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Abstract

Differences-in-Differences (DID) is one of the most widely used identification strategies in applied eco-
nomics. However, inference in DID models when there are few treated groups remains an open question.
We show that the usual inference methods used in DID models might not perform well when there are few
treated groups and errors are heteroskedastic. In particular, we show that when there is variation in the
number of observations per group, inference methods designed to work when there are few treated groups
tend to (under-) over-reject the null hypothesis when the treated groups are (large) small relative to the
control groups. This happens because larger groups tend to have lower variance, generating heteroskedastic-
ity in the group x time aggregate DID model. We provide evidence from Monte Carlo simulations and from
placebo DID regressions with the American Community Survey (ACS) and the Current Population Survey
(CPS) datasets to show that this problem is relevant even in datasets with large numbers of observations
per group. We then derive an alternative inference method that provides accurate hypothesis testing in
situations where there are few treated groups (or even just one) and many control groups in the presence of
heteroskedasticity. Our method assumes that we know how the heteroskedasticity is generated, which is the
case when it is generated by variation in the number of observations per group. We only need to know the
structure of the heteroskedasticity of a linear combination of the errors, which implies that we do not need
strong assumptions on the intra-group and serial correlation structure of the errors. Our method provided
accurate hypothesis testing with one treated and 24 control groups in simulations with real datasets. Finally,
we also show that an inference method for the Synthetic Control Estimator proposed by Abadie et al. (2010)
can correct for the heteroskedasticity problem, and derive conditions under which this inference method
provides accurate hypothesis testing.
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1 Introduction

Differences-in-Differences (DID) is one of the most widely used identification strategies in applied economics.

However, inference in DID models is complicated by the fact that residuals might exhibit intra-group and

serial correlations. Not taking these problems into account can lead to severe underestimation of the DID

standard errors, as highlighted in Bertrand et al. (2004). Still, there is as yet no unified approach to deal

with this problem. As stated in Angrist and Pischke (2009), “... there are a number of ways to do this [deal

with the serial correlation problem], not all equally effective in all situations. It seems fair to say that the

question of how best to approach the serial correlation problem is currently under study, and a consensus has

not yet emerged.”

One of the most common solutions to this problem is to use the cluster-robust variance estimator (CRVE)

at the group level.1 By clustering at the group level, we allow for unrestricted correlation in the within-group

errors. More specifically, we allow not only for correlation in the errors of observations in the same group

x time, but also for correlation in errors of observations in the same group at different time periods. One

important advantage of CRVE is that it also allows for unrestricted heteroskedasticity. The variance of the

DID estimator can be divided into two components: one related to the variance of the treated groups and

another one related to the variance of the control groups. The CRVE takes heteroskedasticity into account

by essentially estimating the variance separately for the treated and for the control groups. Bertrand et

al. (2004) show that CRVE and pairs-bootstrap at the group level work well when the number of groups is

large.2 Even when there are only a small number of groups, it might still be possible to obtain tests with

correct size even with unrestricted heteroskedasticity (Cameron et al. (2008), Brewer et al. (2013), Imbens

and Kolesar (2012), Bell and McCaffrey (2002), Canay et al. (2014), and Ibragimov and Mller (2013)).

However, these inference methods will eventually fail when the proportion of treated groups goes to zero or

one, even if there are many groups in total (MacKinnon and Webb (2015b)). The problem is that, with a

small number of treated groups, it is hard to estimate the variance component related to the treated groups

based only on the residuals of the treated group. In the polar case where there is only one treated group,

the CRVE estimate of this component of the variance would be identical to zero.3

1The CRVE was developed by Liang and Zeger (1986). We can think of this method as a generalization of the
heterocedasticity-robust variance matrix due to White (1980). In typical applications the label “group” stands for states,
counties or countries. More generally, we refer to group as the unit level that is treated. We will assume throughout that errors
of individuals within a group can be correlated while errors of individuals in different groups are uncorrelated.

2Wooldridge (2003) provides an overview of cluster-sample methods in linear models. The author shows that when the
number of groups increases and the groups sizes are fixed, the theory is well developed.

3Another alternative presented by Bertrand et al. (2004) is to collapse the pre- and post-information. This approach would
take care of the auto-correlation problem. However, in order to allow for heteroskedasticity, one would have to use robust
standard errors, in which case this method would also fail when there are few treated groups.
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An alternative when there are few treated groups is to use information from the control groups in

order to estimate the component of the variance related to the treated groups. Donald and Lang (2007),

henceforth DL, deal with the case when the number of treated and control groups is small. They use small

sample inference procedures on the group x time DID aggregate model under the assumption that errors

are normal, homoskedastic and serially uncorrelated. Conley and Taber (2011), henceforth CT, provide an

interesting inference method to take both intra-group and serial correlations into account when the number

of treated groups is small, but the number of control groups is large. Their method uses information on the

residuals of the control groups to estimate the distribution of the DID estimator under the null. Cluster

residual bootstrap provides another alternative when there are few treated clusters (Cameron et al. (2008)).

In cluster residual bootstrap, we hold the treatment variable constant throughout the pseudo-samples, while

resampling the residuals, so that we guarantee that every pseudo-sample will have the same number of

treated groups. A crucial assumption for all these methods is that the errors (or a linear combination of

the errors) are homoskedastic, so that we can use information on the residuals of the control group to assess

the variance of the treated group. However, this homoskedasticity assumption might be very restrictive

in DID applications. In particular, errors in the group x time DID aggregate model should be inherently

heteroskedastic when there is variation in the numbers of observations used to calculate each group x time

average.

In this paper, we first show that usual inference methods used in DID models might not perform well

when the number of treated groups is small. Methods that allow for unrestricted heteroskedasticity do

not work because they estimate the component of the variance related to the treated groups based on few

observations. Also, alternative methods that use information from the control groups will not work properly

in the presence of heteroskedasticity. In the particular case in which the number of observations per group

varies, these methods tend to (under-) over-reject the null hypothesis when the number of observations in the

treated groups is (large) small relative to the number of observations in the control groups. The problem is

that variation in the number of observations per group invalidates the homoskedasticity assumption, because

larger groups tend to have lower variance. The intuition of this result was already articulated in Assuncao

and Ferman (2015) in an application of CT.4 We formalize this idea and derive conditions under which this

4Assuncao and Ferman (2015) exclude the comparison of placebo estimates when the placebo treated group is much smaller
than the original treated group. As stated in Assuncao and Ferman (2015), “One important caveat with this method [Conley
and Taber (2011)] is that the number of observations in each treatment group × year cell in the placebo regressions will not
be the same as in the original regression. This is particularly important when the number of observations in the treatment
group is small relative to the control group. In this case, increasing the number of observations in the treatment group would
reduce the variance of the estimator even if we hold the number of observations constant. If this correction is not used, then a
placebo estimator using a state with few observations as the treatment group would have a much higher variance than our actual
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problem would be more or less relevant. In particular, we show that this problem becomes more severe when

the intra-group correlation is smaller and when there are fewer observations per group. We then provide

evidence from Monte Carlo simulations and simulations with real datasets to show that this problem can

be relevant even in datasets with very large numbers of observations per group. This occurs because, as the

intra-group correlation approaches zero, increasing the number of observations per group has little impact

on the heteroskedasticity. Therefore, a large number of individual observations per group should not be a

reasonable justification for the assumption that group x time averages have homoskedastic residuals.

We then derive an alternative method for inference when there are only few treated groups that takes

into account the fact that errors are inherently heteroskedastic when there is variation in the number of

observations per group (including the case of only one treated group). The main assumption is that we

know how the heteroskedasticity is generated, which is the case when it is generated by variation in the

number of observations per group. Under this assumption, we can re-scale the residuals of the control

groups using the (estimated) heteroskedasticity structure in a way that allows us to use this information

to estimate the distribution of the error for the treated groups. Our method only requires information on

the heteroskedasticity structure for a linear combination of the errors, which implies that we do not have to

impose strong assumptions on the serial correlation structure. Therefore, our method is more robust than

econometric corrections that place a specific parametric form on the time-series process either to estimate the

standard errors or to run a FGLS.5 We show that a cluster residual bootstrap with this heteroskedasticity

correction provides valid hypothesis testing asymptotically when the number of control groups goes to infinity.

Our Monte Carlo simulations and simulations with real datasets suggest that our method provides hypothesis

testing with correct sizes when there are around 25 groups in total (1 treated and 24 controls). We also

show that the power of our test converges to the power of the uniformly most powerful test (UMP) when

the number of control groups increases.

Our method is closely related to the Randomization Inference (RI) approach proposed by Fisher (1935).

In this approach, one uses a permutation test that calculates the test statistic under all possible combinations

of treatment assignment, and rejects the null if the observed realization in the actual experiment is extreme

estimator, while a placebo estimator using a large state as the treatment group would tend to underestimate this variance.”
5Bertrand et al. (2004) show that parametric corrections do not perform well because the coefficient on the auto-correlation

parameter is downward biased and because the time-series process might not be correctly specified. Hansen (2007) proposes a
bias correction for the auto-correlation estimators. Hausman and Kuersteiner (2008) use a second order expansion to provide
a FGLS t-test that takes into consideration the fact that the covariance matrix of the errors has been estimated. Brewer et al.
(2013) show that FGLS with Hansen (2007) bias correction combined with robust inference can produce tests with correct sizes
even with few groups. However, their approach relies on using the FGLS residuals into the CRVE formula. Therefore, their
method would not be appropriate when the proportion of treated groups goes to zero or one, which is the case analyzed in this
paper.
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enough. The RI approach assumes that treatment assignment is the only stochastic element of the model.

In this case, RI provides exact hypothesis testing regardless of the characteristics of the residuals (Lehmann

and Romano (2008)). The RI test remains valid in the presence of heteroskedasticity for unconditional tests

(that is, before we know which groups were treated). However, once one has information on the size of the

treated groups, one should then incorporate this information into the test, as argued in Yates (1984). More

specifically, given that one knows that the treated groups are (large) small, one would have information

that a permutation test that does not take this information into account would (under-) over-reject the null

when the null is true. Canay et al. (2014) show that it would be possible to incorporate this information

if one had functions of the data that have the same limiting distribution under the null hypothesis in all

permutations. However, we argue that alternative permutation methods that incorporate this information

are not feasible when there are very few treated groups. In a recent paper, MacKinnon and Webb (2015a)

suggest a permutation test on a t-statistic, which is constructed using CRVE. Their method works when

the numbers of treated and control groups are large enough, as asymptotically the t-statistic have the same

distribution under the null for all permutations. However, their method does not work well when there are

only very few treated groups.6 The key point is that we go back to the original problem of estimating the

variance of the treated groups using CRVE with few treated groups. In contrast, our method provides a

valid correction for heteroskedasticity even when there is only one treated group.

Finally, we show that Synthetic Control, an alternative estimation method for the case of one treated

group proposed by Abadie et al. (2010), can provide accurate hypothesis testing even in presence of het-

eroskedasticity. This happens because, under some circumstances, an inference method proposed in Abadie

et al. (2010) turns out to correct for the presence of heteroskedasticity by using information from the pre-

treatment period. We derive the conditions under which this method provides accurate hypothesis testing.

One important scenario that Abadie et al. (2010) does not correct for heteroskedasticity (and our method

does) is when there is only one pre-treatment period.

The remainder of this paper proceeds as follows. In Section 2 we present our base model. We briefly

explain the necessary assumptions in the existing inference methods, and explain why heteroskedasticity

usually invalidates inference methods designed to deal with the case of few treated groups. Then we derive

an alternative inference method that corrects for heteroskedasticity even when there is only one treated

group. We also derive the conditions under which the inference method for Synthetic Control proposed by

6In particular, MacKinnon and Webb (2015a) method is essentially the same as CT method when there is only one treated
group.
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Abadie et al. (2010) provides accurate hypothesis testing in the presence of heteroskedasticity. In Section

3 we perform Monte Carlo simulations to examine the performance of existing inference methods and to

compare that to the performance of our method with heteroskedasticity correction. In Section 4 we compare

the different inference methods by simulating placebo laws in real datasets: the American Community Survey

(ACS) and the Current Population Survey (CPS). We conclude in Section 5.

2 Base Model

2.1 A Review of Existing Methods

We consider a group x time DID aggregate model:7

Yjt = αdjt + θj + γt + ηjt (1)

where Yjt represents the outcome of group j at time t; djt is the policy variable, so α is the main parameter

of interest; θj is a time-invariant fixed effect for group j, while γt is a time fixed-effect; ηjt is a group x time

error term that might be correlated over time, but uncorrelated across groups. Depending on the application,

“groups” might stand for states, counties, countries, and so on. We assume that djt is nonstochastic.

