Multivector strategy vs quantum strategy by Apple Inc

Dimitri O. Ledenyov and Viktor O. Ledenyov

James Cook University, Townsville, Australia

23. December 2015

Online at https://mpra.ub.uni-muenchen.de/68557/
MPRA Paper No. 68557, posted 29. December 2015 06:45 UTC
Multivector strategy vs quantum strategy by Apple Inc

Dimitri O. Ledenyov and Viktor O. Ledenyov

Abstract – We propose that the quantum strategy can be considered as a most effective winning virtuous organizational strategy, allowing the board of directors to build a prosperous organization with the optimal business model in the economies of the scale and scopes at the time of the great opportunities and unexpected challenges by the globalization. We provide a concise definition on the quantum strategy: The organizational strategy, which can be derived with the use of the quantum strategy search algorithm by the interlocking interconnecting directors in the board of directors in the modern organization at the time of the global integration. We demonstrate that the quantum strategy search algorithm applies the quantum logic (the probabilistic logic) on the top of the inductive, deductive and abductive logics (the value based logics), aiming to create the most effective optimal winning virtuous organizational strategy by the interlocking interconnecting directors in the board of directors in the modern organization in the information century. We highlight the main existing differences between the multivector strategy (the multiple different strategies implementation at the selected time period) and the quantum strategy (the most effective optimal winning virtuous organizational strategy implementation at the selected time period), considering the real-life case study on the strategy formulation and execution by the interlocking interconnecting directors in the board of directors in the Apple Inc. We express a research opinion that the quantum strategy can be clearly defined/distinguished in line with the generally accepted scientific definitions/meanings/principles in the quantum mechanics science. We think that the prosperous organizations will create and implement the quantum strategies to increase their valuations and outperform the competitors in the economies of the scales and scopes at the time of globalization.

JEL code: C0, G21, G24, G30, G34, L1, L4, M2.

PACS numbers: 89.65.Gh, 89.65.-s, 89.75.Fb.

Keywords multivector strategy, quantum strategy, winning virtuous strategy, strategy creation and implementation, strategy selection logics, strategy decision making, strategy optimization problem, most effective strategy search, quantum/inductive/deductive/abductive logics, board of directors composition, board of directors chairman, interlocking directors networks, boards of directors seats accumulation number, centrality, Freeman degree, Betweenness, information flows measurements, destructive coordination, information absorption, theory of firm, microeconomics, Schrodinger wave function, quantum mechanics, econophysics, Apple Inc.
Introduction

Indeed, the quantum strategy theory as a research subject of considerable scientific interest attracts an increasing research attention by the academicians and practitioners in the business administration science and in the microeconomics science around the World in Ledenyov D O, Ledenyov V O (2015n). Thus, let us explain that the quantum strategy represents an organizational strategy, which can be derived with the use of the quantum strategy search algorithm by the interlocking interconnecting directors in the board of directors in the modern organization at the time of the global integration. The quantum strategy search algorithm
applies the *quantum logic* (the *probabilistic logic*) on the top of the *inductive, deductive and abductive logics* (the *value based logics*), aiming to create the *most effective optimal winning virtuous organizational strategy* by the *interlocking interconnecting directors* in the *board of directors* in the *modern organization* in an *information century* in *Ledenyov D O, Ledenyov V O (2015n)*.

In this research article, we would like to be focused on the *theory of the quantum strategy creation and execution* in *Ledenyov D O, Ledenyov V O (2015n)* by the *interlocking interconnecting directors* in the *boards of directors* in the *modern organizations* in the *modern economies of the scales and scopes* in the *time of constant introduction of the market-creating innovations, sustaining innovations and efficiency innovations* on a *global scale* in *Christensen, Raynor, McDonald (December 2015), Christensen, Denning (December 2015), Rodin (2015), Dobbs, Woetzel, Flanders (2015), Barber (2015)*, considering the *Apple Inc real life business case study* as an example. A *real-life business case study* represents one of possible research approaches to understand an essence of the *quantum strategy theory* in the *business administration science / the microeconomics science*. *Heracleous (2013)* conducted an *interesting research* on the *quantum strategy* at *Apple Inc*, in which it was suggested that the *Apple Inc* has already created and executed its *quantum strategy*. In this connection, we would like to highlight the main existing differences between the *multivector strategy* (the *multiple different strategies implementation at the selected time period*) and the *true quantum strategy* (the *most effective optimal winning virtuous organizational strategy implementation at the selected time period*), considering the *highlighted real-life business case study* on the *strategy formulation and execution* by the *interlocking interconnecting directors* in the *board of directors* in the *Apple Inc* in *Heracleous (2013)*.

It makes sense to say that, presently, the *leading scientists* from a number of *well established/funded research institutions/universities* make everything possible to find an *answer on the challenging question*: *How can the interlocking interconnecting directors create and implement the quantum strategy, which is considered as a most effective winning virtuous organizational strategy, allowing the board of directors to build a prosperous organization with the optimal business model in the economies of the scale and scopes at the time of the great opportunities and unexpected challenges by the globalization?* *There is no simple answer on this particular question.* We hope that our research will greatly improve the *quantum strategy theory*, which was proposed for the first time in *Ledenyov D O, Ledenyov V O (2015n)*, and move the frontiers of the *business administration science / the microeconomics science* forward. Therefore, completing a *short insightful introduction*, let us begin a *more detailed insightful*
discussion on the comparative analysis of the multivector strategy vs. the quantum strategy by Apple Inc, presenting our original research thoughts on the subject of scientific interest in this research article.

Multivector strategy vs quantum strategy by Apple Inc

The board of directors in the Apple Inc could be mathematically represented as a two dimensions matrix in Ledenyov D O, Ledenyov V O (2015b, n):

\[
\begin{bmatrix}
 d_{1,1} & d_{1,2} & d_{1,j} \\
 d_{2,1} & d_{2,2} & d_{2,j} \\
 d_{i,1} & d_{i,2} & d_{i,j}
\end{bmatrix}
\]

where \(d_{i,j} \) is the position of a director’s seat in the matrix.

