externality as a function

with a single argument
n∑

j=1

tj(x). The externality is independent of the winner’s identity and

only takes into account the amount raised. The externality that participants benefit is given by

αi
∑n

j=1 tj(x) where αi ≥ 0 is the coefficient of bidder i’s altruism for the charity.9

It follows that bidder i’s utility is given by10

Ui(x) =







vi − ti(x) + αi
∑n

j=1 tj(x) if i is the only winner
vi
k − ti(x) + αi

∑n
j=1 tj(x) if i is one of k winners

−ti(x) + αi
∑n

j=1 tj(x) otherwise

(1)

Assumption 1 (A1). Bidder i’s utility decreases with her payment ti(x) in the charity auction.

This assumption means that each bidder has a strict preference to keep one euro for her own

use rather than to give it to the charity auction. This is the limit to the bidders’ altruism in

8Although valuations are common knowledge among the potential bidders, the seller has no information about

them.
9We make a linearity assumption regarding the form of the externality. To the best of our knowledge all

theoretical papers on charity auctions make a similar assumption, apart from Ettinger (2010) on winner-pay

auctions with complete information. Moreover, an equilibrium existence result for the first-price all-pay auction

with non-linear externalities is available in a previous version of this paper (Bos, 2010).
10There may well be not one but k winners. In this case, the k bidders submitted the same highest bid such

that k = #{j|j = argmax{xi, i ∈ N}}.
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giving money for charity. This limit is affected by the payment rule. In the second-price all-pay

auction, bidder i could bid more than the other bidders but pay her opponents’ highest bid.

Thus, a change in the payment rule leads to a new limit on the bidders’ altruism: in first-

price auctions it is αi < 1 while in second-price auctions αi < 1/2.

As established below, for some auctions, pure strategy Nash equilibria either do not exist or

are degenerate. In such cases, we look for Nash equilibria in mixed strategies. In the following

we denote Fi(x) ≡ P(Xi ≤ x) the cumulative distribution functions such that bidder i decides

to submit a bid lower than x. F1, ..., Fn can be interpreted as the bidding strategies where the

support is R+.

Let us denote by vi
1−αi

bidder i’s adjusted-value. Bidders i’s adjusted-value is defined as the

ratio of her valuation of the item sold and the fraction of her payment which she perceives as

a cost given her altruism for the charitable cause. We can observe this adjusted-value in the

expected utility with a normalization by dividing it by 1−αi. As bidders are ex ante asymmetric,

we arrange them such that vi
1−αi

decreases with the suffix i and without equality. This is common

knowledge. Thus,
v1

1− α1
>

v2
1− α2

> ... >
vn

1− αn

3 The First-Price All-Pay Auction

In this section, we study the most popular all-pay auction design, i.e. the first-price all-pay

auction. Each bidder pays her own bid ti(x) = xi ∀i ∈ N , but only the highest bidder wins.

As we noticed in the previous section, assumption A1 implies that αi < 1. So there is no

pure strategy Nash equilibrium. This is a well known result when there is no externality (see

Hillman and Riley (1989) and Baye et al. (1996)). We only provide a sketch of the proof of this

result with two bidders for the first-price all-pay auction with externalities.

Let us assume that xi ≥ xj , then either of two cases may arise. First, if bidder j can overbid,

then her best reply is xi+ ε, for ε > 0 such that vj − (xi+ ε)+αj(2xi+ ε) ≥ −xj +αj(xi+xj).

Hence, it is impossible for xi ≥ xj . Second, if j cannot overbid, then her best reply is to offer

zero since, given assumption A1, αjxi > −xj+αj(xi+xj). Consequently, i’s best reply is to offer

ε > 0. As a result, the equilibrium is unstable and there is no pure strategy Nash equilibrium.

If bidder i offers xi, then j will offer less with probability Fj(xi) and will offer more with

probability 1 − Fj(xi). Whatever the outcome, bidder i benefits from the sum of all bids,

including her own. When computing her expected utility, she takes the amount paid by each

opponent into account. Bidder i’s expected utility with n potential competitors is given by

EUi(xi,X−i) =
∏

j 6=i

Fj(xi)vi − (1− αi)xi + αi

∑

j 6=i

EXj

with X−i = (X1, ..., Xi−1, Xi+1, ..., Xn). A potential bidder takes part in the auction if for some

bids her expected utility is equal to or greater than the externalities from which she benefits

when her bid is zero. Formally, a bidder takes part in the auction if
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∃ x such that EUi(x,X−i) ≥ αi

∑

j 6=i

EXj

with αi
∑

j 6=iEXj bidder i’s expected reservation utility when she takes part in the auction.

We call the highest price at which a given bidder is ready to take part in the auction her

indifference price. i’s indifference price is denoted by x̃i and satisfies EUi(x̃i) = αi
∑

j 6=iEXj .

Proposition 1. In the first-price all-pay auction, there is a unique Nash equilibrium and the

mixed strategies are given by

F1(x) =
1− α2

v2
x ∀x ∈

[

0,
v2

1− α2

]

and F2(x) = 1−
1− α1

1− α2

v2
v1

+
1− α1

v1
x ∀x ∈

(

0,
v2

1− α2

]

All other bidders use the pure strategy of bidding zero and do not take part in the auction:

Fj(0) = 1 for j ∈ {3, ..., n}.The expected revenue is given by ER =
1

2

v2
1− α2

(
1− α1

1− α2

v2
v1

+ 1

)

.