There are N1 treated groups and N0 control groups. Let us assume that djt changes to 1 for all treated

groups starting after date t∗. In this case, the DID estimator will be given by:

α̂ =
1

N1

N1∑

j=1

[
1

T − t∗

T∑

t=t∗+1

Yjt −
1

t∗

t∗∑

t=1

Yjt

]
− 1

N0

N∑

j=N1+1

[
1

T − t∗

T∑

t=t∗+1

Yjt −
1

t∗

t∗∑

t=1

Yjt

]

= α+
1

N1

N1∑

j=1

[
1

T − t∗

T∑

t=t∗+1

ηjt −
1

t∗

t∗∑

t=1

ηjt

]
− 1

N0

N∑

j=N1+1

[
1

T − t∗

T∑

t=t∗+1

ηjt −
1

t∗

t∗∑

t=1

ηjt

]

= α+
1

N1

N1∑

j=1

Wj −
1

N0

N∑

j=N1+1

Wj (2)

where Wj =
1

T−t∗

∑T

t=t∗+1 ηjt − 1
t∗

∑t∗

t=1 ηjt.

It is clear from equation 2 that consistency of α̂ will depend on both N1 → ∞ and N0 → ∞. As shown in

CT, if the number of treated groups (N1) and the number of periods (T ) are fixed, then the DID estimator

7The group x time DID aggregate model takes any individual level within group x time cell correlation in the errors into
account (DL and Moulton (1986)). However, there might still be correlation of individuals in the same group at different periods
in the aggregate model, as suggested by Bertrand et al. (2004).
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is unbiased. However, this estimator is not consistent, since the first term, 1
N1

∑N1

j=1 Wj , would not converge

to zero when N0 → ∞.

The variance of the DID estimator, under the assumption that ηjt are independent across j, is given by:

var(α̂) =

[
1

N1

]2 N1∑

j=1

var(Wj) +

[
1

N0

]2 N∑

j=N1+1

var(Wj) (3)

Note that the variance of the DID estimator is the sum of two components: the variance of the treated

groups pre/post comparison and the variance of the control groups pre/post comparison. We allow for any

kind of correlation between ηjt and ηjt′ , which is captured in the linear combination of the errors Wj .

When there are many treated and control groups, Bertrand et al. (2004) suggest that CRVE at the group

level works well, as this method allows for unrestricted intra-group and serial correlation in the residuals ηjt.

One important point is that this method is not only cluster-robust, but also heteroskedasticity-robust. The

CRVE has a very intuitive formula in the DID framework:8

v̂ar(α̂)
Cluster

=

[
1

N1

]2 N1∑

j=1

Ŵ 2
j +

[
1

N0

]2 N∑

j=N1+1

Ŵ 2
j (4)

where Ŵj =
1

T−t∗

∑T

t=t∗+1 η̂jt − 1
t∗

∑t∗

t=1 η̂jt.

With CRVE, we calculate each component of the variance of the DID estimator separately. In other

words, we use the residuals of the treated groups to calculate the component related to the treated groups,

and the residuals of the control groups to calculate the component related to the control groups. This way,

CRVE allows for unrestricted heteroskedasticity. While CRVE is very appealing when there are many treated

and many control groups, equation 4 makes it clear why it becomes unappealing when there are few treated

groups. In the extreme case when N1 = 1, we will have Ŵ 2
1 = 0 by construction. Therefore, the variance of

the DID estimator would be severely underestimated (MacKinnon and Webb (2015b)). The same problem

applies to other clustered standard errors corrections such as BRL (Bell and McCaffrey (2002)). It is also

problematic to implement heteroskedasticity-robust cluster bootstrap methods such as pairs-bootstrap and

wild cluster bootstrap when there are few treated groups. In pairs-bootstrap, there is a high probability

that the bootstrap sample will not include a treated unit. Wild cluster bootstrap generates variation in

the residuals of each j by randomizing whether its residual will be η̂jt or −η̂jt. However, in the extreme

case with only one treated, this leads to Ŵ1 = 0. Therefore, the wild cluster bootstrap would not generate

8Up to a degrees-of-freedom correction.
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variation in the treated group. Another alternative presented by Bertrand et al. (2004) is to collapse the pre-

and post-information. This approach would take care of the auto-correlation problem. However, in order to

allow for heteroskedasticity, one would have to use heteroskedasticity-robust standard errors. In this case,

this method would also fail when there are few treated groups.

It is clear, then, that the inference problem in DID models with few treated groups revolves around how

to estimate the component of the DID estimator variance related to the treated group using the residuals η̂jt.

Alternative methods use information on the residuals of the control groups in order to estimate the component

of the variance related to the treated groups. These methods, however, rely on specific assumptions regarding

the error terms. DL assume that the group x time errors are normal, homoskedastic, and serially uncorrelated.

Under these assumptions, the variance of α̂ becomes:

var(α̂) =
1

NT

σ2
η

p(1− p)
(5)

where var(ηjt) = σ2
η and p is the proportion of treated groups. Therefore, under these assumptions, one

could recover the variance of α̂ by estimating σ2
η using the T ×N estimated residuals η̂jt. As suggested by

DL, if T×N is small, then one should compare the test statistic t = α̂/

√
v̂ar(α̂) to the student-t distribution

instead of calculating the critical values based on the normal distribution. The assumption that errors are

serially uncorrelated, however, might be unappealing in DID applications (Bertrand et al. (2004)).

CT provide an interesting alternative inference method that allows for unrestricted auto-correlation in

the error terms. Their method uses the residuals of the control groups to estimate the distribution of the

DID estimator under the null. The key difference relative to DL is that CT look at a linear combination of

the residuals that takes into account any form of serial correlation instead of using the group x time level

residuals. In the simpler case with only one treated group, α̂−α would converge toW1 when N0 → ∞. In this

case, they use {Ŵj}N0+1
j=2 (a linear combination of the control group residuals) to construct the distribution

of W1. While CT relax the assumption of no auto-correlation, it requires that errors are i.i.d. across groups,

so that {Ŵj}N0+1
j=2 approximates the distribution of W1 when N0 → ∞.

Finally, cluster residual bootstrap methods resample the residuals while holding the regressors constant

throughout the pseudo-samples. The residuals are resampled at the group level, so that the correlation

structure is preserved. It is possible that a treated group receives the residuals of a control group. While this

helps when there are only few treated groups, a crucial assumption is that errors are homoskedastic. It is

important to note that bootstrap alternatives with asymptotic refinements that focus on pivotal test statistics
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would not work well in situations of few treated groups and heteroskedasticity. This happens because these

methods require a consistent estimator of the variance. However, with N1 fixed, the heteroskedasticity-robust

methods to estimate the variance would not work properly.

2.2 The Heteroskedasticity Problem

As seen in Section 2.1, CRVE in DID models with few treated groups severely underestimates the variance

of α̂. Alternative methods such as DL, CT and cluster residual bootstrap require strong distributional

assumptions on the errors. In particular, they all require some kind of homoskedasticity. In this section, we

show that these methods might not perform well in the presence of heteroskedasticity. In particular, we show

that group x time DID aggregate models will be inherently heteroskedastic when there is variation in the

number of observations per group and derive the implications of this heteroskedasticity for these inference

methods.

We start with an individual-level DID model:

Yijt = αdjt + θj + γt + νjt + ǫijt (6)

where Yijt represents the outcome of individual i in group j at time t; νjt is a group x time error term

(possibly correlated over time), and ǫijt is an individual-level error term. The main feature that defines a

“group” in this setting is the assumption that errors (νjt + ǫijt) of two individuals in the same group might

be correlated, while errors of individuals in different groups are uncorrelated. For ease of exposition, we

assume that ǫijt are all uncorrelated, while allowing for unrestricted auto-correlation in νjt. However, our

correction will require weaker assumptions on the error structure, as will be presented in Section 2.3.

When we aggregate by group x time, our model becomes the same as the one in equation 1:

Yjt = αdjt + θj + γt + ηjt (7)

The important point is that errors in the group x time aggregate model (ηjt) are heteroskedastic across

j, unless M(j, t) is constant across j. More specifically:

ηjt = νjt +
1

M(j, t)

M(j,t)∑

i=1

ǫijt (8)
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where M(j, t) is the number of observations in group t at time t. Therefore, assuming for simplicity that

M(j, t) = Mj is constant across j and T is fixed:

var(Wj) = var

(
1

T − t∗

T∑

t=t∗+1

ηjt −
1

t∗

t∗∑

t=1

ηjt

)

= var


 1

T − t∗

T∑

t=t∗+1

νjt −
1

t∗

t∗∑

t=1

νjt +
1

T − t∗

T∑

t=t∗+1


 1

Mj

Mj∑

i=1

ǫijt


− 1

t∗

t∗∑

t=1


 1

Mj

Mj∑

i=1

ǫijt




 =

= A+
B

Mj

(9)

for constants A and B, regardless of the auto-correlation of νjt.
9

We are assuming so far that we have a panel of repeated cross-sections, so that ǫijt are not correlated

over time. If we had a panel and allow for the individual-level residuals to be auto-correlated, then we

would have another term that would depend on the ǫijt auto-correlation parameter divided by the number

of observations, so we would still end up with the same formula, var(Wj) = A+ B
Mj

.

This heteroskedasticity in the error terms of the aggregate model implies that, when the number of

observations in the treated groups are (large) small relative to the number of observations in the control

groups, we would (over-) underestimate the component of the variance related to the treated group when we

estimate it using information from the control groups. This implies that inference methods that do not take

that into account would tend to (under-) over-reject the null hypothesis when the number of observations of

the treated groups is (large) small.

Note that, if A > 0, this would not be a problem when M(j, t) → ∞. In this case, var(Wj) → A for all j.

In other words, when the number of observations in each group x cell is large, then the correlated part of the

error would dominate. In this case, if we assume that the group x time error νjt is i.i.d., then
var(Wj)
var(W ′

j
) → 1,

which implies that the residuals of the control groups would be a good approximation for the distribution

of the treated groups error even when the number of observations in each group is different. This is one of

the main rationales used in DL to justify the homoskedasticity assumption in the aggregate model.

However, an interesting case occurs when A = 0. In this case, even though var(Wj) → 0 for all j when

Mj → ∞, the ratios
var(Wj)
var(Wj′ )

remain constant (unless
Mj

Mj′
→ 1), which implies that the aggregate model

remains heteroskedastic even asymptotically. Therefore, CT, DL and cluster residual bootstrap would tend

to (under-) over-reject the null hypothesis when the number of observations of the treated groups are (large)

9When the number of observations per group is not constant over time, the formula will be: var(Wj) = Ã +

B̃

[(
1

T−t∗

)2 ∑T
t=t∗+1

1
M(j,t)

+
(

1
t∗

)2 ∑t∗

t=1
1

M(j,t)

]
, for constants Ã and B̃.
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small relative to the number of observations of the control groups even when there is a large number of

individual observations.

2.3 Inference with Heteroskedasticity Correction

As discussed in Section 2.1, the main challenge in estimating the variance of α̂ when there are few treated

groups is how to estimate the component related to the treated groups. The CRVE estimates this component

of the variance without using information from the control groups. While this approach has the appealing

property of allowing for unrestricted heteroskedasticity, it is unfeasible when the number of treated groups is

small. On the other extreme, other methods surpass the problem of few treated groups by using information

from the control groups. The problem with these approaches is that they require homoskeadsticity.

In this section, we derive an inference method that uses information from the control groups to estimate

the variance of the treated groups while allowing for heteroskedasticity. Our approach assumes that we

know how the heteroskedasticity is generated, which is the case when heteroskedasticity is generated by

variation in the number of observations per group. Under this assumption, we can re-scale the residuals of

the control groups using the (estimated) structure of the heteroskedasticity in a way that allows us to use

this information to estimate the distribution of the error for the treated groups. Our method only requires

information on the heteroskedasticity structure for a linear combination of the errors, which implies that

we do not have to impose strong assumptions on the structure of the serial correlation of the errors. While

we motivate our methods based on heteroskedasticity generated by variation in the number of groups, it is

important to note that our method is more general.

