
Munich Personal RePEc Archive

Structural Time Series Models for

Business Cycle Analysis

Proietti, Tommaso

SEFEMEQ, Faculty of Economics, University of Rome "Tor Vergata"

20 January 2008

Online at https://mpra.ub.uni-muenchen.de/6854/

MPRA Paper No. 6854, posted 24 Jan 2008 05:37 UTC



Structural Time Series Models for Business Cycle Analysis ∗

Tommaso Proietti†

S.E.F. e ME.Q., University of Rome “Tor Vergata”.

Abstract

The chapter deals with parametric models for the measurement of the business cycle in
economic time series. It presents univariate methods based on parametric trend–cycle decom-
positions and multivariate models featuring a Phillips type relationship between the output gap
and inflation and the estimation of the gap using mixed frequency data. We finally address the
issue of assessing the accuracy of the output gap estimates.
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1 Introduction

The term structural time series refers to a class of parametric models that are specified directly
in terms of unobserved components which capture essential features of the series, such as trends,
cycles and seasonality. The approach is amenable to the analysis of macroeconomic time series,
where latent variables such as trends and cycles, and more specialised notions, such as the
output gap, core inflation and the natural rate of unemployment, need to be measured.

One of the key issues economists have faced in characterising the dynamic behaviour of
macroeconomic variables, such as output, unemployment and inflation, is separating trends from
cycles. The decomposition of economic time series has a long tradition, dating back to the 19th
century; see the first chapter of Mills (2003) for an historical perspective. Along with providing
a description of the salient features of a series, the distinction of what is permanent and what
is transitory in economic dynamics bears relevant implications for monetary and fiscal policy.
The underlying idea is that trends and cycles can be ascribed to different economic mechanisms
and an understanding of their determinants helps to define policy targets and instruments.

This chapter focusses on structural time series modelling for business cycle analysis and,
in particular, for output gap measurement. The output gap is the deviation of the economy’s
realised output from its potential. Potential output is defined as the non-inflationary level of
output, i.e., as the level that can be attained using the available technology and productive
factors at a stable inflation rate. The gap measures the presence and the extent of real disequi-
libria and constitutes an indicator of inflationary pressure in the short run: a positive output
gap testifies to excess demand and a negative output gap expresses excess supply.

The output gap plays a central role in the transmission mechanism of monetary policy, since
short term interest rates influence aggregate demand and the latter affects inflation via a Phillips
curve relationship. The Phillips curve establishes a trade-off between output and inflation over
the short run, and provides the rationale for using the short run component in output as an
indication of demand-driven inflationary pressure. For instance, the Taylor rule (Taylor, 1999)
explicitly links the central bank’s policy to the output gap. On the other hand, the growth rate
of potential output is a reference value for broad money growth. Other important uses of the
output gap are in fiscal analysis, where it is employed to assess the impact of cyclical factors
on budget deficits, and in the adjustment of exchange rates. The output gap is also related to
cyclical unemployment, which is the deviation of unemployment from its trend, known as the
non-accelerating-inflation rate of unemployment (NAIRU).

The signal extraction problems relating to latent variables, such as the output gap, core
inflation and the NAIRU, can be consistently formulated within a model based framework and,
in particular, within the class of unobserved components time series models, formalising the
fundamental economic relationships with observable macroeconomic aggregates.

The chapter is divided into three main parts: the first (section 2) deals with univariate
methods for cycle measurement. One approach is to formalise a model of economic fluctuations
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such that the different components are driven by specific shocks, that are propagated via a
dynamic transmission mechanism. We start introducing the traditional trend-cycle structural
decomposition, discussing the parametric representation of both components (sections 2.1-2.4),
and the correlation between the trend and cycle disturbances (section 2.5). Another approach is
to consider the cycle as the band-pass component of output, i.e. as those economic fluctuations
which have a periodicity greater then a year and smaller than say eight years. We review the
relationship between popular signal extraction filters such as the Hodrick-Prescott filter and the
Baxter and King filter, and the model-based Wiener-Kolmogorov filter. Particular attention
is devoted to the implementation of band-pass filtering in a model-based framework (section
2.6). The advantages of this strategy are twofold: the components can be computed also in real
time using standard principles of optimal signal extraction, and thus efficient algorithms, such
as the Kalman filter and smoother, can be applied. Secondly, the reliability of the estimated
components can be thoroughly assessed.

The second part, starting with section 3, deals with multivariate models for the measurement
of the output gap. The above definition of the output gap as an indicator of inflationary pressures
suggests that the minimal most basic measurement framework is a bivariate model for output
and inflation. After reviewing the work done in this area (section 3.1) we illustrate the estimation
a bivariate model for the U.S. economy, under both the classical and the Bayesian approach and
incorporating the feature known as “great moderation” of the volatility of economic fluctuations
(section 3.2). In section 3.3 we review the multivariate extensions of the basic bivariate model
and we conclude this part with an application which serves to illustrate the flexibility of the
state space methodology in accommodating data features such as missing data, nonlinearities
and temporal aggregation. In particular, section 3.4 presents the results of fitting a four variate
monthly time series model for the U.S. economy with mixed frequency data, as gross domestic
product (GDP) is available only quarterly, whereas industrial production, the unemployment
rate and inflation are monthly. The model incorporates the temporal aggregation constraints
(which are nonlinear since the model is formulated in terms of the logarithm of the variables)
and produces as a byproduct monthly estimates of GDP, along with their reliability, that are
consistent with the quarterly observed values.

The third part 4 deals with the reliability of the output gap estimates. The assessment
of the quality of the latter is crucial for the decision maker. We discuss the various sources
of uncertainty (model selection, parameter estimation, data revision, estimation of unboserved
components, statistical revision), and discuss ways of dealing with them using the state space
methodology.

One of the objectives of this chapter is to provide an overview of the main state space methods
and to illustrate their application and scope. The description of the algorithms is relegated to
an appendix and we refer to Harvey (1989), West and Harrison (1997), Kitagawa and Gersch
(1996), Durbin and Koopman (2000), and the selection of readings in Harvey and Proietti
(2005), for a thorough presentation of the main ideas and methodological aspects concerning
state space methods and unobserved components models. For the class of state space models
with Markov switching, see Kim and Nelson (1999b), Frühwirth-Schnatter (2006) and Cappé et

al. (2005). An essential and up to date monograph on modelling trends and cycles in economics
is Mills (2003).

2 Univariate Methods

In univariate analysis, the output gap can be identified as the stationary or transitory component
in a measure of aggregate economic activity, such as GDP. Estimating the output gap thus
amounts to detrending the series; a large literature has been devoted to this very controversial
issue (see, for instance, Canova, 1998, and Mills, 2003).
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We shall confine our attention to the additive decomposition (after a logarithmic transfor-
mation) of real output, yt, into potential output, µt, and the output gap, ψt: yt = µt +ψt. This
basic representation is readily extended to handle a seasonal component and other calendar
components such as those associated with trading days and moving festivals, which for certain
output series, e.g. industrial production, play a relevant role.

In the structural approach a parametric representation for the components is needed; fur-
thermore, the specification of the model is completed by assumptions on the covariance among
the various components. The first identifying restriction that will be adopted throughout is that
µt is fully responsible for the nonstationary behaviour of the series, whereas ψt is a transitory
component.

2.1 The random walk plus noise model

The random walk plus noise (RWpN) model provides the most basic trend-cycle decomposition
of output, such that the trend is a random walk process, with normal and independently distrib-
uted (NID) increments, and the cycle is a pure white noise (WN) component. The structural
specification is the following:

yt = µt + ψt, t = 1, . . . , n, ψt ∼ NID(0, σ2
ψ),

µt = µt−1 + β + ηt, ηt ∼ NID(0, σ2
η).

(1)

When the drift is absent, i.e., when β = 0, the model is also known as the local level model, see
Harvey (1989). We assume throughout that E(ηtψt−j) = 0 for all t and j, so the two components
are orthogonal.

If σ2
η = 0, µt is a deterministic linear trend. The one-sided Lagrange Multiplier test of the

null hypothesis H0 : σ2
η = 0, against the alternative H1 : σ2

η > 0, is known as a stationarity test
and is discussed in Nyblom and Mäkeläinen (1983). The nonparametric extension to the case
when ψt is any indeterministic stationary process is provided by Kwiatkowski et al. (1992). See
also Harvey (2001) for a review and extensions.

The reduced-form representation of (1) is an integrated moving average model of orders (1,1),
or IMA(1,1): ∆yt = β + ξt + θξt−1, ξt ∼ NID(0, σ2), where ∆yt = yt − yt−1. The difference
operator can be defined in terms of the lag operator L, such that Ldyt = yt−d, for an integer d,
as ∆ = (1 − L).

The moving average (MA) parameter is subject to the restriction −1 ≤ θ ≤ 0. Equating
the autocovariance generating functions of ∆yt implied by the IMA(1,1) and by the structural
representation (1), it is possible to establish that σ2

η = (1 + θ)2σ2 and σ2
ψ = −θσ2. Hence, it is

required that θ ≤ 0, and thus persistence, (1 + θ), cannot be greater than unity. The variance
ratio λ = σ2

ψ/σ2
η depends uniquely on θ, as λ = −θ/(1 + θ)2. The ratio provides a measure of

relative smoothness of the trend: if λ is large, then the trend varies little with respect to the
noise component, and thus it can be regarded as “smooth”.

The RWpN model has a long tradition and a well-established role in the analysis of economic
time series, since it provides the model-based interpretation for the popular forecasting technique
known as exponential smoothing, which is widely used in applied economic forecasting and fares
remarkably well in forecast competitions; see Muth (1960) and the comprehensive reviews by
Gardner (1985, 2006).

Assuming a doubly infinite sample, the one-step-ahead predictions, µ̃t+1|t, and the filtered
and smoothed estimates of the trend component, denoted µ̃t|∞, are given, respectively, by:

µ̃t+1|t = µ̃t|t = (1 + θ)

∞∑

j=0

(−θ)jyt−j , µ̃t|∞ =
1 + θ

1 − θ

∞∑

j=−∞

(−θ)|j|yt−j .
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Here, µ̃t+1|t denotes the expectation of µt+1 based on the information available at time t,
whereas µ̃t|∞ is the expectation based on all of the information in the doubly infinite data
set. The filter w(L) = (1 + θ)(1 + θL)−1 = (1 + θ)

∑∞
j=0(−θ)jLj is known as a one–sided

exponentially weighted moving average (EWMA). These expressions follow from applying the
Wiener–Kolmogorov prediction and signal extraction formulae; see appendix B. In terms of the

structural form parameters, µ̃t|∞ =
σ2

η

σ2
η+σ2

ψ
|1−L|2

yt, where |1−L|2 = (1−L)(1−L−1). The filter

wµ(L) =
σ2

η

σ2
η + σ2

ψ|1 − L|2
=

1 + θ

1 − θ

∞∑

j=−∞

(−θ)|j|Lj ,

is known as a two sided EWMA filter. In finite samples, the computations are performed by
the Kalman filter and smoother (see appendix C).

The parameter θ (or, equivalently, λ) is essential in determining the weights that are attached
to the observations for signal extraction and prediction. When θ = 0, yt is a pure random walk,
and then the current observation provides the best estimate of the trend: µ̃t+1|t = µ̃t|t = µ̃t|∞ =
yt. When θ = −1, the trend estimate, which is as smooth as possible, is a straight line passing
through the observations.

The RWpN model provides a stripped to the bone separation of the transitory and the per-
manent dynamics that depends on a single smoothness parameter, which determines the weights
that are assigned to the available observations for forecasting and trend estimation. Its use as
a misspecified model of economic fluctuations for out-of-sample forecasting, using multistep (or
adaptive) estimation, rather than maximum likelihood estimation, has been considered in the
seminal paper by Cox (1961), and by Tiao and Xu (1993). Proietti (2005) discusses multistep
estimation of the RWpN model for the extraction of trends and cycles.

2.2 The local linear model and the Leser-HP filter

In the local linear trend model (LLTM) the trend µt is an integrated random walk:

yt = µt + ψt, ψt ∼ NID(0, σ2
ψ), t = 1, 2, . . . , n,

µt = µt−1 + βt−1 + ηt, ηt ∼ NID(0, σ2
η),

βt = βt−1 + ζt, ζt ∼ NID(0, σ2
ζ ).

(2)

It is assumed that the ψt, ηt and ζt are mutually and serially uncorrelated. For σ2
ζ = 0 the trend

reduces to a random walk with constant drift, whereas for σ2
η = 0 the trend is an integrated

random walk (∆2µt = ζt−1).
The above representation encompasses a deterministic linear trend, arising when both σ2

η

and σ2
ζ are zero. Secondly, it is consistent with the notion that the real time estimate of the

trend is coincident with the value of the eventual forecast function at the same time (see section
2.5 on the Beveridge-Nelson decomposition).

The LLTM is the model for which the Leser filter is optimal (see Leser, 1961). The latter is
derived as the minimiser, with respect to µt, t = 1, . . . , n, of the penalised least squares criterion:

PLS =
∑n

t=1(yt − µt)
2 + λ

∑n
t=3(∆

2µt)
2.

The parameter λ governs the trade-off between fidelity and it is referred to as the smoothness or
roughness penalty parameter. The first addend of PLS measures the goodness of fit, whereas
the second penalises the departure from zero of the variance of the second differences (i.e. a
measure of roughness). In matrix notation, if y = (y1, . . . , yn), µ = (µ1, . . . , µn), and D = {dij}
is the n × n matrix corresponding to a first difference filter, with dii = 1, di,i−1 = −1 and
zero otherwise, so that Dµ = (µ2 − µ1, . . . , µn − µn−1)

′, we can write the criterion function as
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PLS = (y−µ)′(y−µ)+λµ′D2′

D2µ. Differentiating with respect to µ, the first order conditions
yield: µ̃ = (In+λD2′

D2)−1y. The rows of the matrix (In+λD2′

D2)−1 contain the filter weights
for estimating the trend at a particular point in time. The solution arising for λ = 1600 is widely
popular in the analysis of quarterly macroeconomic time series as the Hodrick-Prescott filter
(HP henceforth, see Hodrick and Prescott, 1997); the choice of the smoothness parameter for
yearly and monthly time series is discussed in Ravn and Uhlig (2002) and Maravall and del Rio
(2007).