Dividing bidder i’s expected utility by 1 − αi we obtain an affine transformation of the

expected utility without externality as described by Hillman and Riley (1989) and Baye et al.

(1996). In our case the adjusted-value
vi

1− αi
plays the same role as the value vi. Moreover, we

have an additional term
αi

1− αi

∑

j 6=i

EXj which is constant in the equilibrium. As the result of

Baye et al. (1996) is invariant with respect to positive affine transformations of expected utility,

the mixed strategies are invariant with respect to dividing by 1 − αi and adding a constant to

the expected utility. Then our result follows.

Corollary 1. In the first-price all-pay auction, all bidders obtain a positive payoff. Indeed,

the bidders with the two highest adjusted-values obtain a positive payoff U⋆
1 = v1 − 1−α1

1−α2
v2 +

α1

2
1−α1

v1

(
v2

1−α2

)2
and U⋆

2 = v2
2

α2

1−α2
and their competitors get U⋆

i = αi

2
v2

1−α2

(
1−α1

v1
v2

1−α2
+ 1

)

for

i ∈ {3, ..., n}.

The proof of Corollary 1 is by direct calculation. Contrary to the case with no externality

(see Hillman and Riley (1989) and Baye et al. (1996)), the highest bidder’s opponents get a

positive payoff. This is a consequence of the externalities: bidders benefit from their competitors’

behavior and so have outside options when not participating in the auction.

Remark 1. Let us assume that the difference between α1 and α2 is large enough for bidder

1’s adjusted-value to be ranked second such that the two highest adjusted-values are permuted.

Then bidder 1 can obtain a lower payoff than in the case with no externality if and only if her

altruism level is lower than α̃ ≡ 2 v1−v2
3v1−2v2

. We notice that this threshold does not depend on her

rival’s level of altruism, while the changes in the ranking of the adjusted-values are due only to

the difference in how altruistic the players are.

Notice here that there are two opposing effects. Because of the externalities, the value of one

euro that is invested in the auction is less than one euro. Thus, the bidders may choose more

aggressive offers. However, each bidder knows that her competitor is more aggressive and this

will affect her probability of winning. Given an increase in her competitor’s aggressiveness, the

bidder’s best reply could be to raise or lower her bid.
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4 The Second-Price All-Pay Auction

In the second-price all-pay auction, the losers still pay their own bids, ti(x) = xi, but the winner

pays the second highest bid, ti(x) = x(2) where x(2) is the second order statistic of the sample

x. Our purpose is now to determine the mixed strategy Nash equilibrium and the expected

revenue.11

It is not necessary to find each agent’s support of the probability distribution in order to

determine the mixed strategy Nash equilibrium. We need only to assume that each bidder i’s

offer, xi, belongs to a strategy space [0,+∞). For the same reasons as in the first-price auction,

the bidders’ minimum valuations are zero. As noticed before, assumption A1 allows us to write

that αi < 1/2.

As the support of the strategies is R+, the strategies are completely mixed. They are

therefore continuous, atomless, gapless (see Moulin (1986) for details). In the two-bidders case

the payment rule leads to the winner paying her rival’s bid and both pay the same amount. In

addition, each bidder benefits from two externalities, one associated with her own bid, and the

other associated with her rival’s bid. Therefore the expected utility is given by

EUi(xi,X−i) =

∫ xi

0
(vi − (1− 2αi)x)dFj(x)− (1− 2αi)xi(1− Fj(xi)).

Dividing by 1 − 2αi, this expected utility is qualitatively equivalent to the expected utility

without any externalities (see for example Vartiainen (2007)).12 However, this is no longer the

case for n bidders. Externalities have a different effect depending on whether bidder i is the

winner, the second highest bidder, or a loser with a bid lower than the second highest bid.

Accordingly the expected utility and the equilibrium, then, are non-intuitive and difficult to

compute with n bidders. Let us denote Gi(x) =
∏

j 6=i Fj(x). It follows from equation (1) that

the expected utility can be written

EUi(xi,X−i) =

∫ xi

0
(vi − (1− αi)x)dGi(x)− (1− αi)xi(1−Gi(xi))

+ αi

∑

l 6=i

∫

R+

xl

(

1− 1xi≤xl

∏

k 6=l,i

Fk(xl)

)

dFl(xl) (2)

+ αi

∑

l 6=i

(∫

R+

∫ xl

xi

∑

k 6=l,i

xk
∏

m 6=i,k,l
k 6=l

Fm(xk)dFk(xk)dFl(xl) + xi
∏

m 6=i,l

Fm(xi)(1− Fl(xi))

)

The transition from equation (1) to equation (2) is explained in the proof of Proposition 2

given in the appendix. The two terms in the first line represent bidder i’s payoff depending on

whether she wins or loses the auction, given the externality that arises from her own action.

The other lines represent the externalities that derive from her competitors’ actions (whether

they lose or win).