Our method is an extension of the cluster residual bootstrap with H0 imposed where we correct the

residuals for heteroskedasticity. In cluster residual bootstrap with H0 imposed, we estimate the DID re-

gression imposing that α = 0, generating the residuals {ŴR
j }Ni=1. If the errors are homoskedastic, then,

under the null, ŴR
j would have the same distribution across j, which implies that we can resample with

replacement B times from {ŴR
j }Ni=1, generating {ŴR

j,b}Ni=1. Then we can calculate our bootstrap estimates

as α̂b =
1
N1

∑N1

j=1 Ŵ
R
j,b− 1

N0

∑N

j=N1+1 Ŵ
R
j,b. Note that, in our setting, we do not need to work with the group

x time residuals η̂jt to construct our bootstrap estimates. Instead, we can work with a linear combination

of the residuals that takes into account any form of auto-correlation in the residuals. This is one of the key

insights of CT.

As explained in Section 2.1, the problem with cluster residual bootstrap is that it requires the residuals to

be homoskedastic. In Theorem 1 in Appendix A, we show that, if we know the variance of each random vari-
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able Wj , then we can re-scale the residuals ŴR
j,b and use a cluster residual bootstrap on the re-scaled residuals

even if the model is heteroskedastic. First, we normalize each observed Ŵj′ by Ŵnorm
j′ = ŴR

j′
1√

var(Wj′ )
.

Then we generate a bootstrap sample with the re-scaled residuals W̃j,b = Ŵnorm
j,b

√
var(Wj). As a result, this

procedure generates bootstrap estimators α̂b =
1
N1

∑N1

j=1 W̃j,b− 1
N0

∑N

j=N1+1 W̃j,b with the same distribution

as the DID estimator. The main assumption we need is that {Wj}Nj=1, which is a linear combination of the

error terms ηjt, are independent across j and have the same distribution up to the variance parameter.10

As in CT, it is important to note that we only need the variance of a linear combination of the errors. This

point is crucial for our method, because we do not need to know the serial correlation structure of the errors

ηjt.

The main problem, however, is that var(Wj) is generally unknown, so it needs to be estimated. In

Theorem 2 in Appendix A, we show that this heteroskedasticity correction works asymptotically when

N0 → ∞ if we have a consistent estimator for var(Wj). Our method assumes that we know the structure

of the heteroskedasticity. In our setting, we assume that var(Wj) is a function that depends only on Mj ,

G(Mj) = A + B
Mj

, for constants A and B. The error structure we assumed in Section 2.2 implies this

structure. However, this assumption is more general. In particular, we do not have to make any assumption

on the auto-correlation of ηjt. Given this assumption, we can run a regression of Ŵ 2
j on 1

Mj
and a constant,

and then use the predicted Ĝ(Mj) to generate
˜̂
W j,b = ŴR

j,b

√
Ĝ(Mj)

̂G(Mj,b)
.11 We show in Theorem 3 in Appendix

A that Ĝ(Mj) is a consistent estimator for var(Wj). Note that we do not need individual-level data to apply

this method, provided that we have information on the number of observations that were used to calculate

group x time averages.

Finally, a problem with cluster bootstrap methods when there are few clusters is that there will be few

possible combinations of bootstrap samples (Cameron et al. (2008), Webb (2014), and MacKinnon and Webb

(2015a)). To ameliorate this problem, we apply the idea of wild cluster bootstrap to our method. Therefore,

for each j, we sample either
˜̂
W j,b with probability 0.5 or −˜̂W j,b with probability 0.5. This procedure provides

a smoother bootstrap distribution.

Summarizing, our bootstrap procedure consists of:

10Note that this assumption is weaker than assuming that the sequences {ηj1, ..., ηjT } are independent and have the same
distribution up to a variance parameter across j.

11When the number of observations per group is not constant over time, we regress Ŵ 2
j on[(

1
T−t∗

)2 ∑T
t=t∗+1

1
M(j,t)

+
(

1
t∗

)2 ∑t∗

t=1
1

M(j,t)

]
and a constant.
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1. Calculate the DID estimate:

α̂ =
1

N1

N1∑

j=1

[
1

T − t∗

T∑

t=t∗+1

Yjt −
1

t∗

t∗∑

t=1

Yjt

]
− 1

N0

N∑

j=N1+1

[
1

T − t∗

T∑

t=t∗+1

Yjt −
1

t∗

t∗∑

t=1

Yjt

]

2. Estimate the DID model with H0 imposed (Yjt = α0djt + θj + γt + ηjt), and obtain {ŴR
j }Ni=1. Usually

the null will be α0 = 0.

3. Estimate G(M) by regressing
(
ŴR

j

)2
on a constant and 1

Mj
.

4. Use Ĝ(M) to obtain the normalized residuals Ŵnorm
j′ = ŴR

j′
1

√

Ĝ(Mj′ )

5. Do B iterations of this step. On the bth iteration:

(a) Resample with replacement N times from {Ŵnorm
j }Ni=1 to obtain

{
˜̂
W j,b

}N

i=1

, where
˜̂
W j,b =

Ŵnorm
j,b

√
Ĝ(Mj) with probability 0.5 and −Ŵnorm

j,b

√
Ĝ(Mj) with probability 0.5.

(b) Calculate α̂b =
1
N1

∑N1

j=1
˜̂
W j,b − 1

N0

∑N

j=N1+1
˜̂
W j,b.

6. Reject H0 at level a if and only if α̂ < α̂b[a/2] or α̂ > α̂b[1− a/2], where α̂b[q] denotes the qth quantile

of α̂1, ..., α̂B.

2.4 Randomization Inference and Permutation Tests

We assume in our model that treatment assignment is nonstochastic, while the stochastic elements in the

model come from ηjt, νjt, and ǫijt. This departs crucially from Randomization Inference (RI), which considers

that the only stochastic component of the model is the treatment assignment (Fisher (1935)). In RI, one

calculates the test statistic under all possible combinations of treatment assignment, and rejects the null

if the observed realization in the actual experiment is extreme enough. This idea is closely related to CT.

In fact, CT propose an alternative way to implement their method which is heuristically motivated by the

literature on permutation tests and RI. As stated in Lehmann and Romano (2008), RI provides exact test

statistics based solely on the null of no treatment effects and the fact that treatment was randomly assigned,

not depending on any assumption regarding the characteristics of outcome, covariates and residuals. Young

(2015) argues that many published papers in Economics that use standard inference methods in randomized

experiments produce invalid testing, and proposes the use of RI methods. While we agree that RI provides

a powerful inference method in randomized experiments, we believe the assumption that the only stochastic
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element is the allocation of treatment is unreasonable in many DID applications. Still, it is worth contrasting

the RI solution to our method.

Imagine first that one does not have information on the number of observations per group (or, more

generally, on the variable that generates heteroskedasticity). If one assumes that treatment was randomly

assigned, then all the hypotheses for RI would be satisfied, even if we have groups of different sizes. Small

groups would have more variable outcomes, which implies that one would reject more often when the treat-

ment is assigned to these groups (as explained in 2.2) but, unconditionally, one would still have a test with

the correct size. Intuitively, the residuals ηjt would depend on the group sizes (it would attain more extreme

values for smaller groups), but this is not a problem for RI because this method works regardless of the

characteristics of the residuals. One interesting point is that one would see more statistically significant

results when the treated group is small, which is actually the case when the estimator should be less precise.

However, this does not invalidate the test, as it would continue to (unconditionally) reject with the correct

size under the null.

If one does have information on group sizes, however, then an unconditional permutation test would not

be correct. As argued by Yates (1984), a permutation test should incorporate all the available information.

Once one knows that the treated groups are (large) small relative to the control groups, then one knows that

a permutation test that ignores this information would (under-) over-reject the null when the null is true.

Therefore, this test would no longer have the correct size. There are at least two ways of incorporating this

information in a permutation test. One would be to apply the permutation conditional on the information

on group sizes. However, if there are few control groups with the same size as the treated groups, then one

would not have many possible permutations. In the particular case where there is one treated group and

no control group of the same size, this conditional permutation test would generate a p-value interval of

[0, 1]. Another alternative would be to use a test statistic that does not depend on the size of the groups, as

suggested by Canay et al. (2014). For example, MacKinnon and Webb (2015a) suggest a permutation test

on a t-statistic, which is constructed using CRVE. Their method works when the numbers of treated and

control groups are large enough, as asymptotically the t-statistic would have the same distribution under

the null for all permutations. However, their method does not work well with very few treated groups. In

particular, their method collapses to CT when there is only one treated group. The reason is that CRVE

would assign an estimated variance for the treated group equal to zero, so there would not be much variation

in the estimated variance of the placebo estimators. The key point is that we go back to the original problem

of estimating the variance of the treated groups using CRVE with few treated groups. In contrast, our
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method provides a valid correction for heteroskedasticity even when there is only one treated group.

2.5 Alternative Estimation Methods - Synthetic Control

The Synthetic Control estimator was proposed by Abadie and Gardeazabal (2003) and Abadie et al. (2010)

to deal with situations where there is only one treated group. This method extends the traditional DID

framework by using a data-driven procedure to construct a suitable comparison group. The main idea is to

use the pre-treatment period to construct a counterfactual for the treated group given by Ŷ N
1t =

∑N0+1
j=2 ω̂jYjt,

where the weights ω̂j are estimated so that the differences between actual and estimated pre-treatment

outcomes (Y1t and Ŷ N
1t ) and covariates (X1t and X̂N

1t ) are minimized.12 In the Synthetic Control approach,

one needs to decide which variables to include to estimate the weights ω̂j . Particularly important for our

application, one can either include the Yjt for all pre-treatment t, or leave some of the pre-treatment Yjt out.

The inference method suggested in Abadie et al. (2010) is a permutation test where one estimates placebo

regressions using each of the control units as a placebo treatment. In essence, this is the same as what CT

do in the DID framework. However, one important difference relative to permutation tests on the treatment

parameter is that Abadie et al. (2010) suggest that one should look at the ratio of post-/pre-treatment

Mean Squared Predicted Error (MSPE). One of their motivations to look at this ratio is to obviate the

necessity of excluding placebo runs that did not provide a good fit prior to the treatment. For example, if

the outcome variable of one placebo group is always lower than the outcome variables of the other groups,

then the estimated counterfactual outcome for this group would always be atypically higher than the actual

outcome, both before and after the treatment. Therefore, when one divides by the pre-treatment MSPE,

this corrects for the fact that the Synthetic Control estimators for this placebo group will always be large.

We show now that, under some circumstances, this inference method corrects for heteroskedasticity. We

derive the conditions under which this is the case.

Consider the model in Abadie et al (2010),

Yjt = α1tdit + γt + βtZj + λtµj + ηSC
jt (10)

where djt is an indicator variable that equals one if j is the treated region and t > T0 (pre-intervention period),

and Zj is a vector of observed covariates for region j. The unobserved residual is ujt = λtµj + ηSC
jt . They

assume that the ηSC
jt are i.i.d cross j and t, and that ηSC

jt are mean indepedent of {Zj , µj}Nj=1. We want to

12For more details, see Abadie et al. (2010).
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show that in some cases, looking at this ratio provides proper hypothesis testing under heteroskedasticity.

For simplicity, consider that we have three periods, two before the treatment and one after the treatment.

Suppose that we construct our Synthetic Control estimator using only the outcome variable from period 1.

Under the Synthetic Control assumptions the difference Y11− Ŷ N
11 will be close to zero, since the weights used

to construct Ŷ N
11 were chosen to minimize this difference. In addition, using Abadie et al (2010) derivations,

for t ∈ {2, 3} we have that:

Y1t − Ŷ N
1t = α1tdit +

∑N0+1
j=2 w∗

j

∑T0

s=1 λt

(∑T0

n=1 λ
′

nλn

)−1

λ
′

s

(
ηSC
js − ηSC

1s

)
+

−
∑N0+1

j=2 w∗
j

(
ηSC
jt − ηSC

1t

)
(11)

Therefore, under the null that α1t = 0:

E[Y1t − Ŷ N
1t ]

2 =

N0+1∑

j=2

w∗2
j ·




T0∑

s=1

λt

(
T0∑

n=1

λ
′

nλn

)−1

λ
′

s




2

V ar[ηSC
js − ηSC

1s ] +

+

N0+1∑

j=2

w∗2
j V ar

[
ηSC
jt − ηSC

1t

]
, for t ∈ {2, 3} (12)

The key point is that, under the assumption that {ηSC
jt }Tt=1 is identically distributed across t, then

equation 12 will not depend on t. Therefore, the post-/pre-intervention RMSE ratio,
E[Y13−Ŷ N

13
]2

E[Y12−Ŷ N
12

]2
, will be

equal to one. This will also be true in the permutation when we consider group j as treated, even if

var(ηSC
1t ) 6= var(ηSC

jt ). This is why the inference method proposed by Abadie et al. (2010) corrects the

information from the control groups variation so that it becomes comparable to the variation in the treated

group.13 Note that this assumption on the error structure is stronger than the structure we need for

our method. In particular, the inference method proposed by Abadie et al. (2010) requires that residuals

are independent across time, while our method allows for unrestricted serial correlation in the residuals.

