MPRA

Munich Personal RePEc Archive

Technical Appendix to "Macroeconomic
effects of public sector unions"

Vasilev, Aleksandar

AUBG

June 2013

Online at https://mpra.ub.uni-muenchen.de/68235/
MPRA Paper No. 68235, posted 09 Dec 2015 03:02 UTC



Technical Appendix to ”Macroeconomic effects of public

sector unions

Aleksandar Vasilev*

December 6, 2015

1 Technical Appendix

1.1 Optimality conditions
1.1.1 Firm’s problem

The profit function is maximized when the derivatives of that function are set to zero.
Therefore, the optimal amount of capital - holding the level of technology A; and labor input
N} constant - is determined by setting the derivative of the profit function with respect to

K} equal to zero. This derivative is
(1= O)A(KD) " (ND)(KY) =1 = 0 (1)

where (1 — 0)A,(K?)~%(NP)?(K7)” is the marginal product of capital because it expresses
how much output will increase if capital increases by one unit. The economic interpretation
of this First-Order Condition (FOC) is that in equilibrium, firms will rent capital up to
the point where the benefit of renting an additional unit of capital, which is the marginal

product of capital, equals the rental cost, i.e the interest rate.

reo= (1= 0)A(K)) (VD) (K7)” (2)
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Now, multiply by K} and rearrange terms. This gives the following relationship:
K7(1 = 0)Af(KY)(ND)(KY)" = 1K} or (1= 0)Y; =K} (3)
because
K7 (1= 0)Af(K7) (NP (K7)" = Al K7 (NP (KY)” = (1= 0)Y,

To derive firms’ optimal labor demand, set the derivative of the profit function with respect

to the labor input equal to zero, holding technology and capital constant:
OA(KD) T (NP)HED) —wf = 0 or w] = 0A(KT) ™" (NF) 71 (KY)” (4)
In equilibrium, firms will hire labor up to the point where the benefit of hiring an additional
hour of labor services, which is the marginal product of labor, equals the cost, i.e the hourly
wage rate.
Now multiply both sides of the equation by N and rearrange terms to yield
NPOA(KP) O (N])'H(KY)” = wiN} o 0Y, = w{N} (5)

Next, it will be shown that in equilibrium, economic profits are zero. Using the results above

one can obtain
I, = Y,—rK —uw!N' =Y, —(1-0)Y;—0Y, =0 (6)

Indeed, in equilibrium, economic profits are zero.

1.1.2 Consumer problem

Set up the Lagrangian

+ (7)

l—«

11—«
- ([iesenra o]
L(Co KT, NT A = By S {
t=0

+A | (1= Y (WENP 4+ wINJ) + (1 — 7%)r KP +

+7RP K — (1+79C, — KPq + (1 — 5)Kf] }
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This is a concave programming problem, so the FOCs, together with the additional, bound-
ary ("transversality”) conditions for private physical capital and government bonds are both

necessary and sufficient for an optimum.

To derive the FOCs, first take the derivative of the Lagrangian w.r.t C; (holding all other

variables unchanged) and set it to 0, i.e. Lo, = 0. That will result in the following expression

/Bt{ S {(Ot +wGHY (1 — NZ‘)“‘W] T x

-«
W(Cy 4+ wGPHL = NI — A (1 + TC)} =0 (8)
Cancel the 8! and the 1 — « terms to obtain
[(Ct + WG (1 — Nt)<1w>] _aw(ct + WG = NI — A (1 +7¢) =0 (9)
Move A; to the right so that
[(Ct + wGH¥ (1 — Nt)ﬂ-@} _a@b(ct +wGHYTHL = NI = Ay (1 + 7°) (10)

This optimality condition equates marginal utility of consumption to the marginal utility of

wealth.

Now take the derivative of the Lagrangian w.r.t K7, (holding all other variables unchanged)

and set it to 0, i.e. L KP,, = 0. That will result in the following expression

Bt{ — A+ BN {(1 — Ve + TP+ (1 — 51’)1 } =0 (11)

Cancel the 8! term to obtain
—As + BEA 4 {(1 — ™V + 7RO + (1 — 5?)1 =0 (12)

Move A; to the right so that

BE A1 [(1 — TV TP (1 — 5?)} = A (13)



Using the expression for the real interest rate shifted one period forward one can obtain

Yi
rie1 = (1 —0)
t+1 Kf_,’_l
BEtAt-‘rl (1—T )(I—Q)Kp +7- 5 +(1—5 ) :At (14)
t+1

This is the Euler equation, which determines how consumption is allocated across periods.