11Pure strategy Nash equilibria in the second-price all-pay auction and their consequences in terms of expected

revenues are discussed at the end of the next section.
12Vartiainen (2007) investigates first-price and second-price all-pay auctions with general (non-linear) cost

functions. Interestingly, bidders may have asymmetric costs, which is qualitatively equivalent to the asymmetric

valuation case when the cost functions are linear.
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The first of these two lines describes the situation in which bidder l (l 6= i) loses the auction.

In the last line bidder l wins the auction; we distinguish situations where bidder i’s bid is the

second highest offer from situations where it is not. Each bidder’s offer could be the second

highest bid and we take account of this (sum operator under the integral). The bidder who

makes an offer between bidder i and bidder l’s offers makes the second highest bid. The other

part of the equation gives the amount of money that bidder l has to pay when i offers the second

highest bid. Indeed,
∏

m 6=i,l

Fm(xi)(1−Fl(xi)) is the probability that every bidder except l makes

a lower bid than i. This probability is multiplied by bidder i’s bid.

Note that this expression for the expected utility is valid for at least four bidders. In order

to study the three bidders case, it is necessary to change the third line (slightly). To do this,

we have to stop at the second line of the computation of the term BI in the appendix. Thus,

this term is written as αi

∑

l 6=i

(∫

R+

∫ xl

xi

xkdFk(xk)dFl(xl) + xiFk(xi)(1 − Fl(xi))

)

, where k is

neither i nor l.

Proposition 2. In the second-price all-pay auction only two bidders, named i and j, among n

participate actively. Bidder i’s mixed strategy is given by the cumulative distribution Fi(x) = 1−

exp

(

−
1− 2αj

vj
x

)

∀x ∈ [0,+∞) and the expected revenue by ER =
2vivj

(1− 2αi)vj + (1− 2αj)vi
.

Proof. See Appendix �

The weakness of this result is that we do not know which bidders are going to participate. Thus,

it might be that the two bidders with the highest values participate or the ones with the lowest

values. This has consequences on the expected revenue.

5 Revenue Comparisons

In this section, we investigate the revenue performance of first-price and second-price all-pay

auctions, first-price and second-price winner-pay auctions and lotteries.

We determined the equilibria in the first-price and second-price all-pay auctions in the pre-

vious sections. To have a complete overview of all mechanisms discussed below, we describe in

this paragraph the rules and equilibria of winner-pay auctions and lotteries.

In the winner-pay auctions the winner, as in all auctions, is the bidder with the highest bid

submitted. Yet, contrary to the all-pay auctions, only the winner pays. Then, in the first-price

winner-pay auction, the winner pays his own bid and in the second-price winner-pay auction,

she pays the second-highest bid. Ettinger (2010) determines that in the first-price winner-pay

auction, bidding strategies are not affected by the charity purpose. Thus, the winner, the bidder

with the highest value, submits a bid equal to the second highest value, v2, and all the losers

bid their own value.13 He also shows that in the second-price winner-pay auction the only

equilibrium is such that at least two bidders submit the highest value, ie v1.

In a lottery, each participant i buys a certain number of tickets li, which are not refundable,

and the winning ticket is drawn among all tickets. Therefore, each participant has a probability

13More details are provided in the working paper version of Ettinger (2010), in Ettinger (2002).
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of winning
li

∑n
j=1 lj

. Bos (2011) determines the unique Nash equilibrium in a charitable lottery,

given by

li = (np − 1)





np
∑

j=1

1
vj

1−αj





−1

1− (np − 1)




vj

1− αi

np
∑

j=1

1
vj

1−αj





−1



for all i ≤ np with np the number of active participants.14

In the following, we assume that bidders are equally altruistic i.e. α1 = α2 = ... = αn = α.

Hence, the bidder with the highest value is also the one with the highest adjusted-value. The

expected revenues become

ERAP1 =
1

2

v2
1− α

(
v2
v1

+ 1

)

and ERAP2 =
2

1− 2α

vivj
vi + vj

i, j ∈ N

Indices APi and WPi correspond to ith-price all-pay and winner-pay auctions, and LOT cor-

responds to lotteries. If bidders are thoroughly altruistic, i.e. αAP1 −→ 1 and αAP2 −→ 1/2,

the expected revenues diverge as Goeree et al. (2005) predicted. Thus, the altruism level is an

essential element in determining the expected revenue. When bidders’ altruism levels are the

same, the revenue from the auction is at least equal to the revenue that would be obtained with

non-altruistic bidders.