The change of the composition of the board of directors in the Apple Inc over the time could be mathematically described as an integer in Santella, Drago, Polo (November 11 2007), Ledenyov D O, Ledenyov V O (2015b, n):

\[
\text{board}_{c,t} = \text{board}_{c,t-1} + \int_t^{t+1} (en - ex) dt,
\]

where
\[
en(t) = \frac{d}{dt} en \cdot t = en,
\]
\[
ex(t) = \frac{d}{dt} ex \cdot t = ex,
\]

\(en(t) \) is the number of directors entrants at time \(t \),

\(ex(t) \) is the number of directors exits at time \(t \),

\(\text{board}_{c,t} \) is the board of directors size at time \(t \),

\(c \) is the company,

\(i \) is the director.

Let us begin our detailed insightful discussion and conduct a comparative analysis on the multivector strategy vs. the quantum strategy by Apple Inc, using the recently published research article in Heracleous (2013) and the knowledge base in Ledenyov D O, Ledenyov V O (2015b, n). We would like to provide the below citations and to consider the research ideas on the quantum strategy, focusing on the following research topics in Heracleous (2013) and discussing them in details:
1. the research statements on the electron in the quantum mechanics / the quantum physics; and

2. the research statements on the quantum strategy in the business administration science / the microeconomics science.

3. the concluding scientific remarks on the subject of interest.

Heracleous (2013) writes: “Conversely, conventional wisdom holds that a company competing on innovation, outstanding design, or service excellence will not be able to reach intense levels of efficiency, since these capabilities are costly to develop and maintain. Apple, however, has achieved both — what might be seen as the holy grail of strategy — and it is worth asking how. The answer can help us gain insight into the trickiest of strategies to execute, and one that most companies do not even try to achieve. This strategy, if successfully executed, represents a shift of the iso-value curve to the right in any industry it is employed in, not just movement along the curve where most competitors are positioned. I call this Quantum Strategy, after the idea that at the quantum level of reality, the same electron can be at two places at the same time, and two different electrons can occupy the very same physical space. Both seem to be logical and natural impossibilities, but nevertheless do occur. An understanding of Quantum Strategy offers important lessons for executives. In particular, we can understand the principles are involved in breaking the trade-offs that are conventionally assumed to constrain strategic choices and to lock firms in single generic strategies.”

As we can see, Heracleous (2013) made the following two meaningless mistaken statements, related to the quantum physics science:

1. “the same electron can be at two places at the same time, and

2. two different electrons can occupy the very same physical space.”

observation stage, the transition stage and the final observation stage in the quantum mechanics science / the quantum physics science, hence:

1. In the transition stage, the single electron can be in a superposition state, in which the single electron cannot be characterized by the certain physical parameters in the time – space domain. However, the electron can be accurately characterized by the momentum, spin and other parameters in the final measurement state only;

2. In the final observation stage, the two different electrons can occupy the very same physical space, if they have the different spins only.

Speaking about the strategies by Apple Inc in Heracleous (2013), it is difficult to understand: How can the innovation strategy by Apple Inc and the efficiency strategy by Apple Inc in the strategies superposition state in Heracleous (2013) relate to the superposition state by the single electron in the quantum mechanics/the quantum physics in Blokhintsev (2004)? We can hypothetically suppose that the innovation strategy and the degradation strategy can exist in the strategies superposition state in the quantum econophysics science. Also, we can hypothetically suppose that the efficient strategy and the inefficient strategy can exist in the strategies superposition state in the quantum econophysics science. However, it makes no sense to state that the two absolutely unrelated strategies (the innovation strategy by Apple Inc and the efficiency strategy by Apple Inc) in Heracleous (2013) can create a superposition state in the quantum econophysics science.

Heracleous (2013) states: “Apple has achieved its outstanding performance through effectively implementing an unconventional strategy: differentiation through innovation (along various dimensions that include serial, strategic and incremental innovation) with simultaneous intense levels of efficiency, leading to the lowest costs in its peer group. Conventional wisdom holds that such strategies would be impossible to achieve in a long-term, sustainable timeframe, because they entail mutually contradictory investments and organizational processes. … Apple has accomplished the Quantum Strategy within the same organizational setup, skillfully integrating elements of strategy that most other companies would consider distinct; and achieved long term competitive success in the process. … Quantum strategy has enabled Apple to achieve super-normal profits in hyper-competitive industries with thin margins.”

In our opinion, the fact that the Apples Inc successfully created and executed the differentiation through innovation strategy on one side, and the cost leadership strategy / the efficiency strategy on other side at the same time in Heracleous (2013) does not mean the Apples Inc successfully created and executed the quantum strategy. The conclusion on the quantum
strategy by **Apples Inc** in Heracleous (2013), which is derived, going from the **comparative analogy** between:

1. the *successful creation and execution of the differentiation through innovation strategy* and the *cost leadership strategy / the efficiency strategy* by **Apple Inc**; and
2. the fact that the *two different electrons* can occupy the *very same physical space*;

is dubious, because the comparison is made between:

1. the *two unrelated different strategies* on one side; and
2. the *two similar quantum objects with distinctive parameters (the two electrons with the different spins)* on other side.

In other words, the *following question* may arise: What are the *main criteria* for the *quantum strategy definition/characterization* in the *econophysics science* in Heracleous (2013)?

As we explained early: “In the *final observation stage*, the *two different electrons* can occupy the *very same physical space*, if they have the *different spins* only.”

Therefore, making the *innovative research on the multivector strategy vs. the quantum strategy at Apple Inc*, we would like to provide a *research comment* that it is necessary to remember that the scientific term “**quantum**” in the *quantum mechanics science / the quantum physics science* has both its clear *scientific definition* and its *certain scientific meaning*; hence, we think that it would be beneficial for Heracleous (2013) to clearly understand the *scientific terminology* in the *quantum mechanics science / the quantum physics science*, avoiding the use of the word: “**Quantum**” in the *inappropriate cases* in the *published research article* in Heracleous (2013).

we would like to point out to the fact that the creation and implementation of the two different corporate strategies at Apple Inc at the same time in Heracleous (2013) has to be scientifically qualified as the creation and implementation of the multiple different corporate strategies at Apple Inc at the same time, in other words, we have the case of the creation and implementation of the multivector strategy by the Apple Inc at the selected time period. The multivector strategy is well studied in the frames of the fundamental strategy theory in the business administration science / the microeconomics science.

The quantum strategy as a new research topic in the business administration science / the microeconomics science has been introduced for the first time in Ledenyov D O, Ledenyov V O (2015n). In our opinion, the quantum strategy in the business administration science / the microeconomics science must be accurately characterized by the quantum mechanics/quantum physics sciences principles.

