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Abstract 

 
While much research uses multivariate GARCH to model volatility dynamics and risk 
measures, one particular type of multivariate GARCH model, GO-GARCH, has been 
underutilized. This paper uses DCC, ADCC and GO-GARCH to model volatilities and 
conditional correlations between emerging market stock prices, oil prices, VIX, gold 
prices and bond prices. A rolling window analysis is used to construct out-of-sample one-
step-ahead forecasts of dynamic conditional correlations and optimal hedge ratios. In 
most of the situations we study, oil is the best asset to hedge emerging market stock 
prices. Hedge ratios from the ADCC model are preferred (most effective) for hedging 
emerging market stock prices with oil, VIX, or bonds. Hedge ratios estimated from the 
GO-GARCH are most effective for hedging emerging market stock prices with gold in 
some instances. These results are reasonably robust to choice of model refits, forecast 
length and distributional assumptions. 
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1. Introduction 

 

Modelling the volatility dynamics between oil and other assets is an important and timely 

topic to study because recent developments in increased integration between financial 

markets and the financialization of commodity markets are providing investors with new 

ways to diversify, hedge and risk manage their investment portfolios (eg. Erb and 

Harvey, 2006; Domanski and Heath, 2007; Dwyer et al., 2011; Silvennoinen and Thorp, 

2013; Tang and Xiong, 2012; Vivian and Wohar, 2012). To date, most of the research on 

volatility dynamics, correlations and hedge ratios between oil and other assets has used 

multivariate GARCH (generalized autoregressive conditional heteroskedasticity) models 

like BEKK (Baba, Engle, Kraft, and Kroner, 1990), DCC (dynamic conditional 

correlation, Engle, 2002) or VARMA-GARCH (Ling and McAleer, 2003).  

 

Estimating multivariate GARCH models on large data sets does, however, pose 

challenges. For example, the BEKK model can have a poorly behaved likelihood function 

which makes estimation difficult, especially for models with more than two variables. 

The vectorized (VECH) model has a large number of free parameters which makes it 

impractical for models with more than two variables. The basic problem is that as the 

number of estimated parameters increases, the likelihood function flattens making 

optimization very difficult, or in some cases impossible. Restricted correlation models, 

like constant conditional correlation (CCC), dynamic conditional correlation (DCC) or 

asymmetric DCC (ADCC) are designed to address some of the problems encountered 

with BEKK and VECH type models and still retain analytical tractability for large data 

sets. One of the biggest challenges in multivariate GARCH modeling is finding a tradeoff 
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between generality and feasibility, a tradeoff that is often referred to as “The curse of 

dimensionality” (eg. Bauwens et al., 2006).  

 

Another approach to multivariate GARCH modelling is to assume that the returns are 

generated by a set of unobserved underlying factors that are conditionally 

heteroskedastic. This approach gives rise to factor GARCH models (Engle et al., 1990). 

The factors may be correlated making it difficult to determine them. In the orthogonal 

GARCH (OGARCH) model of Alexander (2001) which builds on the work of Ding 

(1994), uncorrelated and independent factors are used. In OGARCH, covariance matrices 

are obtained from univariate GARCH estimates of the variances of principle components 

and a matrix of rescaled factor weights obtained from the principal components analysis. 

Ding’s approach was to use all of the principal comments while Alexander’s approach is 

to use a small number of principal components. Alexander’s approach is simple enough 

that it can be estimated using a spreadsheet. The OGARCH has several advantages. First, 

by using principal components to estimate the factors, the computational burden can be 

greatly reduced.  In a system of k variables, a k x k GARCH covariance matrix can be 

obtained from m univariate GARCH processes of principal components where the 

number of principal components (m) is less than k. In fact, m can be considerably smaller 

than k. In a highly correlated system of equations, only a small number of principal 

components are required in order to provide a high degree of accuracy. Second, these 

matrices are positive definite avoiding some of the difficulties encountered with other 

estimation techniques. Building on the work of Alexander (2001) Van der Weide (2002) 

proposed a generalized OGARCH model (GO-GARCH) which consists of a set of 
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conditionally uncorrelated univariate GARCH processes and a linear map that relates 

these components to the observed data. The OGARCH model is a special case of the GO-

GARCH model where the linear map is orthogonal. GO-GARCH assumes that the 

unobserved underlying factors are uncorrelated and independent; as a result, the 

dynamics of the marginal density parameters of those factors may be estimated separately 

and in parallel, without having to be restricted to any particular single model or dynamics 

(Ghalanos et al., 2012). It is for this reason (i.e., the ability to model the margins 

separately), the GO-GARCH model provides much more flexibility than competing 

multivariate GARCH models1. We conjecture that GO-GARCH is underutilized because 

DCC is very easy to estimate for a large number of assets and intuitive to explain. The 

first version of GO-GARCH, van der Weide (2002), appeared around the same time as 

DCC and used the maximum likelihood approach in estimation. This was infeasible for 

all but small data sets. Subsequent improvements in GO-GARCH focused on estimation 

with many assets (van der Weide, 2006 and Boswijk and van der Weide, 2011). DCC 

captures 1) persistence in volatility and correlation and 2) time-varying correlation, but 

does not capture spill-over effects in volatility nor is DCC closed under linear 

transformation. GO-GARCH satisfies all four of these requirements but has, until 

recently, been more difficult to estimate. 

  

                                                 
1 The GO-GARCH is nested within the BEKK. If one is working with a small data set of say two variables, 

then BEKK may be more desirable than either GO-GARCH or DCC. Caporin and McAleer (2012) provide 
strong arguments for why BEKK is preferable over DCC for small data sets. The difficulty, however, is 
estimation with large data sets. Here one encounters the “Curse of dimensionality”. BEKK suffers from 
convergence problems for data sets larger than two variables. In our case, we have a five variable data set, 
which rules out BEKK type models. 
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This paper makes several important contributions to the literature. First, while many 

existing studies use DCC-GARCH models to estimate optimal hedge ratios, this current 

paper compares the optimal hedge ratios obtained from DCC type models with those 

obtained from GO-GARCH. This provides a more complete understanding of how 

optimal hedge ratios vary between different multivariate GARCH specifications. Second, 

GARCH models are used to construct one-period-ahead hedge ratios. This differs from 

many other studies which use the current hedge ratio as a proxy for the next period hedge 

ratio. The one-step-ahead optimal hedge ratios are constructed using a rolling window 

analysis which takes into account changing variability in the data. Third, this paper uses a 

more varied and relevant data set to construct cross-hedges for emerging market stock 

prices. Hedge ratios are computed between emerging market stock prices and the futures 

prices of oil, gold, and US bonds. In addition the possibility of cross-hedging emerging 

market stock prices with the VIX volatility index is also investigated.The following 

sections of the paper set out the relevant literature, empirical methodology, data, 

empirical results, robustness analysis, and the conclusions. 

 
 
 
2. Relevant literature  

We recognize that GARCH models are widely used to model asset price volatility 

dynamics2. Since hedging is our focus in this paper we limit our discussions to a short 

                                                 
2 There is a large and growing literature looking at the volatility dynamics between equities and various 
commodities (eg. Malik and Hammoudeh, 2007; Malik and Ewing, 2009; Hakem and McAleer, 2010; Filis 
et al, 2011; Chang et al., 2013;  Mollick and Assefa, 2013; Hwan et al., 2013; Guesmi and Fattoumi, 2014) 
or between different commodities (eg. Hammoudeh and Yuan, 2008; Hammoudeh et al., 2011; Creti et al., 
2013; Choi and Hammoudeh, 2010; Zhang et al., 2009; Du et al., 2011; Serra, 2011; Serra et al., 2011; 
Nazlioglu et al., 2013;  Mensi et al., 2013; Mensi et al., 2014; Beckmann and Czudaj, 2014).  
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review of relevant papers that focus directly on hedging equities with oil and other related 

commodities. 