Therefore, the synthetic control inference method fails to correct for heteroskedasticity if the sample in the

pre-treatment is smaller or larger than the sample in the post-treatment, even if the ratio of number of

observations across groups remains constant.

Another case in which the synthetic control inference approach would not to correct for heteroskedasticity

is when there is only one pre-treatment period. In this case, one would have to estimate the weights using the

single pre-treatment period. One could still calculate the RMSE ratio, since Yj1 − Ŷ N
j1 will not be identical

13This argument would remain valid if we had more than one post period and/or more than one pre period not included in
the estimation of ωj .
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to zero. However, this division would not re-scale the numerator correctly. The same problem applies when

we have more than one pre-treatment period but include all pre-treatment periods to estimate the weights.

Finally, it is also important to note that the permutation graphical analyses in Abadie et al. (2010) would

still suffer from the heteroskedasticity problem we highlight in this paper.14 An easy way to fix this problem

is to divide each placebo estimate by the squared root of its pre-treatment RMSE and multiply it by the

squared root of the the pre-treatment RMSE of the treated group.

3 Monte Carlo Evidence

In this section we provide Monte Carlo evidence of different hypothesis testing methods in DID. We also

simulate the inference method for Synthetic Control models proposed by Abadie et al. (2010) in Section 3.2.

We assume that the underlying data generating process (DGP) is given by:

Yijt = νjt + ǫijt (13)

In most simulations, we estimate a DID model given by equation 6 where only j = 1 is treated and

T = 2, and then we test the null hypothesis of α = 0 using different hypothesis testing methods. We

consider variations in the DGP along three dimensions:

1. The number of groups: N0 + 1 ∈ {25, 50, 100, 400}.

2. The intra-group correlation: νjt and ǫijt are drawn from normal random variables. We hold constant

the total variance var(νjt + ǫijt) = 1, while changing ρ =
σ2

ν

σ2
ν+σ2

ǫ
∈ {.01%, 1%, 4%}.

3. The number of observations within group: we draw for each group j the number of observations per

period from a discrete uniform random variable with range [M,M ] ∈ {[50, 200], [200, 800], [50, 950]}.15

For each case, we simulated 100,000 estimates. We present rejection rate results for inference using robust

standard errors in the individual-level OLS regression, CT, DL, and for the cluster residual bootstrap with

and without our heteroskedasticity correction. We do not include in the simulations methods that allow for

unrestricted heteroskedasticity. As explained in Section 2.1, these methods do not work well when there is

only one treated group. We also do not include MacKinnon and Webb (2015a) method in the simulations

because their method collapses to CT when there is only one treated group.

14Figures 4 to 7 in Abadie et al. (2010).
15In the Monte Carlo simulations, we always consider the case M(j, t) = Mj . In the simulations with real datasets in Section

4, there is variation in M(j, t) across t.
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3.1 Inference in DID Models

3.1.1 Test Size

We present in Table 1 results from simulations using 400 groups (one treated and 399 controls) for different

numbers of observations per group and for different values of the intra-group correlations. In panel A, we

present results when the number of individual observations per group varies from 50 to 200. Column 1 shows

that average rejection rates for a test with 5% significance using robust standard errors in the individual level

DID regression. The rejection rate is slightly higher than 5% when the intra-group correlation ρ = 0.01%

(5.4%), but increases sharply for larger values of the intra-group correlation. Rejection rate is 19% when

ρ = 1% and 42% when ρ = 4%. When we use DL, CT or cluster residual bootstrap without correction,

average rejection rate is always around 5% (columns 3, 5, and 7). However, this average rejection rate hides

an important variation with respect to the number of observations in the treated group (M1).

In Figure 1.A, we show rejection rates for cluster residual bootstrap without correction conditional on

the size of the treated group.16 The rejection rate is around 14% when the treated group is in the first decile

of number of observations per group, while it is only 0.8% when the treated group is in the 10th decile. Note

also that this distortion in rejection rates is not confined to the extremes of the distribution of group sizes.

For example, the rejection rate is 3% when the treated group is in the 6th decile of number of observations

per group. We summarize this variation in rejection rates by looking at the absolute difference in rejection

rates for each decile of M1 relative to the average rejection rate. Then we average these absolute differences

across deciles. We present these results in columns 4, 6, and 8 for the methods without heteroskedasticity

correction. Conditional on the number of observations of the treated group, these methods present an average

variation in the rejection rates of 3.4-3.9 percentage points for a 5% significance test.

We present rejection rates by decile of the treated group for cluster residual bootstrap without correction

when ρ = 1% and when ρ = 4% in Figures 1.B and 1.C, respectively. As expected, this variation in rejection

rates becomes less relevant when the intra-group correlation becomes stronger. This happens because the

aggregation from individual to group x time averages induces less heteroskedasticity in the residuals when

a larger share of the residual is correlated within group. Still, even when ρ = 4% the difference in rejection

rates by number of observations in the treated group remains relevant. The rejection rate is around 6.5%

when the treated group is in the first decile of number of observations per group, while it is 4.2% when the

treated group is in the 10th decile. The average absolute difference in rejection rates for DL, CT and for the

16Results for DL and CT are similar.
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residual bootstrap without correction is around 0.7 percentage points in this scenario.

Given that inference using these methods is problematic when there is variation in the number of obser-

vations per group, we consider our residual bootstrap method with heteroskedasticity correction derived in

Section 2.3. We present rejection rates by decile of the treated group when the intra-group correlation is

0.01%, 1% and 4% in Figures 1.D to 1.F. Average rejection rates using our method are always around 5%

and, more importantly, there is no variation with respect to the number of observations in the treated group.

These results are also presented in columns 9 and 10 of Table 1. The average absolute difference in rejection

rates is only around 0.1-0.2 percentage points, regardless of the value of the intra-group correlation.

In panel B of Table 1 we present the simulation results when the number of observations per group

increases from [50, 200] to [200, 800]. We increase the number of observations per group while holding the

ratio between the number of observations in different groups constant. Note that increasing the number of

observations per group worsens the over-rejection problem of inference relying in robust OLS standard errors.

When we consider DL, CT and residual bootstrap without correction, increasing the number of observations

per group ameliorates the problem of (over-) under-rejecting the null when M1 is (small) large relative to the

number of observations in the control groups. In particular, when ρ = 4% the average absolute difference

in rejection rates across deciles of M1 is only 0.3 percentage points. However, increasing the number of

observations has no detectable effect when the intra-group correlation is 0.01%. This happens because in

this case the individual component of the residual becomes more relevant. Therefore, the ratio between the

variance of W1 and the variance of Wj becomes less sensitive with respect to the number of observations

per group. As explained in Section 2, in the extreme case with ρ = 0, heteroskedasticity would still be a

problem even when M → ∞.

In panel C of Table 1, we present the simulation results when the number of observations vary from

50 to 950. Therefore, the average number of observations remains constant, but we have more variation in

M relative to the simulations in panel B. As expected, more variation in the number of observations per

group worsens the inference problem we highlight in CT, DL and residual bootstrap without correction. On

the contrary, our residual bootstrap with heteroskedasticity correection remains accurate irrespective of the

variation in the number of observations per group.

As presented in Section 2.3, our method works asymptotically when N0 → ∞. This assumption is

important for two reasons. First, as in any other cluster bootstrap method, a small number of groups

implies a small number of possible distinct pseudo-samples. In this case, the bootstrap distribution will not

be smooth even with many bootstrap replications (Cameron et al. (2008)). In order to mitigate this problem,
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we apply the insight of wild cluster bootstrap to our method, so that we can generate more variation in the

bootstrap samples, as explained in Section 2.3. Additionally, our method requires that we estimate G(M)

using the group x time aggregate data so that we can apply our heteroskedasticity correction. If there are

only a few groups, then our estimator of G(M) will be less precise. In particular, it might be the case that

Ĝ(Mj) < 0 for some j, which implies that we would not be able to normalize the residual of observation j.

When Ĝ(Mj) < 0 for some j, we used the following rule: if Â < 0, then we used Ĝ(Mj) =
1

Mj
, as Â < 0

would suggest that there is not not a large intra-group or serial correlation problem. If B̂ < 0, then we used

Ĝ(Mj) = 1, as B̂ < 0 would suggest that there is not much heteroskedasticity. It is important to note that

asymptotically this rule would not be relevant, since G(M) > 0 for all M . We had Ĝ(Mj) > 0 for all j

in more than 99.97% of our simulations with N = 400. However, when there are fewer control groups, the

function G(M) will be estimated with less precision.

We present in Tables 2 to 4 and in Figures 2 to 4 the simulation results when the total number of groups

are 100, 50 and 25. Average rejection rates are always lower than 5.3% when the total number of groups is

100 or 50, which is reasonably close to the correct size of the test. More importantly, the average absolute

difference in rejection rates is always lower than 0.5 percentage points, suggesting that there is not much

variation in rejection rates depending on the size of the treated group. These results are confirmed in Figures

2 and 3. When we have 25 groups, then average rejection rates are slightly higher, at around 5.5%, and

we start to have more variation depending on the size of the treated group. As shown in Figure 4, there

is some distortion in rejection rates when the treated group is in the first decile of group size. Still, our

method provides reasonably accurate hypothesis testing with 25 groups. In particular, our method provides

substantial improvement relative to alternative methods when the intra-group correlation is not too strong.

3.1.2 Test Power

We have focused so far on Type I error. We saw in Section 3.1.1 that our method is efficient in providing

tests that reject the null with the correct size when the null is true. We are interested now in whether

our tests have power to detect effects when the null hypothesis is false. We run the same simulations as in

Section 3.1.1, with the difference that we now add an effect of β standard deviations for observation {ijt}

when djt = 1. Given that we know the DGP in our Monte Carlo simulations, we can calculate the variance

of α̂ given the parameters of the model, so that we can generate a t-statistic t = α̂
σα̂

. Using Neyman-

Pearson Lemma, since the errors in our DGP are normally distributed, we know that a test based on this

t-statistic is the uniformly most powerful test (UMP). We then compare the power of the bootstrap with
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our heteroskedasticity correction with the power of the UMP test.

In Figure 5, we present power results for different intra-group correlation parameters and for different

distributions of group sizes when there are 400 groups (1 treated and 399 control groups) separately when

the treated group is above and below the median of number of observations per group. The most important

feature in these graphs is that the power of our method converges to the power of the UMP test when we

have many control groups in all intra-group correlation and group size scenarios. It is also interesting to

note that the power is higher when the treated group is larger. This is reasonable, since the main component

of the variance of the DID estimator with few treated and many control groups comes from the variance of

the treated groups. The difference in power for above- and below-median treated groups vanishes when the

intra-group correlation increases. This happens because a higher intra-group correlation makes the model

less heteroskedastic. Finally, the power of the test decreases with the intra-group correlation which reflects

that, for a given number of observations per group, a higher intra-group correlation implies more volatility

in the group x time regression.

When we have 25 groups (1 treated and 24 control), then the power of our method is slightly lower than

the power of the UMP test (Figure 6). This is partially explained by fact that we need to estimate the

function G(M) and, with a finite number of control groups, this function would not be precisely estimated.

Still, the power of our method is relatively close to the power of the UMP test, especially when the intra-group

correlation is not high.

3.2 Inference in Synthetic Controls

An alternative estimation method when there is only one treated group is to use the Synthetic Control

Estimator. As explained in Section 2.5, one inference method suggested in Abadie et al. (2010) calculates

the ratio of post-/pre-treatment RMSE of the Synthetic Control Estimator and compares it to the same ratio

when we use the control groups as placebo treatments. We present in Figures 7.A to 7.C rejection rates for

the case with T = 2, with one pre- and one post-intervention periods. We consider the case with N = 50 and

M ∈ [50, 950]. The average rejection rates is 6%, which simply reflects that p-values in permutation tests

with few groups are not point identified. We are more interested in how rejection rates vary with the size

of the treated group. When ρ = 0.01%, rejection rates are higher when the treated group is small (Figure

7.A). This happens because the post-treatment RMSE used in the numerator is higher when the treated

group is smaller, due to the heteroskedasticity generated by the variation in the number of observations per

group. However, the pre-treatment RMSE used in the denominator is just an error term reflecting the fact
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that Y N
11 will not be identical to Y11, so the ratio will decrease with M1. When ρ is higher, a given variation

in the number of observations per group generates less heteroskedasticity, so this effect is weaker (Figures

7.B and 7.C). Exactly the same pattern happens in Panel B, where we simulate a case with T = 3 with 2

pre-treatment periods, but include both Yj1 and Yj2 to estimate the weights (Figures 7.D to 7.F).