We would like to illustrate the distinctions between the quantum logic (the probability logic) and the inductive, deductive and abductive logics (the value based logic, the binary logic) as in Ledenyov D O, Ledenyov V O (2015n):

I. “We can illustrate the probability logic, by using the quantum mechanics and by saying that the probability that the Schrödinger cat may be alive or dead (the two possible choices) in the superposition state in the observable closed box is 50% until the moment of the measurement in Schrödinger (1935). In other words, the interlocking interconnecting director in the board of directors in the organization must consider the probabilities distribution of the various events, related to the particular business matter / situation, before the moment of the creation of the quantum business strategy.
2. We can describe the *value based logic* by referring to the *inductive, deductive and abductive logics* and by showing that it operates with / converges to the values: *Yes* and/or *No*, hence it has some similarity with the *binary logic*: *1* and/or *0*. It means that, the *interlocking interconnecting director* in the *board of directors* in the *organization* must inductively / deductively / abductively come to the conclusion: *Yes* and/or *No*, related to the *particular business matter / situation*, before the moment of the creation of the *usual business strategy*.”

We can also demonstrate the *quantum logic* (the *probability logic*), using the practical example of the *quantum random number generator on the magnetic flux qubits chipset* in Ledenyov V O, Ledenyov O P, Ledenyov D O (2002) in analogy with the the *Schrödinger wave function* / *Schrödinger cat representation* in Schrödinger (1935). For example, the special *entanglement* of the *qubits*, with the probability of 50% that any particular *qubit* exists in a *superposition state* of being *0* and being *1*, can be achieved in the *quantum random number generator on the magnetic flux qubits chipset* in Ledenyov V O, Ledenyov O P, Ledenyov D O (2002).

In the *business administration science / the microeconomics science*, we would like to make a few empirical research comments that the practical creation and implementation of the *Quantum Strategy Creation Algorithm* can be realized by the *interlocking interconnecting directors* in the *board of directors* in the *modern organization* at the *time of the global integration/disintegration* in agreement with the use of the *following simplified scheme* in Ledenyov D O, Ledenyov V O (2015n):

1. the *interlocking interconnecting director* uses the *inductive, deductive and abductive logics* (the *value based logic*, the *binary logic*) to come to a certain logical conclusion on the *desirable corporate strategy of the choice*, and then

2. the *interlocking interconnecting director* applies the *quantum logic* (the *probability logic*) to evaluate the *corporate strategy of the choice*, with the *ultimate purpose* to create the *quantum strategy* or to disregard the *corporate strategy of the choice* as explained before.

Going from the *true meaning of the quantum strategy* in Ledenyov D O, Ledenyov V O (2015n), we can assume that the *Apple Inc* had been able to create and implement its *quantum strategy*, primarily based on the *quantum leap* in the innovative design and advanced technology applications, to outperform the *competitors* in the *global markets* of the *wireless computing devices*, the *laptop computers*, the *electronic timepieces* and the operating systems at the *certain time periods*, however we propose to clearly distinguish the *multivector strategy* by *Apply Inc* in

The authors’ strategic vision is that the interlinking interlocking directors in the boards of directors in the complex organizations will greatly benefit by creating and by implementing the quantum strategies, pursuing the ultimate goal to build the prosperous organizations at the time of the disruptive changes and opportunities by the globalization.

Conclusion

In an information century, the leading states create the quantum devices/technologies development roadmaps, trying to predict/outline/evaluate the future progress in the quantum devices/technologies development for the years to come. The progress in the quantum devices/technologies development depends on the state of matters in the natural sciences (the physics, chemistry, mathematics sciences) as well as the hi-tech industries (the electronics, computer, materials processing industries) in the economy of the scale and scope. In this connection, the innovative research on the application of the scientific principles in the quantum mechanics science / the quantum econophysics science with the aim to understand and to accurately characterize the business strategies by the interlocking interconnecting directors in the board of directors in the modern firms looks very attractive from the scientific point of view.

We proposed that the quantum strategy can be considered as a most effective winning virtuous organizational strategy, allowing the board of directors to build a prosperous organization with the optimal business model in the economies of the scale and scopes at the time of the great opportunities and unexpected challenges by the globalization.

We provided a concise definition on the quantum strategy: The organizational strategy, which can be derived with the use of the quantum strategy search algorithm by the interlocking interconnecting directors in the board of directors in the modern organization at the time of the increasing global integration.

We demonstrated that the quantum strategy search algorithm applies the quantum logic (the probabilistic logic) on the top of the inductive, deductive and abductive logics (the value based logics), aiming to create the most effective optimal winning virtuous organizational strategy by the interlocking interconnecting directors in the board of directors in the modern organization in the information century.

We highlighted the main existing differences between the multivector strategy (the multiple different strategies implementation at the selected time period) and the quantum
strategy (the most effective optimal winning virtuous organizational strategy implementation at the selected time period), considering the real-life case study on the strategy formulation and execution by the interlocking interconnecting directors in the board of directors in the Apple Inc.

We expressed a research opinion that the quantum strategy can be clearly defined /distinguished in line with the generally accepted scientific definitions/meanings/principles in the quantum mechanics science.

We think that the interlinking interlocking directors in the boards of directors in the prosperous organizations will continue to create and implement the quantum strategies to increase their valuations and outperform the competitors in the economies of the scales and scopes at the time of globalization.

Acknowledgement

Authors acknowledge the multiple scientific discussions on the econophysics, the quantum mechanics and the quantum physics with Oleg P. Ledenyov in Kharkov, Ukraine in 2015. The first author appreciates many hours of the research polemics on the quantum effects in the superconducting electronics with Janina E. Mazierska at James Cook University in Townsville, Australia in 2000 - 2015. The second author appreciates the useful scientific discussions on the quantum effects in the superconducting quantum interference device (SQUID) with Jesper Mygind at Technical University of Denmark in Lyngby, Denmark and Copenhagen, Denmark in 1995, 1996-1997. The second author would like to make a comment that the Niels Bohr’s visit to Kharkiv, Ukraine in 1933 led to the serious progress in the nuclear physics and the subsequent creation of the econophysics science, and the second author’s visits to Lyngby, Denmark and Copenhagen, Denmark in 1995, 1996-1997 resulted in the new theories formulation in the modern econophysics science. The second author expresses his gratitude for a kind invitation to present a scientific talk on the measurement of the magnetic flux qubit by the SQUID at the scientific seminar, organized by Peter Kes at Leiden University in The Netherlands in 1998. The second author thanks for a wonderful opportunity to conduct an important exchange by the research opinions on the fundamental theory of strategy during our numerous private discussions with Roger L. Martin at University of Toronto and at Empire Club of Canada in Toronto, Canada in 1998 - 1999 and in 2005 - 2006.