 

Chang et al. (2010) study the ability to hedge oil and gasoline spot prices with their 

respective futures prices during bull and bear markets. Eight popular models (OLS, 

multivariate GARCH, error correction, and state space) are used to construct measures of 

hedging effectiveness. Their results show that hedging effectiveness is higher in bull 

markets. For the out-of-sample analysis, CCC-GARCH and CCC (constant conditional 

correlation) error correction models are ranked highest on hedging effectiveness. 

 

Arouri et al. (2011a) estimate bivariate GARCH models using weekly data from January 

1998 to December 2009 to investigate volatility spillovers between oil and stock market 

sectors in the US and Europe. They find evidence of a spillover effect from oil to stock 

markets in Europe and a bidirectional spillover effect between oil and US stock market 

sectors. For a particular equity/oil hedge, optimal hedge ratios computed from different 

GARCH models are very similar. Equity/oil optimal hedge ratios for the DJ Stoxx 

Europe 600 range between 0.174 and 0.223. The S&P 500/oil optimal hedge ratios range 

between 0.142 and 0.199. Optimal hedge ratios vary across industry sectors. For example 

the financial sector in Europe has an optimal hedge ratio of 0.001 compared to the 

optimal hedge ratio in the European utilities sector of 0.176.  

 

Arouri et al. (2011b) estimate bivariate GARCH models over the period 2005 to 2010 to 

determine return and volatility transmission between oil prices and stock markets in the 
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Gulf Cooperation Council (GCC) countries. They find evidence of spillovers between 

these markets. Optimal hedge ratios between GCC equity markets and oil range from a 

low of 0.078 (Saudi Arabia) to a high of 0.429 (Oman). 

 

Arouri et al. (2012) use VAR-GARCH models to model volatility dynamics between 

European equity markets and oil. Analysis is conducted using weekly data from January 

1998 to December 2009. They find evidence of volatility spillovers between oil prices 

and sector stock returns. Optimal hedge ratios between equities and oil vary considerably 

from a low of 0.001 (Financials) to a high of 0.200 (DJ Stoxx Europe 600). 

 

Chang et al. (2011) investigate the usefulness of BEKK, CCC, DCC, and VARMA-

GARCH to hedge crude oil spot prices with crude oil futures prices. Both BRENT and 

WTI crude oil prices are considered. They present evidence that hedge ratios are time-

varying. Hedging effectiveness calculations reveal that hedges calculated from DCC are 

the best while hedges calculated from BEKK are the worst. 

 

Sadorsky (2012) uses multivariate GARCH(1,1) models to investigate volatility 

dynamics between the stock prices of clean energy companies, technology companies and 

oil prices over the period January 1, 2001 to December 31, 2010. The stock prices of 

clean energy companies correlates more highly with technology stock prices than with oil 

prices. The average optimal hedge ratio between clean energy companies and oil is 0.20.  

The rather large standard deviation of 0.19 and range (maximum = 0.79, minimum -0.23) 

indicates that the hedge should be adjusted frequently.  
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Pan et al. (2014) use a regime switching asymmetric DCC (RS-ADCC) model to evaluate 

hedging effectiveness between crude oil and related petroleum products like heating oil 

and gasoline. The BEKK has the highest hedging effectiveness for hedging crude futures 

with gasoline futures. The RS-ADCC produces the highest hedging effectiveness for 

hedging crude with heating oil. 

 

Lin et al. (2014) use VAR-GARCH and DCC-GARCH models to investigate the 

volatility dynamics and hedge ratios between equity prices in Ghana and Nigeria and oil 

prices. They find that the optimal hedge ratio for Ghana varies between 0.51 and 0.40 

while the optimal hedge ratio for Nigeria ranges between 0.56 and 0.50 

 

Sadorsky (2014a) uses multivariate GARCH models to study the volatility dynamics 

between emerging market stock prices, oil prices, copper prices, and wheat prices. The 

daily data set covers the period January 3, 2000 to June 29, 2012. On average, oil 

provides the cheapest hedge for emerging market stock prices (0.12) while copper is the 

most expensive (0.25) but since the hedge ratios display considerable variability, these 

hedges should be routinely monitored and updated is necessary. 

 

Sadorsky (2014b) uses DCC and CCC GARCH models estimated on weekly data to 

model volatility and conditional correlations between the Dow Jones socially responsible 

investment (SRI) equity portfolio, gold and oil. SRI share similar statistical properties 

with the S&P 500 and as a result, SRI investors can expect to pay a similar amount to 
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hedge their investment with oil or gold as investors in the S&P 500. For example, the 

average hedge ratio between SRI and oil is 0.05 while the average hedge ratio between 

the S&P 500 and oil is 0.07. 

 

From the existing literature we learn several things. First, this research demonstrates a 

keen interest in hedging equities with commodities and in particular oil. Many papers 

focus exclusively on the equity oil hedge and while this is useful it fails to provide a 

balanced perspective on how equity – oil hedges compare with the ability of other assets 

to hedge equities. Second, many authors choose a particular GARCH model (eg. DCC-

GARCH or VARMA-GARCH) and then present results from their chosen model without 

providing a comparison of how one model compares to another.  Comparing results from 

different GARCH models is useful in deepening our understanding of how hedge ratios 

vary by estimation technique. Third, much of the existing literature calculates in-sample 

hedge ratios and portfolio weights. While in-sample analysis is useful for understanding 

model fit, it is not the most useful approach if one is interested in forward looking 

decision making. For forecasting, out-of-sample analysis is more informative. 

 
 
 
3. Empirical models 

In this paper, the DCC model of Engle (2002), the ADCC model of Cappiello et al. 

(2006) and the GO-GARCH model of van der Weide (2002) are used to model the 

volatility dynamics, conditional correlations and hedge ratios between emerging market 

stock prices, oil prices, the VIX, gold prices, and bond prices.  
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Let rt be a n x 1 vector of asset returns. An AR(1) process for rt conditional on the 

information set It-1 can be written as:                    

               (1) 

The residuals are modelled as: 

            (2) 

Ht is the conditional covariance matrix of rt and zt is a n x 1 i.i.d random vector of errors. 

                                      

The Engle (2002) dynamic conditional correlation (DCC) model is estimated in two 

steps. In the first step, the GARCH parameters are estimated. In the second step, the 

conditional correlations are estimated. 

           (3) 

Ht is a n x n conditional covariance matrix, Rt is the conditional correlation matrix, and Dt 

is a diagonal matrix with time-varying standard deviations on the diagonal.                                                        

                           (4) 

 

                                                        (5) 

 

The expressions for h are univariate GARCH models (H is a diagonal matrix). For the 

GARCH(1,1) model the elements of Ht can be written as: 

                            (6) 

Qt is a symmetric positive definite matrix.                                                

                                   (7) 
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    is the nxn unconditional correlation matrix of the standardized residuals zi,t (zi,t= 

εi,t/√hi,t ). The parameters θ1 and θ2 are non-negative.  These parameters are associated 

with the exponential smoothing process that is used to construct the dynamic conditional 

correlations. The DCC model is mean reverting as long as θ1 + θ2 < 1. The correlation 

estimator is, 

                            (8) 

 

Cappiello et al. (2006) build on the DCC model and the asymmetric GARCH model of 

Glosten et al., (1993) by adding in an asymmetric term and create the Asymmetric DCC 

(ADCC) model. 