In Figures 7.G to 7.I, we consider again the case with T = 3 periods, but now we use only the first

period to estimate the weights. In this case, the pre-treatment RMSE used in the denominator is higher

when the treated group is smaller, since it includes the predicted error related to the pre-treatment period

t = 2. As explained in Section 2.5, while both the numerator and the denominator decrease with M , the

ratio will be constant under the assumption that the residuals are i.i.d. across time and i.i.d across groups up

to the variance parameter (note that our heteroskeadsticity correction method allows for unrestricted auto-

correlation across time within group). This implies that the difference in rejection rates for small and large

groups is corrected using this inference method. The only qualification is that rejection rates are slightly

lower when the treated group is small. This happens because when the treated group is small, it is more

likely that it will not be possible to provide a good fit for the treated group. In this case, the pre-treatment

RMSE will be larger. Again, this problem is less relevant when ρ is larger, since this implies that variation

in M generates less heteroskedasticity.

4 Simulations with Real Datasets

The results presented in Section 3 suggest that heteroskedasticity generated by variation in group sizes

invalidates inference methods that rely on homoskedasticity such as DL, CT and cluster residual bootstrap,

while our method performs well in correcting for heteroskedasticity when there are 25 or more groups.

However, a natural question that arises is whether these results are “externally valid.” In particular, we

want to know (i) whether heteroskedasticity generated by variation in group sizes is a problem in real datasets

with large number of observations, and (ii) whether our method works in real datasets, where we do not

have control over the DGP. More specifically, our DGP implies that the real variance of Wj would have

exactly the relationship var(Wj) = A+ B
Mj

, which might not be the case in real datasets. To illustrate the

magnitude of the heteroskedasticity problem and to test the accuracy of our method, we conduct simulations

of placebo interventions using two different real datasets: the American Community Survey (ACS) and the

Current Population Survey (CPS).

We consider two different group levels for the ACS based on the geographical location of residence: Public
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Use Microdata Areas (PUMA) and states. Simulations using placebo interventions at the PUMA level would

be a good approximation to our assumption that N1 is small while N0 → ∞. Simulations using placebo

interventions at the state level would mimic situations of DID designs that are commonly used in applied

work where the treatment unit is a state, with a dataset that includes a very large number of observations

per group x time cell. We also consider the CPS for simulations with more than two periods. As shown in

Bertrand et al. (2004), this dataset exhibits an important serial correlation in the residuals, so we want to

check whether our method method is efficient in correcting for that.

We use the ACS dataset for the years 2005 to 2013, and the CPS Merged Outgoing Rotation Groups for

the years 1979 to 2014. We extract information on employment status and earnings for women between ages

25 and 50, following Bertrand et al. (2004). We present in Table 5 the distribution of number of observations

per group x cell for the PUMA-level ACS (column 1), for the state-level ACS (column 2) and for the state-

level CPS (column 3). There are, on average, 778 observations in each PUMA x time cell in the ACS. This

number, however, hides an important heterogeneity in cell sizes. The 10th percentile of PUMA x time cell

sizes is 174, while the 90th percentile is 1,418. There is also substantial heterogeneity in state x time cell

sizes in the ACS. While the average cell size is 10,138, the 10th percentile is 1,250, while the 90th percentile

is 21,099. Finally, the state x time cells in the CPS have substantially fewer observations compared to the

ACS. While the average cell size is 771, the 10th percentile is 392, while the 90th percentile is 1709.

For the ACS simulations, we consider pairs of two consecutive years and estimate placebo DID regressions

using one of the groups (PUMA or state) at a time as the treated group. Note that this differs from Bertrand

et al. (2004) simulations, as they randomly selected half of the states to be treated. In each simulation, we

test the null hypothesis that the “intervention” has no effect (α = 0) using robust standard errors, and

bootstrap with and without our heteroskedasticity correction. Since we are looking at placebo interventions,

if the inference method is correct, then we would expect to reject the null roughly 5% of the time for a test

with 5% significance level. For each pair of years, the number of PUMAs that appear in both years ranges

from 427 to 982, leading to 5,188 regressions in total. For the state-level simulations, we have 51× 8 = 408

regressions (we include Washington, D.C.). For the CPS simulations, we used 2, 4, 6 or 8 consecutive years

always using the first half of the years as pre-treatment and the other half as post-treatment. This leads to

1479 to 1785 regressions, depending on the number of years used in each regression.
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4.1 American Community Survey (ACS) Results

In Panel A of Table 6, we present results from simulations using the PUMA-level treatments using the

ACS. In column 1, we show rejection rates using OLS robust standard errors in the individual-level DID

regression. Rejection rates for a 5% significance test are 7.2% when the outcome variable is employment, and

8.1% when it is log wages. This over-rejection suggests that there is important intra-group correlation that

the robust individual-level standard error does not take into account. In column 3 of Table 6, we present

results for the bootstrap without the heteroskedasticity correction (results for DL and CT are simular). As

in the Monte Carlo simulations, average rejection rates without correction are very close to 5%. However,

there is substantial variation when we look at rejection rates conditional on the size of the treated group.

We present in column 4 of Table 6 the difference in rejection rates when the number of observations in

the treated group is above and below the median.17 For both outcome variables, the rejection rate is 8

percentage points lower when the treated group has a group size above the median. This implies a rejection

rate of almost 9% when the treated group is below the median, and slightly lower than 1% when the treated

group is above the median. In columns 5 and 6 of Table 6, we present the rejection rates using bootstrap

with our heteroskedasticity correction. For both outcomes, average rejection rate has the correct size of 5%

and, more importantly, there is virtually no difference between rejection rates when the treated group is

above or below the median. Therefore, our method was successful in correcting for the heteroskedasticity

problem even in a setting where we do not have control over the DGP.

We present in Panel B of Table 6 the results for state-level simulations. The most striking result in

this table is that rejection rates using bootstrap without correction still depend on the size of the treated

group. This happens in a dataset with, on average, more than 10,000 observations per group x time cell.

In particular, the rejection rate in the simulations with log wages as the outcome variable is zero when

the treated group is below the median, and 10% when the treated group is above the median. We present

rejection rates using bootstrap with our heteroskedasticity correction in columns 5 and 6. Average rejection

rates are around 5%, and we cannot reject that there is no difference in rejection rates above and below

the median. However, this test of our method is under-powered, since we estimate rejection rates in the

state-level models based on only 408 simulations. In order to provide more precision to estimate the rejection

rates of our method, we simulate DID placebo regressions randomly selecting 50 PUMAs in each simulation,

which generates many more placebo estimates. These results are presented in panel C of Table ACS. We

17Given that we have a limited number of simulations, we do not calculate the average absolute difference in rejection rates
across deciles, as we do in the Monte Carlo simulations. For the PUMA-level simulations, there are only approximately 500
simulations for each decile. For the state-level simulations there would be only around 40 simulations for each decile.
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also present results DID placebo regressions randomly selecting 25 PUMAs in each simulation in Panel D of

Table 6. Remarkably, our method still provides hypothesis testing with correct size regardless of the size of

the treated group when N = 50 and when N = 25.

4.2 Current Population Survey (CPS) Results

We present the simulation results using the CPS in Table 7. Panel A presents rejection rates of DID models

using 2 years of data, while Panels B, C and D present rejection rates using respectively 4, 6 and 8 years.

Inference with OLS robust standard errors on the individual-level model becomes worse when we include

more years of data in the model (column 1). This result is consistent with the findings in Bertrand et al.

(2004). The key point is that the panel structure of the CPS Merged Outgoing Rotation Groups generates

serial correlation in the errors. We present rejection rates for the residual bootstrap without correction in

columns 3 and 4. The average rejection rates are close to 5% irrespective of the number of periods, which was

expected given that this method takes serial correlation into account by looking at a linear combination of

the residuals (as in CT). However, since this linear combination of the residuals is heteroskedastic, rejection

rates based on this method vary with the size of the treated group. We present rejection rates using bootstrap

with our heteroskedasticity correction in columns 5 and 6. As in the ACS simulations, we cannot reject that

rejection rates have the correct size on average and that rejection rates do not depend on the size of the

treated group in all simulations. Therefore, our method is efficient in correcting for heteroskedasticity in a

scenario that serial correlation is important without the need to specify the structure of the serial correlation.

4.3 Power with Real Data Simulations

We saw in Sections 4.1 and 4.2 that our method provides tests with correct size in simulations with the ACS

and the CPS. We now present in Figure 8 power results from simulations with these datasets. Figure 8.A

shows power results using the ACS. When the treated group is above the median, our method is able to

detect an effect size of 0.06 log points with probability greater than 70%. When the treated group is below

median, we are only able to attain this power for effects greater than 0.1 log points. This again reflects

that the variance of α̂ is higher when the treated group is smaller. Figures 8.B to 8.E present results for

simulations using the CPS with different numbers of time periods. The power in the CPS simulations is

considerably lower than in the ACS simulations. The power to reject an effect of 0.06 log points when the

treated group is above the median ranges from 26% to 41%, depending on the number of periods used in
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the simulations. This happens because the ACS has a much larger number of observations than the CPS.

Even though we have only one treated group in all simulations, the larger number of observations in the

ACS implies that the group x time variance of the error would be smaller.18

As opposed to the power results presented in Section 3.1.2, we do not know the true variance of α̂, so it

is not possible to compare the power of our method with the power of the UMP test. Still, results from the

Monte Carlo simulations suggest that the power of our method should be very close to the power of a UMP

test.

5 Conclusion

This paper shows that usual inference methods used in DID models might not perform well in the presence

of heteroskedasticity when the number of treated groups is small. In particular, we show that, methods

designed to work when there are few treated groups tend to (under-) over-reject the null hypothesis when

the number of observations of the treated groups are (large) small relative to the number of observations of

the control groups. Using Monte Carlo simulations and simulations with real datasets, we show that this

problem is relevant even in datasets with large number of observations per group.

We then provide alternative inference methods that are valid when the number of treated groups is small

and there is heteroskedasticity. First, we derive a new inference method that corrects for heteroskedasticity

when we use information from the residuals of the control groups to estimate the variance of the treated

group. Our method provides asymptotically valid hypothesis testing when the number of control groups

goes to infinity even when there is only one treated group. In Monte Carlo simulations and simulations with

real datasets, our method provides accurate hypothesis testing with one treated and 24 control groups. We

also derive conditions under which an inference method proposed by Abadie et al. (2010) for the Synthetic

Control Estimator takes heteroskedasticity into account.

Finally, it is important to point out that our inference method for correcting for heteroskedasticity is

more general than the main case we analyzed in this paper, in which the heteroskedasticity is generated by

variation in the number of observations per group. In fact, as long as we are able to assume a structure of

the variance of a linear combination of the errors, Wj , we are able to apply our method. There are other

18For some CPS simulations, the power when the treated group is below median crosses the power when the treated group is

above median when the effect size is large. This happens because a large effect size would imply that Ŵ 2
1 (which is calculated

from a model with H0 imposed) would be large, which would bias our estimate of G(M). Note that this does not invalidate

the method, since Ĝ(M) is consistent under the null. Also, this distortion only appears when the power of the test was already
above 90%.
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applications where the variance of Wj might vary by group even when all groups have the same size. This

would happen when, for example, Yijt is a binary variable and average Yjt might be closer or farther away

from 0.5 depending on j.
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Figure 1: Rejection Rates in MC Simulations by Decile of M1, N = 400

1.A: w/o correction, ρ = 0.01% 1.B: w/o correction, ρ = 1% 1.C: w/o correction, ρ = 2%
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1.D: with correction, ρ = 0.01% 1.E: with correction, ρ = 1% 1.F: with correction, ρ = 2%
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Notes: These figures present the rejection rates conditional on the decile of the number of observation of the treated group

when N = 400 and M ∈ [50, 200]. These rejection rates are based on Monte Carlos simulations explained in Section 3. Figures

1.A to 1.C present results using the residual bootstrap without correction, while Figures 1.D to 1.F present results using the

residual bootstrap method with our heteroskedasticity correction, as explained in Section 2.3.