We now show that the Leser filter is the optimal signal extraction filter for the LLTM (2) with
σ2

η = 0 and λ = σ2
ψ/σ2

ζ . In fact, apart from an additive term which does not depend on µ, PLS
is proportional to ln f(y, µ) = ln f(y|µ) + ln f(µ), where f(y, µ), f(y|µ) denote, respectively,
the gaussian joint density of the random vectors y and µ, and the conditional density of y

given µ, whereas f(µ) is the joint density of µt, t = 1, . . . , n. Now, ln f(y|µ) depends on µ

only via (1/σ2
ψ)

∑n
t=1(yt − µt)

2, whereas ln f(µ) = ln f(µ3, . . . , µn|µ1, µ2) + ln f(µ1, µ2). The

first term depends on µt, t > 2, only via (1/σ2
ζ )

∑n
t=3(∆

2µt)
2. The contribution of the initial

conditions vanishes under fixed initial conditions or diffuse initial conditions1. In conclusion, µ̃

maximises with respect to µ the joint log-density ln f(y, µ) and thus the posterior log-density
ln f(µ|y) = ln f(y, µ) − ln f(y). A consequence of this result is that the components can
be efficiently computed using the Kalman filter and smoother (see appendix C). The latter
computes the mean of the conditional distribution µ|y. As this distribution is Gaussian, the
posterior mean is equal to the posterior mode. Hence, the smoother computes the mode of
f(µ|y), which is also the minimiser of the PLS criterion.

The equivalence λ = σ2
ψ/σ2

ζ makes clear that the roughness penalty measures the variability
of the cyclical (noise) component relative to that of the trend disturbance, and regulates the
smoothness of the long-term component. As σ2

ζ approaches zero, λ tends to infinity, and the
limiting representation of the trend is a straight line. The Leser-HP detrended or cyclical
component is the smoothed estimate of the component ψt in (2) and, although the maintained
representation for the deviations from the trend is a WN component, the filter has been one of
the most widely employed tools in macroeconomics to extract a measure of the business cycle.
For the U.S. GDP series (logarithms) this component is plotted in the top right hand panel of
figure 4.

In terms of the reduced form of model (2), the IMA(2,2) model ∆2yt = (1 + θ1L + θ2L
2)ξt,

ξt ∼ NID(0, σ2), it can be shown that the restriction σ2
η = 0 implies [(1 + θ2)θ2]/(1 − θ2)

2 = λ
and θ1 = −4θ2/(1 + θ2). Therefore, for λ = 1600, we have θ1 = −1.778 and θ2 = 0.799, so
that θ(1) = 1 + θ1 + θ2 = 0.021 and the MA polynomial is close to noninvertibility at the zero
frequency.

The theoretical properties of the Leser-HP filter are better understood by assuming the
availability of a doubly infinite sample, yt+j , j = −∞, . . . ,∞. In such a setting, the Wiener-
Kolmogorov filter (see Whittle, 1963, and appendix B) provides the minimum mean square
linear estimator (MMSLE) of the trend, µ̃t|∞ = wµ(L)yt, where

wµ(L) =
σ2

ζ

σ2
ζ + |1 − L|4σ2

ψ

=
1

1 + λ|1 − L|4
(3)

The frequency response function of the trend filter (see appendix A) is:

wµ(e−ıω) =
1

1 + 4λ(1 − cos ω)2
, ω ∈ [0, π];

notice that this is 1 at the zero frequency and decreases monotonically to zero as ω approaches
π. This behaviour enforces the interpretation of (3) as a low-pass filter, and the corresponding

1Assuming µ∗ = (µ1, µ2)
′
∼ N(0, Σµ), and that the process µt has started in the indefinite past, Σ

−1

µ → 0, and
thus the quadratic form µ′

∗Σ
−1

µ µ∗ converges to zero.
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detrending filter, 1−wµ(L), is the high-pass filter derived from it. We shall return to this issue
in the next section.

2.3 Higher order trends and low-pass filters

A low-pass filter is a filter that passes low frequency fluctuations and reduces the amplitude of
fluctuations with frequencies higher than a cutoff frequency ωc (see, e.g., Percival and Walden,
1993). The frequency response function of an ideal low-pass filter takes the following form: for
ω ∈ [0, π],

wlp(ω) =

{
1 if ω ≤ ωc

0 if ωc < ω ≤ π

The notion of a high-pass filter is complementary, its frequency response function being whp(ω) =
1 − wlp(ω). The coefficients of the ideal low-pass filter are provided by the inverse Fourier
transform of wlp(ω):

wlp(L) =
ωc

π
+

∞∑

j=1

sin(ωcj)

πj
(Lj + L−j).

A band-pass filter is a filter that passes fluctuations within a certain frequency range and
attenuates those outside that range. Given lower and upper cutoff frequencies, ω1c < ω2c in
(0, π), the ideal frequency response function is unity in the interval [ω1c, ω2c] and zero outside.
The notion of a band–pass filter is relevant to business cycle measurement: the traditional
definition, ascribed to Burns and Mitchell (1946), considers all the fluctuations with a specified
range of periodicities, namely those ranging from one and a half to eight years. Thus, if s
is the number of observations in a year, the fluctuations with periodicity between 1.5s and
8s are included. Baxter and King (1999, BK henceforth) argue that the ideal filter for cycle
measurement is a band-pass filter. Now, given the two business cycle frequencies, ωc1 = 2π/(8s)
and ωc2 = 2π/(1.5s), the band-pass filter is

wbp(L) =
ωc2 − ωc1

π
+

∞∑

j=1

sin(ωc2j) − sin(ωc1j)

πj
(Lj + L−j). (4)

Notice that wbp(L) is the contrast between the two low–pass filters with cutoff frequencies
ωc2 and ωc1. The frequency response function of the ideal business cycle band-pass filter for
quarterly observations (s = 4), which is equivalent to the gain function (see Appendix A), is
plotted in figure 3.

The ideal band-pass filter exists and is unique, but as it entails an infinite number of leads
and lags, an approximation is required in practical applications. BK show that the K-terms
approximation to the ideal filter (4), which is optimal in the sense of minimising the integrated
mean square approximation error, is obtained from (4) by truncating the lag distribution at
a finite integer K. They propose using a three years window, i.e., K = 3s, as a valid rule of
thumb for macroeconomic time series. They also constrain the weights to sum to zero, so that
the resulting approximation is a detrending filter: denoting the truncated filter wbp,K(L) =

w0 +
∑K

1 wj(L
j + L−j), the weights of the adjusted filter will be wj −wbp,K(1)/(2K + 1). The

gain of the resulting filter is displayed in figure 3 (henceforth we shall refer to it as the BK
filter). The ripples result from the truncation of the ideal filter and are referred to as the Gibbs
phenomenon (see Percival and Walden, 1993, p. 177). BK do not entertain the problem of
estimating the cycle at the extremes of the available sample; as a result the estimates for the
first and last three years are unavailable. Christiano and Fitzgerald (2003) provide the optimal
finite-sample approximations for the band pass filter, including the real time filter, using a model
based approach.
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Within the class of parametric structural models, an important category of low–pass filters
emerges from the application of Wiener-Kolmogorov optimal signal extraction theory to the
following model:

yt = µt + ψt, t = 1, 2, . . . , n,
∆mµt = (1 + L)rζt, ζt ∼ NID(0, σ2

ζ ),

ψt ∼ NID(0, λσ2
ζ ), E(ζt, ψt−j) = 0,∀j,

(5)

where µt is the signal or trend component, and ψt is the noise.
Assuming a doubly infinite sample, the minimum mean square estimators of the components

(see Appendix B) are, respectively, µ̃t = wµ(L)yt and ψ̃t = yt − µ̃t = [1 − wµ(L)]yt, where

wµ(L) =
|1 + L|2r

|1 + L|2r + λ|1 − L|2m
. (6)

The expression (6) defines a class of filters which depends on the order of integration of the
trend (m, which regulates its flexibility), on the number of unit poles at the Nyquist frequency
r, which ceteris paribus regulates the smoothness of ∆mµt, and λ, which measures the relative
variance of the noise component.

The Leser-HP filter arises for m = 2, r = 0, λ = 1600 (quarterly data). The two-sided
EWMA filter arises for m = 1, r = 0. The filters arising for m = r are Butterworth filters of the
tangent version (see, e.g., Gómez, 2001). The analytical expression of the gain is:

wµ(ω) =

{
1 +

[
tan(ω/2)

tan(ωc/2)

]2m
}−1

,

and depends solely on m and ωc. As m → ∞ the gain converges to the frequency response
function of the ideal low–pass filter.

The previous discussion enforces the interpretation of the trend filter wµ(L) as a low–pass
filter. Its cut-off frequency depends on the triple (m, r, λ). Frequency domain arguments can
be advocated for designing these parameters so as to select the fluctuations that lie in a pre-
determined periodicity range. In particular, let us consider the Fourier transform of the trend
filter (6), wµ(ω) = wµ(e−ıω), ω ∈ [0, π], which also expresses the gain of the filter. The latter
is monotonically decreasing with λ; it takes the value 1 at the zero frequency and, if r > 0, it
is zero at the Nyquist frequency. The trend filter will preserve to a great extent those fluctua-
tions at frequencies for which the gain is greater than 1/2 and reduce to a given extent those
for which the gain is below 1/2. This simple argument justifies the definition of a low–pass
filter with cutoff frequency ωc if the gain halves at that frequency; see Gomez (2001, sec. 1).
Usually the investigator sets the cut-off frequency to a particular value, e.g. ωc = 2π/(8s) and
chooses the values of m and r (e.g., m = 2, r = 0 for the Leser- HP filter). Solving the equation
wµ(ωc) = 1/2, the parameter λ can be obtained in terms of the cut-off frequency and the orders
m and r:

λ = 2r−m

[
(1 + cos ωc)

r

(1 − cos ωc)m

]
. (7)

2.4 The cyclical component

In the previous section we considered some of the most popular decompositions of a time series
into a trend and pure white noise component. Hence, the previous models are misspecified. In
the analysis of economic time series it is more interesting to entertain a trend-cycle decompo-
sition, such that the trend is due to the accumulation of supply shocks that are permanent,
whereas the cycle is ascribed to nominal or demand shocks that are propagated by a stable
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transmission mechanism. Clark (1987) and Harvey and Jäger (1993), for instance, replace the
irregular component by a stationary stochastic cycle, which is parameterised as an AR(2) or an
ARMA(2,1) process, such that the roots of the AR polynomial are a pair of complex conjugates.
The model for the cycle is a stationary process capable of reproducing widely acknowledged
stylised facts, such as the presence of strong autocorrelation, determining the recurrence and
alternation of phases, and the dampening of fluctuations, or zero long run persistence.

In particular, the model adopted by Clark (1987) is:

ψt = φ1ψt−1 + φ2ψt−2 + κt, κt ∼ NID(0, σ2
κ),

where κt is independent of the trend disturbances. Harvey (1989) and Harvey and Jäger (1993)
use a different representation:

[
ψt

ψ∗
t

]
= ρ

[
cos ̟ sin ̟

− sin ̟ cos ̟

] [
ψt−1

ψ∗
t−1

]
+

[
κt

κ∗
t

]
, (8)

where κt ∼ NID(0, σ2
κ) and κ∗

t ∼ NID(0, σ2
κ) are mutually independent and independent of the

trend disturbance, ̟ ∈ [0, π] is the frequency of the cycle and ρ ∈ [0, 1) is the damping factor.
The reduced form of (8) is the ARMA(2,1) process:

(1 − 2ρ cos ̟L + ρ2L2)ψt = (1 − ρ cos ̟L)κt + ρ sin ̟κ∗
t−1.

When ρ is strictly less than one the cycle is stationary with E(ψt) = 0 and σ2
ψ = Var(ψt) =

σ2
κ/(1 − ρ2); the autocorrelation at lag j is ρj cos ̟j. For ̟ ∈ (0, π) the roots of the AR

polynomial are a pair of complex conjugates with modulus ρ−1 and phase ̟; correspondingly,
the spectral density displays a peak around ̟.

Harvey and Trimbur (2002) further extend the model specification, by proposing a general
class of model based filters for extracting trend and cycles in macroeconomic time series, showing
that the design of low-pass and band-pass filters can be considered as a signal extraction problem
in an unobserved components framework. In particular, they consider the decomposition yt =
µmt + ψkt + ǫt, where ǫt ∼ NID(0, σ2

ǫ ). The trend is specified as an m-th order stochastic trend:

µ1t = µ1,t−1 + ζt

µit = µi,t−1 + µi−1,t, i = 2, . . . ,m
(9)

This is the recursive definition of an m−1-fold integrated random walk, such that ∆mµmt = ζt.
The component ψkt is a k-th order stochastic cycle, defined as:

[
ψ1t

ψ∗
1t

]
= ρ

[
cos ̟ sin ̟

− sin ̟ cos ̟

] [
ψ1,t−1

ψ∗
1,t−1

]
+

[
κt

0

]
,

[
ψit

ψ∗
it

]
= ρ

[
cos ̟ sin ̟

− sin ̟ cos ̟

] [
ψi,t−1

ψ∗
i,t−1

]
+

[
ψi−1,t

0

]
, (10)

The reduced form representation for the cycle is:

(1 − 2ρ cos ̟L + ρ2L2)kψkt = (1 − ρ cos ̟L)kκt.

Harvey and Trimbur show that, as m and k increase, the optimal estimators of the trend and
the cycle approach the ideal low-pass and band-pass filter, respectively.
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2.5 Models with correlated components

Morley, Nelson and Zivot (2003, MNZ henceforth) consider the following unobserved components
model for U.S. quarterly GDP:

yt = µt + ψt t = 1, 2, . . . , n,

µt = µt−1 + β + ηt,
ψt = φ1ψt−1 + φ2ψt−2 + κt,

(
ηt

κt

)
∼ NID

[(
0
0

)
,

(
σ2

η σηκ

σηκ σ2
κ

)]
, σηκ = rσησκ.