                                               (9) 

The indicator function I(εi,t-1 ) is equal to one if  εi,t-1 <0 and 0 otherwise.  For this 

specification, a positive value for d means that negative residuals tend to increase the 

variance more than positive ones. The asymmetric effect or “leverage effect” is designed 

to capture an often observed characteristic of financial assets that an unexpected drop in 

asset prices tends to increase volatility more than an unexpected increase in asset prices 

of the same magnitude. This can be interpreted to mean that bad news increases volatility 

more than good news. 

 

For the ADCC model, the dynamics of Q are given by:        

                                                             

(10) 
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In the above equation A, B and G are n x n parameter matrices and     are zero-threshold 

standardized errors which are equal to zt when less than zero and zero otherwise.    and     are the unconditional matrices of  zt and      respectively. 

 

The GO-GARCH model of van der Weide (2002) specify the returns rt as a function of 

the conditional mean (mt) and an error term (εt) where the conditional mean can include 

an AR(1) term.  

          (11) 

The GO-GARCH model maps rt – mt onto a set of unobservable independent factors ft. 

        (12) 

The mixing matrix A can be decomposed into an unconditional covariance matrix Σ and 

an orthogonal (rotational) matrix U. 

         (13) 

In the mixing matrix A, the rows are the assets and the columns are the factors (f). The 

factors can be specified as: 

            (14) 

 

The random variable zt has characteristics E(zit) = 0 and E(zit
2) = 1. The factor conditional 

variances hit can be modelled as a GARCH process. The unconditional distribution of 

factors, f, obey E(ft) = 0 and E(ftft`) = I. Combining (11), (12) and (14) yields: 

 

                (15) 
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The conditional covariance matrix of the returns (rt – mt) is: 

          (16) 

 

Two key assumptions of the GO-GARCH model are that 1) A is time invariant, and 2) Ht 

is a diagonal matrix. Notice that the OGARCH model is obtained by restricting A to be 

orthogonal. In the original formation of the GO-GARCH model, van der Weide (2002) 

used a 1-step maximum likelihood approach to jointly estimate the rotation matrix and 

the dynamics. This approach, however, is impractical for many assets. The matrix U can 

also be estimated using nonlinear least squares (van der Weide, 2006) and method of 

moments (Boswijk and van der Weide, 2011). More recently, it has been proposed that U 

can be estimated by independent component analysis (ICA) (Broda and Paolella, 2009; 

Zhang and Chan, 2009) which is the approach taken in this paper3.  

 

Asset returns exhibit autocorrelation, volatility clustering and fat tails. This suggests a 

AR(1) mean equation for each GARCH model with a multivariate Student t distribution 

for the DCC and ADCC models and a Normal Inverse Gaussian (NIG) for the GO-

GARCH model. The robustness of these specifications is investigated in section 7 of the 

paper. 

 

 
 
 
 
 

                                                 
3 U needs to be estimated. For all but a few factors, maximum likelihood is not feasible. For a larger 
number of factors alternative estimation methods must be used. ICA is a fast statistical technique for 
estimating hidden factors in relation to observable data. 
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4. Data 

This paper uses daily data on emerging market stock prices (EM), oil prices (OIL), the 

VIX (VIX), gold prices (GOLD), and bond prices (BONDS). Emerging market stock 

prices are measured by the MSCI Emerging Markets Index priced in US dollars. This is a 

free float-adjusted market capitalization index that is designed to measure equity market 

performance of emerging markets. At the time of writing this paper, the index consists of 

the following 23 emerging market country indices: Brazil, Chile, China, Colombia, 

Czech Republic, Egypt, Greece, Hungary, India, Indonesia, Korea, Malaysia, Mexico, 

Peru, Philippines, Poland, Qatar, Russia, South Africa, Taiwan, Thailand, Turkey, and  

United Arab Emirates4.  

 

Oil prices (dollars per barrel) are measured by the continuous contract on the West Texas 

intermediate crude oil futures contract. Stock market volatility is measured by the VIX. 

The VIX measures the implied volatility of the S&P 500 index options and represents the 

markets expectation of stock market volatility over the next 30 days. Higher values of the 

VIX represent more uncertainty or “fear” in the market, while lower values of VIX 

indicate less market uncertainty. Stock prices and oil prices are available from Data 

Stream International. Gold prices are measured by the Chicago Mercantile Exchange 

continuous futures contract on gold. Bond prices are measured by the Chicago Mercantile 

Exchange continuous futures contract on the US 10-year Treasury note. Gold and bond 

prices are from Quandl while the VIX data are from Yahoo Finance. All prices (except 

                                                 
4 http://www.msci.com/products/indices/tools/index.html#EM 
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the VIX which is quoted as a percentage) are in US dollars and the daily data set covers 

the period January 4, 2000 to July 31, 2014. 

 

We chose to start our estimation sample in 2000 because this year coincides with the 

beginning of financialization in the commodity markets. After the technology stock 

market crash of 2000, institutional investors (mutual funds, pension funds, insurance 

companies, and hedge funds) and wealthy individual investors were looking for new 

ways to hedge their equity positions. Building on academic research showing a negative 

correlation between commodities and equities (eg. Greer, 2000; Gorton and 

Rouwenhorst, 2006; Erb and Harvey, 2006), these investors began investing large 

amounts of money in commodities. By some estimates, institutional investors increased 

their purchases of commodity index related financial products from $15 billion in 2003 to 

over $200 billion in 2008 (Tang and Xiong, 2009). Furthermore the Commodity Futures 

Modernization Act of 2000 reduced the cost of futures trading for some groups of 

investors (eg. mutual funds, insurance companies, banks, and hedge funds). This Act 

clarified the law by omitting most over-the-counter derivatives being regulated as futures. 

The Act also specified that in the interest of “financial entrepreneurship” hedge fund 

activities would be exempt from regulation. Energy derivative trading products were also 

exempted from regulation. 

 

  

< Insert Figure 1. Here > 
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Time series plots of the raw data are shown in Figure 1. EM and OIL show similar time 

series patterns with strong trends up to the financial crises of 2008 -2009. Gold displays a 

strong trend up to 2012. The VIX displays a large spike around the time of the 2008 – 

2009 financial crisis, but little trend. The BONDS series shows a fairly strong trend over 

the sample period. 

 

For each data series, continuously compounded daily returns are calculated as 

100*ln(pt/pt-1) where pt is the daily closing or settlement price. The summary statistics for 

the returns are shown in Table 1. The coefficient of variation indicates that VIX, by a 

large margin, has the greatest amount of variability while GOLD has the least. EM, OIL, 

and BONDS have similar variability. The JB test shows that each series is far from 

normally distributed. The ARCH(12) LM tests indicate strong evidence of ARCH effects. 

Unit root tests, not reported, indicate that each series of daily returns are stationary. 

