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1 Technical Appendix

1.1 Optimality conditions

1.1.1 Firm’s problem

The profit function is maximized when the derivatives of that function are set to zero.

Therefore, the optimal amount of capital - holding the level of technology At and labor input

Np
t constant - is determined by setting the derivative of the profit function with respect to

Kp
t equal to zero. This derivative is

(1− θ)At(K
p
t )

−θ(Np
t )
θ(Kg

t )
ν
− rt = 0 (1)

where (1 − θ)At(K
p
t )

−θ(Np
t )
θ(Kg

t )
ν is the marginal product of capital because it expresses

how much output will increase if capital increases by one unit. The economic interpretation

of this First-Order Condition (FOC) is that in equilibrium, firms will rent capital up to

the point where the benefit of renting an additional unit of capital, which is the marginal

product of capital, equals the rental cost, i.e the interest rate.

rt = (1− θ)At(K
p
t )

−θ(Np
t )
θ(Kg

t )
ν (2)
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Now, multiply by Kp
t and rearrange terms. This gives the following relationship:

Kp
t (1− θ)At(K

p
t )

−θ(Np
t )
θ(Kg

t )
ν = rtK

p
t or (1− θ)Yt = rtK

p
t (3)

because

Kp
t (1− θ)At(K

p
t )

−θ(Np
t )
θ(Kg

t )
ν = At(K

p
t )

1−θ(Np
t )
θ(Kg

t )
ν = (1− θ)Yt

To derive firms’ optimal labor demand, set the derivative of the profit function with respect

to the labor input equal to zero, holding technology and capital constant:

θAt(K
p
t )

1−θ(Np
t )
θ−1(Kg

t )
ν
− wpt = 0 or wpt = θAt(K

p
t )

1−θ(Np
t )
θ−1(Kg

t )
ν (4)

In equilibrium, firms will hire labor up to the point where the benefit of hiring an additional

hour of labor services, which is the marginal product of labor, equals the cost, i.e the hourly

wage rate.

Now multiply both sides of the equation by Np
t and rearrange terms to yield

Np
t θAt(K

p
t )

1−θ(Np
t )
θ−1(Kg

t )
ν = wptN

p
t or θYt = wptN

p
t (5)

Next, it will be shown that in equilibrium, economic profits are zero. Using the results above

one can obtain

Πt = Yt − rtK
p
t − wptN

p
t = Yt − (1− θ)Yt − θYt = 0 (6)

Indeed, in equilibrium, economic profits are zero.

1.1.2 Consumer problem

Set up the Lagrangian

L(Ct, K
p
t+1, N

p
t ; Λt) = E0

∞
∑

t=0

{

[

(Ct + ωGc
t)
ψ(1−Nt)

(1−ψ)

]1−α

− 1

1− α
+ (7)

+Λt

[

(1− τ l)(wptN
p
t + wgtN

g
t ) + (1− τ k)rtK

p
t +

+τ kδpKp
t − (1 + τ c)Ct −Kp

t+1 + (1− δ)Kp
t

]}
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This is a concave programming problem, so the FOCs, together with the additional, bound-

ary (”transversality”) conditions for private physical capital and government bonds are both

necessary and sufficient for an optimum.

To derive the FOCs, first take the derivative of the Lagrangian w.r.t Ct (holding all other

variables unchanged) and set it to 0, i.e. LCt = 0. That will result in the following expression

βt

{

1− α

1− α

[

(Ct + ωGc
t)
ψ(1−Nh

t )
(1−ψ)

]

−α

×

ψ(Ct + ωGc
t)
ψ−1(1−Nh

t )
(1−ψ)

− Λt(1 + τ c)

}

= 0 (8)

Cancel the βt and the 1− α terms to obtain

[

(Ct + ωGc
t)
ψ(1−Nt)

(1−ψ)

]

−α

ψ(Ct + ωGc
t)
ψ−1(1−Nt)

(1−ψ)
− Λt(1 + τ c) = 0 (9)

Move Λt to the right so that

[

(Ct + ωGc
t)
ψ(1−Nt)

(1−ψ)

]

−α

ψ(Ct + ωGc
t)
ψ−1(1−Nt)

(1−ψ) = Λt(1 + τ c) (10)

This optimality condition equates marginal utility of consumption to the marginal utility of

wealth.

Now take the derivative of the Lagrangian w.r.t Kp
t+1 (holding all other variables unchanged)

and set it to 0, i.e. LKp
t+1

= 0. That will result in the following expression

βt

{

− Λt + EtΛt+1

[

(1− τ k)rt+1 + τ kδp + (1− δp)

]

}

= 0 (11)

Cancel the βt term to obtain

−Λt + βEtΛt+1

[

(1− τ k)rt+1 + τ kδp + (1− δp)

]

= 0 (12)

Move Λt to the right so that

βEtΛt+1

[

(1− τ k)rt+1 + τ kδp + (1− δp)

]

= Λt (13)
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Using the expression for the real interest rate shifted one period forward one can obtain

rt+1 = (1− θ)
Yt+1

Kp
t+1

βEtΛt+1

[

(1− τ k)(1− θ)
Yt+1

Kp
t+1

+ τ kδp + (1− δp)

]

= Λt (14)

This is the Euler equation, which determines how consumption is allocated across periods.