(11)

It should be noticed that the trend and cycle disturbances are allowed to be contemporaneously
correlated, with r being the correlation coefficient. The reduced form of model (11) is the

ARIMA(2,1,2) model: ∆yt = β + θ(L)
φ(L)ξt, ξt ∼ NID(0, σ2), where θ(L) = 1 + θ1L + θ2L

2 and

φ(L) = 1− φ1L− φ2L
2. The structural form is exactly identified, both it and the reduced form

have six parameters. The orthogonal trend cycle decomposition considered by Clark (1987)
imposes the overidentifying restriction r = 0.

We estimate this model for the U.S. GDP series using the sample period 1947.1-2006.4.
For comparison we also fit an unrestricted ARIMA(2,1,2) model and the restricted version
imposing r = 0, which will be referred to henceforth as the Clark model. Estimation of the
unknown parameters is carried out by frequency domain maximum likelihood estimation; see
Nerlove, Grether and Carvalho (1995) and Harvey (1989, sec. 4.3) for the derivation of the
likelihood function and the discussion on the nature of the approximation involved. Given the
availability of the differenced observations ∆yt, t = 1, 2, . . . , n, and denoting by ωj = 2πj/n,
j = 0, 1, . . . , (n − 1), the Fourier frequencies, the Whittle’s likelihood is defined as follows:

loglik = −
n

2
ln 2π −

1

2

n−1∑

j=0

[
log f(ωj) +

I(ωj)

f(ωj)

]
, (12)

where I(ωj) is the sample spectrum,

I(ωj) =
1

2π

[
c0 + 2

n−1∑

k=1

ck cos(ωjk)

]
,

ck is the sample autocovariance of ∆yt at lag k, and f(ωj) is the parametric spectrum of the
implied stationary representation of the MNZ model, ∆yt = β+ηt+∆ψt, t = 1, . . . , n, evaluated
at the Fourier frequency ωj . In particular,

f(ω) = f∆µ(ω) + f∆ψ(ω) + f∆µ,∆ψ(ω),

with

f∆µ(ω) =
σ2

η

2π
, f∆ψ(ω) =

1

2π

2(1 − cos ω)σ2
κ

φ(e−ıω)φ(eıω)
, f∆µ,∆ψ(ω) =

(1 − e−ıω)φ(eıω) + (1 − eıω)φ(e−ıω)

2πφ(e−ıω)φ(eıω)
rσησκ,

e−ıω = cos ω − ı sinω, where ı is the imaginary unit, is the complex exponential, and φ(e−ıω) =
1 − φ1e

−ıω − φ2e
−2ıω. The last term is the cross-spectrum of (∆ψt, ∆µt), and of course it

vanishes if r = 0. For the Clark model the parametric spectrum is given by the above
expression with f∆µ,∆ψ(ω) = 0, whereas for the unrestricted ARIMA(2,1,2) it is given by
f(ω) = σ2θ(e−ıω)θ(eıω)[φ(e−ıω)φ(eıω)]−1.
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Figure 1 displays the quarterly growth rates, ∆yt, of U.S. GDP in the first panel. The next
panel plots the profile likelihood for the correlation parameter against the value of r in [-1,1]
and shows the presence of two modes, the first around -.9 and the second around zero. The
parameter estimates, along with their estimated standard errors, and the value of the maximised
likelihood, are reported in table 12. It should be noticed that the unrestricted ARIMA(2,1,2)
is exactly coincident with the reduced form of the MNZ model, as the two models yield the
same likelihood and the AR and MA parameters are the mapping of the structural parameters.
Secondly, the estimated correlation coefficient is high and negative (-0.93) and the likelihood
ratio test of the hypothesis r = 0 has a p-value equal to 0.097. MNZ interpret the negative
disturbance correlation as strengthening the case for the importance of real shocks in the macro
economy: real shocks tend to shift the long run path of output, so short term fluctuations will
largely reflect adjustments toward a shifting trend if real shocks play a dominant role.

Table 1: Frequency Domain Maximum Likelihood Estimation results for quarterly U.S. real GDP,
1947.1-2006.4

ARIMA MNZ Clark
φ1 1.34 (0.07) 1.34 (0.07) 1.49 (0.05)
φ2 -0.76 (0.16) -0.76 (0.16) -0.56 (0.11)
θ1 -1.08 (0.11)
θ2 0.59 (0.20)
σ2 0.8224 (0.08)
r -0.93 (0.28) 0(r)
σ2

η 1.2626 (0.08) 0.3478 (0.15)
σ2

κ 0.3556 (0.33) 0.4120 (0.16)
loglik -315.76 -315.76 -317.14

The bottom left panel of figure 1 displays the sample spectrum I(ωj) of ∆yt along with the
estimated parametric spectral densities for the MNZ model (which is of course coincident with
that of the ARIMA(2,1,2) model) and the Clark restricted model (r = 0). For the ARIMA(2,1,2)
and the MNZ models the roots of the AR polynomial are a pair of complex conjugates that imply
a spectral peak for ∆yt at the frequency 0.68, corresponding to a period of 9 quarters. As a
matter of fact, a dominant feature of ∆yt is the presence of a cyclical component with a period
of roughly two years. On the other hand, the spectral density implied by the Clark model peaks
at the frequency 0.09, corresponding to a period of 68 quarters (i.e., a medium-run cycle).

A closer inspection of the sample spectrum reveals the presence of two consecutive peri-
odogram ordinates, corresponding to a cycle of roughly two years, that are highly influential on
the estimation results (they are circled in figure 1). It is indeed remarkable that when these
are not used in the estimation, the correlation coefficient turns positive (r̂ = 0.35). The last
panel of the figure presents the leave-two-out cross-validation estimates of the correlation co-
efficient, which are obtained by maximising Whittle’s likelihood after deleting two consecutive
periodogram ordinates at the frequencies ωj and ωj+1. This is a special case of weighted likeli-
hood estimation, where each summand in (12) receives a weight equal to 1 if the frequency ωj

is retained and 0 if it is deleted.
The real time and the smoothed estimates of the cyclical component arising from the MNZ

model, ψ̃t|t = E(ψt|Yt) and ψ̃t|n = E(ψt|Yn), respectively, are reported in figure 2, along with
the 95% interval estimates; here Yt denotes the information available up to and including time
t. The bottom panels display the weights wψ,j of the signal extraction filters

∑
j wψ,jL

jyt that
yield the cycle estimates in the two cases.

2All the computations in this chapter have been performed using Ox version 4, see Doornik (2006).
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Figure 1: Quarterly U.S. real growth, 1947.2-2006.4. Sample spectrum and parametric spectral fit
of trend-cycle model with correlated components.
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Figure 2: Trend-cycle decomposition with correlated disturbances. Real time and smoothed esti-
mates of the cyclical components.

The real time estimates support the view that most of the variation in GDP is permanent,
i.e., it should be ascribed to changes in the trend component, whereas little variance is attributed
to the transitory component. In fact, the amplitude of ψ̃t|t is small and the interval estimates
of ψt in real time are never significantly different from zero. When we analyse the smoothed
estimates the picture changes quite radically: the cycle estimates are much more variable and
there is a dramatic reduction in the estimation error variance, so that the contribution of the
transitory component to the variation in GDP is no longer negligible. The real time estimates
provide a gross underestimation of the cyclical component and are heavily revised as the future
missing observations become available. As a matter of fact, the final estimates depend heavily
on future observations, as can be seen from the pattern of the weights in the last panel of figure
2. That this behaviour is typical of the MNZ model when r̂ is high and negative is documented
in Proietti (2006a).

The real time estimates of the trend and cyclical components are coincident with the Bev-
eridge and Nelson (1981, BN henceforth) components defined for the ARIMA(2,1,2) reduced
form. The BN decomposition defines the trend component at time t as the value of the eventual
forecast function at that time, or, equivalently, the value that the series would take if it were on
its long run path (see also Brewer, 1979). For an ARIMA(p, 1, q) process, this argument defines
the trend as a random walk driven by the innovations ξt = yt−E(yt|Yt−1). Writing the ARIMA
representation for yt as ∆yt = β + ψ(L)ξt, ψ(L) = θ(L)/φ(L), where φ(L) is a stationary AR
polynomial of order p and θ(L) an invertible MA polynomial of order q, the BN decomposition
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can be written as: yt = mt + ct, t = 1, ..., n, where mt is the BN trend, and ct is the cyclical
component.

The trend is defined as liml→∞[ỹt+l|t− lβ], with ỹt+l|t = E(yt+l|Yt). Writing yt+l = yt+l−1 +
β + ψ(L)ξt, taking the conditional expectation and rearranging, it is easily shown to give mt =
mt−1 + β + ψ(1)ξt, where ψ(1) = θ(1)/φ(1) is the persistence parameter, as it measures the
fraction of the innovation at time t that is retained in the trend. In terms of the observations,
mt = wm(L)yt, where wm(L) is the one-sided filter

wm(L) =
ψ(1)

ψ(L)
=

θ(1)

φ(1)

φ(L)

θ(L)
.

The sum of the weights is one, that is wm(1) = 1.
The transitory component is defined residually as ct = yt − mt = ψ∗(L)ξt, where ∆ψ∗(L) =

ψ(L)−ψ(1). Alternative representations in terms of the observations yt and of the innovations
ξt are, respectively:

ct =
φ(1)θ(L) − θ(1)φ(L)

φ(1)θ(L)
yt, ct =

φ(1)θ(L) − θ(1)φ(L)

φ(1)φ(L)∆
ξt. (13)

The first expression shows that the weights for the extraction of the cycle sum to zero. Since
φ(1)θ(L) − θ(1)φ(L) must have a unit root, we can write φ(1)θ(L) − θ(1)φ(L) = ∆ϑ(L), and
substituting this into (13), the ARMA representation for this component can be established as
φ(L)ct = ϑ(L)[φ(1)]−1ξt. As the order of ϑ(L) is max(p, q) − 1, the cyclical component has a
stationary ARMA(p,max(p, q)− 1) representation. For the ARIMA(2,1,2) model fitted to U.S.
GDP, the cycle has the ARMA(2,1) representation:

φ(L)ct = (1 + ϑL)

[
1 −

θ(1)

φ(1)

]
ξt, ϑ = −

φ2θ(1) + θ2φ(1)

φ(1) − θ(1)
. (14)

It is apparent that the two components are driven by the innovations, ξt; the fraction θ(1)/φ(1),
known as persistence, is integrated in the trend, and its complement to 1 drives the cycle. The
sign of the correlation between the trend and the cycle disturbances is provided by the sign of
φ(1) − θ(1); when persistence is less (greater) than one then trend and cycle disturbances are
positively (negatively) and perfectly correlated.

2.6 Model–based band-pass filters

As we said before, macroeconomic time series such as GDP do not usually admit the decom-
position yt = µt + ψt, with ψt being a purely irregular component; nevertheless, applications
of the class of filters (6) is widespread, as the popularity of the Hodrick-Prescott filter testifies.
However, when the available series yt cannot be modelled as (2) it is not immediately clear
how the components should be defined and how inferences about them should be made. In
particular, the Kalman filter and the associated smoothing algorithms no longer provide the
minimum mean square estimators of the components nor their mean square error. The dis-
cussion of model-based band-pass filtering in a more general setting will be the theme of this
section.

The trend-cycle decompositions dealt with in the two previous sections are models of eco-
nomic fluctuations, such that the components are driven by random disturbances which are
propagated according to a transmission mechanism. In this section we start from a reduced
form model (as in the case of the BN decomposition) and define parametric trend-cycle de-
compositions that are less loaded with structural interpretation, since they just represent the
low-pass and the high-pass components in the series. The aim is to motivate and extend the use
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of signal extraction filters of the class (6) to a more general and realistic setting than (5). For
this approach to the definition of band-pass filters see Gòmez (2001) and Kaiser and Maravall
(2005). The following treatment is based on Proietti (2004).

Let yt denote a univariate time series with ARIMA(p, d, q) representation, that we write

φ(L)(∆dyt − β) = θ(L)ξt, ξt ∼ NID(0, σ2),

where c is a constant, φ(L) = 1−φ1L− · · · −φpL
p is the AR polynomial with stationary roots,

and θ(L) = 1+ θ1L+ · · ·+ θqL
q is invertible. We are going to exploit the fundamental idea that

we can uniquely decompose the WN disturbance ξt into two orthogonal stationary processes as
follows:

ξt =
(1 + L)rζt + (1 − L)mκt

ϕ(L)
, (15)

where ζt and κt are two mutually and serially independent Gaussian disturbances, ζt ∼ NID(0, σ2),
κt ∼ NID(0, λσ2), and

|ϕ(L)|2 = ϕ(L)ϕ(L−1) = |1 + L|2r + λ|1 − L|2m. (16)

We assume that λ is known. Equation (16) is the spectral factorisation of the lag polynomial on
the right hand side; the existence of the polynomial ϕ(L) = ϕ0 + ϕ1L + · · ·+ ϕq∗Lq∗

, of degree
q∗ = max(m, r), is guaranteed by the fact that the Fourier transform of the right hand side is
never zero over the entire frequency range; see Sayed and Kailath (2001) for details.

According to (15), for given values of λ, m and r, the innovation ξt is decomposed into
two ARMA(2,2) processes, characterised by the same AR polynomial, but by different MA
components. The first component will drive the low–pass component of yt and its spectral
density is proportional to σ2wµ(ω), where wµ(ω) is the gain of the filter (6). If r > 0 the
MA representation is non–invertible at the π frequency. Notice that, as m and r increase, the
transition from the pass–band to the stop–band is sharper.