Take now the derivative of the Lagrangian w.r.t N} (holding all other variables unchanged)

and set it to 0, i.e. Ly» = 0. That will result in the following expression

—Q

5t{ — {(Ct +wGE)Y(1 — Nt)(l‘w)} x

11—«

(1= )(Cr + wGHY(1 = N) ™ (=1) + (1 — Tl)wf} = 0 (15)

Cancel the 8! and the 1 — o terms to obtain

—Q

Ct + OJGE

(Gt (1= Ny L

P
u—¢ﬂ }<—w+&u—ﬁmf=o (16)

Rearranging, one can obtain
[(Ct + wGY(1 — Nt)(l‘w)] (1 =) (Cy +wGHY(1 — N)™¥ = Ay(1 — 7Hw? (17)
Plug in the expression for w!, that is,
wy = 60— (18)

into the equation above. Rearranging, one can obtain

(Cy 4 wG (1 — NP | (1= )(C) + 0GP (1 — Ny~ = Ay(1 — #)e% (19)

Transversality conditions need to be imposed to prevent Ponzi schemes, i.e borrowing bigger

and bigger amounts every subsequent period and never paying it off.

lim GAKY, = 0 (20)



1.1.3 The Objective Function of a Public Sector Union: Derivation

This subsection shows that the objective function in the government sector is a generalized
version of Stone-Geary monopoly union utility function used in Dertouzos and Pencavel

(1981) and Brown and Ashenfelter (1986). The utility function is
V(w?!, N9) = (w? — wg)aﬁ(Ng _ Ng)(l—dﬂ7 (21)

where ¢ and 1 — ¢ are the weights attached to public wage and hours, respectively, and w?¢
and N9 denote subsistence wage rate and hours. Since there is no minimum wage in the
model, w9 = 0. Additionally, as public hours are assumed to be unproductive, it follows

that N9 = 0 as well. Therefore, the utility function simplifies to
V(w?, N9) = (w?)#(N9)0-9), (22)

Doiron (1992) uses a generalized representation, which encompasses (2) as a special case

when p — 0.
—1/p
o (1= o] (23)
when w = 0, the function simplifies to
-1/p
o+ 1= o] (21)
Union objective function used in the paper is very similar to Doiron’s (1992) simplified
version:
1/p
] (25)
can be transformed to
b 1/p
NI 4+ w9 P} ; 26
v (26)
Collecting terms under common denominator
(1-9) ¢ }W
NI + w9)P , 27
g0+ g 2



Factoring out the common term

] a- o o] 29
1/p

Note that the constant term {W > () can be ignored, as utility functions are invariant

to positive affine transformations. After rearranging terms, the equivalent function

N 1/p
V= oty + - o] (20)
Take natural logarithms from both sides to obtain
-1
InV = ;ln {gb(wg)p +(1- gb)(Ng)p} (30)

Take the limit p — 0

n o0 + (1= )y

limInV = lim (31)
p—0 p—0 p
Apply L’Hopital’s Rule on the R.H.S. to obtain
oty - oaey]
limln V' = lim 5 (32)
p—0 p—0 gp
op
Thus
ot e + (1= 6N ooy + (1 o)
InV = lim (33)
p—0 1
Simplify to obtain
: 9\p g _ g\pr g
- lim,_,o {gb(wt) Inw? + (1 — ¢)(NY) lnN} Slnwd + (1 — ¢)In N9 -
nV = =
iy [0(ur) + (1 - 9) (N oo
Therefore,
InV =¢lnw’ + (1 — ¢)In NY. (35)



Exponentiate both sides of the equation to obtain

0V omwit(1-g) NI (36)
Thus
7 Mn(ws)?+in(Na) i) (37)
or
77— gln(ws)?(No)(1=9) (38)
Finally,
V= (wg)¢(Ng)(1*¢) (39)

Furthermore, government period budget constraint serves the role of a labor demand func-
tion. Additionally, the public sector demand curve will be subject to shock, resulting from
innovations to the fiscal shares. The balanced budget assumption is thus important in the
model setup. Since wage bill is a residual, if wage rate is increased, then hours need to be

decreased. Additionally, government period budget constraint can be expressed in the form

N9 = N9(w9) as

TlwP NP + 7F(r — P)KP 4+ 7°C — G — G — G*
(1 —71Hw

N9 — (40)

Therefore, the problem in the government sector is reshaped in the standard formulation in
the union literature:

max V(w9 N7) st. N9 = N9(w) (41)

w9, N9

Since union optimizes over both the public wage and hours, the outcome is efficient. The
solution pair is on the contract curve (obtained from FOCs), at the intersection point with

the labor demand curve (government budget constraint).