*E-mail: dimitri.ledenyov@my.jcu.edu.au, ledenyov@univer.kharkov.ua.
References:

Economics Science, Finance Science, Economic History Science:

7. Menger C 1871 Principles of Economics (Grundsätze der Volkswirtschaftslehre) Ludwig von Mises Institute Auburn Alabama USA
8. Bagehot W 1873, 1897 Lombard Street: A description of the money market Charles Scribner's Sons New York USA.
10. von Böhm-Bawerk E 1884, 1889, 1921 Capital and interest: History and critique of interest theories, positive theory of capital, further essays on capital and interest Austria; 1890 Macmillan and Co Smart W A (translator) London UK
13. Schumpeter J A 1906 Über die mathematische methode der theoretischen ökonomie ZfVS V Austria.
15. Schumpeter J A 1911; 1939, 1961 Theorie der wirtschaftlichen entwicklung; The theory of economic development: An inquiry into profits, capital, credit, interest and the business cycle Redvers Opie (translator) OUP New York USA.
19. Slutsky E E 1915 Sulla teoria sel bilancio del consumatore *Giornale degli economisti e rivista di statistica* 51 no 1 pp 1 – 26 Italy.
21. von Mises L 1912 The theory of money and credit *Ludwig von Mises Institute* Auburn Alabama USA
27. Ellis H, Metzler L (editors) 1949 Readings in the theory of international trade *Blakiston* Philadelphia USA.
28. Friedman M (editor) 1953 Essays in positive economics *Chicago University Press* Chicago USA.
34. Minsky H P 2015 Minsky archive The Levy Economics Institute of Bard College Blithewood
 Bard College Annandale-on-Hudson New York USA
 http://www.bard.edu/library/archive/minsky/.
41. Scornick-Gerstein F May, 1996 Private communications on land value taxation theory by
 Henry George Royal Automobile Club London UK.
42. Scornick-Gerstein F 1999 The future of taxation: The failure of the poll tax in the UK
46. Stiglitz J E 2015 The great divide Public Lecture on 19.05.2015 London School of
 Economics and Political Science London UK
 http://media.rawvoice.com/lse_publiclecturesandevents/richmedia.lse.ac.uk/publiclecturesan
devents/20150519_1830_greatDivide.mp4.
49. Dodd N 2014 The social life of money Princeton University Press NJ USA

Juglar Economic Cycle in Macroeconomics:
50. Juglar C 1862 Des crises commerciales et de leur retour périodique en France en Angleterre
 et aux États-Unis Guillaumin Paris France.

Kondratiev Economic Cycle in Macroeconomics:

53. Tugan-Baranovsky M 1894 Industrial crises in contemporary England: Their causes and influences on the life of the people *St Petersburg/Moscow* Russian Federation.

56. Kondratieff N D 1925 The big cycles of conjuncture *The problems of conjuncture* 1 (1) pp 28 – 79.

60. Kondratieff N D 1984 The Long wave cycle *Richardson & Snyder* New York USA.

64. Kowal L 1973 The market and business cycle theories of M I Tugan-Baranovsky *Revista Internazionale di Scienze Economiche e Commercial* vol 20 part 4 Padova Italy.

68. Forrester J W 1985 Economic conditions ahead: Understanding the Kondratieff wave

69. Kuczynski Th 1978 Spectral analysis and cluster analysis as mathematical methods for the
periodization of historical processes: Kondratieff cycles – Appearance or reality?
Proceedings of the Seventh International Economic History Congress vol 2 International
Economic History Congress Edinburgh UK pp 79–86.

70. Kuczynski Th 1982 Leads and lags in an escalation model of capitalist development:
Kondratieff cycles reconsidered Proceedings of the Eighth International Economic History
Congress vol B3 International Economic History Congress Budapest Hungary pp 27.

73. Van Duijn J J 1981 Fluctuations in innovations over time Futures 13(4) pp 264 – 275.

74. Van Duijn J J 1983 The long wave in economic life Allen and Unwin Boston MA USA.

Cambridge UK.

77. Van der Zwan A 1980 On the assessment of the Kondratieff cycle and related issues in
UK pp 183 – 222.

78. Tinbergen J 1981 Kondratiev cycles and so-called long waves: The early research Futures 13
(4) pp 258 – 263.

79. Van Ewijk C 1982 A spectral analysis of the Kondratieff cycle Kyklos 35 (3)
pp 468 – 499.

Waves in the World Economy Freeman Chr (editor) Butterworth London UK
pp 164 – 182.

and empirical evidence in Long Waves in the World Economy Freeman Chr (editor)

82. Bieshaar H, Kleinknecht A 1984 Kondratieff long waves in aggregate output? An
econometric test Konjunkturpolitik 30 (5) pp 279 – 303.

83. Wallerstein I 1984 Economic cycles and socialist policies Futures 16 (6) pp 579 – 585.
87. Freeman C, Louçã F 2001 As time goes by: From the industrial revolutions to the information revolution Oxford University Press Oxford UK.
88. Goldstein J 1988 Long cycles: Prosperity and war in the modern age Yale University Press New Haven CT USA.
90. Berry B J L 1991 Long wave rhythms in economic development and political behavior Johns Hopkins University Press Baltimore MD USA.
94. Tylecote A 1992 The long wave in the world economy Routledge London UK.

100. Perez C 2002 Technological revolutions and financial capital – The dynamics of bubbles and golden ages *Edward Elgar* Cheltenhem UK.

Kitchin Economic Cycle in Macroeconomics:

Kuznets Economic Cycle in Macroeconomics:

110. Kuznets S 1924 Economic system of Dr. Schumpeter *M. Sc. Thesis under Prof. Wesley Clair Mitchell* Columbia University NY USA.