 

 

Table 1. Summary statistics for daily returns 

  EM OIL VIX GOLD BONDS 

Nobs 3802 3802 3802 3802 3802 

min -9.994 -16.540 -35.059 -15.870 -2.627 

max 10.073 16.410 49.601 16.320 3.537 

range 20.067 32.950 84.660 32.190 6.164 

median 0.090 0.008 -0.229 0.008 0.003 

mean 0.020 0.035 -0.012 0.040 0.007 

SE.mean 0.020 0.038 0.101 0.022 0.007 

var 1.572 5.408 38.910 1.908 0.171 

std.dev 1.254 2.325 6.238 1.381 0.413 

coef.var 63.044 65.680 -508.997 34.830 59.130 

JB 10158 3939 3378 115263 2767 

p-value  <0.001  <0.001  <0.001  <0.001  <0.001 



 17 

ARCH(12) 1114 521.3 307.5 1044 220.9 

p-value <0.001 <0.001 <0.001 <0.001 <0.001 

 

 

 

Table 2. Pearson correlations between daily returns 

  EM OIL VIX GOLD BONDS 

EM 1.000 0.261 a -0.346 a 0.161 a -0.196 a 

OIL 0.261 a 1.000 -0.150 a 0.215 a -0.147 a 

VIX -0.346 a -0.150 a 1.000 -0.035 b 0.248 a 

GOLD 0.161 a 0.215 a -0.035 b 1.000 0.095 a 

BONDS -0.196 a -0.147 a 0.248 a 0.095 a 1.000 

p < 0.01a,  p < 0.05 b 

 

 

Unconditional correlations (Table 2) show that EM correlates positively and significantly 

with OIL and GOLD. EM correlates negatively and significantly with VIX and BONDS. 

Across all of the asset returns, the strongest correlation is between EM and VIX. Higher 

volatility (VIX) correlates negatively with emerging market stock returns. 

 

Time series graphs of the squared returns show how volatility has changed across time 

(Figure 2). Each series displays several periods of volatility clustering. In particular, each 

series show volatility clustering around the 2008- 2009 financial crisis with the effect 

being more pronounced for EM and OIL. 

 

< Insert Figure 2. Here > 
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5.0 Empirical results and discussion 

The model building strategy was to first estimate several versions of the DCC model. 

Each specification included a constant in the mean equation and a GARCH(1,1) variance 

equation. Adjustments were made with respect to including an AR(1) term in the mean 

equation and choice of distribution. Model selection criteria indicate that the DCC with 

and AR(1) term in the mean equation estimated with a multivariate t distribution fits best 

(Table 3). Consequently, all GARCH models (DCC, ADCC, GO-GARCH) are estimated 

with an AR(1) term in the mean equation. In order to account for non-normality in the 

distribution of returns, the DCC and ADCC are estimated with a multivariate t 

distribution. The GO-GARCH, for which the multivariate t distribution is not an option, 

is estimated with a multivariate affine negative inverse Gaussian (MANIG) distribution. 

How robust the hedge ratios are to these assumptions is further investigated in section 7. 

 

Table 3. Four specifications of the DCC model 

  DCC DCC DCC DCC 

AR(1) yes no yes no 

Distribution MVT MVT MVNORM MVNORM 

AIC 16.798 16.886 17.196 17.282 

BIC 16.868 16.949 17.257 17.335 

Shibata 16.797 16.886 17.196 17.282 

H-Q 16.823 16.909 17.218 17.301 

LL -31889 -32063 -32653 -32821 

nobs 3802  3802  3802  3802  

 

 

 



 19 

5.1 Regression results  

The DCC and ADCC parameter estimates are presented in Table 4. The estimated 

coefficient on the AR(1) term (a) in the mean equation is positive and statistically 

significant in the EM equation and negative and statistically significant in the VIX and 

GOLD equations.  Short-term persistence is evident in each variable as the estimated 

coefficient on the α term is statistically significant, and in each case the short-term 

persistence is less than the long-term persistence (β). The estimated coefficient on β is 

statistically significant for each variable indicating the importance of long-term 

persistence. The statistical significance of the α and β terms provide evidence of volatility 

clustering. The estimated asymmetric term (γ) is positive and statistically significant for 

EM and OIL. This indicates that for EM and OIL negative residuals tend to increase the 

variance (conditional volatility) more than positive shocks of the same magnitude. The 

estimated asymmetrical term is negative and statistically significant for VIX, GOLD and 

BONDS indicating that for these series, negative residuals tend to decrease the variance. 

Different leverage effects may arise from different arbitrage activities, heterogeneity, 

asymmetric information, or/and contract liquidity. 

 

For the DCC model, the estimated coefficients on θ1 and θ2 are each positive and 

statistically significant at the 1% level. These estimated coefficients sum to a value less 

than one, indicating that the dynamic conditional correlations are mean reverting. In the 

case of the ADCC model, the dynamic conditional correlations are also mean reverting. 
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The Shape parameter (λ) is equal to the degrees of freedom. As the number of degrees of 

freedom approaches infinity, the shape of the t distribution approaches that of a normal. 

EM and OIL have the highest estimated shaper parameters (over 7) indicating the 

distributions of the other data series (VIX, GOLD, BONDS) each have heavier tails than 

the distributions of EM and OIL. Each of the information criteria shows that the ADCC 

model is the best fitting model5.  

 

 

 

                                                 
5 The stability condition α+(γ/2)+β <1 is satisfied for each GARCH model. 
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Table 4. DCC and ADCC parameter estimates  

  DCC       ADCC       

 

Coef. S.E t prob Coef. S.E t prob 

µEM 0.0833 0.0180 4.6164 0.0000 0.0526 0.0188 2.7992 0.0051 

aEM 0.2107 0.0162 12.9891 0.0000 0.2161 0.0162 13.2994 0.0000 

ωEM 0.0203 0.0053 3.8479 0.0001 0.0271 0.0065 4.1746 0.0000 

αEM 0.0884 0.0106 8.3387 0.0000 0.0170 0.0075 2.2818 0.0225 

βEM 0.8966 0.0120 74.5228 0.0000 0.8955 0.0141 63.5625 0.0000 

γEM 
    

0.1233 0.0214 5.7685 0.0000 

λEM 8.5997 1.0581 8.1277 0.0000 10.3102 1.4843 6.9463 0.0000 

µOIL 0.0685 0.0279 2.4512 0.0142 0.0597 0.0280 2.1285 0.0333 

aOIL -0.0265 0.0164 -1.6187 0.1055 -0.0267 0.0163 -1.6332 0.1024 

ωOIL 0.0159 0.0064 2.4702 0.0135 0.0160 0.0066 2.4270 0.0152 

αOIL 0.0406 0.0025 16.2262 0.0000 0.0253 0.0054 4.6714 0.0000 

βOIL 0.9567 0.0008 1200.0284 0.0000 0.9572 0.0008 1276.0582 0.0000 

γOIL 
    

0.0283 0.0100 2.8314 0.0046 

λOIL 7.4255 0.9216 8.0569 0.0000 7.5753 0.9537 7.9428 0.0000 

µVIX -0.2981 0.0755 -3.9480 0.0001 -0.1925 0.0774 -2.4872 0.0129 

aVIX -0.0748 0.0161 -4.6455 0.0000 -0.0712 0.0164 -4.3566 0.0000 

ωVIX 2.3366 0.5559 4.2030 0.0000 2.1284 0.5115 4.1608 0.0000 

αVIX 0.1066 0.0162 6.5990 0.0000 0.1563 0.0260 6.0154 0.0000 

βVIX 0.8372 0.0253 33.0537 0.0000 0.8692 0.0248 35.0119 0.0000 

γVIX 
    

-0.1866 0.0286 -6.5333 0.0000 

λVIX 4.9320 0.4051 12.1753 0.0000 5.1281 0.4342 11.8093 0.0000 

µGOLD 0.0600 0.0136 4.4169 0.0000 0.0617 0.0136 4.5368 0.0000 

aGOLD -0.0593 0.0143 -4.1475 0.0000 -0.0583 0.0143 -4.0701 0.0000 
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ωGOLD 0.0381 0.0273 1.3986 0.1619 0.0359 0.0212 1.6944 0.0902 