1.1.4 Public sector union optimization problem

The union solves the following problem:

1/p
s [ (V2 + )’ (12)
wngt
S.t
GS + Gl + Gl + wiN{ = 7°Cy + 1, K} — 786 K, + 7' [w] N} + w{ N{] (43)

Setup the Lagrangian
1/p
Vit i) = mas {2y +ntaty)
w{,N{
-y {Gf + G+ G+ wIN? — 17°Cy — mFr KP4+ TP K, — 7w NT + watg]} }

Optimal public employment is obtained, when the derivative of the government Lagrangian

is et to zero, i.e Vyos =0

(1/p)—1
W) |52y sty o - (0= Pt - (49
or, when p is canceled out and (1 — 7%)v,w{ put to the right
(1/p)-1
ey entuty| = (1 st (40

Optimal public wage is obtained, when the derivative of the government Lagrandean is et

to zero, i.e Vo =0

(1/p)—1
(W) |2 +atudy] ot = (1= 7wy =0 (@7
or, when p is canceled out and(1 — 7'), N{ term put to the right
(1/p)-1
e entuty| e = (- (49
Divide (11.1.46) and (11.1.48) side by side to obtain
(1/p)—1
Ng P 9\p Ng p—1
e eaty] e .
(1/p)—1 (1= 7hHuN? (49)
[ I
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Cancel out the common terms
(NP uf
n(wf)r—t N}

Now cross-multiply to obtain

Hence

g 1 l/p g
Wy = 5 Nt (52)

The wage bill expression, which is obtained after simple rearrangement of the government
budget constraint, is as follows

7°Cy + 7Fr KP — 7R 0P Ky + 7w N — G¢ — Gt — G
1 -7t

wINY = (53)

Use the wage bill equation and the relationship between public wage and employment in

order to obtain

Y
w0 = n,ﬁ |:7'CCt + Fr KP — 7"“57’[(1} + :lwtpth -G -Gt — Gq 2 (54)
_—

and

(55)

7Cy + 7Fr KV — 7F6P K + Tl NP — G¢ — G — Gi] 2
1—-7¢



1.2 Log-linearized model equations

1.2.1 Linearized market clearing

¢+ ki + ) +g (=M = u
Take logs from both sides to obtain
Infe; + Ky + g5 + 9 — (1= 0"k = In(y)

Totally differentiate with respect to time

dnfe, + kY + gf + gi — (1 — 0P)kY]
dt

= dIn(y)

dk? kP

1 dee  dgig  dgig' | AR R

[

Define z = %%. Thus passing to log-deviations

é[ac +050°+ Gig' + KLk — (L= 0"KR) = g
Gc+ 059"+ 919"+ Kk — (1= 0"KIRY = yi,
FR = e — o= g7 — 9'03 + (1= 0" K7k
1.2.2 Linearized production function
ye = a(k)) 0 (nf)" (k7)
Take natural logs from both sides to obtain

Iny, = Ina+ (1 —0)Inkf +60Innf +vink!

Totally differentiate with respect to time to obtain

dIny; dlna; dink?  dlnn? dInkJ
= 1-6 0
dt i T T T
1 dy, lda; 1—0dkl 0 dnt v dE]

gdt  adt R dt wrdt ke dt

Pass to log-deviations to obtain

0 = —g+ (1= 0k +a, + 0P + vik?