31



Figure 2: Rejection Rates in MC Simulations by Decile of M1, N = 100

2.A: w/o correction, ρ = 0.01% 2.B: w/o correction, ρ = 1% 2.C: w/o correction, ρ = 2%
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2.D: with correction, ρ = 0.01% 2.E: with correction, ρ = 1% 2.F: with correction, ρ = 2%
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Notes: These figures present the rejection rates conditional on the decile of the number of observation of the treated group

when N = 100 and M ∈ [50, 200]. These rejection rates are based on Monte Carlos simulations explained in Section 3. Figures

2.A to 2.C present results using the residual bootstrap without correction, while Figures 2.D to 2.F present results using the

residual bootstrap method with our heteroskedasticity correction, as explained in Section 2.3.
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Figure 3: Rejection Rates in MC Simulations by Decile of M1, N = 50

3.A: w/o correction, ρ = 0.01% 3.B: w/o correction, ρ = 1% 3.C: w/o correction, ρ = 2%
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3.D: with correction, ρ = 0.01% 3.E: with correction, ρ = 1% 3.F: with correction, ρ = 2%
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Notes: These figures present the rejection rates conditional on the decile of the number of observation of the treated group

when N = 50 and M ∈ [50, 200]. These rejection rates are based on Monte Carlos simulations explained in Section 3. Figures

3.A to 3.C present results using the residual bootstrap without correction, while Figures 3.D to 3.F present results using the

residual bootstrap method with our heteroskedasticity correction, as explained in Section 2.3.
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Figure 4: Rejection Rates in MC Simulations by Decile of M1, N = 25

4.A: w/o correction, ρ = 0.01% 4.B: w/o correction, ρ = 1% 4.C: w/o correction, ρ = 2%
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4.D: with correction, ρ = 0.01% 4.E: with correction, ρ = 1% 4.F: with correction, ρ = 2%
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Notes: These figures present the rejection rates conditional on the decile of the number of observation of the treated group

when N = 25 and M ∈ [50, 200]. These rejection rates are based on Monte Carlos simulations explained in Section 3. Figures

4.A to 4.C present results using the residual bootstrap without correction, while Figures 4.D to 4.F present results using the

residual bootstrap method with our heteroskedasticity correction, as explained in Section 2.3.
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Figure 5: Test Power by Treated Group Size - Monte Carlo Simulations with N = 400

5.A: M ∈ [50, 200], ρ = 0.01% 5.B: M ∈ [50, 200], ρ = 1% 5.C: M ∈ [50, 200], ρ = 4%
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5.D: M ∈ [50, 950], ρ = 0.01% 5.E: M ∈ [50, 950], ρ = 1% 5.F: M ∈ [50, 950], ρ = 4%

0
.1

.2
.3

.4
.5

.6
.7

.8
.9

1

0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
Effect Size

Above the median Below the median

Bootstrap with correction Bootstrap with correction

t-test (true variance) t-test (true variance)

0
.1

.2
.3

.4
.5

.6
.7

.8
.9

1

0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
Effect Size

Above the median Below the median

Bootstrap with correction Bootstrap with correction

t-test (true variance) t-test (true variance)

0
.1

.2
.3

.4
.5

.6
.7

.8
.9

1

0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
Effect Size

Above the median Below the median

Bootstrap with correction Bootstrap with correction

t-test (true variance) t-test (true variance)

Notes: These figures present the power of the bootstrap with heteroskedasticity correction as a function of the effect size

separately when the treated group is above and below the median of group size. The standard deviation of the individual level

observation is equal to one across the different scenarios. Therefore, the effect size is in standard deviation terms. Results are

based on simulations with total number groups N = 400.
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Figure 6: Test Power by Treated Group Size - Monte Carlo Simulations with N = 25

6.A: M ∈ [50, 200], ρ = 0.01% 6.B: M ∈ [50, 200], ρ = 1% 6.C: M ∈ [50, 200], ρ = 4%
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6.D: M ∈ [50, 950], ρ = 0.01% 6.E: M ∈ [50, 950], ρ = 1% 6.F: M ∈ [50, 950], ρ = 4%
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Notes: These figures present the power of the bootstrap with heteroskedasticity correction as a function of the effect size

separately when the treated group is above and below the median of group size. The standard deviation of the individual level

observation is equal to one across the different scenarios. Therefore, the effect size is in standard deviation terms. Results are

based on simulations with total number groups N = 25.
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Figure 7: Inference with Synthetic Control

7.A: Just-id, T = 2, ρ = 0.01% 7.B: Just-id, T = 2, ρ = 1% 7.C: Just-id, T = 2, ρ = 4%
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7.D: Just-id, T = 3, ρ = 0.01% 7.E: Just-id, T = 3, ρ = 1% 7.F: Just-id, T = 3, ρ = 4%
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7.G: Over-id, T = 3, ρ = 0.01% 7.H: Over-id, T = 3, ρ = 1% 7.I: Over-id, T = 3, ρ = 4%
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Notes: These figures present rejection rates from Monte Carlo simulations using the inference proposed by Abadie et al.

(2010) for the Synthetic Control Estimation for different intra-group correlation parameters (ρ). In all simulations, only one

group is treated, N = 50%, and M ∈ {50, 950}. Figures 7.A to 7.C report results for a scenario with 2 periods, one pre- and

one post-treatment. We estimate the weights using Yj1 and Mj . Figures 7.D to 7.F report results for a scenario with 3 periods,

two pre- and one post-treatment. We estimate the weights using Yj1, Yj2 and Mj . Figures 7.G to 7.I also report results for a

scenario with 3 periods, but using only Yj1 and Mj to estimate the weights.
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Figure 8: Test Power by Treated Group Size - Simulations with Real Dataset

8.A: ACS 8.B: CPS with T = 2 8.C: CPS with T = 4
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8.D: CPS with T = 6 8.E: CPS with T = 8
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Notes: These figures present the power of the bootstrap with heteroskedasticity correction for simulations using real datasets.

Results are presented separately when the treated group is above and below the median of group size. The outcome variable

is log wages, and effect sizes are measured in log points. Figure 8.A presents results using the ACS, while Figures 8.B to 8.E

present results using the CPS with varying number of periods.
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Table 1: Rejection Rates in MC Simulations with N0 + 1 = 400

Inference Method
Donald Conley Bootstrap Bootstrap

Robust OLS and Lang and Taber w/o correction with correction
Absolute Absolute Absolute Absolute Absolute

ρ Mean Difference Mean Difference Mean Difference Mean Difference Mean Difference
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Panel A: M ∈ [50, 200]
0.01% 0.054 0.002 0.053 0.039 0.050 0.036 0.049 0.034 0.051 0.001

1% 0.192 0.036 0.050 0.019 0.050 0.018 0.049 0.017 0.050 0.002

4% 0.420 0.059 0.049 0.007 0.050 0.006 0.050 0.007 0.050 0.002

Panel B: M ∈ [200, 800]
0.01% 0.057 0.002 0.053 0.036 0.051 0.034 0.049 0.034 0.049 0.002

1% 0.415 0.065 0.051 0.008 0.049 0.006 0.050 0.008 0.050 0.002

4% 0.661 0.051 0.049 0.004 0.051 0.003 0.050 0.003 0.050 0.002

Panel C: M ∈ [50, 950]
0.01% 0.057 0.003 0.054 0.061 0.051 0.057 0.050 0.057 0.051 0.002

1% 0.396 0.098 0.051 0.019 0.051 0.019 0.049 0.018 0.050 0.001

4% 0.637 0.093 0.051 0.006 0.049 0.006 0.050 0.006 0.049 0.002
Note: This table presents results from Monte Carlo simulations with 400 groups, as explained in Section 3. In all simulations, only one group
is treated. Each line presents simulation for different values of intra-group correlation, while each panel presents results for different numbers of
observations per group. We consider 5 inference methods: hypothesis testing using robust standard errors from the individual level regression, DL,
CT, cluster residual bootstrap without correction, and cluster residual bootstrap with our heteroskedasticity correction. For the bootstrap methods,
we imposed H0, and we used the wild bootstrap idea of randomizing whether we multiply the residuals by 1 or -1. For each inference method,
we report the average rejection rate for a 5% significance level test. We also report a measure of how rejection rates depend on the number of
observations in the treated group, which we call “absolute difference”. To construct this measure, we calculate the absolute difference in rejection
rates for each decile of M1 relative to the average rejection rate, and then we average these absolute differences across deciles. We run 100,000
simulations for each M × ρ×N0 scenario. The standard error for the average rejection rates is around 0.07 percentage points, while the standard
error for the absolute difference is around 0.04-0.07 percentage points.
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Table 2: Rejection Rates in MC Simulations with N0 + 1 = 100

Inference Method
Donald Conley Bootstrap Bootstrap

Robust OLS and Lang and Taber w/o correction with correction
Absolute Absolute Absolute Absolute Absolute

ρ Mean Difference Mean Difference Mean Difference Mean Difference Mean Difference
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Panel A: M ∈ [50, 200]
0.01% 0.054 0.003 0.054 0.036 0.049 0.032 0.051 0.034 0.052 0.003

1% 0.193 0.032 0.052 0.017 0.049 0.018 0.052 0.017 0.052 0.002

4% 0.418 0.062 0.052 0.008 0.047 0.007 0.051 0.007 0.051 0.002

Panel B: M ∈ [200, 800]
0.01% 0.057 0.001 0.052 0.037 0.049 0.032 0.050 0.033 0.050 0.002

1% 0.415 0.058 0.050 0.008 0.049 0.008 0.052 0.007 0.052 0.002

4% 0.658 0.049 0.050 0.004 0.048 0.003 0.052 0.002 0.053 0.002

Panel C: M ∈ [50, 950]
0.01% 0.057 0.002 0.057 0.060 0.049 0.053 0.050 0.054 0.052 0.003

1% 0.400 0.095 0.050 0.019 0.049 0.018 0.050 0.017 0.051 0.002

4% 0.636 0.089 0.049 0.006 0.048 0.005 0.052 0.006 0.051 0.001
Note: This table presents results from Monte Carlo simulations with 100 groups, as explained in Section 3. In all simulations, only one group
is treated. Each line presents simulation for different values of intra-group correlation, while each panel presents results for different numbers of
observations per group. We consider 5 inference methods: hypothesis testing using robust standard errors from the individual level regression, DL,
CT, cluster residual bootstrap without correction, and cluster residual bootstrap with our heteroskedasticity correction. For the bootstrap methods,
we imposed H0, and we used the wild bootstrap idea of randomizing whether we multiply the residuals by 1 or -1. For each inference method,
we report the average rejection rate for a 5% significance level test. We also report a measure of how rejection rates depend on the number of
observations in the treated group, which we call “absolute difference”. To construct this measure, we calculate the absolute difference in rejection
rates for each decile of M1 relative to the average rejection rate, and then we average these absolute differences across deciles. We run 100,000
simulations for each M × ρ×N0 scenario. The standard error for the average rejection rates is around 0.07 percentage points, while the standard
error for the absolute difference is around 0.04-0.07 percentage points.
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Table 3: Rejection Rates in MC Simulations with N0 + 1 = 50

Inference Method
Donald Conley Bootstrap Bootstrap

Robust OLS and Lang and Taber w/o correction with correction
Absolute Absolute Absolute Absolute Absolute

ρ Mean Difference Mean Difference Mean Difference Mean Difference Mean Difference
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Panel A: M ∈ [50, 200]
0.01% 0.052 0.003 0.054 0.035 0.046 0.030 0.052 0.033 0.053 0.003

1% 0.192 0.037 0.051 0.017 0.046 0.014 0.051 0.016 0.053 0.003

4% 0.420 0.057 0.050 0.006 0.045 0.005 0.052 0.006 0.053 0.003

Panel B: M ∈ [200, 800]
0.01% 0.057 0.002 0.053 0.034 0.047 0.029 0.051 0.031 0.052 0.003

1% 0.415 0.060 0.049 0.007 0.047 0.006 0.052 0.006 0.052 0.003

4% 0.663 0.047 0.049 0.002 0.047 0.002 0.051 0.002 0.052 0.003

Panel C: M ∈ [50, 950]
0.01% 0.056 0.002 0.057 0.060 0.046 0.048 0.050 0.052 0.052 0.004

1% 0.398 0.099 0.051 0.019 0.047 0.017 0.051 0.015 0.051 0.004

4% 0.635 0.089 0.050 0.006 0.046 0.005 0.051 0.003 0.051 0.005
Note: This table presents results from Monte Carlo simulations with 50 groups, as explained in Section 3. In all simulations, only one group is
treated. Each line presents simulation for different values of intra-group correlation, while each panel presents results for different numbers of
observations per group. We consider 5 inference methods: hypothesis testing using robust standard errors from the individual level regression, DL,
CT, cluster residual bootstrap without correction, and cluster residual bootstrap with our heteroskedasticity correction. For the bootstrap methods,
we imposed H0, and we used the wild bootstrap idea of randomizing whether we multiply the residuals by 1 or -1. For each inference method,
we report the average rejection rate for a 5% significance level test. We also report a measure of how rejection rates depend on the number of
observations in the treated group, which we call “absolute difference”. To construct this measure, we calculate the absolute difference in rejection
rates for each decile of M1 relative to the average rejection rate, and then we average these absolute differences across deciles. We run 100,000
simulations for each M × ρ×N0 scenario. The standard error for the average rejection rates is around 0.07 percentage points, while the standard
error for the absolute difference is around 0.04-0.07 percentage points.
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Table 4: Rejection Rates in MC Simulations with N0 + 1 = 25