Take now the derivative of the Lagrangian w.r.t Np
t (holding all other variables unchanged)

and set it to 0, i.e. LNp
t
= 0. That will result in the following expression

βt

{

1− α

1− α

[

(Ct + ωGc
t)
ψ(1−Nt)

(1−ψ)

]

−α

×

(1− ψ)(Ct + ωGc
t)
ψ(1−Nt)

−ψ(−1) + Λt(1− τ l)wpt

}

= 0 (15)

Cancel the βt and the 1− α terms to obtain

[

(Ct + ωGc
t)
ψ(1−Nt)

(1−ψ)

]

−α

(1− ψ)

[

Ct + ωGc
t

1−Nt

]ψ

(−1) + Λt(1− τ l)wpt = 0 (16)

Rearranging, one can obtain

[

(Ct + ωGc
t)
ψ(1−Nt)

(1−ψ)

]

−α

(1− ψ)(Ct + ωGc
t)
ψ(1−Nt)

−ψ = Λt(1− τ l)wpt (17)

Plug in the expression for wht , that is,

wpt = θ
Yt
Np
t

(18)

into the equation above. Rearranging, one can obtain

[

(Ct + ωGc
t)
ψ(1−Nt)

(1−ψ)

]

−α

(1− ψ)(Ct + ωGc
t)
ψ(1−Nt)

−ψ = Λt(1− τ l)θ
Yt
Np
t

(19)

Transversality conditions need to be imposed to prevent Ponzi schemes, i.e borrowing bigger

and bigger amounts every subsequent period and never paying it off.

lim
t→∞

βtΛtK
p
t+1 = 0 (20)
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1.1.3 The Objective Function of a Public Sector Union: Derivation

This subsection shows that the objective function in the government sector is a generalized

version of Stone-Geary monopoly union utility function used in Dertouzos and Pencavel

(1981) and Brown and Ashenfelter (1986). The utility function is

V (wg, N g) = (wg − w̄g)φ(N g
− N̄ g)(1−φ), (21)

where φ and 1− φ are the weights attached to public wage and hours, respectively, and w̄g

and N̄ g denote subsistence wage rate and hours. Since there is no minimum wage in the

model, w̄g = 0. Additionally, as public hours are assumed to be unproductive, it follows

that N̄ g = 0 as well. Therefore, the utility function simplifies to

V (wg, N g) = (wg)φ(N g)(1−φ). (22)

Doiron (1992) uses a generalized representation, which encompasses (2) as a special case

when ρ→ 0.

[

φ(N g)−ρ + (1− φ)(wg − w̄)−ρ
]

−1/ρ

, (23)

when w̄ = 0, the function simplifies to

[

φ(N g)−ρ + (1− φ)(wg)−ρ
]

−1/ρ

, (24)

Union objective function used in the paper is very similar to Doiron’s (1992) simplified

version:

[

(N g)ρ + η(wg)ρ
]1/ρ

, (25)

can be transformed to

[

(N g)ρ +
φ

(1− φ)
(wg)ρ

]1/ρ

, (26)

Collecting terms under common denominator

[

(1− φ)

(1− φ)
(N g)ρ +

φ

(1− φ)
(wg)ρ

]1/ρ

, (27)
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Factoring out the common term

[

1

1− φ

]1/ρ[

(1− φ)(N g)ρ + φ(wg)ρ
]1/ρ

, (28)

Note that the constant term

[

1
1−φ

]1/ρ

> 0 can be ignored, as utility functions are invariant

to positive affine transformations. After rearranging terms, the equivalent function

Ṽ =

[

φ(wg)ρ + (1− φ)(N g)ρ
]1/ρ

. (29)

Take natural logarithms from both sides to obtain

ln Ṽ =
1

ρ
ln

[

φ(wg)ρ + (1− φ)(N g)ρ
]

. (30)

Take the limit ρ→ 0

lim
ρ→0

ln Ṽ = lim
ρ→0

ln

[

φ(wg)ρ + (1− φ)(N g)ρ
]

ρ
(31)

Apply L’Hopital’s Rule on the R.H.S. to obtain

lim
ρ→0

ln Ṽ = lim
ρ→0

∂
∂ρ

ln

[

φ(wg)ρ + (1− φ)(N g)ρ
]

∂ρ
∂ρ

(32)

Thus

ln Ṽ = lim
ρ→0

[

φ(wgt )
ρ lnwg + (1− φ)(N g)ρ lnN g

]

/

[

φ(wg)ρ + (1− φ)(N g)ρ
]

1
(33)

Simplify to obtain

ln Ṽ =

limρ→0

[

φ(wgt )
ρ lnwg + (1− φ)(N g)ρ lnN g

]

limρ→0

[

φ(wg)ρ + (1− φ)(N g)ρ
] =

φ lnwg + (1− φ) lnN g

φ+ (1− φ)
(34)

Therefore,

ln Ṽ = φ lnwg + (1− φ) lnN g. (35)
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Exponentiate both sides of the equation to obtain

eln Ṽ = eφ lnwg+(1−φ) lnNg

. (36)

Thus

Ṽ = eln(w
g)φ+ln(Ng)(1−φ) . (37)

or

Ṽ = eln(w
g)φ(Ng)(1−φ) . (38)

Finally,

Ṽ = (wg)φ(N g)(1−φ) (39)

Furthermore, government period budget constraint serves the role of a labor demand func-

tion. Additionally, the public sector demand curve will be subject to shock, resulting from

innovations to the fiscal shares. The balanced budget assumption is thus important in the

model setup. Since wage bill is a residual, if wage rate is increased, then hours need to be

decreased. Additionally, government period budget constraint can be expressed in the form