111. Kuznets S 1930 Secular movements in production and prices *Ph. D. Thesis under Prof. Wesley Clair Mitchell* Columbia University NY USA.
112. Kuznets S 1930 Secular movements in production and prices. Their nature and their bearing upon cyclical fluctuations *Houghton Mifflin* Boston USA.

118. Kuznets S 1968 Toward a theory of economic growth, with reflections on the economic growth of modern nations.

119. Kuznets S 1971 Economic growth of nations: Total output and production structure.

Accurate Characterization of Properties of Economic Cycles in Macroeconomics:

139. Hicks J R 1950 A contribution to the theory of the trade cycle *Oxford University Press* Oxford UK.

158. Sussmuth B 2003 Business cycles in the contemporary World Springer Berlin Heidelberg Germany.

159. Hirooka M 2006 Innovation dynamism and economic growth: A nonlinear perspective Edward Elgar Cheltenham UK Northampton MA USA.

164. Jourdon Ph 2008 La monnaie unique Europeenne et son lien au developpement economique et social coordonne: une analyse cliometrique *Thèse Universite Montpellier* France.

173. Uechi L, Akutsu T 2012 Conservation laws and symmetries in competitive systems
 Progress of Theoretical Physics Supplement no 194 pp 210 – 222.

174. Central Banking Newsdesk 2013 Swiss board member supports counter-cyclical capital buffer

175. Union Bank of Switzerland 2013 UBS outlook Switzerland

176. Da Costa 2015 Weak first-quarter growth due to seasonal issues after all, SF Fed says
 The Wall Street Journal New York USA.

177. Federal Reserve Bank of St Louis 2015 US Federal Reserve Economic Data (FRED)
 Federal Reserve Bank of St Louis
 http://research.stlouisfed.org/fred

178. Desai M, King St, Goodhart Ch 2015 Hubris: why economists failed to predict the crisis
 and how to avoid the next one *Public Lecture on 27.05.2015* London School of Economics
 and Political Science London UK

179. Desai M 2015 Do we need a new macroeconomics? *Public Lecture on 09.07.2015*
 London School of Economics and Political Science London UK (the presentation was made
 after the publication of an initial version of our research article at the MPRA and SSRN)

180. Wall Street Journal 2015a Economic forecasting survey US GDP (quarterly) for 5 years
 (28.06.2015) Wall Street Journal New York USA
 http://projects.wsj.com/econforecast/#ind=gdp&r=20

181. Wall Street Journal 2015b Economic forecasting survey US GDP (quarterly) for 7 years
 (28.06.2015) Wall Street Journal New York USA
 http://projects.wsj.com/econforecast/#ind=gdp&r=28

182. Wikipedia (English) 2015c Business cycle *Wikipedia* California USA

Firm Theory Science, Business Administration Science:
183. Babbage Ch 1832 On the economy of machinery and manufacturers Charles Knight 13 Pall Mall East London UK.
189. Ohlin B 1933 Interregional and international trade Harvard University Press Cambridge Massachusetts USA.

206. Fogel R 1964 Railroads and American economic growth: Essays in econometric history *Johns Hopkins Press* Baltimore USA.

208. Stigler G 1968 The organization of industry *Richard Irwin Inc* Homewood USA.

238. Perrow C 1986 Complex organizations Random House New York USA.

Board of Directors Science, Interlocking Directors Networks Science, Firms Networks Science, Social Networks Science:
250. Brandeis L D 1933 Other people’s money-and how the bankers use it Jacket Library Washington National Home Library Foundation USA.
255. Hopkins T K 1964 The exercise of influence in small groups Bedminster Press Totawa New Jersey USA.
260. Harary F 1969 Graph theory Addison-Wesley Reading MA USA.
263. Mace M L 1971 Directors: Myths and reality Harvard University Press Cambridge Massachusetts USA.
283. Tukey J W 1977 Exploratory data analysis Addison-Wesley USA.
285. Freeman L 1979b Visualizing social networks School of Social Sciences University of California Irvine California USA.
directorates involving American manufacturing *Administrative Science Quarterly* **25**
pp 557 – 582.
289. Burt R S 1997 The contingent value of social capital *Administrative Science Quarterly* **42**
291. Radcliff R 1980 Banks and corporate lending: An analysis of the impact of the internal
structure of the capitalist class on the lending behavior of banks *American Sociological
292. Boje D M, Whetten D A 1981 Effects of organizational strategies and constraints on
centrality and attributions of influence in interorganizational networks *Administrative
293. Mintz B, Schwartz M 1981 Interlocking directorates and interest group formation
294. Mintz B, Schwartz M 1985 The power structure of American business *University of
Chicago Press* Chicago Illinois USA.
measures *Administrative Science Quarterly* **26** pp 475 – 489.
Beverly Hills California USA.
297. Stearns L B, Mizruchi M S 1986 Broken-tie reconstitution and the functions of
interorganizational interlocks: A reexamination *Administrative Science Quarterly* **31**
pp 522 – 538.
298. Mizruchi M S, Schwartz M (editors) 1987 Intercorporate relations: The structural
analysis of business *Cambridge University Press* Cambridge UK.
299. Mizruchi M S, Stearns L B 1988 A longitudinal study of the formation of interlocking
300. Mizruchi M S 1992 The structure of corporate political action *Harvard University Press*
Cambridge USA.
301. Mizruchi M S, Stearns L B 1994 A longitudinal study of borrowing by large American
corporations *Administrative Science Quarterly* **39** pp 118 – 140.

306. Barnes J A 1983 Graph theory in network analysis Social Networks vol 5 pp 235 – 244.

312. American Bar Association 1984 Section on Antitrust Law Monograph 10 Interlocking Directorates under Section 8 of Clayton Act. Task force on interlocking directorates Washington USA.

313. American Bar Association 2011 Interlocking directorates Handbook on Section 8 of the Clayton Act Washington USA.

317. Useem M 1984 The inner circle Oxford University Press New York USA.

361. Demb A, Neubauer F F 1992 The corporate board: Confronting the paradoxes Oxford University Press NY USA.

421. Park S, Rozeff M 1996 The role of outside shareholders, outside boards, and management entrenchment in CEO selection *Working Paper* SUNY Buffalo NY USA.