αGOLD 0.0583 0.0302 1.9311 0.0535 0.0759 0.0312 2.4314 0.0150 

βGOLD 0.9234 0.0418 22.0672 0.0000 0.9243 0.0330 27.9874 0.0000 

γGOLD 
    

-0.0323 0.0176 -1.8331 0.0668 

λGOLD 3.4309 0.2210 15.5243 0.0000 3.4619 0.2270 15.2523 0.0000 

µBONDS 0.0122 0.0053 2.3115 0.0208 0.0136 0.0053 2.5515 0.0107 

aBONDS -0.0095 0.0157 -0.6070 0.5438 -0.0097 0.0157 -0.6149 0.5386 

ωBONDS 0.0005 0.0002 2.6943 0.0071 0.0005 0.0002 2.7783 0.0055 

αBONDS 0.0281 0.0017 16.1610 0.0000 0.0376 0.0050 7.5417 0.0000 

βBONDS 0.9691 0.0004 2522.8859 0.0000 0.9686 0.0004 2639.2865 0.0000 

γBONDS 
    

-0.0164 0.0082 -2.0048 0.0450 

λBONDS 6.1338 0.5804 10.5688 0.0000 6.1570 0.5870 10.4893 0.0000 

θ1 0.0116 0.0023 5.1581 0.0000 0.0119 0.0025 4.8290 0.0000 

θ2 0.9812 0.0047 208.5169 0.0000 0.9801 0.0053 184.7558 0.0000 

θ3     0.0013 0.0007 1.7623 0.0780 

λ 6.6696 0.2816 23.6842 0.0000 6.8689 0.2988 22.9845 0.0000 

AIC 16.798       16.774       

BIC 16.868 
   

16.855 
   Shibata 16.797 

   
16.774 

   H-Q 16.823 
   

16.803 
   LL -31889 

   
-31839 

   nobs 3802        3802        
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Table 5. GO-GARCH estimates 

The rotation matrix U 

  U (1)  U(2)  U(3)  U(4)  U(5)  

U(1) -0.0529 0.0333 -0.0571 -0.9750 0.2055 

U(2) 0.0266 -0.9130 -0.2046 0.0527 0.3481 

U(3) -0.1233 0.2658 -0.9407 0.1000 0.1385 

U(4) -0.0135 -0.3028 -0.2367 -0.1863 -0.9041 

U(5) 0.9905 0.0553 -0.1179 -0.0436 0.0066 

 

The mixing matrix A 

  A(1)  A(2)  A(3)  A(4)  A(5)  

A(1) 0.0597 -0.1136 0.1254 0.2617 -1.1817 

A(2) -0.0634 2.1606 0.2411 0.3435 -0.7448 

A(3) -0.3365 0.3494 -0.3180 -6.0682 1.1373 

A(4) 0.1321 0.1387 1.3475 -0.0426 -0.1069 

A(5) 0.3884 -0.0079 0.0052 -0.1112 0.0841 

 

 

GO-GARCH parameter estimates 

  F1 F2 F3 F4 F5 

ω 0.0037 0.0031 0.0180 0.0655 0.0144 

α 0.0296 0.0402 0.0462 0.1016 0.0782 

β 0.9665 0.9567 0.9312 0.8330 0.9044 

skew -0.1921 -0.0282 -0.0437 -0.2736 0.1495 

shape 1.6645 2.0784 0.5911 1.5919 3.0648 

LL -31930.83         

 

For the GO-GARCH model it is usual to present the rotation matrix (U), the mixing 

matrix (A), and the parameter estimates (Table 5). The rotation matrix U is orthogonal 

because UTU = I. Notice that since the GO-GARCH estimates factors, no standard errors 

are estimated. For each factor the estimated short-run persistence (α) is considerably less 
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than the long-run persistence (β) which is consistent with the findings from the DCC and 

ADCC models. The fourth factor displays more short term variation and less long term 

variation. 

 

 

5.2 Dynamic conditional correlations 

One-step-ahead dynamic conditional correlations are constructed using a rolling window 

analysis. The estimation window is fixed at 2802 observations and 1000 one-step-ahead 

dynamic conditional correlations are produced. GARCH models are refit every 20 

observations. Section 7 presents robustness results for forecast length, number of model 

refits, and distributional assumptions. For the case of EM and OIL the one-step-ahead 

dynamic conditional correlations between the DCC and ADCC models are very similar 

(Figure 3). These correlations have been trending downwards since late 2011. In 

comparison, the correlations estimated from the GO-GARCH model show a different 

pattern. All three correlations rose in late 2011, but while the correlations from the DCC 

type models gradually weakened the correlations from the GO-GARCH model have 

remained fairly strong. 

 

The dynamic conditional correlations between EM and VIX are negative for each of the 

GARCH models, suggesting significant diversification benefits. Intuitively, the inverse 

relationship between equity and volatility means that equity markets tend to lose money 

when volatility or uncertainty increases. This is often attributed to Black’s leverage 

effect, although the effect is generally asymmetric (Yu 2005). The correlations between 
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the DCC and ADCC models are very similar and show periods of reduced correlation in 

early 2013 and 2014. The correlations from the GO-GARCH model, however, show 

much less variability. 

 

The dynamic conditional correlations between EM and GOLD are positive for each 

estimation model. Generally gold has a positive correlation to emerging-market growth 

due to countries like China, India and the entire Southeast Asia region’s cultural affinity 

to gold. In fact, over the past decade, over half of global consumer demand for gold 

originated from China and India. Furthermore, between 2001 and 2012, the correlation 

between gold and emerging market equities in US dollar terms was 0.28, compared to a 

much smaller 0.11 correlation to developed-market equities (World Gold Council 2013). 

Correlations from the DCC and ADCC models show more variability than those from the 

GO-GARCH model.  

 

The dynamic conditional correlations between EM and BONDS fluctuate between 

negative and positive values. The negative EM/BONDS correlation is likely a result of 

the so-called “Bernanke put6”, which resulted in a practically zero short-term interest rate 

(and hence a lower yield on the 10-year Treasury bonds) and a sustained equity bubble in 

both developed and emerging markets. Whereas, the positive EM/BONDS correlation 

may reflect investors’ risk-on/off trading approach to asset allocation (i.e., flight to 

quality) as a result of Fed’s planned tapering of its quantitative easing policy that sparked 

a sell-off in emerging market equities. Unlike the correlations between EM/OIL, 

EM/VIX or EM/GOLD the EM/BONDS correlations produced from the three models 

                                                 
6 Cassidy (2013). 
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track each other fairly closely. Throughout 2012 and the first part of 2013, the correlation 

between EM and BONDS was negative before spiking to a positive value midway 

through 2013. 

 

< Insert Figure 3. Here > 

 

For each pair of correlations, the dynamic conditional correlations produced from the 

DCC model correlate very high with those produced from the ADCC model (Table 6). 

For each pair of correlations, the correlations between DCC and GO-GARCH (or ADCC 

and GO-GARCH) are considerably less which is consistent with Figure 3. One way to 

further investigate these differences is to look at news impact correlation surfaces. The 

lowest correlation between DCC and GO-GARCH occurs for EM/VIX. The DCC news 

impact correlation surface between EM and VIX shows an interesting shape (Figure 4a). 