N g = N g(wg) as

N g =
τ lwpNp + τ k(r − δp)Kp + τ cC −Gc −Gi −Gt

(1− τ l)wg
(40)

Therefore, the problem in the government sector is reshaped in the standard formulation in

the union literature:

max
wg ,Ng

V (wg, N g) s.t. N g = N g(wg) (41)

Since union optimizes over both the public wage and hours, the outcome is efficient. The

solution pair is on the contract curve (obtained from FOCs), at the intersection point with

the labor demand curve (government budget constraint).
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1.1.4 Public sector union optimization problem

The union solves the following problem:

max
wgt ,N

g
t

[

(N g
t )
ρ + η(wgt )

ρ

]1/ρ

(42)

s.t

Gc
t +Gt

t +Gi
t + wgtN

g
t = τ cCt + τ krtK

p
t − τ kδpKt + τ l[wptN

p
t + wgtN

g
t ] (43)

Setup the Lagrangian

V(wgt , N
g
t ; νt) = max

wgt ,N
g
t

{[

(N g
t )
ρ + η(wgt )

ρ

]1/ρ

(44)

−νt

[

Gc
t +Gt

t +Gi
t + wgtN

g
t − τ cCt − τ krtK

p
t + τ kδpKt − τ l[wptN

p
t + wgtN

g
t ]

]}

Optimal public employment is obtained, when the derivative of the government Lagrangian

is et to zero, i.e VNg
t
= 0

(1/ρ)

[

(N g
t )
ρ + η(wgt )

ρ

](1/ρ)−1

ρ(N g
t )
ρ−1

− (1− τ l)νtw
g
t = 0 (45)

or, when ρ is canceled out and (1− τ l)νtw
g
t put to the right

[

(N g
t )
ρ + η(wgt )

ρ

](1/ρ)−1

(N g
t )
ρ−1 = (1− τ l)νtw

g
t (46)

Optimal public wage is obtained, when the derivative of the government Lagrandean is et

to zero, i.e Vwgt
= 0

(1/ρ)

[

(N g
t )
ρ + η(wgt )

ρ

](1/ρ)−1

ηρ(wgt )
ρ−1

− (1− τ l)νtN
g
t = 0 (47)

or, when ρ is canceled out and(1− τ l)νtN
g
t term put to the right

[

(N g
t )
ρ + η(wgt )

ρ

](1/ρ)−1

η(wgt )
ρ−1 = (1− τ l)νtN

g
t (48)

Divide (11.1.46) and (11.1.48) side by side to obtain

[

(N g
t )
ρ + η(wgt )

ρ

](1/ρ)−1

(N g
t )
ρ−1

[

(N g
t )
ρ + η(wgt )

ρ

](1/ρ)−1

η(wgt )
ρ−1

=
(1− τ l)νtw

g
t

(1− τ l)νtN
g
t

(49)
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Cancel out the common terms
(N g

t )
ρ−1

η(wgt )
ρ−1

=
wgt
N g
t

(50)

Now cross-multiply to obtain
(N g

t )
ρ

η
= (wgt )

ρ (51)

Hence

wgt =

(

1

η

)1/ρ

N g
t (52)

The wage bill expression, which is obtained after simple rearrangement of the government

budget constraint, is as follows

wgtN
g
t =

τ cCt + τ krtK
p
t − τ kδpKt + τ lwptN

p
t −Gc

t −Gt
t −Gi

t

1− τ l
(53)

Use the wage bill equation and the relationship between public wage and employment in

order to obtain

wgt = η−
1
2ρ

[

τ cCt + τ krtK
p
t − τ kδpKt + τ lwptN

p
t −Gc

t −Gt
t −Gi

t

1− τ l

]
1
2

(54)

and

N g
t = η

1
2ρ

[

τ cCt + τ krtK
p
t − τ kδpKt + τ lwptN

p
t −Gc

t −Gt
t −Gi

t

1− τ l

]
1
2

(55)
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1.2 Log-linearized model equations

1.2.1 Linearized market clearing

ct + kpt+1 + gct + git − (1− δp)kpt = yt (56)

Take logs from both sides to obtain

ln[ct + kpt+1 + gct + git − (1− δp)kpt ] = ln(yt) (57)

Totally differentiate with respect to time

d ln[ct + kpt+1 + gct + git − (1− δp)kpt ]

dt
= d ln(yt) (58)

[
1

c+ gc + gi + δpkp
][
dct
dt

c

c
+
dgct
dt

g

g
+
dgit
dt

gi

gi
+
dkpt+1

dt

kp

kp
− (1− δp)

dkpt
dt

kp

kp
] =

dyt
dt

1

y
(59)

Define ẑ = dzt
dt

1
z
. Thus passing to log-deviations

1

y
[ĉtc+ ĝctg

c + ĝitg
i + k̂pt+1k

p
− (1− δp)k̂pt k

p] = ŷt (60)

ĉtc+ ĝctg
c + ĝitg

i + k̂pt+1k
p
− (1− δp)k̂pt k

p = yŷt (61)

kpk̂pt+1 = yŷt − cĉt − gcĝct − giĝit + (1− δp)kpk̂pt (62)

1.2.2 Linearized production function

yt = at(k
p
t )

1−θ(npt )
θ(kgt )

ν (63)

Take natural logs from both sides to obtain

ln yt = ln at + (1− θ) ln kpt + θ lnnpt + ν ln kgt (64)