Inference Method
Donald Conley Bootstrap Bootstrap

Robust OLS and Lang and Taber w/o correction with correction
Absolute Absolute Absolute Absolute Absolute

ρ Mean Difference Mean Difference Mean Difference Mean Difference Mean Difference
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Panel A: M ∈ [50, 200]
0.01% 0.052 0.002 0.053 0.033 0.078 0.038 0.053 0.032 0.055 0.004

1% 0.193 0.032 0.051 0.016 0.079 0.020 0.053 0.015 0.055 0.005

4% 0.424 0.055 0.050 0.006 0.079 0.008 0.054 0.005 0.056 0.006

Panel B: M ∈ [200, 800]
0.01% 0.056 0.002 0.053 0.031 0.077 0.037 0.051 0.029 0.056 0.006

1% 0.417 0.060 0.049 0.009 0.078 0.008 0.054 0.005 0.056 0.006

4% 0.664 0.048 0.050 0.005 0.079 0.003 0.055 0.001 0.054 0.007

Panel C: M ∈ [50, 950]
0.01% 0.057 0.003 0.056 0.055 0.076 0.059 0.047 0.045 0.056 0.004

1% 0.403 0.091 0.052 0.015 0.077 0.019 0.052 0.015 0.056 0.007

4% 0.643 0.084 0.052 0.004 0.080 0.006 0.054 0.005 0.055 0.007
Note: This table presents results from Monte Carlo simulations with 25 groups, as explained in Section 3. In all simulations, only one group is
treated. Each line presents simulation for different values of intra-group correlation, while each panel presents results for different numbers of
observations per group. We consider 5 inference methods: hypothesis testing using robust standard errors from the individual level regression, DL,
CT, cluster residual bootstrap without correction, and cluster residual bootstrap with our heteroskedasticity correction. For the bootstrap methods,
we imposed H0, and we used the wild bootstrap idea of randomizing whether we multiply the residuals by 1 or -1. For each inference method,
we report the average rejection rate for a 5% significance level test. We also report a measure of how rejection rates depend on the number of
observations in the treated group, which we call “absolute difference”. To construct this measure, we calculate the absolute difference in rejection
rates for each decile of M1 relative to the average rejection rate, and then we average these absolute differences across deciles. We run 100,000
simulations for each M × ρ×N0 scenario. The standard error for the average rejection rates is around 0.07 percentage points, while the standard
error for the absolute difference is around 0.04-0.07 percentage points.
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Table 5: Number of Observations per Group x Time cell

ACS CPS
PUMA State State
(1) (2) (3)

Average 778.12 10,137.79 771.23

1% 129 883 119
5% 157 1,037 355
10% 174 1,250 392
25% 218 2,527 464
50% 338 7,205 546
75% 703 11,509 775
90% 1,418 21,099 1,709
95% 2,469 32,961 1,937
99% 9,555 62,752 3,297

Note: This Table presents the distribution of
number of observations per groups in the sim-
ulations with real datasets (Section 4). Col-
umn 1 presents information for PUMA-level
ACS simulations, column 2 presents information
for state-level ACS simulations, while column 3
presents information for state-level CPS simu-
lations.
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Table 6: Simulations with the ACS Survey

Inference Method
Bootstrap Bootstrap

Robust OLS w/o correction with correction
Outcome Mean Diff Mean Diff Mean Diff
Variable (1) (2) (3) (4) (5) (6)

Panel A: ACS with PUMA-level interventions
Employment 0.072*** 0.010 0.048 -0.080*** 0.050 0.000

(0.004) (0.008) (0.003) (0.006) (0.003) (0.006)

Log(wages) 0.081*** 0.000 0.048 -0.080*** 0.050 0.005
(0.004) (0.008) (0.003) (0.006) (0.003) (0.006)

Panel B: ACS with state-level interventions
Employment 0.064 0.003 0.044 -0.087*** 0.051 -0.013

(0.011) (0.021) (0.010) (0.020) (0.011) (0.022)

Log(wages) 0.081** -0.021 0.051 -0.101*** 0.054 -0.027
(0.015) (0.031) (0.011) (0.021) (0.011) (0.022)

Panel C: ACS with PUMA-level interventions, N = 50
Employment 0.072*** 0.001 0.043*** -0.069*** 0.051 -0.004

(0.004) (0.007) (0.002) (0.005) (0.003) (0.005)

Log(wages) 0.084*** -0.001 0.045** -0.070*** 0.051 0.001
(0.004) (0.008) (0.002) (0.005) (0.003) (0.005)

Panel D: ACS with PUMA-level interventions, N = 25
Employment 0.069*** 0.009 0.040*** -0.057*** 0.050 -0.001

(0.004) (0.007) (0.002) (0.004) (0.003) (0.005)

Log(wages) 0.082*** 0.000 0.039*** -0.059*** 0.050 -0.004
(0.004) (0.008) (0.002) (0.004) (0.003) (0.005)

Note: This table presents rejection rates for the simulations using ACS data. For each pair of
consecutive years, we run a DID regression using one group as treated and the other groups as a
control. The outcome variable is employment status or log(wages) for women aged between 25 and
40. Then we test the hypothesis that the effect of the “intervention” is equal to zero using different
inference methods: hypothesis testing using robust standard errors from individual level DID model,
bootstrap without and bootstrap with our heteroskedasticity correction. Panel A reports results
when groups are defined as PUMAs, while Panel B reports results when groups are defined as states.
In Panels C and D we present results with PUMA-level treatments using 50 and 25 randomly selected
PUMAs. We report average rejection rate and the difference in rejection rates when the size of the
treated group is above or below the median. Given that we have a limited number of simulations,
we do not calculate the average absolute difference in rejection rates across deciles, as we do in the
Monte Carlo simulations. We present in brackets standard errors for the rejection rates. For Panels
C and D, standard errors are clustered at the treated group x year level. For average rejection rates
(columns 1, 3, and 5), * means that we reject at 10% that the average rejection rate is equal to 5%,
while for the differences in rejection rates (columns 2, 4, and 6) * means that we reject at 10% that
rejection rate for M1 above and below the median are equal. ** means that we reject at 5%, while
*** means that we reject at 1%.
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Table 7: Simulations with the CPS Survey

Inference Method
Bootstrap Bootstrap

Robust OLS w/o correction with correction
Outcome Mean Diff Mean Diff Mean Diff
Variable (1) (2) (3) (4) (5) (6)

Panel A: 2 years
Employment 0.047 -0.003 0.046 -0.041*** 0.050 0.002

(0.005) (0.010) (0.005) (0.010) (0.005) (0.010)

Log(wages) 0.066*** -0.011 0.045 -0.047*** 0.051 0.003
(0.006) (0.012) (0.005) (0.010) (0.005) (0.010)

Panel B: 4 years
Employment 0.062** 0.016 0.043 -0.041*** 0.053 -0.016

(0.006) (0.012) (0.005) (0.010) (0.005) (0.011)

Log(wages) 0.102*** 0.024 0.048 -0.042*** 0.053 0.008
(0.007) (0.016) (0.005) (0.010) (0.005) (0.011)

Panel C: 6 years
Employment 0.087*** 0.001 0.052 -0.050*** 0.052 -0.016

(0.007) (0.015) (0.006) (0.011) (0.006) (0.011)

Log(wages) 0.143*** 0.059*** 0.050 -0.045*** 0.051 -0.008
(0.009) (0.019) (0.005) (0.011) (0.006) (0.011)

Panel C: 8 years
Employment 0.135*** 0.044** 0.043 -0.040*** 0.045 -0.010

(0.009) (0.020) (0.005) (0.010) (0.005) (0.011)

Log(wages) 0.207*** 0.043* 0.045 -0.029*** 0.049 0.005
(0.011) (0.023) (0.005) (0.011) (0.006) (0.011)

Note: This table presents rejection rates for the simulations using CPS data. In each simulation, we
run a DID regression using one group as treated and the other groups as a control. The outcome
variable is employment status or log(wages) for women aged between 25 and 40. Then we test the
hypothesis that the effect of the “intervention” is equal to zero using different inference methods:
hypothesis testing using robust standard errors from individual level DID model, bootstrap without
and bootstrap with our heteroskedasticity correction. Panel A reports results of DID models using
2 consecutive years of data, while Panels B and C report results of DID models using respectively
4 and 6 consecutive years of data. We report average rejection rate and the difference in rejection
rates when the size of the treated group is above or below the median. Given that we have a limited
number of simulations, we do not calculate the average absolute difference in rejection rates across
deciles, as we do in the Monte Carlo simulations. We present in brackets standard errors for the
rejection rates. For Panels C and D, standard errors are clustered at the treated group x year level.
For average rejection rates (columns 1, 3, and 5), * means that we reject at 10% that the average
rejection rate is equal to 5%, while for the differences in rejection rates (columns 2, 4, and 6) * means
that we reject at 10% that rejection rate for M1 above and below the median are equal. ** means
that we reject at 5%, while *** means that we reject at 1%.
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Supplemental Appendix: Inference in Differences-in-Differences with

Different Group Sizes

This supplemental appendix contains the main theorems and proofs of the paper ”Inference in Differences-in-Differences

with Different Group Sizes”. We use the same notation as in the main paper. Let M (j, t) be the number of observations in

group j, time t.

The aggregated model is:

yjt = αdjt + θj + γt + ηjt (14)

We assume T periods of time (t = 1, .., N) and N1 treated groups and N0 control groups in such a way that N0 +N1 = N.

Consider the restricted model in which we impose the null hypothesis, H0 : α = α0,

yjt = α0djt + θj + γt + ηjt

We will work with a linear combination of the residuals of this regression,

ŴR
j =

1

T − t∗

T∑

t=t∗+1

η̂Rjt −
1

t∗

t∗∑

t=1

η̂Rjt

We can calculate the DID coefficient α̂ based on a linear combination of ŴR
j . Define the operator▽Yj = 1

T−t∗

∑T
t=t∗+1 Yjt−

1
t∗

∑t∗

t=1 Yjt. We can write α̂ as:

α̂ =
1

N1

N1∑

j=1

▽Y1 −
1

N0

N∑

j=N1+1

▽Yj

Since ŷjt = α0djt+θ̂j+γ̂t, then▽Ŷ R
j = α0+

1
T−t∗

∑T
t=t∗+1 γ̂t−

1
t∗

∑t∗

t=1 γ̂t for j = 1, ..., N1 and▽Ŷ R
j = 1

T−t∗

∑T
t=t∗+1 γ̂t−

1
t∗

∑t∗

t=1 γ̂t for j = N1 + 1, ..., N .

Therefore:

α̂− α0 =
1

N1

N1∑

j=1

ŴR
j −

1

N0

N∑

j=N1+1

ŴR
j

We define Wj as a linear combination of the error terms,

WR
j =

1

T − t∗

T∑

t=t∗+1

ηRjt −
1

t∗

t∗∑

t=1

ηRjt

We impose assumptions about the behavior of Wj . We assume that T is fixed.

Assumption 1 (Independence and Distribution): W ′
js are independent across j and the distribution of Wj only

differs among the j by the variance.

Assumption 219 (Exogeneity and Variance-Covariance Structure):

E
[
WR

j

]
= 0

19This assumption can be derived from assumptions about ηjt or about the unobservable terms in the individual-level model.
However, this assumption is general, allowing serial correlation of the ηjt.
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V ar
[
WR

j

]
= A+ B̃


 1

(T − t∗)2

T∑

t=t∗+1

1

M (j, t)
+

1

(t∗)2

t∗∑

t=1

1

M (j, t)




= A+ B̃ · h (M (j, t))

where A and B̃ are constants, and h (M (j, t)) ≡ 1
(T−t∗)2

∑T
t=t∗+1

1
M(j,t)

+ 1
(t∗)2

∑t∗

t=1
1

M(j,t)
. For simplicity, in the paper, we

work with the case in which M (j, t) = Mj . In this case, the variance simplifies to

V ar
[
WR

j

]
= A+

B

Mj

for a constant B.