Along the z_1 axis (EM) the correlation surfaces between EM and VIX traces out a 

positive to a negative pattern. By comparison, along the z_2 axis (VIX) the correlation 

surfaces traces out a negative to positive relationship. In either case, shocks to EM or 

VIX have asymmetric effects on the correlation between these two assets. The ADCC 

news impact correlation surface between EM and VIX shows a very similar shape to that 

from the DCC (Figure 4b). The GO-GARCH news impact correlation surface between 

EM and VIX (Figure 4c) shows a very different shape than the corresponding one from 

the DCC or ADCC. In the case of the GO-GARCH, the news impact correlation surface 

is concave whereas the news impact correlation surface for the DCC and ADCC are more 

convex. Moreover, the GO-GARCH news impact correlation surface displays more 
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symmetry than either of the DCC or ADCC7. This is expected since the GO-GARCH 

factors are orthogonalized. Also notice that the correlations between EM and VIX are all 

negative in the case of the GO-GARCH. Recall, however, that for the GO-GARCH, the 

shocks pertain to factors. The DCC and ADCC news impact correlation surfaces are very 

similar to each other but very different from the GO-GARCH. 

 

 
Table 6. Correlations between correlations 
 

  EM/OIL EM/VIX EM/GOLD EM/BONDS 

DCC/ADCC 0.9980 0.9952 0.9980 0.9982 

DCC/GO-GARCH 0.6260 0.0612 0.2179 0.3227 

ADCC/GO-GARCH 0.6210 0.0750 0.2156 0.3306 

 

 

 

< Insert Figure 4. Here > 

 

 

6. Hedging 

The return on a portfolio of a spot and futures position can be represented as: 

                  (17) 

Where RH,t is the return on the hedged portfolio, RS,t are the returns on the spot position,  

RF,t are the returns on the futures position and γt is the hedge ratio. If the investor is long 

in the spot position then the hedge ratio is the number of futures contracts that must be 

                                                 
7 This pattern is also observed between EM and each of the other assets. 



 28 

sold. The variance of the hedged portfolio conditional on the information set at time t-1 

is: 

                                                                             

(18) 

 

The optimal hedge ratios (OHRs) are the γt which minimize the conditional variance of 

the hedged portfolio. The optimal hedge ratio conditional on the information set It-1 can 

be obtained by taking the partial derivative of the variance with respect to γt and setting 

the expression equal to zero (Baillie and Myers, 1991). 

 

 

                                           
(19) 

 

The conditional volatility estimates from GARCH models can be used to construct hedge 

ratios (Kroner and Sultan, 1993). A long position in one asset (say asset i) can be hedged 

with a short position in a second asset (say asset j). The hedge ratio between spot and 

futures prices is  

                   (20) 

Where hSF,t is the conditional covariance between spot and futures returns and hF,t is the 

conditional variance of futures returns. 

 

The performance of different OHRs obtained from different GARCH models is measured 

using the hedging effectiveness (HE) index (eg. Chang et al., 2011, Ku et al, 2007). 
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(21) 

 

A higher HE index indicates a higher hedging effectiveness.  

 

Out-of-sample hedge ratios are constructed using a rolling window analysis. At time 

period t, a one-period-ahead conditional volatility forecast is made and these forecasts are 

used to construct a one-period-ahead hedge ratio. These forecasted hedge ratios are then 

used in constructing the hedged portfolio. A rolling window size of 2802 observations is 

used to construct 1000 one-period-ahead hedge ratios.  

 

Figure 5 shows optimal hedge ratios computed between EM and a position in either OIL, 

VIX, GOLD, or BONDS. Notice that the GO-GARCH hedge ratios have less variability 

than either the DCC or ADCC hedge ratios. Also notice that the DCC hedge ratios are 

very similar to the ADCC hedge ratios. All hedge ratios experienced large drops in the 

second half of 2011 due likely to the European Debt Crisis and Standard & Poor’s 

downgrade of America’s credit rating from AAA to AA+. 

 

< Insert Figure 5. Here > 

 

Correlations between the hedge ratios computed from different GARCH models shows 

that the hedge ratios computed from the DCC and ADCC correlate very highly (Table 7). 

The correlations between the DCC and GO-GARCH hedge ratios are considerably lower 

as are the correlations between the ADCC and GO-GARCH hedge ratios.  
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Table 7. Correlations between hedge ratios 
 

  EM/OIL EM/VIX EM/GOLD EM/BONDS 

DCC/ADCC 0.9724 0.9634 0.9525 0.9853 

DCC/GO-GARCH 0.6681 0.8920 0.3557 0.8649 

ADCC/GO-GARCH 0.6608 0.8367 0.2711 0.8464 

Notes: Forecasts calculated from fixed width rolling analysis which produces 1000 one-
step forecasts. Models are refit every 20 observations. DCC and ADCC estimated using a 
multivariate t (MVT) distribution. GO-GARCH estimated using a multivariate affine 
negative inverse Gaussian (MANIG) distribution. All specifications include a constant 
and an AR(1) term in the mean equation. 
 

 

 

The average value of the hedge ratio between EM and OIL is 19 cents for the DCC model 

indicating that a $1 long position in EM can be hedged for 19 cents in the oil market 

(Table 8, middle panel). By comparison, the average value of the EM/OIL hedge ratio is 

19 cents when computed using the ADCC model and 22 cents when using the GO-

GARCH model. The ADCC model provides the highest hedging effectiveness while the 

GO-GARCH model is least effective.  

 

The average value of the EM/GOLD hedge ratio is 18 cents for the DCC model, 19 cents 

for the ADCC model, and 14 cents for the GO-GARCH model. The GO-GARCH 

produces the most effective hedge while DCC produces the least effective. One possible 

reason for this is that the fourth factor in the GO-GARCH has higher short term 

persistence and lower long-term persistence which is better suited to capture the 

dynamics in this hedge. 
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For the EM/VIX and EM/BONDS hedges, the average values of the hedge ratios are 

negative. This occurs because these pairs are negatively correlated. The hedge is formed 

by either being long on both assets or being short on both assets. The ADCC model 

produces the most effective hedge for EM/VIX and for EM/BONDS. Notice that out of 

the four hedges constructed, the ADCC model produces the most effective hedges in 

three of the cases. 

 

These findings have important implications for investors seeking higher yields from 

emerging market equities while hedging their tail risk within portfolio construction. 

Overall, the hedging effectiveness is highest for the EM/OIL hedge indicating that OIL is 

a more desirable hedge for EM than VIX, GOLD, or BONDS. VIX provides the second 

highest hedging effectiveness indicating the usefulness of a volatility index in hedging 

emerging market stock prices. GOLD provides the third highest hedging effectiveness. 

With emerging-market investments gold is considered to provide efficient tail-risk hedge 

due to its lower overlay costs and for its little correlation with many asset classes 

(particularly the US dollar)8; our results add to this knowledge by showing the fraction of 

a $1 long position in emerging market equities can be hedged by incorporating gold in 

the hedging strategy. In addition, the dynamic correlation between EM and BONDS 

provides a stark reminder of the global implications of the U.S. monetary policy, 

especially the challenges they create for investors in emerging markets.  

 

 

                                                 
8 World Gold Council (2013).  
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7. Robustness analysis 

The hedging effectiveness values discussed in the previous section were obtained under 

specific assumptions about forecast horizon, the number of model refits, and the choice 

of distribution. This section of the paper presents some results on robustness. Table 8 

provides some additional information on how robust the hedging effectiveness values are 

to changes in the number of model refits. Results are presented showing hedging 

effectiveness values estimated from models refit every 10 days, 20 days, and 60 days. For 

each hedge and GARCH model specification, the hedging effectiveness values are fairly 

similar across different model refits. For example, in the case of the EM/OIL hedge, the 

ADCC produces hedging effectiveness values of 0.1889, 0.1887, and 0.1883 for the refits 

10, 20 and 60 respectively. In the case of the EM/GOLD hedge, the GO-GARCH 

produces the highest hedging effectiveness for refits 10, 20, 60 days indicating that the 

hedging results are robust to the choice of number of model refits. 