Totally differentiate with respect to time to obtain

d ln yt
dt

=
d ln at
dt

+ (1− θ)
d ln kpt
dt

+ θ
d lnnpt
dt

+ ν
d ln kgt
dt

(65)

1

y

dyt
dt

=
1

a

dat
dt

+
1− θ

kp
dkpt
dt

+
θ

np
dnpt
dt

+
ν

kg
dkgt
dt

(66)

Pass to log-deviations to obtain

0 = −ŷt + (1− θ)k̂pt + ât + θn̂pt + νk̂gt (67)
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1.2.3 Linearized FOC consumption

[(ct + ωgct )
ψ(1− nt)

(1−ψ)]−αψ(ct + ωgct )
ψ−1(1− nt)

(1−ψ) = (1 + τ c)λt (68)

Simplify to obtain

ψ(ct + ωgct )
ψ−1−αψ(1− nt)

(1−α)(1−ψ) = (1 + τ c)λt (69)

Take natural logs from both sides to obtain

lnψ(ct + ωgct )
ψ−1−αψ(1− nt)

(1−α)(1−ψ) = ln(1 + τ c) + lnλt (70)

ln(ct + ωgct )
ψ−1−αψ(1− nt)

(1−α)(1−ψ) = ln(1 + τ c) + lnλt (71)

(ψ − 1− αψ) ln(ct + ωgct ) + (1− α)(1− ψ) ln(1− nt) = ln(1 + τ c) + lnλt (72)

Totally differentiate with respect to time to obtain

(ψ − 1− αψ)
d ln(ct + ωgct )

dt
+ (1− α)(1− ψ)

d ln(1− nt)

dt
=

=
d ln(1 + τ c)

dt
+
d lnλt
dt

(73)

(ψ − 1− αψ)
1

c+ ωgc
(
dct
dt

+ ω
dgct
dt

) + (1− α)(1− ψ)
−1

1− n

dnt
dt

=
dλt
dt

1

λ
(74)

(ψ − 1− αψ)

c+ ωgc
dct
dt

c

c
+
ω(ψ − 1− αψ)

c+ ωgc
dgct
dt

gc

gc
+

−(1− α)(1− ψ)
1

1− n

dnt
dt

n

n
=
dλt
dt

1

λ
(75)

c(ψ − 1− αψ)

c+ ωgc
ĉt +

ωgc(ψ − 1− αψ)

c+ ωgc
ĝct − (1− α)(1− ψ)

n

1− n
n̂ = λ̂t (76)

Since

n̂ =
np

np + ng
n̂p +

ng

np + ng
n̂g =

np

n
n̂p +

ng

n
n̂g, (77)

and consumers choose np only, pass to log-deviations to obtain

c(ψ − 1− αψ)

c+ ωgc
ĉt +

ωgc(ψ − 1− αψ)

cc + ωg
ĝct − (1− α)(1− ψ)

n

1− n

np

np + ng
n̂p = λ̂t (78)

Since n = np + ng, it follows that

c(ψ − 1− αψ)

c+ ωgc
ĉt +

ωgc(ψ − 1− αψ)

c+ ωgc
ĝct − (1− α)(1− ψ)

np

1− n
n̂p = 0 (79)
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1.2.4 Linearized no-arbitrage condition for capital

λt = βEtλt+1[(1− τ k)rt+1 + τ kδp + (1− δp)] (80)

Substitute out rt+1 on the right hand side of the equation to obtain

λt = βEt[λt+1((1− τ k)(1− θ)
yt+1

kpt+1

+ τ kδp + 1− δp)] (81)

Take natural logs from both sides of the equation to obtain

lnλt = lnEt[λt+1((1− τ k)(1− θ)
yt+1

kpt+1

+ τ kδp + 1− δp)] (82)

Totally differentiate with respect to time to obtain

d lnλt
dt

=
d lnEt[λt+1((1− τ k)(1− θ) yt+1

kpt+1
+ τ kδp + 1− δp)]

dt
(83)

1

λ

dλt
dt

= Et

{

1

λ((1− τ k)(1− θ) y
kp

+ 1− δp + τ kδp
×

[

((1− τ k)(1− θ)
y

kp
+ τ kδp + 1− δp)

dλt+1

dt

λ

λ

+
λ(1− τ k)(1− θ)

kp
dyt+1

dt

y

y
−

[

λ(1− τ k)(1− θ)y

(kp)2

]

dkpt+1

dt

kp

kp

]}

(84)

Pass to log-deviations to obtain

λ̂t = Et

{

λ̂t+1 +

[

(1− τ k)(1− θ)y

((1− τ k)(1− θ) yt+1

kpt+1
+ τ kδp + 1− δp)kp

ŷt+1

−
(1− τ k)(1− θ)y

((1− θ) yt+1

kpt+1
+ τ kδp + 1− δp)kp

k̂pt+1

]

}

(85)

Observe that

(1− τ k)(1− θ)
yt+1

kpt+1

+ τ kδp + 1− δp = 1/β (86)

Plug it into the equation to obtain

λ̂t = Et

[

λ̂t+1 +
β(1− τ k)(1− θ)y

kp
ŷt+1 −

β(1− τ k)(1− θ)y

kp
k̂pt+1

]

(87)

λ̂t = Etλ̂t+1 +
β(1− τ k)(1− θ)y

kp
Etŷt+1 −

β(1− τ k)(1− θ)y

kp
Etk̂

p
t+1 (88)
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1.2.5 Linearized MRS