10
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dyt 1

dt y

(56)

(57)



1.2.3 Linearized FOC consumption

(e -+ 065) (1 = m) ] (e +w0g))* (L= m)0D = (147,
Simplify to obtain
Y(c, +wgd)? (1 — ng) 17O — (14 )N,
Take natural logs from both sides to obtain
In (e +wgd) (1 —ny) 179 — In(1 4 7°) + In ),

In(c; +wgd)¥Y 17 (1 — 0y )17 — In(1 4+ 7°) +1In )\,

(Y —1—ay)In(c +wg)) + (1 —a)(l —¢)In(l —ny) = In(1+7°)+1n\

Totally differentiate with respect to time to obtain

dIn(c, ¢ dIn(1 —n,
(01— a) TG | (g TR
Cdln(1+79)  dln
N dt + dt
1 de,  dg —1 dn, dX 1
(b — 1 - ar) (S b0y (1 —a)(1— o) kg

c+wg® " dt dt l—ndt  dt A
(W—1-av)dae  w(v—1-av)dgg
c+wgt dtc c+ wge dt g¢

1 dntn d)\tl

—(1—a)(1 - —— =
=)= =
c(p—1-ay), wg@W—1-—ay). n_ . :
C—(1—a)(1— = A
crwg ¢+ wge g = (1=l w)l—nn !
Since
P VS L L )
nP 4+ ng nP + nd n n
and consumers choose n? only, pass to log-deviations to obtain
cp—1-ay), wg@W—1-—ay). n_n :
C—(1—a)(1-— Po= A
c+ wg° Gt ¢+ wg 9 = ( a)l w)l—nni’—i—ngn !
Since n = nP + n?, it follows that
c(p—1—arp),  wg(b—1—ar)), n?
C—(1—a)(1— P =0
¢+ wge Gt ¢+ wgt gi = (=) w)l—nn
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(69)

(73)

(74)

(75)

(76)

(78)

(79)



1.2.4 Linearized no-arbitrage condition for capital

>\t = /BEt)\tJrl[(]. — Tk)TtJrl + Tk(sp + (1 — (5[))]
Substitute out r;.1 on the right hand side of the equation to obtain

o= BE M ((1— 7)1 —0)2L 1 rhgp 1 — )]

ki
Take natural logs from both sides of the equation to obtain

A = By (L= 7)1 = ) 55 47567 + 1 67)]
t+1

Totally differentiate with respect to time to obtain
dln ), dIn EApr (1= 75)(1 = 0) 5 + 7507 + 1 — &7)]
dt dt

Ldh _ ! 3
Adt TR (1—0) L +1—p + Thor

1 — L o kep _ sy BAe A
[((1 ) (1 Q)kp+7'5 +1-47) TR
+)\(1 — 781 = 0) dys41 y [AQ- ™) (1 - 0)y] dkl,, kP

kP dt y (kp)2 dt kr

Pass to log-deviations to obtain

< . (1—7%(1-0)y .
A= Ei <A
t t{ t+1 + [((1_7k)(1_Q)Z;_+1_|_7—k5p+1—5p)kpyt+1
t4

=My k]}

((1—0) &L ke +1 — op)kp
t+1

Observe that

(1—71 -2y rhgr 157 = 1/8

ki
Plug it into the equation to obtain
< . -1 -0)y. 1—7mM(1-0)y-
A= Bl + il k)p( )yyt+1 — il k)f’( )ykﬁrl

B -1 - 0)
kp

Q ° 1—7M(1 -6
At = Et>\t+1+ﬂ( Tk)p( )

~

Y
Bk

Y, .
By —

12

(83)

(84)

(85)



1.2.5 Linearized MRS

c (1 - Tl) Yt
(I =v)(ee +wgy) = ¥(1—ny) i+ TC)%—? (89)
Take natural logs from both sides of the equation to obtain
c (1 B Tl) Y
In(1 —¢)(c; +wg) = In(l—ny) T Tc)en—% (90)
In(e; +wgy) = In(l—ny) +Iny, — Innf (91)
Totally differentiate with respect to time to obtain
dIn(c; + wgy) dln(l —n;) dlny, dlonf
_ - 92
at @ a (92)
1 de, dgs 1 dny 1dy, 1 dn?
— ) = — —_— = - —— 93
c—l—wgc(dt wdt> 1—ndt+ydt nP dt (93)
1 deec w  dgfg° _ 1 dnn 1%_id_nf (94)