 

Table 9 provides some results showing hedging effectiveness values estimated with a 

normal distribution and no AR(1) term in the mean equation. For the EM/OIL hedge, the 

ADCC produces the largest HE for each of the three refit choices. This is also the case for 

the EM/VIX and EM/BONDS hedge ratios. For the EM/GOLD hedge, the GO-GARCH 

is preferred for refits of 10 and 60. Oil provides the most effective hedge for emerging 

market stock prices. 

 

Table 10 presents results on how robust the hedge ratios are to the choice of different 

forecast lengths. Here the GARCH models are estimated with a non-normal distribution. 
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Notice that for forecast lengths of 500 days, some of the HE values are negative 

indicating the hedged portfolio performs worse than the unhedged portfolio. This could 

occur because the fixed estimation window in the rolling window analysis is too large to 

adequately account for large changes in the data.  For the EM/OIL hedge, ADCC is 

preferred (largest HE value) across all forecast horizons. For the EM/VIX hedge, the 

ADCC is preferred for forecast lengths of 500 and 1000. For longer forecast lengths, the 

DCC is preferred. For the EM/GOLD hedge, the GO-GARCH is preferred for forecast 

lengths of 500 and 1000. Forecast lengths of 500 and 1000 days correspond to starting 

dates of August 31, 2012 and October 1, 2010. Both of these starting dates occurred after 

the 2008-2009 recession. Forecast lengths of 1500 and 2000 correspond to starting dates 

of October 31, 2008 and December 1, 2006. These dates occurred either during or before 

the 2008-2009 recession. The GO-GARCH seems to not capture the volatile nature of 

asset prices during the 2008-2009 recession as well as the DCC and ADCC models. For 

longer forecast lengths, the ADCC is preferred. For the EM/BONDS hedge, ADCC is 

preferred.  
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Table 8. Hedge ratio summary statistics and hedging effectiveness (HE) 

  r.e =10       r.e =20       r.e =60       

  mean min max  HE mean min max  HE mean min max  HE 

EM/OIL 

    

        

    DCC 0.1869 0.0282 0.5598 0.1816 0.1867 0.0303 0.5523 0.1814 0.1857 0.0316 0.5523 0.1811 

ADCC 0.1859 0.0182 0.5964 0.1889 0.1857 0.0201 0.5898 0.1887 0.1846 0.0256 0.5898 0.1883 

GO-GARCH 0.2176 0.0261 0.6711 0.1652 0.2171 0.0270 0.6676 0.1652 0.2146 0.0264 0.6675 0.1652 

EM/VIX 

    

  

  

  

    DCC -0.0614 -0.1999 -0.0125 0.1463 -0.0614 -0.1989 -0.0128 0.1463 -0.0615 -0.1989 -0.0130 0.1464 

ADCC -0.0593 -0.1746 -0.0117 0.1515 -0.0593 -0.1742 -0.0119 0.1516 -0.0593 -0.1742 -0.0121 0.1516 

GO-GARCH -0.0682 -0.1644 -0.0426 0.1359 -0.0682 -0.1647 -0.0431 0.1356 -0.0684 -0.1647 -0.0433 0.1354 

EM/GOLD 

    

  

  

  

    DCC 0.1772 -0.0864 0.3952 0.0525 0.1773 -0.0762 0.3969 0.0529 0.1771 -0.0722 0.3914 0.0523 

ADCC 0.1929 -0.0705 0.5202 0.0563 0.1930 -0.0576 0.5202 0.0565 0.1930 -0.0513 0.5202 0.0557 

GO-GARCH 0.1397 0.0678 0.2111 0.0575 0.1396 0.0693 0.2109 0.0575 0.1385 0.0678 0.2091 0.0564 

EM/BONDS 

    

  

  

  

    DCC -0.5559 -1.9180 0.7778 0.0658 -0.5557 -1.8960 0.7487 0.0657 -0.5541 -1.8960 0.7342 0.0652 

ADCC -0.5148 -2.0480 1.1085 0.0676 -0.5140 -2.0250 1.1020 0.0675 -0.5126 -2.0250 1.0879 0.0669 

GO-GARCH -0.7082 -2.7390 0.0816 0.0440 -0.7092 -2.7220 0.0934 0.0433 -0.7073 -2.7270 0.1123 0.0426 

Notes: Hedge ratios calculated from fixed width rolling analysis which produces 1000 one-step forecasts. Models are refit every 10, 
20 or 60 observations. DCC and ADCC estimated using a multivariate t (MVT) distribution. GO-GARCH estimated using a 
multivariate affine negative inverse Gaussian (MANIG) distribution. All specifications include a constant and an AR(1) term in the 
mean equation. 
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Table 9. Hedge ratio summary statistics and hedging effectiveness (HE) – MVN distribution 

  r.e =10       r.e =20       r.e =60       

  mean min max  HE mean min max  HE mean min max  HE 

EM/OIL 

    

        

    DCC 0.1855 0.0357 0.5399 0.1799 0.1854 0.0410 0.5322 0.1800 0.1842 0.0391 0.5322 0.1788 

ADCC 0.1805 0.0356 0.5338 0.1840 0.1803 0.0364 0.5278 0.1841 0.1792 0.0353 0.5278 0.1831 

GO-GARCH 0.2183 0.0220 0.6790 0.1646 0.2179 0.0220 0.6771 0.1649 0.2153 0.0213 0.6772 0.1650 

EM/VIX 

            DCC -0.0576 -0.1970 -0.0118 0.1456 -0.0576 -0.1954 -0.0121 0.1457 -0.0576 -0.1954 -0.0123 0.1461 

ADCC -0.0573 -0.1739 -0.0118 0.1509 -0.0573 -0.1723 -0.0120 0.1510 -0.0573 -0.1723 -0.0122 0.1515 

GO-GARCH -0.0611 -0.1457 -0.0377 0.1415 -0.0611 -0.1460 -0.0383 0.1414 -0.0613 -0.1463 -0.0385 0.1411 

EM/GOLD 

            DCC 0.1753 -0.1234 0.3964 0.0471 0.1755 -0.0954 0.3964 0.0478 0.1759 -0.0801 0.3964 0.0467 

ADCC 0.1927 -0.0976 0.6064 0.0525 0.1931 -0.0747 0.6064 0.0530 0.1947 -0.0714 0.6064 0.0497 

GO-GARCH 0.1363 0.0512 0.2348 0.0530 0.1362 0.0542 0.2324 0.0528 0.1349 0.0516 0.2301 0.0516 

EM/BONDS 

            DCC -0.5624 -1.8520 0.7165 0.0641 -0.5627 -1.8390 0.6954 0.0636 -0.5589 -1.8390 0.6954 0.0643 

ADCC -0.5558 -2.0080 0.8014 0.0652 -0.5552 -1.9980 0.7532 0.0649 -0.5507 -1.9980 0.8902 0.0662 

GO-GARCH -0.6805 -2.7270 0.1062 0.0459 -0.6831 -2.7250 0.1109 0.0448 -0.6834 -2.7280 0.1260 0.0441 

Notes: Hedge ratios calculated from fixed width rolling analysis which produces 1000 one-step forecasts. Models are refit every 10, 
20 or 60 observations. DCC, ADCC, and GO-GARCH estimated using a multivariate normal (MVN) distribution. All specifications 
include a constant in the mean equation. 
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Table 10. Hedge ratio summary statistics and hedging effectiveness (HE) – different forecast lengths 