Substituting (15)-(16) into the ARIMA representation, the series can be decomposed into
two orthogonal components:

yt = µt + ψt,

φ(L)ϕ(L)(∆dµt − β) = (1 + L)rθ(L)ζt, ζt ∼ NID(0, σ2)
φ(L)ϕ(L)ψt = ∆m−dθ(L)κt, κt ∼ NID(0, λσ2).

(17)

The trend or low-pass component has the same order of integration as the series (regardless of
m), whereas the cycle or high-pass component is stationary provided that m ≥ d, which will be
assumed throughout.

Given the availability of a doubly infinite sample, the Wiener-Kolmogorov estimators of the
components are µ̃t = wµ(L)yt and ψ̃t = [1 − wµ(L)]yt, where the impulse response function of
the optimal filters is given by (6). Hence, the signal extraction filter for the central data points
will continue to be represented by (6), regardless of the properties of yt, but this is the only
feature that is invariant to the nature of the time series and its ARIMA representation. The
mean square error of the smoothed components, as a matter of fact, depends on the ARIMA
model for yt. In finite samples, the estimators and their mean square errors will be provided by
the Kalman filter and smoother associated with the model (17), and thus will depend on the
ARIMA model for yt.

Band-pass filters can also be constructed from the principle of decomposing the low-pass
component in (17). Let us consider fixed values of m and r and two cutoff frequencies, ωc1

and ωc2 > ωc1, with corresponding values of the smoothness parameter λ1 and λ2, determined
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according to (7). Obviously λ1 > λ2. The trend-cycle decomposition corresponding to the triple
m, r, λ2 (or, equivalently, m, r, ωc2), is as in (17):

yt = µ2t + ǫt,

∆dµ2t = β + (1+L)r

ϕ2(L)
θ(L)
φ(L)ζ2t, ζ2t ∼ NID(0, σ2)

ǫt = (1−L)m

ϕ2(L)
θ(L)

∆dφ(L)
κ2t, κ2t ∼ NID(0, λ2σ

2)

(18)

with |ϕ2(L)|2 = |1 + L|2r + λ2|1 − L|2m.
We can similarly define the trend-cycle decomposition corresponding to the triple m, r, λ1

(or, equivalently, m, r, ωc1), yt = µ1t +ψt. As λ1 > λ2 this decomposition features a lower cutoff
frequency, ωc1, thereby yielding a smoother trend. The components µ1t and ψt are defined as
in (18), with ϕ1(L), ζ1t ∼ NID(0, σ2) and κ1t ∼ NID(0, λ1σ

2) replacing respectively ϕ2(L), ζ2t

and κ2t. The polynomial ϕ1(L) is such that |ϕ1(L)|2 = |1 + L|2r + λ1|1 − L|2m.
The low-pass component, µ2t, can, in turn, be decomposed using the orthogonal decompo-

sition of the disturbance ζ2t:

ζ2t =
ϕ2(L)

ϕ1(L)
ζ1t +

(1 − L)m

ϕ1(L)
κ1t (19)

with
ζ1t ∼ NID(0, σ2), κ1t ∼ NID

(
0, (λ1 − λ2)σ

2
)
,E(ζ1jκ1t) = 0,∀j, t.

Under this setting, the spectrum of both sides of (19) is constant and equal to σ2/2π.
Substituting (19) into (18), and writing µ2t = µ1t + ψt, enables yt to be decomposed into

three components, representing the low-pass (µ1t), bandpass (ψt) and high-pass (ǫt) components,
respectively.

yt = µ1t + ψt + ǫt,

∆dµ1t = c + (1+L)r

ϕ1(L)
θ(L)
φ(L)ζ1t, ζ1t ∼ NID(0, σ2)

ψt = (1+L)n(1−L)m

ϕ1(L)ϕ2(L)
θ(L)

∆dφ(L)
κ1t, κ1t ∼ NID

(
0, (λ1 − λ2)σ

2)
) (20)

and ǫt, given in (18), is the high-pass component of the decomposition (20). The model can be
cast in state space form and the Kalman filter and smoother (see Appendix C) will provide the
optimal estimates of the components and their standard errors.

Figure 3 shows the gain of an ideal band-pass filter and the Baxter and King filter. The
dashed line is the gain of the model-based band-pass filter which is optimal for ψt in (20) using
m = r = 6 and the two cut-off frequencies ωc1 = 2π/32 (correponding to a period of 8 years
for quarterly data) and ωc2 = 2π/6 (1.5 years); such large values of the parameters yield a gain
which is close to the ideal box-car function. The HP band-pass curve is the gain of the Wiener-
Kolmogorov filter for extracting the component ψt in (20) with m = 2, r = 0, and ωc1, ωc2 given
above. In this case the leakage is larger but, as shown in Proietti (2004), taking large values of
m and r is detrimental to the reliability of the end of sample estimates.

2.7 Applications of model-based filtering: band-pass cycles and the
estimation of recession probabilities

We present two applications of the model-based filtering approach outlined in the previous
section. Our first illustration deals with the estimation and the assessment of the reliability of
the deviation cycle in U.S. GDP. The cycle is defined as the high-pass component extracting the
fluctuations in the level of log GDP that have a periodicity smaller than ten years (40 quarters).
To evaluate model uncertainty, we fit three models to the logarithm of GDP, namely a simple
random walk, or ARIMA(0,1,0) model (σ̂2 = 0.8570), an ARIMA(1,1,0) model (the estimated
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Figure 3: Gain function of the ideal business cycle band-pass filter, the Baxter and King filter and
two model based filters.

first order autoregressive coefficient is φ̂ = 0.33 and σ̂2 = 0.8652), and finally, we considered the
ARIMA(2,1,2) model fitted in section 2.5, whose parameter estimates were reported in table 1.

The estimates of the low-pass component corresponding to the three models setting m =
2, r = 0 (and thus λ = 1600 and ωc = 0.158279) are displayed in the top right hand panel of
figure 4, along with the Leser-HP cycle. The estimates for the three models are obtained as the
conditional mean of ψt given the observations by applying the Kalman filter and smoother to
the representation (17); the algorithm also provides their estimation error variance. It must be
stressed that the Leser-HP filter is optimal for a restricted IMA(2,2) process and thus it does
not yield the minimum mean square estimator of the cycle, nor its standard error. In general,
also looking at the middle panel, which displays the estimated cycles for the last 12 years, the
model-based estimates are almost indistinguishable, and are quite close to the Leser-HP cycle
estimates in the middle of the sample. Large differences with the latter arise at the beginning,
where the low-pass component had greater amplitude, and at the end of the sample period.

The particular model that is chosen matters little as far as the point estimates of ψt are
concerned. Nevertheless, it is relevant for the assessment of the accuracy of the estimates,
as can be argued from the right middle panel of the figure, which shows the estimation error
variance, Var(ψt|Yn) for the three models of US GDP. It is also evident that the standard errors
obtained for the Leser-HP filter would underestimate the uncertainty of the estimates.

We conclude this first illustration by estimating the deviation cycle as a band-pass com-
ponent, assuming that the true model is the ARIMA(2,1,2) and using the cut-off frequencies
ωc1 = 2π/32, ωc2 = 2π/6, and the values m = 2, r = 0; as a consequence, the component ψt in
(20) selects all the fluctuations in a range of periodicity that goes from one and a half years (6
quarters) to 8 years (32 quarters). The gain of the filter is displayed in figure 3. The estimates
of ψt are compared to the Baxter and King cycle in the bottom left panel of figure 4 and to the
corresponding high-pass estimates (ψt + ǫt). With respect to the BK cycle, the estimates are
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Figure 4: Model-based filtering. Estimates of the low-pass component (using the ARIMA(2,1,2)
model) and of the high-pass and band-pass components in U.S. GDP, and their comparison with
the Leser-HP cycle and the Baxter and King cycle.
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available also in real time.
The conclusion is that model-based filtering improves the quality of the estimated low-pass

component, providing estimates at the boundary of the sample period that are automatically
adapted to the series under investigation, and enables the investigator to assess the reliability
of the estimates (conditional on a particular reduced form).

The second application deals with assessing the uncertainty in estimating the business cycle
chronology. According to the classical definition, the business cycle is a recurrent sequence of
expansions and contractions in the aggregate level of economic activity; see Burns and Mitchell
(1946, p. 3). Dating the business cycle amounts to establishing a set of reference dates that
mark the phases or states of the economy. Usually two phases, recessions and expansions, are
considered, that are delimited by peaks and troughs in economic activity. Dating is carried out
by an algorithm, such as that due to Bry and Boschan (1971), or that proposed by Artis et
al. (2004), which aims at estimating the location of turning points, enforcing the alternation
of peaks and troughs and minimum duration ties for the phases and the full cycle. Downturns
and upturns have to be persistent to qualify as cycle phases; thus, they need to fulfill minimum
duration constraints, such as at least two quarters for each phase; moreover, to separate it from
seasonality, a complete sequence, recession-expansion or expansion-recession, i.e. a full cycle,
has to last longer than one year. Depth restrictions, motivated by the fact that only major
fluctuations qualify for the phases, should also be enforced.

An integral part of the dating algorithm is prefiltering, which is necessary in order to isolate
the fluctuations in the series with period greater than the minimum cycle duration. For instance,
in the quarterly case we need to abstract from all the fluctuations with periodicity less than 5
quarters, i.e., from high frequency fluctuations that do not satisfy the minimum cycle duration.
En lieu of the ad hoc and old fashioned moving averages adopted by Bry and Boschan, one can
use model based low-pass signal extraction filters.

The advantages are twofold: on the one hand it is possible to select the cut-off frequency so
as to match the minimum cycle duration; for instance, in our case ωc = 2π/5. Secondly, the
uncertainty in dating arising from prefiltering can be assessed by Monte Carlo simulation, by
means of an algorithm known as the simulation smoother, see de Jong and Shephard (1995),
Durbin and Koopman (2002) and appendix C.4. This repeatedly draws simulated samples from
the posterior distribution of the low-pass component with a cut-off frequency corresponding to

5 quarters, µ̃
(i)
t ∼ µt|Yn, so that by repeating the draws a sufficient number of times we can get

Monte Carlo estimates of different aspects of the marginal and joint distribution of the low-pass
component, intended here as the level of output devoid of all fluctuations with a periodicity
smaller that 5 quarters.

Figure 5 plots the recession frequencies, i.e., the relative number of times each quarter was
classified as a recessionary period. For this purpose 5000 draws from the conditional distribution
of µ|y were extracted; each quarter was classified as recession or expansion according to the
Artis et al. (2004) Markov chain dating algorithm. There is a close agreement with the NBER
chronology, which is not based on GDP alone, and the last recession, which started in March 2001
and ended in October 2001, was really mild in terms of GDP; in fact, the recession frequency is
only in one quarter greater than 0.5.

2.8 Ad-hoc filtering and the Slutsky-Yule effect

A filter is ad hoc when it is invariant to the properties of the time series under investigation.
An instance is provided by the Leser-HP filter with a fixed smoothing parameter, and another
example is the BK filter. The potential danger associated with an ad hoc cycle extraction filter
is that the filtered series displays cyclical features that are absent from the original series. The
risk of extracting spurious cycles is known in the time series literature as the Slutsky-Yule effect.
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Figure 5: Relative number of times each quarter is classified as a recessionary period, using 5000
simulated samples. The shaded areas represent NBER recessions.

The distortionary effects of the Leser-HP filter have been discussed by King and Rebelo
(1993), Harvey and Jäger (1993), and Cogley and Nason (1995). These authors document that,
when the series to which the filter is applied is difference stationary (e.g., a random walk, or
an integrated random walk), the detrended series can display spurious cyclical behaviour. As a
matter of fact, the transfer function will display a distinctive peak at business cycle frequencies,
which is only due to the leakage from the nonstationary component. Moreover, the filter seriously
distorts the evidence for the comovements among detrended series.

The issue of spuriousness is problematic, at least, if not tautological. The main difficulty
stems from the fact that it ties in with a more fundamental question concerning what is indeed
the cycle in economic time series. If we adhere to the band–pass paradigm of viewing the cycle as
consisting of those fluctuations within a give range of periodicity, than the case for spuriousness
is much less compelling.

Another source of concern among practitioners, especially for the conduct of monetary policy,
relates to the end of sample behaviour of the Leser-HP filter: the real time estimates would be
subject to “end-of-sample bias”, since they result from the application of a one-sided filter and
will suffer from both phase shifts and amplitude distorsions. One has to separate two issues:
as we hinted before, the IMA(2,2), for which the Leser-HP filter is the optimal filter, is usually
misspecified for macroeconomic time series. As a result, the cycle estimates have no optimality
properties. Model–based bandpass filtering is aimed at overcoming this limitation. Having
said that, it is a fact of life that, for a correctly specified model, the optimal real time signal
extraction filter will be one-sided and thus will produce phase-shifts and amplitude distortions.
We will return to this issue in section 4.2.
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3 Multivariate Models

Information on the output gap is contained in macroeconomic variables other than aggregate
output, either because those variables provide alternative measures of production, or because
they are functionally related to the output gap. In this section we start from the consideration of
a bivariate model that, along with an output decomposition, includes an inflation equation. We
then extend the model to include other variables, such as the unemployment rate and industrial
production, and consider the estimation of a monthly model using quarterly observations on
real GDP.

3.1 Bivariate models of real output and inflation

Price inflation carries relevant information for the output gap. The definition of the latter as
an indicator of inflationary pressure and, correspondingly, of potential output as the level of
output consistent with stable inflation, makes clear that a rigorous measurement can be made at
least within a bivariate model of output and inflation, embodying a Phillips curve relationship.
The Phillips curve establishes a relation between the nominal price or wage inflation rate, ∆pt,
where, for instance, pt is the logarithm of the consumer price index (CPI), and an indicator of
excess demand, typically the output gap (ψt).