C“‘WQCEE ¢+ wg° dt} 1—ndtn y dt  nP dt

¢ del wg® dgi 1 n o dng1  ldy, 1 dnf

— = — — - —— 95
c+wgtdt ¢ c+wgt dt g° l—ndtn ydt nrdt (95)
Pass to log-deviations to obtain
C oy W9 e _ M 96
c+wgcct+c+wggt 1—nn+yt i (96)
Since
p g
A= i e, (97)
n? 4+ nd nP 4+ nd
and noting that consumers are only choosing n”, then
R wg® . n o
C + - np + — np 98
c+wgct c+wgcgt 1—nnP4+n9 v ! (98)
c . wg® . n n? R R
+ [o= - Pt g — iy 99
c+wgcct c—i—wgcgt 1—nnp+n9n gt (99)
c . wg® . n n? R R
ér ¢ = —(1+ nP + 100
c+wge ! c+wgcgt ( 1—nnp+n9) v (100)
Since n = nP + nY, it follows that
c . wg® . n? o\ . .
c + o= —| 1+ nf + 101
¢+ wyg* ! c—i—wgcgt ( 1—n) v (101)
L AR S PR 0 (102)
C n" — et
c+ wg° ! c+wgcgt 1—n v
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1.2.6 Linearized private capital accumulation

kv = de+ (1= d")ky
Take natural logs from both sides of the equation to obtain
Inky,, = In(i, + (1 —6P)k7)
Totally differentiate with respect to time to obtain

dinkly, 1 dli, + (1 — 67)kP)

dt i+ (1— o)k dt

Observe that since
i = 6PkP, it follows that ¢+ (1 — 0P)kP = 6PkP + (1 — 6P)kP = kP. Then

diy 1 1digi o dR R

dt kp kP dm’+z'+(1—6p)k;§’ dt kp
Pass to log-deviations to obtain

) R (1= 0P)kP
B = i ( kp) P

Koy = 0P+ (1 — oP)AP
1.2.7 Linearized government capital accumulation

Kl = g+ (1— 07k
Take natural logs from both sides to obtain
Wk, = In(g+(1— 07)K))

Totally differentiate with respect to time to obtain

dinkf 1 d(gi + (1 —69)k])
dt 7+ (1— 09)k9 dt

Observe that since
g = 5%,

14

(103)

(104)

(105)

(106)

(107)

(108)

(109)

(110)

(111)

(112)

(113)



it follows that
gi + (1 =0k = 6%k 4+ (1 — §9)k9 = k7.

Hence,

L Ldgigt kAR
dt k9 k9 dt g¢ x4+ (1—09) dt k9

Pass to log-deviations to obtain

59k . (1— 89)kY .
_.|_

];‘tg-i-l kg gt ]{79 ktg

Cancel out the k9 terms to obtain

~

Ko o= 0%+ (1—69)k!

1.2.8 Public wage rate rule

g _
w; =mn 2
t n 1 7—l

Take logs from both sides to obtain

1 1
Inwj = —2—pln77— Eln(l -+

2
Totally differentiate with respect to time to obtain

dlnw{ 1d

dt 2dt

Observe that

ekl — 7867k, + Thwind = 7F(1 — 0)y, + 710y, — TF6PkY =

= |:Tk<1 —0)+ 719} y, — TVOPkP

Also

(1 = Putn? = v+ [rH(1 — 0) + 6y — 8K — g — g — ]

15
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1 [cht + 7Er k) — TROPEY + Tlwint — gf — gt — gt

1
—1In {cht + 7R kP — TRSPEP + Tlwln? — g¢ — gt —

—-"In {cht + 7Rkl — TRSPED 4 Thuln? — gf — gt — 92}

(114)

(115)

(116)

(117)

(118)

(119)

(120)

(121)

(122)



Thus

dw! 1 1 1 de, . ooy o dEY dgé dgi dgt
e . S PR 1—0) + 7| phep @t D90 Q91 9 kog
at wi  2(1 —rl)wgng{T T R i T il S

dwf 1 1 1 y
dt ws — 2(1—1HwIng

d d dkV kP dgtg¢  dgi gt dgl gt
(s [a-oyarto| el p Bl L WSS BHTL (12

dt c dt y dt kv dt ¢¢ dt gt dt ¢
1/2)[7%(1—6) + 7’0
wt 1 e aor P00y,
dt w9 (1 —7HwInd dt ¢ (1 — 7HwIng dt y
N YL VY
(1 —7Hwng dt k(1 —7HwInd dt g°
(1/2)g"  dg; 1 (1/2)g"  dg; 1
—_—— (125)
(1 —7mHwng dt ¢ (1 — 1HwIng dt ¢
Pass to log-deviations to obtain
1/2) |71 -0 g
e U |-y
wi = ¢
ET = wne (1 — 7HwIng v
(1/2)7*oPk? (1/2)g° .. (1/2)g" (1/2)g" .,
T T D\oagtt T t t t (126)
(1 — 7HwIng (1 — 7HwIng (1 — 7HwIng (1 — 7HwIng
1.2.9 Public hours/employment rule
nf = neuf (127)
Take logs from both sides to obtain
1
Inn{ = —Innp+Inw (128)
p
Totally differentiate both sides to obtain
dInnf dInwy
= 129
dt dt (129)
dni 1 dwi 1
- = T 130
dt n9 dt w9 (130)
Pass to log-deviations to obtain
ny = wf (131)
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1.2.10 Total hours/employment