In the following, we compare our results on all-pay auctions with externalities to Ettinger

(2010) and Bos’ (2011) results on winner-pay auctions and lotteries with externalities. These

results are summed up in Table 1:

v1 > v2 > v3 > vi ∀i > 3 RWP1 RWP2 RLOT
ERAP1

ERAP2

α > 0 v2 v1 (np − 1)

(

np
∑

i=1

1
vi

1−α

)−1

1

2

v2

1− α

(

v2

v1
+ 1

)

2

1− 2α

v1vi

v1 + vi
, i 6= 1

α = 0 v2 v2 (np − 1)

(

np
∑

i=1

1

vi

)−1

v2

2

(

v2

v1
+ 1

)

2
v1vi

v1 + vi
, i 6= 1

Table 1: Revenues and expected revenues

Bos (2011) investigates the comparison between the first-price all-pay auction and lotteries

with heterogenous values and externalities. He shows and discusses that homogeneous values

and charity components (externalities) lead to the same qualitative result as Goeree et al. (2005),

i.e. the first-price all-pay auction dominates lotteries. Externalities improve the revenue per-

formance of both mechanisms in the same way and so do not change their ranking. Yet in

a framework with no externality and heterogeneous participants, Fang (2002) established that

the first-price all-pay auction can lead to a higher expected revenue than lotteries if and only

if the participants are asymmetric enough. Bos (2011) confirmed this result with externalities,

which contradict Goeree et al.’s (2005) qualitative results. This result is recalled in Table 2.

However, the case of the second-price all-pay auction has not been compared to lotteries. For

14In the lottery, independently of the charity component the number of participants is denoted np, which is

the highest integer of m ∈ {2, ..., n} such that m ≤ 2 + vm
∑m−1

i=1

1

vi
.
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homogeneous values with externalities, the same qualitative results as Goeree et al. (2005) are

determined here; charity components improve the revenue performance of the second-price all-

pay auctions relative to lotteries. Yet in a framework with no externality and heterogeneous

values, the second-price all-pay auction also outperforms lotteries as long as the bidders with the

two highest adjusted-values take part in the auction. Therefore the result with externalities and

heterogeneous participants can be intuitively determined as asymmetry and charity components

have the same effects on the revenue comparison.

From the revenue equivalence principle, we know that all auction designs with homogeneous

values and without externalities generate the same revenue. Moreover, if we consider homo-

geneous values with charity components, we find the same qualitative results as Goeree et al.

(2005). So, externalities improve the revenue performance of all-pay auctions relative to winner-

pay auctions. On the contrary, in a framework with no externality and heterogeneous bidders,

winner-pay auctions outperform first-price all-pay auctions and could outperform second-price

all-pay auctions (it depends which bidders are going to participate). Therefore, the asymmetry

component improves the revenue performance of winner-pay auctions relative to first-price all-

pay auctions and could improve it relative to second-price all-pay auctions. Hence, asymmetry

and charity have opposing effects on the revenue comparaison among all-pay and winner-pay

auctions. Thus, the revenue comparison result with charitable and asymmetric bidders is not

obvious.

Moreover, although our framework might be suitable for charity dinners with complete in-

formation (for example dinners held by a local Rotary Club), first-price and second-price all-pay

auctions contradict Goeree et al.’s (2005) qualitative results. In order to analyze the impact of

asymmetry on revenues, we use the following definition.

Definition. The level of asymmetry between bidders’ valuations will be considered very high if

v1 − v2 > 2α(v1 + v2), high if v1 − v2 > 2αv1, medium if 2αv1 > v1 − v2 > 2αv1 − v1 + v2
v2
v1

,

and low if v1 − v2 < 2αv1 − v1 + v2
v2
v1

.

Proposition 3. We assume that αi = α for all bidders and that the bidder with the highest

value takes part in the second-price all-pay auction. ERAP2 > RWP2 if and only if the level

of asymmetry between valuations is not very high, ERAP2 > RWP1 and ERAP2 > ERAP1

independently of the level of asymmetry.

Assuming that the bidders with the two highest values take part in the second-price all-pay

auction then ERAP2 > RLOT independently of the level of asymmetry.

ERAP1 > RWP2 if and only if the level of asymmetry between valuations is low, RWP2 >

ERAP1 > RWP1 if and only if this level is medium, and RWP1 > ERAP1 if and only if it is

high.
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Proposition 3 can be proved by directly comparing the revenues and expected revenues listed

in Table 1. Results of Proposition 3 and Bos (2011) are summarized in Table 2:

Level of asymmetry low medium high very high

AP1 versus {WP1,WP2} ERAP1 > RWP2 RWP2 > ERAP1 > RWP1 RWP1 > ERAP1

AP1 versus LOT RLOT > ERAP1 if and only if asymmetry between the two highest values is strong enough.⋆⋆

AP2 versus WP2 ⋆
ERAP2 > RWP2 WP2 > ERAP2

AP2 versus {AP1,WP1} ⋆
ERAP2 > {ERAP1, RWP1}

AP2 versus LOT ⋆⋆⋆
ERAP2 > RLOT

toto⋆The bidder with the highest value takes part in the auctions.

toto⋆⋆ This level of asymmetry determined by Bos (2011) is discussed below.

toto⋆⋆⋆The bidder with the two highest values takes part in the auction.

Table 2: Impact of asymmetry on the revenue comparisons

Bos (2011) determines the level of asymmetry between the two highest values such that

lotteries outperform first-price all-pay auctions in terms of revenue. If there are more than two

participants in the lottery, the level of asymmetry involves the values of other participants and

cannot be compared to the different levels proposed in Definition 1. Yet, if there are only two

participants in the lottery then this level of asymmetry could be higher than the “very high”

level of asymmetry defined here.15 Unlike in winner-pay auctions, the revenue comparisons with

lotteries are independent of the level of altruism.