426. Williamson O E 1996 The mechanisms of governance *Oxford University Press* New York USA.
427. Bianco M, Pagnoni E 1997 I Legami creati tra le società quotate dagli interlocking directorates: Il caso delle banche Qua
derni di Moneta e Credito Banca Nazionale del Lavoro Italy.

444. Miller G T March 26 1997 Interlocking directorates and the antitrust laws *Colorado Lawyer* 53.

448. Collin S-O 1998 Why are these islands of conscious power found in the ocean of ownership? Institutional, governance hypotheses explaining the existence of business groups in Sweden *Journal of Management Studies* 35 pp 719 – 746.

461. Hopt K J 1998 The German two-tier board: Experience, theories, reforms in Comparative corporate governance: The state of the art and emerging research Hopt K J (editor) *Clarendon* USA

481. Borgatti S P 2002 Basic social network concepts AoM PDW Denver CO USA.

488. Davies A 1999 A strategic approach to corporate governance *Gower* Cambridge UK.
494. Maman D 2001 The organizational connection: Social capital, the career expansion of directors of business groups in Israel *Social Science Research* 30 pp 578 – 605.
496. Shivdasani A, Yermack D 1999 CEO involvement in the selection of new board members: An empirical analysis *Journal of Finance*
http://pages.stern.nyu.edu/~eofek/PhD/papers/SY_CEO_JF.pdf.

503. Fich E 2000 Do directors who are CEOs of other firms enhance firm performance? UNC Working Paper University of North Carolina NC USA.

507. Miwa Y, Ramseyer M 2000 The value of prominent directors: Lessons in corporate governance from transition Japan University of Tokyo, Harvard University Japan, USA.

511. Ferri G, Masciandaro D, Messori M 2001 Corporate governance, board turnover and performance: The case of local banks in Italy Paolo Baffi Centre Working Paper no 01-150 Italy.

525. Tomka B 2001 Interlocking directorates between banks and industrial companies in Hungary at the beginning of the twentieth century *Business History* 43 (1) pp 25 – 42.

532. Carver J 2002 Corporate boards that create value: Governing company performance from the boardroom *Jossey-Bass* USA.

568. Stablein R, Cleland P, Mackie B, Reid D 2004 New Zealand exchange limited (nzx) boards and directors: It is a small world after all Working Paper.

572. Charan R 2005 Boards that deliver: Advancing corporate governance from compliance to competitive advantage Jossey-Bass USA.

582. Batagelj V, Mrvar A 2006 *Pajek* *University of Ljubljana*.

588. Farina V 2008 Banks' centrality in corporate interlock networks: Evidences in Italy Sefemeq Department University of Rome “Tor Vergata” Italy *MPRA Paper no 11698* Munich University Germany pp 1 – 31 http://mpra.ub.uni-muenchen.de/11698/.

590. Chhaochharia V, Grinstein Y 2006b Executive compensation and board structure Working Paper Cornell University USA.

613. Ibarra H 2007 What you know or who you know? INSEAD Knowledge-casts INSEAD France.

616. Malloy Chr 2007 Social networks Public Lecture London School of Economics and Political Science London UK.

617. Murray A S 2007 Revolt in the boardroom: The new rules of power in corporate America Collins USA.
http://www.tinbergen.nl.

http://ssrn.com/abstract=971189,
http://mpra.ub.uni-muenchen.de/2288/.

http://mpra.ub.uni-muenchen.de/2265/,

624. Santella P, Drago C, Polo A, Gagliardi E 2009 A comparison among the director networks in the main listed companies in France, Germany, Italy, and the United Kingdom *MPRA Paper no 16397* Munich University Germany pp 1 – 19
http://mpra.ub.uni-muenchen.de/16397/.

630. Vermeulen Fr 2008 How companies can get lucky and succeed Public Lecture London School of Economics and Political Science London UK.

632. Tutelman H 2008 The balance point: New ways business owners can use boards Famille Press USA.

649. Schifeling T, Mizruchi M S August 27 - 28 2012 The decline of the American corporate network 1960-2010 Corporate Networks in the 20th century Conference University of Lausanne USA.

Strategy Science, Strategic Governance Science, Management Science:

664. Andrews K R 1971a The concept of corporate strategy Richard D Irwin Homewood USA.

models and economics Taylor T H (editor) *North-Holland Publishing Company* Amsterdam
The Netherlands.

677. Porter M E, Salter M S March 1982, June 1986 Note on diversification as a strategy
Harvard Business School Background Note Harvard University pp 382 – 129.

678. Porter M E 1983 Analyzing competitors: Predicting competitor behavior and formulating
offensive and defensive strategy in *Policy, strategy, and implementation* Leontiades M
(editor) *Random House USA.*

Harvard Business Review

pp 95 – 117.

advantage *Harvard Business School Press* Boston Massachusetts USA.

portable MBA in strategy* Fahey L, Randall R M (editors) *John Willey & Sons NY USA.*

687. Porter M E 1994b Competitive strategy revisited: A view from the 1990s in *The
relevance of a decade: Essays to mark the first ten years of the Harvard Business School
Press* Duffy P B (editor) *Harvard Business School Press* Boston Massachusetts USA.

688. Porter M E, Van der Linde C 1995 Toward a new conception of the environment-

690. Porter M E December 1996b Tradeoffs, activity systems, and the theory of competitive
strategy *Unpublished Work* Harvard University USA.

Economic Development Quarterly 11 (1).

University Press* New York USA.

695. Porter M E 2001b The technological dimension of competitive strategy in Research on technological innovation, management and policy vol 7 Burgelman R A, Chesbrough H (editors) JAI Press Greenwich CT USA.

705. Yelle L E 1979 The learning curve: Historical review and comprehensive survey Decision Sciences 10 (2) pp 302 – 328.

730. McKiernan P 1997 Strategy past, strategy futures *Long range planning* vol 30 no 5 p 792.

735. Moldoveanu M, Martin R L 2001 Agency theory and the design of efficient governance mechanisms *Joint Committee on Corporate Governance Meeting* Rotman School of Management University of Toronto Ontario Canada pp 1 – 57.

738. Martin R L 2007 Designing the thinker Rotman Magazine Rotman School of Management University of Toronto Ontario Canada pp 4 – 8.

749. Drejer A 2002 Strategic management and core competencies 1st edition Quorum Books Westport Connecticut USA.

 www.thinkers50.org.