(1− ψ)(ct + ωgct ) = ψ(1− nt)
(1− τ l)

(1 + τ c)
θ
yt
npt

(89)

Take natural logs from both sides of the equation to obtain

ln(1− ψ)(ct + ωgct ) = lnψ(1− nt)
(1− τ l)

(1 + τ c)
θ
yt
npt

(90)

ln(ct + ωgct ) = ln(1− nt) + ln yt − lnnpt (91)

Totally differentiate with respect to time to obtain

d ln(ct + ωgct )

dt
=

d ln(1− nt)

dt
+
d ln yt
dt

−
d lnnpt
dt

(92)

1

c+ ωgc
(
dct
dt

+ ω
dgct
dt

) = −
1

1− n

dnt
dt

+
1

y

dyt
dt

−
1

np
dnpt
dt

(93)

1

c+ ωgc
dct
dt

c

c
+

ω

c+ ωgc
dgct
dt

gc

gc
= −

1

1− n

dnt
dt

n

n
+

1

y

dyt
dt

−
1

np
dnpt
dt

(94)

c

c+ ωgc
dct
dt

1

c
+

ωgc

c+ ωgc
dgct
dt

1

gc
= −

n

1− n

dnt
dt

1

n
+

1

y

dyt
dt

−
1

np
dnpt
dt

(95)

Pass to log-deviations to obtain

c

c+ ωgc
ĉt +

ωgc

c+ ωg
ĝct = −

n

1− n
n̂+ ŷt − n̂pt (96)

Since

n̂ =
np

np + ng
n̂p +

ng

np + ng
n̂g, (97)

and noting that consumers are only choosing np, then

c

c+ ωgc
ĉt +

ωgc

c+ ωgc
ĝct = −

n

1− n

np

np + ng
n̂p + ŷt − n̂pt (98)

c

c+ ωgc
ĉt +

ωgc

c+ ωgc
ĝct = −

n

1− n

np

np + ng
n̂p + ŷt − n̂pt (99)

c

c+ ωgc
ĉt +

ωgc

c+ ωgc
ĝct = −

(

1 +
n

1− n

np

np + ng

)

n̂p + ŷt (100)

Since n = np + ng, it follows that

c

c+ ωgc
ĉt +

ωgc

c+ ωgc
ĝct = −

(

1 +
np

1− n

)

n̂p + ŷt (101)

c

c+ ωgc
ĉt +

ωgc

c+ ωgc
ĝct +

(

1 +
np

1− n

)

n̂p − ŷt = 0 (102)
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1.2.6 Linearized private capital accumulation

kpt+1 = it + (1− δp)kpt (103)

Take natural logs from both sides of the equation to obtain

ln kpt+1 = ln(it + (1− δp)kpt ) (104)

Totally differentiate with respect to time to obtain

d ln kpt+1

dt
=

1

i+ (1− δp)kp
d(it + (1− δp)kpt )

dt
(105)

Observe that since

i = δpkp, it follows that i+ (1− δp)kp = δpkp + (1− δp)kp = kp. Then (106)

dkpt+1

dt

1

kp
=

1

kp
dit
dt

i

i
+

kp

i+ (1− δp)kpt

dkpt
dt

kp

kp
(107)

Pass to log-deviations to obtain

k̂pt+1 =
δpkp

kp
ît +

(1− δp)kp

kp
k̂pt (108)

k̂pt+1 = δpît + (1− δp)k̂pt (109)

1.2.7 Linearized government capital accumulation

kgt+1 = git + (1− δg)kgt (110)

Take natural logs from both sides to obtain

ln kgt+1 = ln(git + (1− δg)kgt ) (111)

Totally differentiate with respect to time to obtain

d ln kgt+1

dt
=

1

gi + (1− δg)kg
d(git + (1− δg)kgt )

dt
(112)

Observe that since

gi = δgkg, (113)
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it follows that

gi + (1− δg)kg = δgkg + (1− δg)kg = kg. (114)

Hence,

dkgt+1

dt

1

kg
=

1

kg
dgit
dt

gi

gi
+

kg

x+ (1− δg)

dkgt
dt

kg

kg
(115)

Pass to log-deviations to obtain

k̂gt+1 =
δgkg

kg
ĝit +

(1− δg)kg

kg
k̂gt (116)

Cancel out the kg terms to obtain

k̂gt+1 = δgĝit + (1− δg)k̂gt (117)

1.2.8 Public wage rate rule

wgt = η−
1
2ρ

[

τ cct + τ krtk
p
t − τ kδpkpt + τ lwptn

p
t − gct − gtt − git

1− τ l

]
1
2

(118)

Take logs from both sides to obtain

lnwgt = −
1

2ρ
ln η −

1

2
ln(1− τ l) +

1

2
ln

{

τ cct + τ krtk
p
t − τ kδpkpt + τ lwptn

p
t − gct − gtt − git

}

(119)

Totally differentiate with respect to time to obtain

d lnwgt
dt

=
1

2

d

dt
ln

{

τ cct + τ krtk
p
t − τ kδpkpt + τ lwptn

p
t − gct − gtt − git

}

(120)

Observe that

τ krtk
p
t − τ kδpkt + τ lwptn

p
t = τ k(1− θ)yt + τ lθyt − τ kδpkpt =

=

[

τ k(1− θ) + τ lθ

]

yt − τ kδpkpt (121)