The second-price all-pay auction leads to a higher revenue than the lottery independently

of asymmetry and altruism level as long as the bidders with the highest two adjusted-values

take part in the auction. If one of them does not then the revenue comparison is affected by

the identity of the participants in the second-price all-pay auctions but also the number of

participants in the lottery.

The second-price all-pay auction generates a higher revenue than the second-price winner-pay

auction if and only if the level of asymmetry is not very high and it generates a higher revenue

than all the other auction designs as long as the bidder with the highest adjusted-value takes

part in the auction. Moreover, the revenue performance of the second-price all-pay auctions

can be interpreted in another way when the bidder with the highest adjusted-value participates

in the auction. Given v1 and v2, the second-price all-pay auction outperforms the second-price

winner-pay auction when the bidders’ altruism level is superior to 1
2
v1−v2
v1+v2

.

On the contrary, when this bidder does not take part in the auction, the ranking of the

expected revenue raised in the second-price all-pay auction depends on the asymmetry between

bidders’ valuations.

As for second-price all-pay auctions, we can interpret the revenue performance of the first-

price all-pay auction relative to the winner-pay auctions in two independent ways.

15Interestingly, lotteries with two participants outperform first-price all-pay auctions if and only if v1 − v2 >
v2
v1
(v1 + v2). For all α ∈ [ 1

2
, 1) this threshold of asymmetry is lower than the “very high” threshold 2α(v1 + v2).

If α ∈ [0; 1

2
) this threshold may be higher or lower than the very high threshold 2α(v1 + v2).
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• First, given the altruism level α, the (first-price) all-pay auction is dominated by the first-

price winner-pay auction when asymmetry is high. Furthermore, this all-pay auction raises

more money than the second-price winner-pay auction when asymmetry is low. Thus, in

order to determine which design is better at raising money for charity, we need to know

the level of asymmetry between bidders.

• Given v1 and v2, the (first-price) all-pay auction is dominated by first and second-price

winner-pay auctions when the bidders’ altruism level is less than 1
2(1−

v2
v1
). Yet, the all-pay

auction outperforms the first-price auction and is dominated by the second-price auction

when the bidders’ altruism level is inferior to 1− 1
2
v2
v1
(v2v1 +1) and superior to 1

2(1−
v2
v1
). In

particular, the threshold above which this all-pay auction raises more money than the first-

price winner-pay auction is less than 1
2 . Lastly, the first-price all-pay auction outperforms

the winner-pay auctions when α > 1− 1
2
v2
v1
(v2v1 + 1).

The greater the asymmetry, the higher the level of altruism needs to be for the first-price

all-pay auction to yield a higher revenue than the winner-pay auctions and for the second-price

all-pay auction to yield a higher revenue than the second-price winner-pay auction. The differ-

ence between the expected revenue of all-pay auctions and the revenue of winner-pay auctions are

depicted in Figures 1, 2, and 3. These figures show the limits (in terms of revenue domination) for

the first-price and second-price all-pay auctions. We use two parameters: the altruism level on

the x-axis and the asymmetry among bidders’ values on each curve (from left to right,
v2
v1

varies

from 0.9 to its limit in zero with a 0.1 step). The difference ERAPi−RWPj is on the vertical axis.
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v_2/v_1= 0.9

v_2/v_1—> 0

v_2/v_1= 0.5

Figure 1: ERAP1 > RWP2

v_2/v_1= 0.9

v_2/v_1—> 0

v_2/v_1= 0.5

Figure 2: ERAP1 > RWP1

v_2/v_1= 0.9

v_2/v_1—> 0

v_2/v_1= 0.5

Figure 3: ERAP2 > RWP2

Figure comments: In each figure, each

curve represents the asymmetry among bid-

ders’ values. Bidders are almost symmet-

ric on the left-most curve such that v2
v1

=

0.9. On each curve from left to right, the

asymmetry increases by 10%. Therefore,

the right-most curve represents the great-

est asymmetry v2
v1

→ 0.

As a consequence, in order to determine which design is better at raising money for charity

we need to know both levels of asymmetry and altruism. Contrary to the results of Goeree et al.

(2005), here the all-pay auctions do not always outperform the winner-pay auctions.

As in Goeree et al. (2005), in our framework winner-pay auctions eliminate positive effects

that all-pay auctions engender. In winner-pay auctions when a bidder tops the highest bid of

a competitor to win the object, she eliminates the positive externality she would have derived

from this bid. However, this effect is counterbalanced here by the impact of the asymmetry.

The greater the asymmetry among the bidders, the lower the expected revenues of the all-pay

auctions and the revenues of the winner-pay auctions. Furthermore, the revenues of the winner-

pay auctions decrease more slowly than the expected revenues of the all-pay auctions and slowly

enough to counterbalance the externality effect above. Thus, if the asymmetry is sufficiently

high winner-pay auctions outperform all-pay auctions in terms of revenue.

Other equilibria could appear in the second-price all-pay auction even if they are degener-

ate. There is a continuum of pure strategy equilibria as in the situations without externalities.