756. Roney C 2004 Strategic management methodology 1st edition Praeger Westport
 Connecticut USA.

 Thomson Higher Education Mason OH USA.

 USA.

759. Hitt M, Ireland R, Hoskisson R 2007 Management of strategy 1st edition Thomson/South-
 Western Australia.

760. Kirkbride P S 2007 Developing a leadership and talent architecture MBS Leader-casts
 Melbourne Business School Melbourne Australia.

761. Murphy T, Galunic Ch 2007 Leading in the age of talent wars INSEAD Leader-casts
 INSEAD France.

 India.

763. Sull D 2007a Simple rules: Strategy as simple rules Part II Public Lecture London School
 of Economics and Political Science London UK.

764. Sull D 2007b Closing the gap between strategy and execution: Strategy and its
 discontents Public Lecture London School of Economics and Political Science London UK.

765. Sull D 2007c Closing the gap between strategy and execution: Making hard choices
 Public Lecture London School of Economics and Political Science London UK.

766. Sull D 2007d Closing the gap between strategy and execution: The strategy loop in action
 Public Lecture London School of Economics and Political Science London UK.

767. Sull D 2008 An iterative approach to the strategy Public Lecture London School of
 Economics and Political Science London UK.

768. Teece D J, Winter S 2007 Dynamic capabilities: Understanding strategic change in
 organizations Blackwell Oxford UK.

769. Samuels R 2008 Japan's grand strategy Public Lecture on 13.10.2008 London School of
 Economics and Political Science London UK.
770. Chamberlain G P 2010 Understanding strategy Create Space Charleston South Carolina USA.

Disruptive Innovation in Technology, Economics and Finances:

775. Schumpeter J A 1911; 1939, 1961 Theorie der wirtschaftlichen entwicklung; The theory of economic development: An inquiry into profits, capital, credit, interest and the business cycle Redvers Opie (translator) OUP New York USA.

Christensen C M 1997 The innovator's dilemma: When new technologies cause great firms to fail *Harvard Business School Press* Boston MA USA.

Christensen C M 1998 The evolution of innovation in Technology management handbook Dorf R (editor) *CRC Press* Boca Raton FL USA.

Christensen C M April 1999a Value networks and the impetus to change: Managing innovation: Overview teaching note for module 1 *Harvard Business School Teaching Note* 699 - 163.

Christensen C M April 1999c Teradyne: The Aurora project & Teradyne: Corporate management of disruptive change, TN *Harvard Business School Teaching Note* 399 - 087.

794. Christensen C M 1999a Innovation and the general manager Irwin McGraw-Hill Homewood IL USA.

795. Christensen C M 1999b Impact of disruptive technologies in telecommunications in Bringing PC economics to the telecommunications industry PulsePoint Communications.

800. Christensen C M, Craig Th, Hart S March April 2001 The great disruption Foreign Affairs 80 no 2.

808. Christensen C M June 2002 The rules of innovation Technology Review.

812. Shah Ch D, Brennan T A, Christensen C M April 2003 Interventional radiology: Disrupting invasive medicine.

813. Christensen C M March April 2003 Beyond the innovator's dilemma *Strategy & Innovation* **1** no 1.

824. Dyer J H, Gregersen H B, Christensen C M 2011 The innovator's DNA: Mastering the five skills of disruptive innovators *Harvard Business Press* Boston MA USA.

Information Absorption in Economics, Finances, Business Administration Sciences and Information Asymmetry in Economics, Finances, Business Administration Sciences:

841. Farina V 2008 Network embeddedness, specialization choices and performance in investment banking industry *University of Rome Tor Vergata* Italy *MPRA Paper no 11701* Munich University Munich Germany pp 1 – 26 http://mpra.ub.uni-muenchen.de/11701/.

Selected Research Papers in Macroeconomics, Microeconomics & Nanoeconomics Sciences:

Ledenyov D O, Ledenyov V O 2013e To the problem of evaluation of market risk of global equity index portfolio in global capital markets MPRA Paper no 47708 Munich University Munich Germany pp 1 – 25 http://mpra.ub.uni-muenchen.de/47708/.

860. Ledenyov D O, Ledenyov V O 2014f *MicroLBO* software program with the embedded optimized near-real-time artificial intelligence algorithm to create winning virtuous strategies toward leveraged buyout transactions implementation and to compute direct/reverse leverage buyout transaction default probability number for selected public/private companies during private equity investment in conditions of resonant absorption of discrete information in diffusion - type financial system with induced nonlinearities *ECE James Cook University* Townsville Australia, Kharkov Ukraine.

861. Ledenyov D O, Ledenyov V O 2015a Nonlinearities in microwave superconductivity 8th edition *Cornell University* NY USA pp 1 – 923

http://mpra.ub.uni-muenchen.de/61681/,

http://mpra.ub.uni-muenchen.de/63380/,

http://mpra.ub.uni-muenchen.de/63565/,
http://mpra.ub.uni-muenchen.de/64368/ ,

http://mpra.ub.uni-muenchen.de/64755/ ,

http://mpra.ub.uni-muenchen.de/64991/ ,

http://mpra.ub.uni-muenchen.de/65566/ ,

http://mpra.ub.uni-muenchen.de/66577/ ,

http://mpra.ub.uni-muenchen.de/67010/ ,

http://mpra.ub.uni-muenchen.de/67162/ ,

875. Ledenyov D O, Ledenyov V O 2015o MicroID software program with the embedded optimized near-real-time artificial intelligence algorithm to create the winning virtuous business strategies and to predict the director’s election / appointment in the boards of directors in the firms, taking to the consideration both the director’s technical characteristics and the interconnecting interlocking director’s network parameters in conditions of the resonant absorption of discrete information in diffusion - type financial economic system with induced nonlinearities. *ECE James Cook University Townsville Australia, Kharkov Ukraine.*

876. Ledenyov D O, Ledenyov V O 2015p MicroITF operation system and software programs: 1) the operation system to control the firm operation by means of the information resources near-real-time processing in the modern firms in the case of the diffusion - type financial economic system with the induced nonlinearities; 2) the software program to accurately characterize the director’s performance by means of a) the filtering of the generated/transmitted/received information by the director into the separate virtual channels, depending on the information content, and b) the measurement of the levels of signals in every virtual channel with the generated/transmitted/received information by the director, in
the overlapping interconnecting interlocking directors networks in the boards of directors in the firms during the Quality of Service (QoS) measurements process; and 3) the software program to create the winning virtuous business strategies by the interlocking interconnecting directors in the boards of directors in the modern firms in the case of the diffusion-type financial economic system with the induced nonlinearities, using the patented recursive artificial intelligence algorithm ECE James Cook University Townsville Australia, Kharkov Ukraine.