Also

(1− τ l)wgng = τ cc+ [τ k(1− θ) + τ lθ]y − τ kδpkp − gc − gi − gtt (122)
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Thus

dwgt
dt

1

wg
=

1

2

1

(1− τ l)wgng

{

τ c
dct
dt

+ [τ k(1− θ) + τ lθ]
dyt
dt

− τ kδp
dkpt
dt

−
dgct
dt

−
dgit
dt

−
dgtt
dt

}

(123)

dwgt
dt

1

wg
=

1

2

1

(1− τ l)wgng
×

{

τ c
dct
dt

c

c
+

[

τ k(1− θ) + τ lθ

]

dyt
dt

y

y
− τ kδp

dkpt
dt

kp

kp
−
dgct
dt

gc

gc
−
dgit
dt

gi

gi
−
dgtt
dt

gt

gt

}

(124)

dwgt
dt

1

wg
=

(1/2)τ cc

(1− τ l)wgng
dct
dt

1

c
+

(1/2)

[

τ k(1− θ) + τ lθ

]

y

(1− τ l)wgng
dyt
dt

1

y

−
(1/2)τ kδpkp

(1− τ l)wgng
dkpt
dt

1

kp
−

(1/2)gc

(1− τ l)wgng
dgct
dt

1

gc

−
(1/2)gi

(1− τ l)wgng
dgit
dt

1

gi
−

(1/2)gt

(1− τ l)wgng
dgtt
dt

1

gt
(125)

Pass to log-deviations to obtain

ŵgt =
(1/2)τ cc

(1− τ l)wgng
ĉt +

(1/2)

[

τ k(1− θ) + τ lθ

]

y

(1− τ l)wgng
ŷt

−
(1/2)τ kδpkp

(1− τ l)wgng
k̂t −

(1/2)gc

(1− τ l)wgng
ĝct −

(1/2)gi

(1− τ l)wgng
ĝit −

(1/2)gt

(1− τ l)wgng
ĝtt (126)

1.2.9 Public hours/employment rule

ngt = η
1
ρwgt (127)

Take logs from both sides to obtain

lnngt =
1

ρ
ln η + lnwgt (128)

Totally differentiate both sides to obtain

d lnngt
dt

=
d lnwgt
dt

(129)

dngt
dt

1

ng
=

dwgt
dt

1

wg
(130)

Pass to log-deviations to obtain

n̂gt = ŵgt (131)
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1.2.10 Total hours/employment

nt = ngt + npt (132)

Take logs from both sides to obtain

lnnt = ln(ngt + npt ) (133)

Totally differentiate to obtain

d lnnt
dt

=
d ln(ngt + npt )

dt
(134)

dnt
dt

1

n
=

(

dngt
dt

+
dnpt
dt

)

1

n
(135)

dnt
dt

1

n
=

(

dngt
dt

ng

ng
+
dnpt
dt

np

np

)

1

n
(136)

dnt
dt

1

n
=

dngt
dt

1

ng
ng

n
+
dnpt
dt

1

np
np

n
(137)

Pass to log-deviations to obtain

n̂t =
ng

n
n̂gt +

np

n
n̂pt (138)

1.2.11 Linearized private wage rate

wpt = θ
yt
npt

(139)

Take natural logarithms from both sides to obtain

lnwpt = ln θ + ln yt − lnnpt (140)

Totally differentiate with respect to time to obtain

d lnwpt
dt

=
d ln θ

dt
+
d ln yt
dt

−
d lnnpt
dt

(141)

Simplify to obtain

dwpt
dt

1

wp
=
dyt
dt

1

y
−
dnpt
dt

1

np
(142)

Pass to log-deviations to obtain

ŵpt = ŷt − n̂pt (143)
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1.2.12 Linearized real interest rate

rt = θ
yt
kpt

(144)

Take natural logarithms from both sides to obtain

ln rt = ln θ + ln yt − ln kpt (145)

Totally differentiate with respect to time to obtain

d ln rt
dt

=
d ln θ

dt
+
d ln yt
dt

−
d ln kpt
dt

(146)

Simplify to obtain

dr

dt

1

r
=
dyt
dt

1

y
−
dkpt
dt

1

kp
(147)

Pass to log-deviations to obtain

r̂t = ŷt − k̂pt (148)

1.2.13 Public/private wage ratio

rwt = wgt /w
p
t (149)

Take logs from both sides of the equation

ln rwt = lnwgt − lnwpt (150)

Totally differentiate to obtain

d ln rwt
dt

=
d lnwgt
dt

−
d lnwpt
dt

(151)

drwt
dt

1

rw
=

dwgt
dt

1

wg
−
dwpt
dt

1

wp
(152)

Pass to log-deviations to obtain

r̂wt = ŵgt − ŵpt (153)
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1.2.14 Public/private hours/employment ratio

rlt = ngt /n
p
t (154)

Take logs from both sides of the equation

ln rlt = lnngt − lnnpt (155)

Totally differentiate to obtain

d ln rlt
dt

=
d lnngt
dt

−
d lnnpt
dt

(156)

drlt
dt

1

rl
=

dngt
dt

1

ng
−
dnpt
dt

1

np
(157)

Pass to log-deviations to obtain

r̂lt = n̂gt − n̂pt (158)

1.2.15 Linearized technology shock process

ln at+1 = ρa ln at + ǫat+1 (159)