Hendricks et al. (1988) show such equilibria are never subgame perfect in the dynamic version
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of the auction which is strategically equivalent to the static version.16 We provide an intuitive

argument for the two-bidders case only. Bidder i’s expected utility is given by

Ui(x) =







vi + (2αi − 1)xj if xi > xj
vi
2
+ (2αi − 1)xi if xi = xj

(2αi − 1)xi if xi < xj

As before, we denote x̃i bidder i’s indifference price, such that x̃1 > x̃2. Let xi be bidder i’s

offer. Thus, pure strategy Nash equilibria are

(0, β1) with β1 ∈ (x̃1,+∞)

(β2, 0) with β2 ∈ (x̃2,+∞).

These equilibria lead to a revenue of zero and then the second-price all-pay auction is always

dominated by other mechanisms in terms of revenue.

As our objective is to determine the revenue performance of the all-pay auctions relative

to other designs we did not compare revenues between lotteries and winner-pay auctions. We

can see from Table 1 that the charity component improves the revenue performance of lotteries

relative to winner-pay auctions for homogenous participants. Indeed for a high enough level

of altruism α > 1
np ≡ α, the result with no externality is reversed and lotteries outperform

winner-pay auctions for homogenous values. The minimum level of altruism to obtain this

result decreases with the number of participants in lotteries.

Furthermore, in a framework with heterogeneous participants and no externality, winner-pay

auctions outperform lotteries. Yet it is unclear whether the asymmetry improves the relative

revenue performance of the winner-pay auctions in a framework with no externality and then

has an opposite effect to the charity component. In a setting with heterogenous participants

and externalities, lotteries can again outperform winner-pay auctions when the level of altruism

is high enough. The next proposition summarizes these results.

Proposition 4. We assume that αi = α for all potential participants. In a framework with

asymmetry among the participants’ values, the lottery raises more money for charity than the

second-price winner-pay auction if and only if the level of altruism is high enough such that

α > 1−
(n− 1)Πnp

i>1vi
np
∑

k=1

Πi 6=kvi

≡ ᾱ.

Also the lottery raises more money for charity than the first-price winner-pay auction if and

only if the level of altruism is high enough such that

α > 1−
(n− 1)v1Π

np

i>2vi
np
∑

k=1

Πi 6=kvi

.

16Hendricks et al. (1988) propose a very general analysis of a two-player war of attrition which is the dynamic

version of the second-price all-pay auction. Players have to choose at what point in time they will concede to the

other. Moving first leads to a lower payoff.
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Proposition 4 can be proved by directly comparing the revenues listed in Table 1.

Using Proposition 4, it can be established that asymmetry can improve the relative revenue

performance of lotteries. If the threshold of altruism ᾱ is lower than α, then asymmetry improves

the revenue performance of the lottery relative to the second-price winner-pay auction. Unfor-

tunately, it cannot be established neither that asymmetry improves the revenue performance of

the lottery relative to the first-price winner-pay auction nor the opposing result.

6 Conclusion

This paper shows that all-pay auctions do not always raise higher revenue for charity than

winner-pay auctions and lotteries. This result depends on the asymmetry between bidders. In

particular, winner-pay auctions and lotteries outperform the first-price all-pay auction when

the asymmetry between bidders is strong. This contradicts Goeree et al. (2005)’s results. Ex-

ternalities work in favor of all-pay auctions whereas asymmetry works in favor of winner-pay

auctions. When the asymmetry is strong enough, bidders are aware that they have few chances

to win against the bidder with the highest value. In the all-pay auctions, the bidder with the

second highest value, who is the closest competitor to the highest value bidder, believes she will

probably lose even though she will have to pay her bid. Hence she has an incentive to reduce

her bid. The best reply of the bidder with the highest value is then to submit a low bid too.

Contrary to that, in a winner-pay auction, a bidder with a low value has no reason to submit a

very low bid given she has to pay only if she wins. As externalities affect positively the bids of

the bidders with low values, the highest value bidder must bid more aggressively. Therefore, an

all-pay auction provides a lower average revenue than a winner-pay auction.

Our work may be likened to Carpenter et al. (2008). In the field experiment that they report,

they find results similar to ours, namely that the first-price winner-pay auction outperforms the

first-price all-pay auction.17 Carpenter et al. (2008) suggest that this could be due to an endoge-

nous participation. In a lab experiment Carpenter, Holmes and Matthews (2010) investigate

15 charity mechanisms to understand if results in the field, especially the low participation in

the first-price all-pay auction, could be explained by an endogenous participation.18 Bidders’

asymmetry could also explain the results of Carpenter et al. (2008) in the field. Yet, Carpenter

et al. (2008) did not control for asymmetry between bidders and then it is unclear whether or not

asymmetry is one of the driving forces. A lab experiment, controlling for bidders’ asymmetry,

would be a relevant investigation. It would be interesting to determine in the lab if there is any

empirical foundation for our findings, that is only two bidders submit a positive bid at the equi-

librium. Beyond Carpenter, Holmes and Matthews (2010), two lab experiments (Orzen (2008)

and Schram and Onderstal (2009)) have been conducted on charity auctions, with opposing

results compared to the Carpenter et al.’s (2008) field experiment.19 Orzen (2008) investigates a