A general specification is the following:

δ(L)∆pt = c + θψ(L)ψt + γ(L)′xt + ξpt, (21)

where c is a constant, xt denotes a set of exogenous supply shocks, such as changes in energy
prices and terms of trade, and ξpt is WN. Often the restriction is imposed that the sum of the
AR coefficients on lagged inflation is unity, δ(L) = ∆δ∗(L), where δ∗(L) is a stationary AR
polynomial; the gap enters the equation with more than one lag to capture also the role of the
change in demand, since we can rewrite θψ(L) = θψ(1) + ∆θ∗ψ(L). This is known as Gordon’s
“triangle” model of inflation, see Gordon (1997), since it features the three main driving forces:
inertia (or inflation persistence, via δ(L)), endogenous demand shocks (via ψt), and exogenous
supply shocks (via xt). If δ(L) has a unit root and θψ(1) 6= 0 the output gap has permanent
effects on the inflation rate. If, instead, θψ(1) = 0, then the output gap is neutral in the long
run and the inflation rate shares a common cycle in the levels with output. Harvey et al. (2007)
consider the Bayesian estimation of a bivariate model of output and inflation, where the cycle
in inflation is driven by the output gap plus an idiosyncratic cycle.

Kuttner (1994) estimated potential output and the output gap for the U.S. using a bivariate
model of real GDP and CPI inflation. The output equation was specified as in the Clark (1987)
model, i.e., yt = µt +ψt, such that potential output is a random walk with drift and the output
gap is an AR(2) process driven by orthogonal disturbances. The equation for the inflation rate
is a variant of Gordon’s triangle model:

∆pt = c + γ∆yt−1 + θψψt−1 + v(L)ξpt,

according to which the inflation rate is linearly related to the lagged output gap and to lagged
GDP growth; inflation persistence is captured by the MA feature, v(L)ξpt, where the disturbance
ξpt is allowed to be correlated with the output gap disturbance, κt. The inclusion of lagged real
growth is not formally justified by Kuttner, and the correlation between ξpt and κt makes the
dynamic relationship between the output gap and inflation more elaborate than it appears at
first sight (for instance, inflation depends on the contemporaneous value of the gap). Moreover,
permanent shocks are allowed to drive inflation via the term ∆yt−1 = β + ηt−1 + ∆ψt−1, so
that it cannot be maintained that µt is the noninflationary level of output. Planas et al. (2007)
consider the Bayesian estimation of Kuttner’s bivariate model, with the only variant being that
the MA feature is replaced by an autoregressive feature: δ(L)∆pt = c + γ∆yt−1 + θψψt−1 + ξpt.
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Gerlach and Smets (1999) again use a bivariate model of output and inflation, but the output
gap generating equation takes the form of an aggregate demand equation featuring the lagged
real interest rate as an explanatory variable. The inflation equation is specified as in (21) with
δ(L) = ∆.

The Gordon triangle model may be interpreted as a reduced form of a structural model of
inflation that embodies expectations; the presence of lagged inflation in the specification reflects
backward looking inflation expectations. In the New Keynesian approach the Phillips curve is
forward looking, as inflation depends on expected future inflation. Domenech and Gómez (2006)
estimate a multivariate model of output fluctuations including a forward looking Phillips curve
specified as follows:

∆pt = c + δE(∆pt+1|Ft) + θψ(L)ψt + ξpt,

where Ft is the information set at time t. Basistha and Nelson (2007) estimate a bivariate
model of output and inflation where the output equation features the MNZ decomposition
with correlated components and in the inflation equation survey based expectations replace
E(∆pt+1|Ft).

3.2 A bivariate quarterly model of output and inflation for the U.S.

This section is devoted to the estimation of a bivariate model for U.S. quarterly real GDP and
the quarterly rate of inflation ∆pt, where pt is the logarithm of quarterly CPI for the U.S, using
data from the first quarter of 1950 to the fourth quarter of 2006. The KPSS test conducted on
the inflation series leads to the rejection of the null of stationarity against a random walk for all
the values of the lag truncation parameter up to 5; if a linear trend is considered and stationarity
is tested against a random walk with drift, then the null is rejected also for much higher values
of the lag truncation parameter. In the sequel, inflation will be taken to be integrated of order
one. The model has the following specification:

yt = µt + ψt, t = 1, . . . , n,
µt = µt−1 + βt + ηt, ηt ∼ NID(0, σ2

η)
ψt = φ1ψt−1 + φ2ψt−2 + κt, κt ∼ NID(0, σ2

κ)

∆pt = τt + εpt εpt ∼ NID(0, σ2
pε)

τt = τt−1 + θψ(L)ψt + ητt ητt ∼ NID(0, σ2
τη);

(22)

where ηt, κt, εpt,and κ∗
t are mutually independent.

The output equation is the usual decomposition into orthogonal components; the inflation
equation is a decomposition into a core component, τt, and a transitory one. The changes in
the core component are driven by the output gap and by the idiosyncratic disturbances ητt.
The lag polynomial θψ(L) = θψ0 + θψ1L can be rewritten as θψ(1)− θψ1∆, which enables us to
isolate the level effect of the gap from the change effect, which we expect to be positive, that is
we expect θψ1 < 0. If θψ(1) = 0, the inflation equation can be rewritten ∆pt = τ∗

t − θψ1ψt + εt,
with ∆τ∗

t = ητt, so that output and inflation would share a common cycle.
We also extend the specification of model (22) to take into account an important stylised

fact, known as the ”great moderation” of the business cycle, and which consists of a substantive
reduction in the volatility of GDP growth. This feature is visible from the plot of ∆yt in figure
1. The date when the structural break in volatility occurred is identified as the first quarter of
1984 (see Kim and Nelson, 1999, McConnell and Perez-Quiros, 2000, and Stock and Watson,
2003).

Let St denote an indicator variable which takes the value 1 in the high volatility state (which
we label regime a) and 0 in the low volatility state (regime b). The trend and cycle disturbance
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Table 2: Maximum likelihood estimation results for bivariate models of quarterly U.S. log GDP
(yt) and the consumer price inflation rate (∆pt), 1950.1-2006.4.

Bivariate Great Moderation
Parameter Std. Error Parameter Std. Error

yt equation
σ2

η 0.33 0.14
σ2

ηa 0.58 0.27
σ2

ηb 0.13 0.05

σ2
κ 0.38 0.15

σ2
κa 0.47 0.24

σ2
κb 0.06 0.04

φ1 1.47 0.06 1.55 0.06
φ2 -0.54 0.10 -0.60 0.09

∆pt equation
σ2

pε 0.11 0.03 0.12 0.03
σ2

τη 0.05 0.02 0.05 0.02
θψ0 0.12 0.05 0.12 0.06
θψ1 -0.10 0.05 -0.10 0.06

Wald tests of restriction θψ(1) = 0
2.00 1.68

loglik -447.79 -415.53

variances are time varying and the model will be specified as in (22) with

ηt ∼ N
(
0, Stσ

2
ηa + (1 − St)σ

2
ηb

)
, κt ∼ N

(
0, Stσ

2
κa + (1 − St)σ

2
κb

)
.

This will be referred to as the GM specification. We shall consider two cases: (i) the sequence St

is deterministic, taking the value 1 before 1984:1, and 0 thereafter; (ii) St is a random process,
which we model as a first order Markov Chain with initial probability p(S0 = 1) = 1, i.e., we
know for certain that the process started in a high variance state, and transition probabilities
P (St = j|St−1 = i) = Tij , i = 0, 1, with Tij = 1 − Tii for j 6= i.

3.2.1 Maximum likelihood estimation

The bivariate model and its GM extension under assumption (i) were estimated by maximum
likelihood in the time domain. The likelihood is evaluated by the Kalman filter, see Appendix
C for details. The parameter estimates and the associated standard errors are reported in table
2. The estimated trend and cycle disturbance variances are smaller after 1984:1 (regime b), as
expected, and the likelihood ratio test of the homogeneity hypothesis, H0 : σ2

ηa = σ2
ηb, σ

2
κa = σ2

κb,
clearly leads to a rejection. The roots of the AR polynomial for the output gap are complex
and the loadings of core inflation on the output gap are significantly different from zero at the
5% level. The table also reports the Wald test for the null of long run neutrality of the output
gap, H0 : θψ(1) = 0, which is accepted under both specifications, with p-values equal to 0.16
and 0.19. The evidence is thus that the output gap has only transitory effects on the level of
inflation.

Figure 6 displays the point and 95% interval estimates of the output gap and the core
component of inflation for both specifications. It is interesting that the explicit consideration of
the great moderation of volatility makes the estimates of the output gap after the 1984 break
more precise. In interpreting this result, we must stress that the interval estimates make no
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Figure 6: Estimates of the output gap and core inflation using the ML estimates of the parameters
of the bivariate models of output and inflation under two specifications.

allowance for parameter uncertainty and for the uncertainty in dating the transition from the
high volatility state to the low volatility one.

3.2.2 Bayesian estimation

Let us focus on the standard bivariate model (22) first and denote by y the stack of the ob-
servations (yt,∆pt) for t = 1, . . . , n, α = (α′

0, . . . ,α
′
n)′, where the state vector at time t is

αt = (µt, βt, ψt, ψt−1, τt). Also, let µ, ψ, η, κ, denote, respectively, the stack of potential
output, the output gap, the disturbances ηt, and the cycle disturbances, where, for instance,
ψ = (ψ1, . . . , ψn), and let Ξ = [φ1, φ2, σ

2
η, σ2

κ, σ2
pε, σ

2
τη, θψ0, θψ1] denote the vector of hyperpara-

meters3. Notice that knowledge of α implies knowledge of both the individual state components
and the disturbances. Our main interest lies in aspects of the posterior marginal densities of the
states given the observations, e.g., f(ψ|y) and f(Ξ|y): for instance E[h(ψ)] =

∫
h(ψ)f(ψ|y)dψ,

for some function h(·) such as h(ψ) = ψt. The computation of the integral is carried out by

stochastic simulation: given a sample ψ
(i)
t , i = 1, . . . , M , drawn from the posterior f(ψ|y),

E[h(ψ)] is approximated by M−1
∑

i h
(
ψ

(i)
t

)
. The required sample is obtained by Monte Carlo

Markov Chain methods and, in particular, by a Gibbs sampling (GS) scheme that we now

3The slope parameter is included in the state vector; the transition equation is βt = βt−1, with β0 being a diffuse
parameter (see appendix C).
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discuss in detail. This scheme produces correlated random draws from the joint posterior den-
sity f(α,Ξ|y), and thus from f(ψ|y), by repeatedly sampling an ergodic Markov chain whose
invariant distribution is the target density; see Chib (2001) and the references therein.

This is achieved by the following iterative scheme. Specify an initial value α(1),Ξ(1). For
i = 1, 2, . . . ,M :

1. generate α(i) ∼ f(α|Ξ(i−1),y) using the simulation smoother, see Appendix C.4;

2. generate Ξ(i) ∼ f(Ξ(i)|α(i),y) This block is divided into smaller components, whose full
conditional distribution is available for sampling. In particular,

(a) Generate (φ
(i)
1 , φ

(i)
2 )′ from the full conditional (φ1, φ2)

′|ψ, σ
2(i−1)
κ (this distribution

is conditionally independent of y, given ψ). Assuming a Gaussian prior distri-

bution, N(mφ0,Σφ0), (φ1, φ2)
′|ψ, σ

2(i−1)
κ ∼ N(mφ1,Σφ1) where, denoting χt−1 =

(ψ
(i−1)
t−1 , ψ

(i−1)
t−2 )′,

Σφ1 =

(
Σ−1

φ0 +
1

σ
2(i−1)
κ

∑

t

χt−1χ
′
t−1

)−1

, mφ1 = Σφ1

(
Σ−1

φ0 mφ0 +
1

σ
2(i−1)
κ

∑

t

χt−1ψt

)
.

The generations are repeated until a draw falls inside the stationarity region.

(b) Generate σ
2(i)
η from the full conditional inverse gamma (IG) distribution

σ2
η|η

(i−1) ∼ IG

(
vη + n

2
,
δη +

∑
t η

(i−1)2

t

2

)

This assumes that the prior distribution is σ2
η ∼ IG(vη/2, δη/2).

(c) Generate σ
2(i)
κ from the full conditional IG distribution

σ2
κ|κ

(i−1) ∼ IG

(
vκ + n

2
,
δκ +

∑
t κ

(i−1)2

t

2

)
.

This assumes that the prior distribution is σ2
κ ∼ IG(vκ/2, δk/2).

(d) Generate (θ
(i)
ψ0, θ

(i)
ψ1)

′. Assuming the Gaussian prior (θψ0, θψ1)
′ ∼ N(mθ0,Σθ0), the

full posterior is (θψ0, θψ1)
′|τ , σ

2(i−1)
τη ∼ N(mθ1,Σθ1), where τ = (τ1, . . . , τn), and

Σθ1 =

(
Σ−1

θ0 +
1

σ
2(i−1)
τη

∑

t

χtχ
′
t

)−1

, mφ1 = Σφ1

(
Σ−1

θ0 mφ0 +
1

σ
2(i−1)
τη

∑

t

χt∆τt

)
.

(e) Generate σ
2(i)
pε from the full conditional IG distribution:

σ2
pε|ε

(i−1)
p ∼ IG

(
vε + n

2
,
δε +

∑
t(ε

(i−1)
t )2

2

)
.

Here εp is the stack of the inflation equation measurement disturbances, and we
assume the prior σ2

pε ∼ IG(vε/2, δε/2).

(f) Generate σ
2(i)
τη from the full conditional IG distribution

σ2
τη|η

(i−1)
τ ∼ IG

(
vτ + n

2
,
δτ +

∑
t η

(i−1)2

τt

2

)
,

where ητ is the stack of the inflation equation core level disturbances, and we assume
the prior σ2

ητ ∼ IG(vτ/2, δτ/2).
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Figure 7: Bayesian estimation of the standard bivariate output gap model. Point and 95% interval
estimates of the output gap; posterior densities of variance and loadings parameters; draws from
the posterior of the AR parameters.

The above GS scheme defines a homogeneous Markov Chain such that the transition kernel
is formed by the full conditional distributions and the invariant distribution is the unavailable
target density.