Totally differentiate with respect to time to obtain

d ln at+1

dt
= ρa

d ln at
dt

+
dǫat+1

dt
(160)

dat+1

dt
= ρa

dat
dt

+ ǫat+1 (161)

where for t = 1
dǫat+1

dt
≈ ln(eǫ

a
t+1/eǫ

a

) = ǫat+1 − ǫa = ǫat+1 since ǫa = 0. Pass to log-deviations

to obtain

ât+1 = ρaât + ǫat+1 (162)
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1.2.16 Linearized stochastic process for government consumption/output share

ln gcyt+1 = (1− ρg) ln gcy + ρg ln gcyt + ǫct+1 (163)

Totally differentiate with respect to time to obtain

d ln gcyt+1

dt
= (1− ρg)

d ln gcy

dt
+ ρg

d ln gcyt
dt

+
dǫct+1

dt
(164)

dgcyt+1

dt
= ρg

dgcyt
dt

+ ǫct+1 (165)

where for t = 1
dǫct+1

dt
≈ ln(eǫ

c
t+1/eǫ

c

) = ǫct+1 − ǫc = ǫct+1 since ǫ
c = 0. Pass to log-deviations to

obtain

ĝcyt+1 = ρgĝ
cy
t + ǫct+1 (166)

1.2.17 Linearized level of government consumption

gct = gcyt yt (167)

Take natural logarithms from both sides to obtain

ln gct = ln gcyt + ln yt (168)

Totally differentiate with respect to time to obtain

d ln gct
dt

=
d ln gcyt
dt

+
d ln yt
dt

(169)

dgct
dt

1

gc
=
dgcyt
dt

1

gc
+
dyt
dt

1

y
(170)

Pass to log-deviations to obtain

ĝct = ĝcyt + ŷt (171)
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1.2.18 Linearized stochastic process for the government investment/output ra-

tio

ln giyt+1 = (1− ρi) ln giy + ρi ln giyt + ǫit+1 (172)

Totally differentiate with respect to time to obtain

d ln giyt+1

dt
= (1− ρi)

d ln giy

dt
+ ρi

d ln giyt
dt

+
dǫit+1

dt
(173)

dgiyt+1

dt
= ρg

dgiyt
dt

+ ǫit+1 (174)

where for t = 1
dǫit+1

dt
≈ ln(eǫ

i
t+1/eǫ

i

) = ǫit+1 − ǫi = ǫit+1 since ǫi = 0. Pass to log-deviations to

obtain

ĝiyt+1 = ρiĝ
iy
t + ǫit+1 (175)

1.2.19 Linearized level of government investment

git = giyt yt (176)

Take natural logarithms from both sides to obtain

ln git = ln giyt + ln yt (177)

Totally differentiate with respect to time to obtain

d ln git
dt

=
d ln giyt
dt

+
d ln yt
dt

(178)

dgit
dt

1

gi
=
dgiyt
dt

1

gi
+
dyt
dt

1

y
(179)

Pass to log-deviations to obtain

ĝit = ĝiyt + ŷt (180)
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1.2.20 Linearized level of government transfers

gtt = gtyyt (181)

Take natural logarithms from both sides to obtain

ln gtt = ln gty + ln yt (182)

Totally differentiate with respect to time to obtain

d ln gtt
dt

=
d ln gty

dt
+
d ln yt
dt

(183)

dgtt
dt

1

gt
=
dyt
dt

1

y
(184)

Pass to log-deviations to obtain

ĝtt = ŷt (185)
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1.3 Auto- and cross-correlation functions

As an additional test of model fit, this appendix compares auto- and cross-correlation func-

tions generated from the model with collective bargaining and Finn (1998) calibrated for

Germany, with their empirical counterparts. The main emphasis in this subsection is on the

ACFs and CCFs of labor market variables. In particular, close attention is paid to cyclical

properties of public and private wage rates and hours. To establish 95% confidence intervals

for the theoretical ACFs and CCFs, as in Gregory and Smith (1991), the simulated time

series are used to obtain 1000 ACFs and CCFs. The mean ACFs and CCFs are computed by

averaging across simulations, as well as the corresponding standard error across simulations.

Those moments allow for the lower and upper bounds for the ACFs confidence intervals to

be estimated. The empirical ACFs and CCFs are then plotted, together with the theoretical

ones. If empirical ACFs lie within the confidence region, this means that the calibrated

model fits data well.

Empirical ACFs and CCFs were generated from a Vector Auto-Regressive (VAR) process of

order 1. Since ACFs and CCFs are robust to identifying restrictions (Canova (2007), Ch.7),

the VAR(1) was left unrestricted. The figures on the following pages display empirical ACFs

(solid line), together with the simulated average ACFs (dashed line) and the corresponding

stochastic error bounds (dotted lines). This is done for the union model first , and then for

the calibration using Finn’s (1998) framework.

The model with the public sector union calibrated for Germany outperforms Finn (1998),

especially in the prediction of the dynamic behavior of labor market variables. In terms

of capturing the autocorrelation structure of the variables, the union model fits data quite

well. One exception is the public sector wage: in data, it is highly autocorrelated, while the

model generates low persistence. A possible explanation could be that the public union puts

weight also on last year’s public sector wage level, i.e. the union bargains over the public

wage increase rate, and not just the wage level. Public and total hours are also borderline

cases, as employment rates in data were used instead. In addition, the union model predicts

23



Figure 1: Theoretical and empirical ACFs for Germany: Union
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Figure 2: Theoretical and empirical ACFs for Germany: Union
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Figure 3: Theoretical and empirical ACFs for Germany: Union
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Figure 4: Theoretical and empirical ACFs for Germany: Finn
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Figure 5: Theoretical and empirical ACFs for Germany: Finn
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Figure 6: Theoretical and empirical ACFs for Germany: Finn
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perfect positive contemporaneous correlation between public wages and hours, while in data,

it is negative. Overall, the model with public sector union calibrated for Germany captures

the dynamic co-movement of hours and wages with output, consumption and investment.