17However, contrary to the theoretical predictions (under complete information) of Ettinger (2010), Carpenter

et al. (2008) find that the first-price winner-pay auction generates more revenue than the second-price winner-pay

auction.
18This lab experiment is partially based on the theoretical paper of Carpenter, Homes and Matthews (2010).
19The interested reader by lab experiments on charity auctions might also read the related experimental papers

on dynamic charity auctions from Davis et al. (2006) and Isaac and Schneir (2005). The former compare lotteries
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symmetric complete information framework to compare four fundraising mechanisms, voluntary

contributions, lotteries, first-price and lowest-price all-pay auctions. Orzen (2008) and Schram

and Onderstal (2009) find similar results to Goeree et al. (2005). However, our results are quite

different from Goeree et al.’s (2005) because of the introduction of asymmetric valuations and

the information setting. That is another reason why it would be interesting to test our prediction

by introducing asymmetry between bidders’ valuations: all-pay auctions can be dominated by

winner-pay auctions and lotteries. Finally, theoretical and experimental work should be done

on the form of the externalities which are mainly assumed in the literature as linear.

Appendix

Proof of Proposition 2.

Lemma 1. Let us consider i and j the two potential participants. Bidder i’s mixed strategy

is given by Fi(x) = 1 − exp

(

−
1− 2αj

vj
x

)

∀x ∈ [0,+∞) and the expected revenue by ER =

2vivj
(1− 2αi)vj + (1− 2αj)vi

.

Proof. The expected utility of bidder i is given by

EUi(xi, Xj) =

∫ xi

0
(vi − (1− 2αi)x)dFj(x)− (1− 2αi)xi(1− Fj(xi))

Then, dividing the expected utility by 1−2αi and considering the adjusted values
vi

1− 2αi
instead

of the values vi we get a positive transformation of the expected utility without any externalities.

The mixed strategies in the equilibrium would not be altered by this transformation. ‖

Lemma 2. Let n be the number of potential participants. Then, only two out of n bidders

participate actively in the auction.

Proof. By equation (1) the expected utility follows:

EUi(xi,X−i) = vi
∏

j 6=i

dFj(xj)− (1− αi)

∫

R
n−1

+

ti(x)
∏

j 6=i

dFj(xj)

︸ ︷︷ ︸

A

+αi

∫

R
n−1

+

∑

j 6=i

tj(x)
∏

j 6=i

dFj(xj)

︸ ︷︷ ︸

B

with X−i = (X1, ..., Xi−1, Xi+1, ..., Xn). We notice that the events {i is the only winner} and

{i is one of k winners} are disjoint. Thus, for the latter event the value of the integral is zero.

Indeed, a tie is a zero measure event. A represents bidder i’s expected payment when we take

into account her own external effect. The term B is the expected payment of bidder i’s rivals.

αiB is the sum of the externalities of bidder i’s rivals from which i benefits.

We can write A again as follows
∫

R
n−1

+

x(2)1xi≥xj

∀j 6=i

∏

j 6=i

dFj(xj)

︸ ︷︷ ︸

AI

+

∫

R
n−1

+

xi1∃k/xk>xi

k 6=i

∏

j 6=i

dFj(xj)

︸ ︷︷ ︸

AII

.

and ascending auctions and latter lead lab and field experiment on silent auctions (variant of English auction

involving the simultaneous sale of multiple items). Interestingly, Isaac and Schneir (2005) analyze jump-bidding

effects.
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The term AI is i’s expected payment when she wins i.e. she pays the second highest bid. AII

is i’s expected payment when she loses. She could then either be the second highest bidder or

a lower bidder.

AI =

∫

R
n−1

+

∑

j 6=i

xj1 xk≤xj≤xi

∀k 6={j,i},j 6=i

∏

j 6=i

dFj(xj)

=

∫

R+

∑

j 6=i

xj1xj≤xi

{∫

R
n−2

+

∏

k 6=i,j

1xk≤xj≤xi

∏

k 6=i,j

dFk(xk)

}

dFj(xj)

=

∫

R+

∑

j 6=i

xj1xj≤xi

{
∏

k 6=i,j

∫

R

1xk≤xj≤xi
dFk(xk)

}

dFj(xj)

=

∫

R+

∑

j 6=i

xj1xj≤xi

∏

k 6=i,j

Fk(xj)dFj(xj)

=

∫ xi

0
xdGi(x)

We get the first line from the fact that x(2)1xi≥xj
=

∑

j 6=i

xj1 xk≤xj≤xi

∀k 6={j,i},j 6=i

. The independence of

the distribution functions explains how we get from the second to the third line. By denoting

dGi(x) =
∑

j 6=i

∏

k 6=i,j

Fk(x)dFj(x), we obtain the final result.

AII =

∫

R
n−1

+

xi(1− 1i∈Q(x))
∏

j 6=i

dFj(xj)

= xi − xi
∏

j 6=i

Fj(xi)

= xi(1−Gi(xi))

The independence of the distribution functions, explains how we get from the first line to the

second.