ng = ny+nf
Take logs from both sides to obtain
Inn, = In(nf +n})
Totally differentiate to obtain
dlnn,  dln(n{ +ny)
da dt
dnl_ (dnf o}
dt n dt dt
dny1 - (dnin? dnfnP
dt n dt n9 dt nr
dng1 dn{ 1 n? dnj 1 nP
dtn  dtndn dt n? n
Pass to log-deviations to obtain
g p
e o= —pd 4+ Al
n

1.2.11 Linearized private wage rate

Yt

wl = 0=
t nf
Take natural logarithms from both sides to obtain

Inw! =+ Iny, — Innf

Totally differentiate with respect to time to obtain

dlnw;  dIn@ N dlny, dlnn}

dt dt dt dt

Simplify to obtain

(132)

(133)

(134)

(135)

(136)

(137)

(138)

(139)

(140)

(141)

(142)

(143)



1.2.12 Linearized real interest rate

Y

thekp
t

Take natural logarithms from both sides to obtain
Inr, =Inf +Iny, — Ink?

Totally differentiate with respect to time to obtain

dlnrt_dln«9+dlnyt_dlnk:f
dt dt dt dt

Simplify to obtain
drl  dy, 1 dk} 1

dtr dty dt kp

Pass to log-deviations to obtain

Fo= G0 — kf
1.2.13 Public/private wage ratio

rwy = wi/w!

Take logs from both sides of the equation

Inrw, = Inw!—Inw)
Totally differentiate to obtain
dlnrw,  dnw! dlnwy
a dt dt
drw, 1 dw! 1 dwf 1
dt rw — dt w9 dt wp
Pass to log-deviations to obtain
rTwy = 'IIJ;? — uA)f

(144)

(145)

(146)

(147)

(148)

(149)

(150)

(151)

(152)

(153)



1.2.14 Public/private hours/employment ratio

rly = ni/n? (154)

Take logs from both sides of the equation

Inrl;, = Inn{ —Inn? (155)
Totally differentiate to obtain
dInrl dlnn{ dlnn?
= — 156
dt dt dt (156)
drl; 1 dn{ 1 dn? 1
—_—— = —— - —— 157
dt rl dt n9 dt nr (157)
Pass to log-deviations to obtain
rly = nd—nk (158)

1.2.15 Linearized technology shock process

Inagn = palna,+ €, (159)

Totally differentiate with respect to time to obtain

dlnazq o dlna, de}

- 160
dt P dt (160)
da da “

C;t“ = pad—;ﬂm (161)

_ de;f_HN [ e\ __ _a a __ ,a : a __ fatl
where for t = 1 =25 ~ In(e“+1/e®) = €f, | — €* = ¢}, since €* = 0. Pass to log-deviations

to obtain

Qi1 = Paly + €44 (162)
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1.2.16 Linearized stochastic process for government consumption/output share

gty = (1—p) g+ Ing? + 5, (163)

Totally differentiate with respect to time to obtain

dln g%, dln g% dlng?  def,,
= (1= p9 J 164
dt == "t (164)
dgit, dg;” = .
dt: = pg—d; + €1 (165)

def,
dt

C . . .
where for ¢t = 1 ~ In(e+1/e) = €7, — € = €7, since €@ = 0. Pass to log-deviations to

obtain
gf—?{-l = Pg§§y+€§+1 (166)

1.2.17 Linearized level of government consumption

95 =90 (167)
Take natural logarithms from both sides to obtain
Ingf =1Ing/¥ 4+ Iny, (168)

Totally differentiate with respect to time to obtain

dlng;  dlngy? N dlny,

= 1
dt dt dt (169)
dg¢ 1 dg¥ 1 dy 1
gy L _ 49 L Yt (170)
dt g° dt g¢ dty
Pass to log-deviations to obtain
9 =9 + 0 (171)
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1.2.18 Linearized stochastic process for the government investment/output ra-

tio

Ing, = (1—p)lng"+p'lng+e,, (172)