Under assumptions 1 and 2, the variance of this DID estimator is

V ar [α̂− α0] = A

(
N1 +N0

N1N0

)
+ B̃


 1

N2
1

N1∑

j=1

h (M (j, t)) +
1

N2
0

N∑

j=N1+1

h (M (j, t))


 (15)

We assume that the number of individuals in each group is fixed and does not vary with N0. As N0 → ∞,

α̂− α0 →
1

N1

N1∑

j=1

ŴR
j

V ar [α̂] →
A

N1
+ B̃


 1

N2
1

N1∑

j=1

h (M (j, t))




If we know the variance of WR
j , we could re-scale the residuals ŴR

j and use a cluster residual bootstrap on the re-scaled

residuals even if the model is heteroskedastic. The idea is to normalize ŴR
j such that Ŵnorm

j = ŴR
j ·

√
1

V ar
[

WR
j

] , and then

generate a bootstrap sample using the re-scaled residuals
˜̂
W j,b = Ŵnorm

j,b
·

√
V ar

[
WR

j

]
, and use the residuals

˜̂
W j,b to estimate

α̂b − α0,

α̂b − α0 =
1

N1

N1∑

j=1

˜̂
W j,b −

1

N0

N∑

j=N1+1

˜̂
W j,b

where b indicates each re-sampling, b = 1, ...,B. In each re-sampling, we calculate α̂b. We reject H0 at level α if and only

if α̂ − α0 < (α̂b − α0) [
α
2
] or α̂ − α0 > (α̂b − α0) [1 − α

2
], where (α̂b − α0) [q] denotes the qth quantile of the distribution of

{(α̂1 − α0) , ..., (α̂B − α0)}.

Theorem 1 Define d∗
1−α

2

and d∗α
2

as the (1− α
2
)th and a

2
th quantile of the empirical distribution of (α̂b − α0), b = 1, ...,B.

Assuming that we know the variance of WR
j , under assumptions 1 and 2,

Pr
[
d∗1−α

2

≤ α̂− α0 ≤ d∗α
2

∣∣∣α0

]
→p 1− α

Proof. We divide this proof in two parts. Define Γj (w) ≡ Pr
[∑N1

j=1 W
R
j < w

]
and Γ̂j,b (w) = Pr

[∑N1

j=1 Ŵ
R
j,b

< w
]
. First we

show that Γ̂j,b (w) converges in probability to Γj (w) uniformly on any compact subset of the support of W , as N0 → ∞ and

B → ∞. Then, we show that Pr
[
d∗
1−α

2

≤ α̂− α0 ≤ d∗α
2

∣∣∣α0

]
→p 1− α.

Since under our assumptions, W
′

j s are independent across j and have the same distribution except by the variance, we can
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write

Γj (w) = Pr




N1∑

j=1

WR
j < w




=

∫
...

∫
1





N1∑

j=1

WR
j < w



 dF1

(
WR

1

)
· dF2

(
WR

2

)
· ... · dFN1

(
WR

N1

)

and

Γ̂j,b (w) = Pr




N1∑

j=1

ŴR
j,b < wj,b




=

∫
...

∫
1





N1∑

j=1

ŴR
j < w



 dF̂1

(
WR

1

)
· dF̂2

(
WR

2

)
· ... · dF̂N1

(
WR

N1

)

In order to estimate this distribution, we use F̂j (.) which is the empirical CDF obtained using the re-scaled residuals W̃j,b =

ŴR
j,b

·

√
V ar

[

WR
j

]

V ar[WR
b ]

,

F̂j,b

(
wj,b

)
=

1

B

B∑

b=1

1{W̃j,b < wj,b}

=
1

B

B∑

b=1

1




ŴR

j,b ·

√√√√√
V ar

[
WR

j

]

V ar
[
WR

j,b

] < wj ·

√√√√√
V ar

[
WR

j

]

V ar
[
WR

j,b

]





where wj,b = wj · cjb, with cjb =

√
V ar

[

WR
j

]

V ar
[

WR
j,b

] .In this case, cjb is a constant.

Define F̂ ∗
j,b

(
wj,bj

)
= 1

B

∑B
b=1 1{W

R
j,b

< wj,b}. Note that

sup
wj∈Θ

∣∣∣F̂j,b

(
wj,b

)
− Γj (w)

∣∣∣ = sup
wj∈Θ

∣∣∣F̂j,b

(
wj,b

)
− F̂ ∗

j,b

(
wj,b

)
+ F̂ ∗

j,b

(
wj,b

)
− Fj (w)

∣∣∣

≤ sup
wj∈Θ

∣∣∣F̂j,b

(
wj,b

)
− F̂ ∗

j,b

(
wj,b

)∣∣∣+ sup
wj∈Θ

∣∣∣F̂ ∗
j,b

(
wj,b

)
− Fj (w)

∣∣∣

Define ιT as a vector Tx1 of 1′s and ιN as a vector Tx1 of 1′s. and note that,

η̂Rjt = yjt − θ̂j − γ̂t

= ˜̃yjt = ˜̃ηjt

where ˜̃yjt = (1− PT )(1− PN )yjt and ˜̃ηjt = (1− PT )(1− PN )ηjt, where PT = ιT
(
ι′
T
ιT

)−1
ι
′

T
and PN = ιN

(
ι′
N
ιN

)−1
ι
′

N
. As

N0 → ∞, ˜̃ηjt → (1− PT )ηjt, and we can show that

ŴR
j →

1

T − t∗

T∑

t=t∗+1

ηjt −
1

t∗

t∗∑

t=1

ηjt
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sup
wj∈Θ

∣∣∣F̂j,b

(
wj,b

)
− F̂ ∗

j,b

(
wj,b

)∣∣∣ = sup
wj∈Θ

∣∣∣∣∣
1

B

B∑

b=1

(
1{ŴR

j,b < wj,b} − 1{WR
j,b < wj,b}

)∣∣∣∣∣

≤
1

B

B∑

b=1

sup
wj∈Θ

∣∣∣1{ŴR
j,b < wj,b} − 1{WR

j,b < wj,b}
∣∣∣

= o (1)

Now, we work with the second term.

sup
wj∈Θ

∣∣∣F̂ ∗
j,b

(
wj,b

)
− Γj (w)

∣∣∣ ≤ sup
wj∈Θ

∣∣∣F̂ ∗
j,b

(
wj,b

)
− Fj,b

(
wj,b

)∣∣∣+

sup
wj∈Θ

∣∣Fj,b

(
wj,b

)
− Fj (w)

∣∣

where Fj,b

(
wj,b

)
is the cumulative distribution function of Wj,b. Note that Wj,b are independent across j, have the same

distribution and the same variance that equals de variance of Wj . By the Glivenko-Cantelli Theorem,

sup
wj∈Θ

∣∣∣F̂ ∗
j,b

(
wj,b

)
− Fj,b

(
wj,b

)∣∣∣ = op (1)

In addition,

Fj,b

(
wj,b

)
= Pr

[
Wj,b ≤ wj,b

]

= Pr
[
Wj · cjb ≤ wj · cjb

]

= Fj (wj)

Note that

sup
wj∈Θ

∣∣∣Γj (w)− Γ̂j,b (w)
∣∣∣ ≤ sup

wj∈Θ

∣∣∣Γj (w)− Γ̂j (w)
∣∣∣

+ sup
wj∈Θ

∣∣∣Γ̂j (w)− Γ̂j,b (w)
∣∣∣

where Γ̂j (w) =
∫
...

∫
1
{∑N1

j=1 W
R
j < w

}
dF̂1

(
WR

1

)
· dF̂2

(
WR

2

)
· ... · dF̂N1

(
WR

N1

)
. By the results above,

sup
wj∈Θ

∣∣∣Γj (w)− Γ̂j (w)
∣∣∣ = o(1)

sup
wj∈Θ

∣∣∣Γ̂j (w)− Γ̂j,b (w)
∣∣∣ = op (1)

Now, we show that Pr
[
d∗
1−α

2

≤ α̂− α0 ≤ d∗α
2

∣∣∣α0

]
→p 1− α. As N0 → ∞,

α̂− α0 →
1

N1

N1∑

j=1

ŴR
j and α̂b − α0 =

1

N1

N1∑

j=1

W̃j,b
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Using the results above, we can show that

Pr
[
d∗1−α

2

≤ α̂− α0 ≤ d∗α
2

∣∣∣α0

]
= Pr

[
d∗1−α

2

≤ α̂b − α0 ≤ d∗α
2

∣∣∣α0

]
+ op (1)

= 1− α

The approach proposed to estimate W̃j,b is unfeasible since we do not the variances of Wj ’s. Theorem 2 shows that if

we have a consistent estimator of

√
V ar

[

WR
j

]

V ar
[

WR
j,b

] , we can construct
̂̃
Wjb

= ŴR
jb

·

√√√√
̂

V ar
[

WR
j

]

̂
V ar

[

WR
j,b

]

, and use the approach proposed

above.

Theorem 2 Define d∗
1−α

2

and d∗α
2

as the (1− α
2
)th and a

2
th quantile of the empirical distribution of (α̂b − α0), b = 1, ...,B.

If for each j

√√√√
̂

V ar
[

WR
j

]

̂
V ar

[

WR
j,b

]

is a consistent estimator for

√
V ar

[

WR
j

]

V ar
[

WR
j,b

] , under assumptions 1 and 2,

Pr
[
d∗1−α

2

≤ α̂− α0 ≤ d∗α
2

∣∣∣α0

]
→p 1− α

Proof. Now, we do not know the variance of 6 Wj .In this case, we define F̂j (ŵj) =
1
B

∑B
b=1 1{

˜̂
W j,b < wj}

sup
wj∈Θ

∣∣∣F̂j (wj)− Γj (w)
∣∣∣ = sup

wj∈Θ

∣∣∣F̂j (ŵj)− F̂j (wj) + F̂j (wj)− F̂ ∗
j (wj) + F̂ ∗

j (wj)− Γj (w)
∣∣∣

≤ sup
wj∈Θ

∣∣∣F̂j (ŵj)− F̂j (wj)
∣∣∣+ sup

wj∈Θ

∣∣∣F̂ ∗
j (ŵj)− F̂ ∗

j (wj)
∣∣∣+ sup

wj∈Θ

∣∣∣F̂ ∗
j (wj)− Γj (w)

∣∣∣

We show in the previous theorem that supwj∈Θ

∣∣∣F̂ ∗
j (ŵj)− F̂ ∗

j (wj)
∣∣∣ = o(1) and supwj∈Θ

∣∣∣F̂ ∗
j (wj)− Γj (w)

∣∣∣ = op (1). We only

need to work with the first term,

sup
wj∈Θ

∣∣∣F̂j (ŵj)− F̂j (wj)
∣∣∣ = sup

wj∈Θ

∣∣∣∣∣
1

B

B∑

b=1

1{WR
j,b < wj · ĉjb} −

1

B

B∑

b=1

1{WR
j,b < wj · cjb}

∣∣∣∣∣

≤
1

B

B∑

b=1

sup
wj∈Θ

∣∣∣1{WR
j,b < wj · ĉjb} − 1{WR

j,b < wj · cjb}
∣∣∣

→p 0 since ĉjb →p cjb .

We proposed a consistent estimator of

√√√√
̂

V ar
[

WR
j

]

̂
V ar

[

WR
j,b

]

based on an ordinary least squares estimator. We estimate a linear

regression that relates
(
ŴR

j

)2
with 1

Mj
and constant. We obtain Â as the least squares coefficient associated with the constant,

and B̂ as the coefficient associated with 1
Mj

. We use A and B to construct a consistent estimator for the V ar[WR
j ],

̂
V ar

[
WR

j

]
= Â+

B̂

Mj

We use these two estimator to estimate the ratio ĉjb ≡

√√√√
̂

V ar
[

WR
j

]

̂
V ar

[

WR
j,b

]

. Theorem 3 shows that is ĉjb is a consistent estimator for

√
V ar[W1]

V ar[Wj ]
.
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Theorem 3 Under assumptions 1 and 2, ĉj is a consistent estimator for cjb =

√
V ar

[

WR
j,b

]

V ar
[

WR
j

] .

Proof. By assumption 2,

V ar
[
WR

j

]
= A+

B

Mj

and E [Wjt] = 0

So we can write

E

[(
WR

j

)2
]
= A+

B

Mj

or
(
WR

j

)2
= A+

B

Mj

+ ω

where E [ω] = 0. In this case, we estimate A and B by ordinary least squares, we obtain consistent estimators as N0 → ∞.

Since Mj does not vary with N0, ĝ (Mj) →p g (Mj) .
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