The IG prior for the variance parameter is centred around the maximum likelihood estimate
and is not very informative (vη = vκ = vε = vτ = 4, and n = 426); for the AR parameters
and the loadings impose a standard normal prior. The number of samples is M = 2000 after
a burn-in sample of size 1000. Figure 7 displays the posterior means and the 95% interval
estimates of the output gap (first panel), along with a nonparametric estimate of the posterior
density of the variance parameters σ2

η and σ2
κ (top right panel); the modes are not far from the

maximum likelihood estimates. The bottom left panel shows the M draws (φ
(i)
1 , φ

(i)
2 ) from the

posterior of the AR parameter distribution. The triangle delimits the stationary region of the
parameter space; the posterior means are 1.48 for φ1 and -0.57 for φ2. Finally, the last panel
shows the posterior distribution of the change effect, −θψ1, and the level effect θψ(1). The 95%
confidence interval for the latter is (-0.01, 0.05), which confirms that the output gap has only
transitory effects on inflation. The posterior mean of ψt does not differ from the point estimates
arising from the classical analysis. However, the classical confidence intervals in figure 6 are
constructed by replacing Ξ with the ML estimates and thus do not take into account parameter
uncertainty (see also section 4.2). It cannot be maintained that the classical estimates are more
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reliable.
For the GM model, the parameter set Ξ is such that the trend and cycle disturbance variances

are replaced by the variances in the two regimes, σ2
ηa, σ2

ηb, σ
2
κa, σ2

κb, and under the Markov
switching specification (ii), according to which St is a first order Markov Chain, includes the
transition probabilities T11, T00.

The steps the GS algorithm need to be amended. An additional step is necessary to
draw a sample from the distribution of S = (S0, . . . , Sn) conditional on α and Ξ. Notice
that this distribution depends on these random vectors only via η, κ, and the elements of Ξ,
σ2

ηa, σ2
ηb, σ

2
κa, σ2

κb, T11, T00. Sampling from the full posterior of the indicator variable S is achieved
by the following algorithm (Carter and Kohn, 1994):

1. Sample S
(i)
n from the filtered state probability distribution P (Sn|α,Ξ,y) = P (Sn|η, κ,Ξ)

2. For t = n − 1, . . . , , 1, 0, sample S
(i)
t from the conditional probability distributional

P (St|S
(i)
t+1, η, κ,Ξ) =

P (S
(i)
t+1|St,Ξ)P (St|η

t, κt,Ξ)
∑

St
P (S

(i)
t+1|St,Ξ)P (St|ηt,κt,Ξ)

.

where ηt = (η0, . . . , ηt) and κt = (κ0, . . . , κt).

The filtered probabilities, P (St|η
t,κt,Ξ) are obtained by the following discrete filter:

(i) The filter is started with the initial distribution P (S0 = 1|η0, κ0,Ξ) = 1, P (S0 = 0|η0, κ0,Ξ) =
0, that is we impose that St started in the high volatility regime.

(ii) For t = 1, 2, . . . , n, compute the one-step ahead probability distribution P (St|η
t−1, κt−1,Ξ) =∑

St−1
P (St|St−1,Ξ)P (St−1|η

t−1, κt−1,Ξ).

(iii) Compute the filtered probabilities

P (St|η
t,κt,Ξ) =

f(ηt, κt|St,Ξ)P (St|η
t−1, κt−1,Ξ)∑

St
f(ηt, κt|St,Ξ)P (St|ηt−1,κt−1,Ξ)

,

where f(ηt, κt|St, Ξ) is the product of two independent Gaussian densities with time-
varying scale parameters.

Gerlach et al. (2000) have proposed an alternative sampling scheme for the indicator variable
St which generates samples from P (St|Sj 6=t,y,Ξ) without conditioning on the states or the
disturbances. This is more efficient than the above sampler if St is highly correlated with the
states or the disturbances, which is not the case in our particular application.

Steps 1 and 2 of the GS algorithm are similar but the full posteriors are understood to be
conditional on S(i−1) as well. Furthermore, an additional step, 2-(g), is added for sampling from
the full conditionals of the transition probabilities, T11, T22, and the steps 2 (b) and 2 (c) are
replaced as follows:

(b) Generate σ
2(i)
ηa and σ

2(i)
ηb from

σ2
ηa|η

(i−1),S(i−1) ∼ IG

(
vη +

∑
t S

(i−1)
t

2
,
δη +

∑
t S

(i−1)
t η

(i−1)2

t

2

)
,

σ2
ηb|η

(i−1),S(i−1) ∼ IG

(
vη +

∑
t(1 − S

(i−1)
t )

2
,
δη +

∑
t(1 − S

(i−1)
t )η

(i−1)2

t

2

)
.

This assumes that the prior distribution is σ2
ηa and σ2

ηb ∼ IG(vη/2, δη/2).
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(c) Generate σ
2(i)
κa and σ

2(i)
κb from

σ2
κa|κ

(i−1),S(i−1) ∼ IG

(
vκ +

∑
t S

(i−1)
t

2
,
δκ +

∑
t S

(i−1)
t κ

(i−1)2

t

2

)
,

σ2
κb|κ

(i−1),S(i−1) ∼ IG

(
vκ +

∑
t(1 − S

(i−1)
t )

2
,
δκ +

∑
t(1 − S

(i−1)
t )κ

(i−1)2

t

2

)
.

This assumes that the prior distribution is σ2
κa and σ2

κb ∼ IG(vκ/2, δκ/2).

(g) Generate T
(i)
11 , T

(i)
10 = 1 − T

(i)
11 and T

(i)
00 , T

(i)
01 = 1 − T

(i)
00 from the posterior

T
(i)
11 |S(i−1) ∼ B

(
a1 + N

(i−1)
11 , b1 + N

(i−1)
10

)
, T

(i)
00 |S(i−1) ∼ B

(
a0 + N

(i−1)
00 , b0 + N

(i−1)
01

)

where B(a, b) is the Beta distribution, N
(i−1)
ij is the number of transitions from S

(i−1)
t =

i to S
(i−1)
t+1 = j, and ai, bi, i = 0, 1 are the parameters of the Beta prior distributions

(set equal to a1 = b1 = b0 = 1, a0 = 5). Notice that the transition probabilities are
conditionally independent of α and the other elements of Ξ, given S.

Figure 8 summarises aspects of the posterior distribution of the cycle, the indicator St, and
some important parameters using a sample of M = 2000 draws from the GS scheme outlined
above with a burn-in of 2000 iterations. Interestingly, the output gap interval estimates are more
widely dispersed than in the original specification with no Markov switching in the disturbance
variances. This is so since the GM specification has a further source of variation and uncertainty,
related to the state of Markov Chain St, which in turn drives the changes in the volatility regime.
As a result the Bayesian interval estimates cannot be compared with the classical ones reported
in the bottom left panel of figure 6, since those were derived under the assumption that St was
deterministic and known, and they make no allowance for parameter uncertainty. The estimated
posterior probabilities of being in a high volatility regime confirm the general finding that the
main stylised fact is a relatively sharp change point taking place in the first quarter of 1984,
although there remains some uncertainty around that date. The nonparametric estimates of
the posterior distribution of the transition probabilities T11 and T00 are displayed in the last
panel of the figure. The posterior distributions of the variance parameters for the trend and
cycle disturbances strongly confirm the great moderation hypothesis, and quantify it further,
as both the permanent and transitory disturbances underwent a significant volatility reduction.
The posterior means do not differ from the ML estimates reported in table 2: E(σ2

ηa|y) =
0.60, E(σ2

ηb|y) = 0.14 and E(σ2
κa|y) = 0.51,E(σ2

κb|y) = 0.09. As far as the inflation equation is
concerned, the overall conclusion is unchanged: the output gap is a significant source of variation
(the value −θψ1 = 0 is estimated to be the 2.6 percentile of the posterior distribution of −θψ1,
which measures the change effect, but it drives inflation only in the short run, as the null of
long run neutrality is accepted (the 95% credible set for θψ(1) is the interval (-0.01, 0.05)).

3.3 Multivariate extensions

The output gap is related to the deviations of the unemployment rate, ut, from its ”natural
rate” or NAIRU via Okun’s law. Okun (1962) defined natural unemployment as that level of
unemployment occurring when output is equal to its potential, and established an empirical law
of strict proportionality between cyclical unemployment and the output gap. Hence, Okun’s
law is meant to imply that output and the unemployment rate share a common cycle.

Against this background, Clark (1989) estimated a bivariate model of U.S. real output and
unemployment such that output and unemployment are decomposed into two unrelated per-
manent components and the comovements between the two series result from the presence of
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Figure 8: Bayesian estimation of the bivariate output gap model with Markov switching in the
variances of the trend and cycle disturbances (GM specification). Point and 95% interval estimates
of the output gap; posterior probabilities of the high volatility state, P (St = 1|y), and posterior
densities of variance and loadings parameters.
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a common cycle, represented as an AR(2) stationary component. Apel and Jansson (1999)
obtained estimates of the NAIRU and potential output for the U.K, U.S. and Canada, based
on an unobserved components model of output, inflation and unemployment rates.

Another important multivariate extension of the basic bivariate model is the production

function approach (PFA) to the estimation of potential output and the output gap, according to
which potential output is obtained from the trend, or “non-inflationary”, levels of its structural
determinants, such as productivity and factor inputs. This approach is currently one of most
popular method of measuring potential output among statistical agencies, being employed by
the OECD (2001), the International Monetary Fund (de Masi, 1997), the Congressional Budget
Office (2001), and the European Commission (see McMorrow and Roeger 2001).

The PFA assumes that technology can be represented by a Cobb-Douglas production function
with constant return to scale on labour, measured by hours worked or by the number of employed
persons, and capital:

yt = ft + αht + (1 − α)kt. (23)

where ft is the Solow residual, ht is hours worked, kt is the capital stock (all variables expressed
in logarithms), and α is the elasticity of output with respect to labour (0 < α < 1).

To achieve the decomposition yt = µt + ψt, the variables on the right hand side of equation
(23) are broken down additively into their permanent (denoted by the superscript P ) and
transitory (denoted by the superscript T ) components, giving:

ft = f (P )

t + f (T )

t , ht = h(P )

t + h(T )

t , kt = k(P )

t . (24)

It should be noticed that potential capital is always assumed to be equal to its actual value;
this is so since capacity utilisation is absorbed in the cyclical component of the Solow residual.
Only survey based measures of capacity utilisation for the manufacturing sector are available
for the euro area.

Hence potential output is the value corresponding to the permanent values of factor in-
puts and the Solow residual, while the output gap is a linear combination of the transitory
components:

µt = f (P )

t + αh(P )

t + (1 − α)kt,
ψt = f (T )

t + αh(T )

t .
(25)

Hours worked can be separated into four components that are affected differently by the
business cycle, as can be seen from the identity ht = nt+prt+ert+hlt, where nt is the logarithm
of working age population (i.e., population of age 15-64), prt is the logarithm of the labour force
participation rate (defined as the ratio of the labour force to the working age population), ert

is the logarithm of the employment rate (defined here as the ratio of employment to the labour
force), and hlt is the logarithm of labour intensity (i.e., average hours worked). Each of these
determinants is in turn decomposed into its permanent and transitory component in order to
obtain the decomposition:

h(P )

t = nt + pr(P )

t + er(P )

t + hl(P )

t , h(T )

t = pr(T )

t + er(T )

t + hl(T )

t . (26)

The idea is that population dynamics are fully permanent, whereas labour force participation,
employment and average hours are also cyclical. Moreover, since the employment rate can be
restated in terms of the unemployment rate, we can relate the output gap to cyclical unem-
ployment and potential output to structural unemployment. As a matter of fact, since the
unemployment rate is one minus the employment rate, ut = log(1 − exp(ert)), the variable
curt = −ert (the contribution of the unemployment rate, using a terminology due to Rünstler,
2002), is the first order Taylor approximation to the unemployment rate. Thus, cur(P )

t can be
assimilated to the NAIRU and cur(T )

t to the unemployment gap.
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The PFA has the appealing feature that it uses a lot of economic information on the determi-
nants of potential output; however, apart from the stringent data requirements (in particular it
requires the capital stock and hours worked), it requires the decomposition of the series involved
into their permanent and transitory components. Proietti et al. (2007) propose a structural
time series model-based implementation of the PFA approach, and Proietti and Musso (2007)
extend it to carry out a growth accounting analysis for the euro area.

3.4 A multivariate model with mixed frequency data

This section presents the results of fitting a multivariate monthly time series model for the
U.S. economy, using quarterly observations for GDP and monthly observations for industrial
production, ipt, the unemployment rate, ut, and CPI inflation, ∆pt. The equation for the
logarithm of GDP is the usual decomposition yt = µt + ψt as in (22), with the important
difference that the model is now formulated at the monthly frequency. The CPI equation is also
specified as in (22).

Industrial production is included since it is an important timely coincident indicator: the
time series model for ipt is the trend-cycle decomposition ipt = µip,t+θipψt+ψip,t, where µip,t =
µip,t−1 + βip + ηip,t, and we assume that the trend disturbance is contemporaneously correlated
with GDP trend disturbance, ηt, ηip,t ∼ N(0, σ2

η,ip), E(ηtηip,t) = σy,ip. The cyclical component is
the combination of a common cycle and the idiosyncratic cycle ψip,t = φip,1ψip,t−1+φip,1ψip,t−2+
κip,t.

The unemployment rate, ut, is decomposed into the NAIRU, µu,t, and cyclical unemploy-
ment, which is a distributed lag combination of the output gap plus an idiosyncratic compo-
nent, ψut, ut = µu,t + θu0ψt + θu1ψt−1 + ψut, where the NAIRU is a random walk without
drift, µu,t = µu,t−1 + ηu,t, and we assume that ηu,t ∼ NID(0, σ2

η,u) is independent of any other
disturbance in the model, whereas ψut = φu1ψu,t−1 + φu1ψu,t−2 + κut, with κut ∼ NID(0, σ2

κu),
independently of any other disturbance.