Totally differentiate with respect to time to obtain

dln g, B ~dlng®  dlngl? dei,,
dt = (1=7) a P dt (173)
dg,”, g
c;; = pgd_; t €4 (174)

dei g

where fort =1 =

7 7 ; ; ; . 7 . .
~In(e‘+1/e”) = €, — € = €, since € = 0. Pass to log-deviations to

obtain
G = pgd e (175)
1.2.19 Linearized level of government investment
9t = 9"y (176)
Take natural logarithms from both sides to obtain
Ing! =Ing? + Iny, (177)

Totally differentiate with respect to time to obtain

dlng; dln gl N dIn 1y,

= 1
dt dt dt (178)
dgi 1 dg’ 1 dy 1
dt ¢ dt ¢g¢ dty
Pass to log-deviations to obtain
9= 9"+ e (180)
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1.2.20 Linearized level of government transfers

9= 9"y
Take natural logarithms from both sides to obtain
Ing! =Ing" +Iny,

Totally differentiate with respect to time to obtain

dlng; dlng" N dlny,

dt dt dt
dgi 1 dy 1
dt g¢¢  dty
Pass to log-deviations to obtain
90 =it
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1.3 Auto- and cross-correlation functions

As an additional test of model fit, this appendix compares auto- and cross-correlation func-
tions generated from the model with collective bargaining and Finn (1998) calibrated for
Germany, with their empirical counterparts. The main emphasis in this subsection is on the
ACFs and CCFs of labor market variables. In particular, close attention is paid to cyclical
properties of public and private wage rates and hours. To establish 95% confidence intervals
for the theoretical ACFs and CCFs, as in Gregory and Smith (1991), the simulated time
series are used to obtain 1000 ACFs and CCFs. The mean ACFs and CCFs are computed by
averaging across simulations, as well as the corresponding standard error across simulations.
Those moments allow for the lower and upper bounds for the ACFs confidence intervals to
be estimated. The empirical ACFs and CCFs are then plotted, together with the theoretical
ones. If empirical ACFs lie within the confidence region, this means that the calibrated

model fits data well.

Empirical ACFs and CCFs were generated from a Vector Auto-Regressive (VAR) process of
order 1. Since ACFs and CCFs are robust to identifying restrictions (Canova (2007), Ch.7),
the VAR(1) was left unrestricted. The figures on the following pages display empirical ACFs
(solid line), together with the simulated average ACFs (dashed line) and the corresponding
stochastic error bounds (dotted lines). This is done for the union model first , and then for

the calibration using Finn’s (1998) framework.

The model with the public sector union calibrated for Germany outperforms Finn (1998),
especially in the prediction of the dynamic behavior of labor market variables. In terms
of capturing the autocorrelation structure of the variables, the union model fits data quite
well. One exception is the public sector wage: in data, it is highly autocorrelated, while the
model generates low persistence. A possible explanation could be that the public union puts
weight also on last year’s public sector wage level, i.e. the union bargains over the public
wage increase rate, and not just the wage level. Public and total hours are also borderline

cases, as employment rates in data were used instead. In addition, the union model predicts

23



carr. coef. corr. coef. carr. coef. carr. coef. carr. coef.

carr. coef.

Figure 1: Theoretical and empirical ACFs for Germany: Union
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Figure 2: Theoretical and empirical ACFs for Germany: Union
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Figure 3: Theoretical and empirical ACFs for Germany: Union
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Figure 4: Theoretical and empirical ACFs for Germany: Finn
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Figure 5: Theoretical and empirical ACFs for Germany: Finn
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Figure 6: Theoretical and empirical ACFs for Germany: Finn
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perfect positive contemporaneous correlation between public wages and hours, while in data,
it is negative. Overall, the model with public sector union calibrated for Germany captures
the dynamic co-movement of hours and wages with output, consumption and investment.
In addition, union model is able to address and match some new dimensions such as the

dynamic correlation of the two wage rates and the pair of hours worked.