 

  f.l. = 500     f.l. = 1000     f.l. = 1500      f.l. = 2000     

  mean min max  HE mean min max  HE mean min max  HE mean min max  HE 

EM/OIL 

    

                

    DCC 0.141 0.029 0.376 0.008 0.187 0.030 0.552 0.181 0.203 0.029 0.596 0.201 0.190 0.028 0.626 0.174 

ADCC 0.143 0.032 0.451 0.009 0.186 0.020 0.590 0.189 0.200 0.032 0.633 0.207 0.190 0.027 0.675 0.183 

GO-GARCH 0.217 0.070 0.423 -0.022 0.217 0.027 0.668 0.165 0.216 -0.021 0.690 0.176 0.191 -0.020 0.706 0.149 

EM/VIX 

    

  

  

    

  

  

    DCC -0.046 -0.112 -0.013 0.061 -0.061 -0.199 -0.013 0.146 -0.074 -0.214 -0.014 0.170 -0.073 -0.214 -0.013 0.192 

ADCC -0.045 -0.098 -0.012 0.067 -0.059 -0.174 -0.012 0.152 -0.069 -0.192 -0.013 0.168 -0.067 -0.187 -0.012 0.186 

GO-GARCH -0.063 -0.101 -0.042 0.010 -0.068 -0.165 -0.043 0.136 -0.084 -0.284 -0.042 0.162 -0.076 -0.285 -0.043 0.147 

EM/GOLD 

    

  

  

    

  

  

    DCC 0.144 0.006 0.360 0.024 0.177 -0.076 0.397 0.053 0.190 -0.085 0.500 0.052 0.176 -0.056 0.521 0.034 

ADCC 0.155 0.013 0.388 0.018 0.193 -0.058 0.520 0.057 0.202 -0.076 0.547 0.053 0.186 -0.040 0.599 0.034 

GO-GARCH 0.129 0.052 0.191 0.035 0.140 0.069 0.211 0.058 0.152 0.071 0.296 0.049 0.176 0.022 1.399 0.027 

EM/BONDS 

    

  

  

    

  

  

    DCC -0.362 -1.332 0.566 -0.011 -0.556 -1.896 0.749 0.066 -0.641 -2.047 0.757 0.063 -0.665 -2.126 0.853 0.068 

ADCC -0.335 -1.013 0.854 -0.007 -0.514 -2.025 1.102 0.067 -0.580 -2.220 1.249 0.069 -0.603 -2.416 1.335 0.069 

GO-GARCH -0.598 -1.781 -0.024 -0.075 -0.709 -2.722 0.093 0.043 -0.708 -2.876 0.147 0.038 -0.676 -3.073 0.202 0.060 

Notes: Hedge ratios calculated from fixed width rolling analysis which produces f.l. one-step forecasts. Models are refit every 20 
observations. DCC and ADCC estimated using a multivariate t (MVT) distribution. GO-GARCH estimated using a multivariate affine 
negative inverse Gaussian (MANIG) distribution. All specifications include a constant and an AR(1) term in the mean equation. 
Forecast lengths of 500, 1000, 1500, and 2000 correspond to starting dates of August 31, 2012, October 1, 2010, October 31, 2008, 
and December 1, 2006 respectively. 
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8. Conclusions 

Estimating GARCH models on large data sets is challenging because of “The curse of 

dimensionality” (which refers to the tradeoff between generality and feasibility). For 

some multivariate GARCH specifications, like BEKK, the number of free parameters 

grows very rapidly as the number of variables increases making estimation infeasible for 

large data sets. Multivariate GARCH models like CCC, DCC and GO-GARCH offer 

analytically tractable ways to estimate multivariate GARCH models on large data sets. 

While CCC and DCC type multivariate GARCH models are very popular, GO-GARCH 

has seen less use in practice. DCC captures 1) persistence in volatility and correlation and 

2) time-varying correlation, but does not capture spill-over effects in volatility nor is 

DCC closed under linear transformation. GO-GARCH satisfies all four of these 

requirements but has, until recently, been more difficult to estimate. The purpose of this 

paper is to estimate DCC, ADCC and GO-GARCH models on a large data set consisting 

of emerging market stock returns, oil prices, gold prices, bond prices and the VIX and 

compare the hedge ratios from the different models. The approach taken is to estimate the 

DCC, ADCC and GO-GARCH models using a fixed rolling window and to estimate one-

step-ahead hedge ratios. Models are compared based on their hedging effectiveness. 

 

The one-step-ahead dynamic conditional correlations computed from DCC and ADCC 

models are very similar. In comparison, the dynamic conditional correlations computed 

from a GO-GARCH model exhibit less variability compared to either DCC or ADCC. 

This is particularly evident for the EM/GOLD GO-GARCH dynamic conditional 
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correlations which display considerably less variability than the dynamic conditional 

correlations produced from either DCC or ADCC. This indicates that the GO-GARCH 

model estimates different conditional correlations and hedge ratios. 

 

The results of this paper have implications for investors. First, emerging market stock 

prices and oil prices each display positive leverage effects. Negative residuals tend to 

increase the variance (conditional volatility) more than positive ones. Second, hedge 

ratios vary considerably over the sample period indicating that hedged positions should 

be updated regularly. Third of the hedging assets considered, oil is the best hedge for 

emerging market stock prices because the EM/OIL hedge has the highest hedging 

effectiveness in most cases. Moreover, for the EM/OIL hedge the ADCC is preferred in 

most cases. This result is robust to the number of model fits, forecast length, and 

distribution assumption. Similarly, the ADCC hedge is preferred for the EM/VIX and 

EM/BONDS hedges. One possible explanation for why hedge ratios vary between 

different multivariate GARCH specifications is that different GARCH specifications 

capture different data properties. The ADCC, for example, captures asymmetric effects, 

while the DCC and GO-GARCH do not. This is an important distinction, because EM 

and OIL display positive and significant asymmetry coefficients while VIX, GOLD and 

BONDS each display negative and significant asymmetry coefficients. Fourth, the GO-

GARCH is preferred for hedging EM/GOLD over forecast lengths of 500 or 1000 days. 

This result is reasonably robust to number of model fits and distributional assumptions. 

One possible explanation for the better hedging effectiveness performance of the GO-

GARCH for the EM/GOLD hedge is that the fourth factor has more short term 
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persistence and less long term persistence which provides a closer fit to the dynamics of 

GOLD price volatility. In general, GO-GARCH performs better, in terms of hedging 

effectiveness, after the 2008-2009 recession.  

 

The main take-away from our research is that oil provides the most effective hedge for 

emerging market stock prices under most of the situations we considered. For each 

hedge, the ADCC produces better hedging effectiveness in most cases but not in all cases. 

The GO-GARCH can, in some cases pertaining to the EM/GOLD hedge, provide better 

hedging effectiveness. Rather than relying on one GARCH model to produce all the 

hedge ratios, our recommendation is to consider several GARCH models. In order to 

achieve higher hedging effectiveness it is desirable to consider different GARCH models 

for different hedges.  
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Figure 1. Time series plots  
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Figure 2. Squared daily returns  
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Figure 3. Rolling one-step-ahead conditional correlations  
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Figure 4a. News impact correlation surface between EM and VIX - DCC 
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Figure 4b. News impact correlation surface between EM and VIX - ADCC 
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Figure 4c. News impact correlation surface between EM and VIX – GO-GARCH 
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Figure 5. Rolling one-step-ahead optimal hedge ratios 
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