The link between the individual time series equations is provided by the output gap, ψt,
which acts as the common cycle driving the short run fluctuations; furthermore, the trend
disturbances of yt and ipt are correlated. As GDP is quarterly, yt is unobserved, whereas the
available observations consist of the aggregated quarterly levels Yτ = exp(y3τ ) + exp(y3τ−1) +
exp(y3τ−2), τ = 1, 2, . . . , [n/3], where [·] is the integer part of the argument. For the statistical
treatment it is useful to convert temporal aggregation into a systematic sampling problem,
which is achieved by constructing a cumulator variable, generated by the following time-varying
first order autoregression (see Harvey, 1989): Y c

t = ̺tY
c
t−1 + exp(yt), where ̺t is the cumulator

coefficient, defined as follows:

̺t =

{
0 t = 3(τ − 1) + 1, τ = 1, . . . , [n/3]
1 otherwise.

Only a systematic sample of the cumulator variable Y c
τ is available; in particular the end of

quarter value is observed, for t = 3, 6, 9, . . . , [n/3].
The model is represented in the state space form (see Appendix C) with the cumulator

variable included in the state vector in the following way. The transition equation Y c
t = ̺tY

c
t−1+

exp(yt) is nonlinear, but it can be linearised around a trial estimate ỹ∗
t by a first order Taylor

series expansion:
Y c

t = ψtY
c
t−1 + exp(ỹ∗

t )[1 − ỹ∗
t ] + exp(ỹ∗

t )yt;

replacing yt = µt + ψt = µt−1 + β + φ1ψt−1 + ψ2ψt−2 in the previous expression, Y c
t can be

given a first order inhomogeneous Markovian representation, and thus the model can be cast in
state space form, so that conditionally on ỹ∗

t the model is linear and Gaussian.
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The fixed interval smoother (C) can be applied to the linearised model to yield an estimate
of the components µt and ψt of the unobserved monthly GDP (on a logarithmic scale) and thus
of the monthly series itself. The latter provides a new y∗

t value, which is used to build a new
linearised Gaussian model, by a first order Taylor series expansion of Y c

t . Iterating this process
until convergence yields an estimate of the component and of monthly GDP that satisfies the
aggregation constraints. See Proietti (2006b) for the theory and applications.

The model was estimated by maximum likelihood using data from January 1950 to December
2006. The estimated parameters for the output gap (standard errors in parentheses) are φ̂1 =

1.73 (0.021), φ̂2 = −0.744 (0.037), and σ̂2
κ = 43 × 10−7. For potential output β̂ = .003,

σ̂2
η = 204×10−7. The specific cycles for ipt and ut are estimated with zero variance, so that the

cyclical components of industrial production and unemployment are related to the output gap.
The estimated loading of ipt on ψt is θ̂ip = 2.454(0.186); furthermore, the ip trend disturbances
have variance σ̂η,ip = 3.74 × 10−7, and are positively correlated (with coefficient 0.38) with the
GDP trend disturbances. As far as unemployment is concerned, the estimated loadings on ψt

are θ̂0 = −4.771 (0.204) and θ̂1 = −2.904 (0.267); moreover, σ̂2
η,u = 9304 × 10−7, whereas the

irregular disturbance variance was set to zero.
For the inflation equation the output gap loadings are estimated as θ̂τ0 = 0.051 (0.012) and

θ̂τ1 = −0.048 (0.012); the Wald test for long run neutrality, H0 : θτ0 + θτ1 = 0 takes the value
1.401 with a p-value of 0.24, providing again evidence that the output gap has only transitory
effects on inflation. The change effect, −θτ1 is significant and has the expected sign. Finally,
the trend disturbance variance for inflation was σ̂2

υ = 2 × 10−7.
Figure 9 presents the smoothed estimates of potential output, the output gap, the NAIRU

and core inflation. As a by product, our model produces estimates of monthly GDP that are
consistent with the quarterly observed values (the temporal aggregation constraints are satisfied
exactly at convergence) and incorporate the information from related series. Comparing the
output gap estimates with those arising from the bivariate quarterly model, it can be argued
that the use of unemployment series makes a significant difference at the end of the sample.
Also, enlarging the information set is beneficial to the reliability of the output gap estimates.

If the model is extended to allow for correlation between the output gap disturbance κt

and the trend disturbance ηt, as in section 2.5, but in a multivariate set up, the estimated
correlation is r̂ = 0.10 and does not significantly differ from zero. In fact, the model with
correlated disturbances has a likelihood of 7263.51, whereas the maximised likelihood of the
restricted model (r = 0) is 7263.28. Thus, the LR test of H0 : r = 0 takes the value 0.459, with
p-value 0.50.

4 The Reliability of the Output Gap Measurement

The reliability of the output gap measurement is the subject of rich debate, and has also strong
implications for optimal monetary policy. Orphanides and van Norden (2002) and Camba-
Méndez and Rodriguez-Palenzuela (2003) discuss the different sources of uncertainty and their
empirical assessment. The former conclude that the real time estimates are unreliable. The
conclusion echoes that by Staiger, Stock and Watson (1997) and Laubach (2001) concerning
the NAIRU, obtained from a variety of methods. Somewhat different conclusions are reached
by Planas and Rossi (2004) and Proietti et al. (2007). The implications of the uncertainty
surrounding the output gap estimates for monetary policy are considered in Orphanides et al

(2000) and Ehrmann and Smets (2003), among others.
A full assessment of the output gap reliability is complicated by the very nature of the

measurement which, like the NAIRU, core inflation, and so forth, refers to a latent variable, for
which there is no underlying “true value” to be elicited by other data collection techniques.

The previous sections have presented different parametric methods that can be used to
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Figure 9: Monthly multivariate output gap model with temporal aggregation constraints. Smoothed
estimates of monthly GDP, potential output, output gap, NAIRU, cyclical unemployment and core
inflation.

33



measure the underlying signals. Assume that there is a true output gap ψt and that there is
an approximating model, denoted by M, providing a representation for it. The model specifies
how the observations are related to the object of the measurement. Let us denote by ψt,M

this (parametric) representation. Now, let ψ̃t,M denote the estimator of ψt based on model

M, i.e., using the representation ψt,M. We assume that ψ̃t,M is the optimal signal extraction

method for ψt,M. How do we judge the reliability of ψ̃t,M? Reliability is a statement concerning

the closeness of ψ̃t,M and ψt. Following Boumans (2007), two key features are accuracy and

precision, as the discrepancy ψ̃t,M − ψt can be broken down into two components: (ψ̃t,M −
ψt,M) + (ψt,M − ψt), which are associated respectively to the precision of the method, and to
the accuracy or validity of the representation chosen. Given the information set F , precision is
measured by (the inverse of) Var(ψt,M|F) = E[(ψ̃t,M − ψ̃t,M)2|F ].

4.1 Validity

Validity is usually difficult to ascertain, as it is related to the appropriateness of ψt,M as a
model for the signal ψt. This is a complex assessment, involving many subjective elements, such
as any prior available information and the original motivation for signal extraction. The issue
is indissolubly entwined with the nature of ψt: the previous paragraphs have considered two
main perspectives. The first regards ψt as the component of the series that results from the
transmission mechanism of demand or nominal shocks. The second view considers ψt as the
band–pass component of output.

Recently, there has been a surge of interest in model uncertainty and in model averaging. The
individual estimates ψ̃t,Mi

, i = 1, 2, . . . ,K, may be combined linearly, giving ψ̃t =
∑

i ciψ̃t,Mi
,

where the coefficients ci are proportional to the precision the methods, or the posterior proba-
bility in a Bayesian setting.

It is more viable to assess two other aspects of validity, namely concurrent and predictive
validity. The first is concerned with the contemporaneous relationship between the measure
ψ̃t,M and a related alternative measure of the same phenomenon. Such measures are rarely
available. Although business surveys are implemented with the objective of collecting informed
opinions on latent variables, such as the state of the business cycle, they can hardly be considered
as providing a measure of the “true” underlying state of the economy.

Predictive validity relates to the ability to forecast future realisations of yt or related vari-
ables; evaluating the mean forecast error yields useful insight on its predictive validity, as possible
bias would emerge. This criterion is adopted by a number of authors; for instance, Camba-
Mendez and Rodriguez-Palenzuela (2003) and Proietti et al. (2007) assess the reliability of
alternative output gap estimates through their capability to predict future inflation.

4.2 Precision

A measurement method is precise if repeated measurements of the same quantity are in close
agreement. Loosely speaking, precision is inversely related to the uncertainty of an estimate.
In the measurement of immaterial constructs the sources of uncertainty would include: (i)
parameter uncertainty, due to the fact that the core parameters Ξ characterising model M,
such as the variance of the disturbances driving the components and the impulse response
function, are unknown and have to be estimated; (ii) estimation error, the latent components
are estimated with a positive variance even if a doubly infinite sample on yt is available; (iii)
statistical revision, as new observations become available, the estimate of a signal is updated so
as to incorporate the new information; (iv) data revision.

The first source can be assessed by various methods in the classical approach; it is automati-
cally incorporated in the interval estimates of the output gap if a Bayesian approach is adopted,
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as in section 3.2.2. The methods rely on the fundamental result that, under regularity condi-
tions, the maximum likelihood estimator of Ξ has the asymptotic distribution: Ξ̃ ∼ N(Ξ,V),
where V is the inverse of the information matrix. Hamilton (1986) proposed a Bayesian mar-
ginalisation approach, which uses Ξ̃ ∼ N(Ξ,V) as a normal approximation to the posterior
distribution of Ξ, given the available data. Then, a measure of the uncertainty of the smoothed
estimates of the output gap, which embodies parameter uncertainty, is

V̂ar(ψt|F) =
1

K

K∑

k=1

Var(ψt|F , Ξ̃(k))] +
1

K

K∑

k=1

[
E(ψt|F , Ξ̃(k)) − Ê(ψt|F)

]2

, (27)

where Ê(ψt|F) = 1
K

∑K
k=1 E(ψt|F , Ξ̃(k)), and the Ξ̃(k)s are independent draws from the mul-

tivariate normal density N(Ξ̃, Ṽ), k = 1, . . . , K, where Ṽ is evaluated at Ξ̃. According to the
delta method proposed by Ansley and Kohn (1986), expressing the output gap estimates as a
linear function of the parameter estimation error Ξ − Ξ̃ gives

V̂ar(ψt|F) = Var(ψt|F , Ξ̃) + d(Ξ̃)′Ṽd(Ξ̃), d(Ξ̃) =
∂

∂Ξ
E(ψt|F , Ξ̃) |

Ξ=Ξ̃
, (28)

where the derivatives in d(Ξ̃) are evaluated numerically using the support of the Kalman filter
and smoother. Similar methods apply for the real time estimates, with the ML estimator being
based on the information set Ft. Quenneville and Singh (2000) evaluate and compare the two
methods, and propose enhancements in a Bayesian perspective.

In an unobserved component framework the Kalman filter and smoother provide all the
relevant information for assessing (ii) and (iii). For the latter, we can keep track of revisions by
using a fixed-point smoothing algorithm (see Anderson and Moore, 1979, and de Jong, 1989).

The sources (ii) and (iii) typically arise because the individual components are unobserved
and are dependent through time. The availability of additional time series observations helps to
improve the estimation of an unobserved component. Multivariate methods are more reliable as
they use repeated measures of the same underlying latent variable and this increases the precision
of the estimates. It is important to measure the uncertainty that surrounds the real time, or
concurrent, estimates, Var(ψt|Ft, Ξ̃), which are conditional on the information set available to
economic agents and policy makers at the time of making the assessment of the state of the
economy, as opposed to the historical, or final, estimates. Comparing Var(ψt|Ft, θ̃) with the
final estimation error variance, Var(ψt|Fn, Ξ̃), n → ∞, gives a clue about the magnitude of the
revision of the estimates as new observations become available.

In the absence of structural breaks, statistical revisions are sound and a fact of life (i.e.,
a natural consequence of optimal signal extraction). There is, however, great concern about
revisions especially for policy purposes; Orphanides and van Norden (2003) propose tempo-
ral consistency as a yardstick for assessing the reliability of output gaps estimates; temporal
consistency occurs when real time (filtered) estimates do not differ significantly from the final
(smoothed) estimates.

Finally, an additional source of uncertainty is data revision, which concerns yt. Timely eco-
nomic data are only provisional and are revised subsequently with the accrual of more complete
information. Data revision is particularly relevant for national accounts aggregates, which re-
quire integrating statistical information from different sources and balancing it so as to produce
internally consistent estimates.
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A Linear filters

A linear filter applied to a univariate series yt is a weighted linear combination of its consecutive
values. A time invariant filter can be represented as:

w(L) =
∑

j

wjL
j . (29)

with wj representing the filter weights. The above filter is symmetric if wj = w−j , in which
case we can write w(L) = w0 +

∑
j wj(L

j + L−j).
Applying w(L) to yt yields w(L)yt and has two consequences: the amplitude of the original

fluctuations will be compressed or enhanced and the displacement over time of the original
fluctuations will be altered. These effects can be fully understood in the frequency domain by
considering the frequency response function (FRF) associated with the filter, which is defined
as the Fourier transform of (29): w(e−ıω) =

∑
j wje

−ıωj = wR(ω) + ıwI(ω), where wR(ω) =∑
j wj cos ωj and wI(ω) =

∑
j wj sin ωj. The last equality stresses that, in general, the FRF is

a complex quantity, with wR(ω) and wI(ω) representing its real and complex part, respectively.
The polar representation of the FRF, w(e−ıω) = G(ω)e−ıPh(ω), is written in terms of two
crucial quantities, the gain, G(ω) = |w(e−ıω)| =

√
wR(ω)2 + wI(ω)2, and the phase Ph(ω) =

arctan(−wI(ω)/wR(ω)). The former measures the amplitude effect of the filter, so that if at
some frequencies the gain is less than one, then those frequency components will be attenuated
in the filtered series; the latter measures the displacement, or the phase shift, of the signal.