1.4 Sensitivity analysis

To evaluate the effect of structural parameters on the shape of the Laffer curves, this section
performs sensitivity analysis for different values of model parameters and how those affect
tax revenues. The two parameters of interest are the curvature parameter of household’s
Cobb-Douglas utility function «, as well as the weight on composite consumption, 1. In-
terestingly, as « is allowed to vary, steady-state revenues are essentially unchanged. Even
an implausibly high value, o = 50, does not produce any difference in steady state tax rev-
enues. In both models considered in this paper, the preference parameter is not important
for steady-state fiscal policy effect. This result is not surprising in the literature, as Trabandt

and Uhlig (2010) obtain a very similar finding in their paper.!

In contrast, changes in the second parameter, 1, yield significant differences. Both the
capital and labor tax Laffer curves, and the responses of the other tax bases to capital and
labor income tax rate are affected when 1 is allowed to vary.? Higher values of 1 shift up
the Laffer curve and make it steeper, without significant change in its peak. The difference
between Finn and the model with endogenous public employment becomes significant for
implausibly high values of ¢, i.e. ¢ > 0.5. (As explained in the calibration section, parame-
ter ¢ = 0.296, describing household’s preference was calculated as the ratio of hours of work
out of total potential hours in the model.) Intuitively, a higher 1 corresponds to a lower

weight to leisure, (1 — %), in the household’s utility function. In other words, a higher v

IParameter « is important for model dynamics, though.
2Consumption tax Laffer curve proves to be very sensitive to 1) parameter. In the majority of the cases

it breaks down for values outside the benchmark value. This is also a typical result in the literature, e.g.

Trabandt and Uhlig (2010).
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Figure 7: Sensitivity analysis: Union
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Figure 8: Sensitivity analysis: Union
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Figure 9: Sensitivity analysis: Finn

0.4

Mmoo
.U_E__u_

5
n
=

014

woo=r
= =
- -
anuasay xe oul den

0.08} ——y=0.9

012
0.02

< 0 T

01t

o ]

= = ! !
= = = =
anuanay x=] oul TS0

33



Lab. inc. tax Bevenue

Sons. inc. tax Bevenue

Figure 10: Sensitivity analysis ¢: Finn
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decreases the elasticity of private labor supply. Intuitively, when labor tax rate increases, or
equivalently, after tax private wage falls, private hours respond less, thus increasing labor

income tax revenue, as well as total tax revenue.

The effect of higher v on capital tax Laffer curve is similar to ¢’s effect on the labor tax
Laffer curve above. When 7% is allowed to vary, a higher weight attached to consumption in
household’s utility function, together with the optimality condition for the marginal rate of
substitution between consumption and hours require private higher capital stock to finance
private consumption. Therefore, a higher 1 shifts the capital tax Laffer curve upward as

well.

1.5 Measuring conditional welfare

In steady state

(c-+wg")* (1 = m)—9)0) — 1
l—«

u(c,g%1—n) = (186)

Let A and B denote two different regimes. The welfare gain, (, is the fraction of consumption
that is needed to complement household’s steady-state consumption in regime B so that the

household is indifferent between the two regimes. Thus

(4 wg™)* (0 =)0 1[4 Qe gt (L —nP) IO 1
11—« N l—«

Multiply both sides by (1 — «) to obtain
[(¢* +wgh)? (1= nt))0) — 1 = [(1+ ¢)e” +wg™P)¥ (1 —nP)¥)070) 1 (188)
Cancel —1 terms at both sides to obtain
(e + g™ (1= 200 = (14 Q)P +wg)P(1 = n®) )1 (159)
Raise both sides to the power ﬁ to obtain
(A 4w (1 — M) = (1 + )P + wgP)¥ (1 — nB)—¥) (190)

Divide throughout by (1 — n®)=%) to obtain

1— 7’LA> (1-v)

(14 Q) +wg ) = (¢ +wg® )" (1 — B
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Raise both sides to the power 1/1 to obtain

a=v)

B c,B A c,A 1 - nA v
(140 +wg™” = (¢ + g (1 (191)
Move wg®®? term to the right to obtain
(1-v)
1—nt\ 7
(1+0)cP = (* +wg?) (1 — nB) — wg®P (192)
Divide both sides by ¢? to obtain
(1-v)
1 1—nt\ ¢
1+¢ = C—B{(CA—l—wgc’A)(l_nB) —wgC’B} (193)
Thus
(1-v)
1 ear [1=nA\ 7 .

Note that if ¢ > 0(< 0), there is a welfare gain (loss) of moving from B to A. In this paper

B is the initial scenario, while A will be the fiscal regime change.
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