B can also be written as

B =
∑

l 6=i

∫

R
n−1

+

tl(x)
∏

j 6=i

dFj(xj)

=
∑

l 6=i

{∫

R
n−1

+

x(2)1xl≥xk
∀k 6=l

∏

j 6=i

dFj(xj)

︸ ︷︷ ︸

BI

+

∫

R
n−1

+

xl1∃k/xl<xk

k 6=l

∏

j 6=i

dFj(xj)

︸ ︷︷ ︸

BII

}

We add all the expected external effects. The case where player l 6= i takes the second highest

bid is distinguished from the others.
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BI =

∫

R
n−1

+

∑

k 6=l

xk1xm≤xk≤xl

∀m 6={k,l}

∏

j 6=i

dFj(xj)

=

∫

R
n−1

+

∑

k 6=l

xk
∏

m 6={k,l},k 6=l

1xm≤xk≤xl

∏

j 6=i

dFj(xj)

=

∫

R
n−1

+

∑

k 6=i,l

xk
∏

m 6=i,k,l
k 6=l

1xm≤xk≤xl
dFm(xm)1xi≤xk≤xl

dFk(xk)dFl(xl)

+

∫

R
n−1

+

xi
∏

m 6=i,l

1xm≤xi≤xl

∏

j 6=i

dFj(xj)

=

∫

R2
+

∑

k 6=i,l

xk

∫

R
n−3

+

∏

m 6=i,k,l
k 6=l

1xm≤xk
dFm(xm)1xi≤xk≤xl

dFk(xk)dFl(xl)

+ xi

∫

R+

∏

m 6=i,l

{∫ xi

0
dFm(xm)

}

1xi≤xl
dFl(xl)

=

∫

R2
+

∑

k 6=i,l

xk
∏

m 6=i,k,l
k 6=l

Fm(xk)1xi≤xk≤xl
dFk(xk)dFl(xl) + xi

∏

m 6=i,l

Fm(xi)(1− Fl(xi))

=

∫

R+

∫ xl

xi

∑

k 6=i,l

xk
∏

m 6=i,k,l
k 6=l

Fm(xk)dFk(xk)dFl(xl) + xi

(
∏

m 6=i,l

Fm(xi)−Gi(xi)

)

.

BII =

∫

R
n−1

+

xl(1− 1l∈Q(x))
∏

j 6=i

dFj(xj)

=

∫

R
n−1

+

xl
∏

j 6=i

dFj(xj)−

∫

R
n−1

+

xl
∏

k 6=i,l

(

1xk≤xl
dFk(xk)

)

1xi≤xl
dFl(xl)

=

∫

R
n−1

+

xl
∏

j 6=i

dFj(xj)−

∫

R+

xl1xi≤xl

{∫

R
n−2

+

∏

k 6=i,l

1xk≤xl
dFk(xk)

}

dFl(xl)

=

∫

R+

xldFl(xl)−

∫

R+

xl1xi≤xl

∏

k 6=i,l

Fk(xl)dFl(xl)

=

∫

R+

xl(1− 1xi≤xl

∏

k 6=i,l

Fk(xl))dFl(xl).

Hence:

EUi(xi,X−i) =

∫ xi

0
(vi − (1− αi)x)dGi(x)− (1− αi)xi(1−Gi(xi))

+ αi

∑

l 6=i

∫

R+

xl(1− 1xi≤xl

∏

k 6=i,l

Fk(xl))dFl(xl)

+ αi

∑

l 6=i

(∫

R+

∫ xl

xi

∑

k 6=i,l

xk
∏

m 6=i,k,l
k 6=l

Fm(xk)dFk(xk)dFl(xl) + xi
∏

m 6=i,l

Fm(xi)(1− Fl(xi))

)

.

Next, we note:

Gil(x) =
∏

k 6=i,l

Fk(x) et G′
il(x) =

∑

j 6=i,l

∏

k 6=i,l,j

Fk(x)dFj(x).
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As the expected utility is constant in the equilibrium, the FOC leads to

viG
′
i(x)− (1− αi)(1−Gi(x)) + αi

∑

l 6=i

Gil(x)− αi

∑

l 6=i

Gil(x)Fl(x)− αix
∑

l 6=i

G′
il(x)Fl(x) = 0.

Notice that (n− 1)Gi(x) =
∑

l 6=i

Gil(x)Fl(x) and (n− 2)G′
i(x) =

∑

l 6=i

G′
il(x)Fl(x) henceforth:

(vi − αix(n− 2))G′
i(x) + (1− αin)Gi(x) = (1− αi)− αi

∑

l 6=i

Gil(x) ∀i ∈ {1, ..., n}. (A1)

This result is true for all n > 3. The closed characterization of the solution is very difficult. Yet,

we can deduce the solution in an alternative way. Let Fi and Fj be the mixed strategies of the

two bidders i and j. We notice that the derivative of the expected utility of a third bidder k

Hk(x) =
∂EUk

∂x (xi, X1, X2) is a monotone increasing function. Furthermore, Hk(0) = −(1− αk)

and limx→+∞Hk(x) = 0. Thus, given the mixed strategies of i and j, k does not participate.

This result can easily be extended to a number n of bidders. For that, we should use recurrence.

‖

The result follows from Lemmas 1 and 2. �
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