In addition, union model is able to address and match some new dimensions such as the

dynamic correlation of the two wage rates and the pair of hours worked.

1.4 Sensitivity analysis

To evaluate the effect of structural parameters on the shape of the Laffer curves, this section

performs sensitivity analysis for different values of model parameters and how those affect

tax revenues. The two parameters of interest are the curvature parameter of household’s

Cobb-Douglas utility function α, as well as the weight on composite consumption, ψ. In-

terestingly, as α is allowed to vary, steady-state revenues are essentially unchanged. Even

an implausibly high value, α = 50, does not produce any difference in steady state tax rev-

enues. In both models considered in this paper, the preference parameter is not important

for steady-state fiscal policy effect. This result is not surprising in the literature, as Trabandt

and Uhlig (2010) obtain a very similar finding in their paper.1

In contrast, changes in the second parameter, ψ, yield significant differences. Both the

capital and labor tax Laffer curves, and the responses of the other tax bases to capital and

labor income tax rate are affected when ψ is allowed to vary.2 Higher values of ψ shift up

the Laffer curve and make it steeper, without significant change in its peak. The difference

between Finn and the model with endogenous public employment becomes significant for

implausibly high values of ψ, i.e. ψ > 0.5. (As explained in the calibration section, parame-

ter ψ = 0.296, describing household’s preference was calculated as the ratio of hours of work

out of total potential hours in the model.) Intuitively, a higher ψ corresponds to a lower

weight to leisure, (1− ψ), in the household’s utility function. In other words, a higher ψ

1Parameter α is important for model dynamics, though.
2Consumption tax Laffer curve proves to be very sensitive to ψ parameter. In the majority of the cases

it breaks down for values outside the benchmark value. This is also a typical result in the literature, e.g.

Trabandt and Uhlig (2010).
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Figure 7: Sensitivity analysis: Union
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Figure 8: Sensitivity analysis: Union
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Figure 9: Sensitivity analysis: Finn
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Figure 10: Sensitivity analysis ψ: Finn
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decreases the elasticity of private labor supply. Intuitively, when labor tax rate increases, or

equivalently, after tax private wage falls, private hours respond less, thus increasing labor

income tax revenue, as well as total tax revenue.

The effect of higher ψ on capital tax Laffer curve is similar to ψ’s effect on the labor tax

Laffer curve above. When τ k is allowed to vary, a higher weight attached to consumption in

household’s utility function, together with the optimality condition for the marginal rate of

substitution between consumption and hours require private higher capital stock to finance

private consumption. Therefore, a higher ψ shifts the capital tax Laffer curve upward as

well.

1.5 Measuring conditional welfare

In steady state

u(c, gc, 1− n) =
[(c+ ωgc)ψ(1− n)(1−ψ)](1−α) − 1

1− α
(186)

Let A and B denote two different regimes. The welfare gain, ζ, is the fraction of consumption

that is needed to complement household’s steady-state consumption in regime B so that the

household is indifferent between the two regimes. Thus

[(cA + ωgc,A)ψ(1− nA)(1−ψ)](1−α) − 1

1− α
=

[((1 + ζ)cB + ωgc,B)ψ(1− nB)(1−ψ)](1−α) − 1

1− α
(187)

Multiply both sides by (1− α) to obtain

[(cA + ωgc,A)ψ(1− nA)(1−ψ)](1−α) − 1 = [((1 + ζ)cB + ωgc,B)ψ(1− nB)(1−ψ)](1−α) − 1 (188)

Cancel −1 terms at both sides to obtain

[(cA + ωgc,A)ψ(1− nA)(1−ψ)](1−α) = [((1 + ζ)cB + ωgc,B)ψ(1− nB)(1−ψ)](1−α) (189)

Raise both sides to the power 1
1−α

to obtain

(cA + ωgc,A)ψ(1− nA)(1−ψ) = ((1 + ζ)cB + ωgc,B)ψ(1− nB)(1−ψ) (190)

Divide throughout by (1− nB)(1−ψ) to obtain

((1 + ζ)cB + ωgc,B)ψ = (cA + ωgc,A)ψ
(

1− nA

1− nB

)(1−ψ)
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Raise both sides to the power 1/ψ to obtain

(1 + ζ)cB + ωgc,B = (cA + ωgc,A)

(

1− nA

1− nB

)

(1−ψ)
ψ

(191)

Move ωgc,B term to the right to obtain

(1 + ζ)cB = (cA + ωgc,A)

(

1− nA

1− nB

)

(1−ψ)
ψ

− ωgc,B (192)

Divide both sides by cB to obtain

1 + ζ =
1

cB

{

(cA + ωgc,A)

(

1− nA

1− nB

)

(1−ψ)
ψ

− ωgc,B
}

(193)

Thus

ζ =
1

cB

{

(cA + ωgc,A)

(

1− nA

1− nB

)

(1−ψ)
ψ

− ωgc,B
}

− 1 (194)

Note that if ζ > 0(< 0), there is a welfare gain (loss) of moving from B to A. In this paper

B is the initial scenario, while A will be the fiscal regime change.
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