If fy(ω) denotes the spectrum of yt, the spectrum of w(L)yt is equal to |w(e−iω)|2fy(ω), and
therefore the square of the gain function (also known as the power transfer function) provides
the factor by which the spectrum of the input series is multiplied to obtain that of the filtered
series. In the important special case when w(L) is symmetric, the phase displacement is zero,
and the gain is simply G(ω) = |w0 + 2

∑m
j=1 wj cos ωj|.

B The Wiener-Kolmogorov filter

The classical Wiener-Kolmogorov prediction theory, which is restricted to stationary processes,
deals with optimal signal extraction of an unobserved component. Letting µt denote some sta-
tionary signal and yt an indeterministic linear process with Wold representation yt = v(L)ξt, v(L) =
1 + v1L + v2L

2 + · · · ,
∑

|vj | < ∞, ξt ∼ WN(0, σ2), the minimum mean square linear estimator
of µt+l based on a semi-infinite sample yt−j , j = 0, 1, . . . ,∞, is:

µ̃t+l|t =
1

σ2v(L)

[
gµy(L)

v(L−1)
L−l

]

+

yt; (30)

here gµy(L) denotes the crosscovariance generating function of µt and yt, gµy(L) =
∑

j γµy,jL
j ,

where γµy,j is the crosscovariance at lag j, E[(µt − E(µt))(yt−j − E(yt))], and for h(L) =∑∞
j=−∞ hjL

j , [h(L)]+ =
∑∞

j=0 hjL
j , i.e., a polynomial containing only nonnegative powers of

L; see Whittle (1983, p. 42). The formula for l ≤ 0 provides the weights for signal extraction
(contemporaneous filtering for l = 0).

If an infinite realisation of future yt was also available, the minimum mean square linear
estimator is

µ̃t|∞ =
gµy(L)

gy(L)
yt,

where gy(L) is the autocovariance generating function of yt, gy(L) = |v(L)|2σ2, and |v(L)|2 =
v(L)v(L−1). If the series is decomposed into two orthogonal components, yt = µt+ψt, gµy(L) =
gµ(L) (see Whittle, 1983, ch. 5).
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These formulae also hold when yt and µt are nonstationary, see Pierce (1978). As an ex-
ample of their application, the expressions for the final and concurrent estimators of the trend
component for model (2), with σ2

η = 0 and σ2
ψ/σ2

ζ = λ (Leser-HP filter), are:

µ̃t|∞ =
1

1 + λ|1 − L|4
yt, µ̃t|t =

θ(1)

θ(L)
yt,

and the corresponding detrending filters are:

ψ̃t|∞ =
λ|1 − L|4

1 + λ|1 − L|4
yt, ψ̃t|t =

θ(L) − θ(1)

θ(L)
yt.

Here θ(L) = 1+θ1L+θ2L
2 is the reduced form MA polynomial of the local linear trend model (2).

The numerator of the filtered detrended series can be rewritten: θ(L)−θ(1) = ∆θ∗(1)L+∆2θ∗0 ,
with θ∗(L) = θ∗0 + θ∗1L = −(θ1 + θ2) − θ2L.

The expression for ψ̃t|∞ is sometimes mistakenly taken to imply that the Leser-HP cycle
filter makes stationary series integrated up to the fourth order, due to the presence of |1−L|4 =
(1 − L)2(1 − L−1)2 in the numerator of the filter. It should be recalled that the above formula
holds true only for a doubly infinite sample, and the real time filter for extracting ψ̃t|t contains
only the factor ∆2.

C State space models and methods

The models considered in this chapter admit the state space representation:

yt = Ztαt + Gtǫt, t = 1, 2, . . . , n,
αt = Ttαt−1 + Htηt,

(31)

where ǫt ∼ NID(0, I), ηt ∼ NID(0, I), and E(ǫtη
′
t) = 0. The initial conditions are spec-

ified as follows: α0 = α̃∗
0|0 + W0δ + H0η0, so that, α1|δ ∼ N(α̃∗

1|0 + W1δ,P∗
1|0), where

α̃∗
1|0 = T1α̃

∗
0|0,W1 = T1W0,P

∗
1|0 = H1H

′
1 + T1H0H

′
0T

′
1. The random vector δ captures

initial conditions for nonstationary state components and it is assumed to have a diffuse dis-
tribution, δ ∼ N(0,Σδ), with Σ−1

δ → 0. The matrices Zt,Gt, t = 1, . . . , n,Tt,Ht,W0 are
deterministically related to a set of hyperparameters, Ξ.

For instance, for the bivariate model of output and inflation considered in section 3.1, yt is
a bivariate time series, αt = (µt, βt, ψt, ψt−1, τt)

′, Zt = Z = (zy, zp)
′, z′y = (1, 0, 1, 0, 0), z′p =

(0, 0, 0, 0, 1), ǫt = εt/σε, Gt = G = (0, σε)
′, ηt = (ηt/ση, κt/σκ, υt/συ)′, δ = (µ0, β0, τ0)

′, α̃∗
0|0 =

0,

Tt = T =




Tµ 0 0

0 Tψ 0

0′ t′p 1


 ,Tµ =

(
1 1
0 1

)
,Tψ =

(
φ1 φ2

1 0

)
, tp =

(
θτ0φ1 + θτ1

θτ0φ2

)
,

Ht = H =




ση 0 0
0 0 0
0 σκ 0
0 0 0
0 θτ0σκ 0




,W0 =




1 0 0
0 1 0
0 0 0
0 0 0
0 0 1




,η0 ∼ N(0, I2),H0 =




0

Cψ

0


 ,

where Cψ is such that E(ψ0, ψ
′
0) = CψC′

ψ, ψ0 = (ψ0, ψ−1)
′.
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C.1 The augmented Kalman filter

The Kalman filter (KF) is a fundamental algorithm for the statistical treatment of a state space
model. Under the Gaussian assumption it produces the minimum mean square estimator of the
state vector along with its mean square error matrix, conditional on past information; this is
used to build the one-step-ahead predictor of yt and its mean square error matrix. Due to the
independence of the one-step-ahead prediction errors, the likelihood can be evaluated via the
prediction error decomposition.

The case when δ is a fixed vector (fixed initial conditions) has been considered by Rosenberg
(1973). He showed that δ can be concentrated out of the likelihood function and that its
generalised least square estimate is obtained from the output of an augmented KF. The diffuse
case has been dealt with by de Jong (1988).

Defining A1|0 = −W1, q0 = 0, s0 = 0,S0 = 0, the augmented KF is given by the following
recursive formulae and definitions for t = 1, . . . , n:

v∗
t = yt − Ztα̃

∗
t|t−1, Vt = −ZtAt|t−1,

F∗
t = ZtP

∗
t|t−1Z

′
t + GtG

′
t, Kt = Tt+1P

∗
t|t−1Z

′
tF

∗−1
t ,

qt = qt−1 + v∗′

t F∗−1
t v∗

t , st = st−1 + V′
tF

∗−1
t v∗

t , St = St−1 + V′
tF

∗−1
t Vt,

α̃∗
t+1|t = Tt+1α̃

∗
t|t−1 + Ktv

∗
t , At+1|t = Tt+1At|t−1 + KtVt

P∗
t+1|t = Tt+1P

∗
t|t−1T

′
t+1 + Ht+1H

′
t+1 − KtF

∗
t K

′
t

(32)

The diffuse likelihood is defined as follows (de Jong, 1991):

ℓ(y1, . . . ,yn;Ξ) = −
1

2

(∑

t

ln |F∗
t | + ln |Sn| + qn − s′nS−1

n sn

)
. (33)

Denoting Yt = {y1,y2, . . . ,yt}, the innovations, vt = yt − E(yt|Yt−1), the conditional
covariance matrix Ft = Var(yt|Yt−1), the one-step-ahead prediction of the state vector α̃t|t−1 =
E(αt|Yt−1), and the corresponding covariance matrices, Var(αt|Yt−1) = Pt|t−1, are given by:

vt = v∗

t − VtS
−1
t−1st−1, Ft = F∗

t + VtS
−1
t−1V

′
t,

α̃t|t−1 = α̃∗

t|t−1 − At|t−1S
−1
t−1st−1, Pt|t−1 = P∗

t|t−1 + At|t−1S
−1
t−1A

′
t|t−1.

(34)

C.2 Real time (updated) estimates

The updated (or real time, filtered) estimates of the state vector, α̃t|t = E(αt|Yt), and the
covariance matrix of the real time estimation error are respectively:

α̃t|t = α̃∗
t|t−1 − At|t−1S

−1
t st + P∗

t|t−1Z
′
tF

−1
t (v∗

t − VtS
−1
t st),

Pt|t = P∗
t|t−1 − P∗

t|t−1Z
′
tF

∗−1
t ZtP

∗
t|t−1 + (At|t−1 + P∗

t|t−1Z
′
tF

∗−1
t Vt)S

−1
t (At|t−1 + P∗

t|t−1Z
′
tF

∗−1
t Vt)

′.

C.3 Smoothing

Smoothing deals with the estimation of the components and the disturbances based on the full
sample of observations. In the Gaussian case the fixed interval smoother provides the minimum
mean square estimator of αt using Yn, α̃t|n = E(αt|Yn), along with its covariance matrix
Pt|n = E[(αt − α̃t|n)(αt − α̃t|n)′|Yn]. The computations can be carried out efficiently using
the following backwards recursive formulae, given by Bryson and Ho (1969) and de Jong (1989),
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starting at t = n, with initial values rn = 0,Rn = 0 and Nn = 0:

rt−1 = L′
trt + Z′

tF
∗−1
t vt, Rt−1 = L

′

tRt + Z′
tF

∗−1
t Vt, t = n − 1, . . . , 1.

Nt−1 = L′
tNtLt + Z′

tF
∗−1
t Zt,

α̃t|n = α̃∗
t|t−1 − At|t−1S

−1
n sn + P∗

t|t−1(rt−1 − Rt−1S
−1
n sn),

Pt|n = P∗
t|t−1 − P∗

t|t−1Nt−1P
∗
t|t−1 + (At|t−1 + P∗

t|t−1Rt−1)S
−1
n (At|t−1 + P∗

t|t−1Rt−1)
′.

(35)
where Lt = Tt+1 − KtZ

′
t. A preliminary forward KF pass is required to store the quantities

α̃∗
t|t−1, At|t−1, P∗

t|t−1, v∗
t , Vt, F∗

t and Kt.

The smoothed estimates of the disturbances are given by Htη̃t = E(Htηt|Yn) = HtHt(rt−1−
Rt−1S

−1
n sn), and Gtǫ̃t = E(Gtǫt|Yn) = GtG

′
t

[
F∗−1

t (vt − VtS
−1
n sn) + K′

t(rt − RtS
−1
n sn)

]
.

C.4 The simulation smoother

The simulation smoother is an algorithm which draws samples from the conditional distribution
of the states and the disturbances given the observations and the hyperparameters. Carlin, Pol-
son and Stoffer (1992) proposed a single move state sampler, by which the states are sampled
one at a time. This proves to be inefficient in the presence of highly autocorrelated state com-
ponents. Gamerman (1998) proposed a single move disturbance sampler, which is more efficient
since the disturbances driving the components are much less persistent and autocorrelated over
time. Along with reparameterization, an effective strategy is blocking, through the adoption of
a multimove sampler as in Carter and Kohn (1994) and Früwirth Schnatter (1994), who focus on
sampling the states. Again, a more efficient multimove sampler can be constructed by focusing
on the disturbances, rather than the states. This is the idea underlying the simulation smoother
proposed by de Jong and Shephard (1996).

Let ςt = C[ǫ′t, η
′
t]
′ denote a subset of the disturbances of the series, with C being a selection

matrix. The structure of the state space model model is such that the states are a (possibly
singular) linear transformation of the disturbances and that Gtǫt can be recovered from Htηt

via the measurement equation, which implies that the distribution of (ǫ′, η′)′|Yn is singular.
Hence, to achieve efficiency and to avoid degeneracies we need to focus on a suitably selected
subset of the disturbances. The simulation smoother hinges on the following factorisation of the
joint posterior density:

f(ς0, . . . , ςn|Yn) = f(ςn|y)

n−1∏

t=0

f(ςt|ςt+1, . . . , ςn;Yn).

Conditional random vectors are generated recursively: in the forward step the Kalman filter is
run and the innovations, their covariance matrix and the Kalman gain are stored. In the back-
wards sampling step conditional random vectors are generated recursively from ςt|ςt+1, . . . , ςn;y;
the algorithm keeps track of all the changes in the mean and the covariance matrix of these
conditional densities. The simulated disturbances are then inserted into the transition equation
to obtain a sample from α|Yn.

A more efficient simulation smoother has been developed by Durbin and Koopman (2002).
The gain in efficiency arises from the fact that only the first conditional moments of the states or
the disturbances need to be evaluated. Let us redefine ςt = (ǫ′t, η

′
t)

′ and let ς̃ = E(ς|Yn), where
ς is the stack of the vectors ςt; ς̃ is computed by the disturbance smoother (see Koopman, 1993,
and Appendix C.3). We can write ς = ς̃ + ς∗, where ς∗ = ς − ς̃ is the disturbance smoothing
error, with conditional distribution ς∗|Yn ∼ N(0,V), such that the covariance matrix V does
not depend on the observations, and thus does not vary across the simulations (the diagonal
blocks are computed by the smoothing algorithm in Appendix C.3). A sample from ς∗|Yn

is constructed as follows: we first draw the disturbances from their unconditional Gaussian

39



distribution ς+ ∼ NID(0, I) and construct the pseudo observations y+ recursively from α+
t =

Ttα
+
t−1+Htη

+
t ,y+

t = Ztα
+
t +Gtǫ

+
t , t = 1, 2, . . . , n, where the initial draw is α+

0 ∼ N(0,H0H
′
0).

The Kalman filter and the smoothing algorithm computed on the simulated observations y+
t

will produce ς̃+
t , and α̃+

t , and ς+
t − ς̃+

t will be the desired draw from ς∗|Yn. Hence , ς̃ + ς+
t − ς̃+

t

is a sample from ς|Yn ∼ N(ς̃,V).
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