877. Ledenyov D O, Ledenyov V O 2015r MicroIMF software program: the MicroIMF software program to make the computer modeling of 1) the interactions between the information money fields of one cyclic oscillation and the information money fields of other cyclic oscillation(s) in the nonlinear dynamic economic system, 2) the interactions between the information money fields of cyclic oscillation and the nonlinear dynamic economic system itself, and 3) the density distributions of the information money fields by different cyclic oscillations (the economic continuous waves) in the nonlinear dynamic economic system ECE James Cook University Townsville Australia, Kharkov Ukraine.

878. Ledenyov D O, Ledenyov V O 2015s MicroSA software program 1) to perform the spectrum analysis of the cyclic oscillations of the economic variables in the nonlinear dynamic economic system, including the discrete-time signals and the continuous-time signals; 2) to make the computer modeling and to forecast the business cycles for a) the central banks with the purpose to make the strategic decisions on the monetary policies, financial stability policies, and b) the commercial/investment banks with the aim to make the business decisions on the minimum capital allocation, countercyclical capital buffer creation, and capital investments ECE James Cook University Townsville Australia, Kharkov Ukraine.

Probability Theory, Statistics Theory, Spectrum Analysis Theory, Brownian Movement Theory, Diffusion Theory, Chaos Theory, Information Communication Theory in Econometrics and Econophysics Sciences:

880. Bernoulli J 1713 Ars conjectandi (The art of guessing).

882. De Moivre 1730 Miscellanea analytica supplementum (The analytic method).

Fourier J-B J 1824 Mémoires de l'Académie Royale des Sciences de l'Institut de France VII pp 570 – 604

De Laplace 1812 Théorie analytique des probabilities Paris France.

Bunyakovsky V Ya 1825 Rotary motion in a resistant medium of a set of plates of constant thickness and defined contour around an axis inclined with respect to the horizon Ph D Thesis no 1 under Prof. Augustin - Louis Cauchy supervision École Polytechnique Paris France.

Bunyakovsky V Ya 1846 Foundations of the mathematical theory of probability St. Petersburg Russian Federation.

Connor J J, Robertson E F (July) 2000 Viktor Yakovlevich Bunyakovsky (December 16, 1804 - December 12, 1889) School of Mathematics and Statistics University of St Andrews Scotland UK
http://www-history.mcs.st-andrews.ac.uk/Biographies/Bunyakovsky.html.

V Ya Bunyakovsky International Conference (August 20 - 21) 2004 Private communications with conference participants on V Ya Bunyakovsky’s mathematical theory of probability and its applications in econophysics and econometrics during a tour to Town of Bar Vinnytsia Region Ukraine V Ya Bunyakovsky International Conference Institute of Mathematics of National Academy of Sciences of Ukraine (NASU) Kyiv Ukraine www.imath.kiev.ua/~syta/bunyak.

Chebyshev P L 1846 An experience in the elementary analysis of the probability theory Crelle’s Journal fur die Reine und Angewandte Mathematik.

895. Chebyshev P L 1936 Theory of probability: Lectures given in 1879 and 1880
Lyapunov A N (lecture notes writer) Krylov A N (editor) Moscow - St Peters burg Russian Federation.

896. Markov A A 1890 On one problem by D I Mendeleev Zapiski Imperatorskoi Akademii

897. Markov A A 1899 Application des functions continues au calcul des probabilit’es Kazan

898. Markov A A 1900, 1912, 1913 Calculation of probabilities St Petersburg Russian
Federation; Wahrscheinlichkeits-Rechnung Teubner Leipzig-Berlin Germany; 3rd edition
St Petersburg Russian Federation.

899. Markov A A 1906 Extension of law of big numbers on variables, depending from each
other Izvestiya Fiziko-Matematicheskogo Obschestva pri Kazanskom Universitete 2nd series
vol 15 (94) pp 135 – 156 Russian Federation.

900. Markov A A 1907, 1910 Research on fine case of depending trials Izvestiya Akademii
Nauk SPb 6th series vol 1 (93) pp 61 – 80; Recherches sur un cas remarquable d’epreuves

901. Markov A A 1908, 1912, 1971 Extension of limit theorems of calculation of probabilities
to sum of variables, connected in chain Zapiski Akademii Nauk po Fiziko-Matematicheskomu
Otdeleniyu 8th series vol 25 (3); Ausdehnung der Satze uber die Grenzwerte in der
Wahrscheinlichkeitsrechnung auf eine Summe verketteter Grossen Liebmann H (translator)
in Wahrscheinlichkeitsrechnung Markov A A (author) pp 272 – 298 Teubner B G Leipzig
Germany; Extension of the limit theorems of probability theory to a sum of variables
connected in a chain Petelin S (translator) in Dynamic probabilities systems Howard R A
(editor) vol 1 pp 552 – 576 John Wiley and Sons Inc New York USA.

902. Markov A A 1910 Research on common case of trials, connected in chain Zapiski
Akademii Nauk po Fiziko-Matematicheskomu Otdeleniyu 8th series vol 25 (93)
Russian Federation.

903. Markov A A 1911 On one case of trials, connected in complex chain Izvestiya Akademii

904. Markov A A 1912 On trials of connected in chain unobserved events Izvestiya Akademii

905. Markov A A 1913 Example of statistical research on text of “Eugene Onegin”,
illustrating interconnection of trials in chain Izvestiya Akademii Nauk SPb 6th series vol 7
914. Slutsky E E 1915 Sulla teoria sel bilancio del consumatore Giornale degli economisti e rivista di statistica 51 no 1 pp 1 – 26 Italy.
921. Slutsky E E 1925b Ueber stochastische Asymptoten und Grenzwerte Metron Padova Italy vol 5 no 3 pp 3 – 89.
922. Slutzhi E E 1926 Ein Beitrag zur Formal-praxeologischen Grundlegung der Oekonomik
Ann de la classe des sci soc-econ Akad Oukrainienne des Sciences Kiev Ukraine vol 4
pp 3 – 12.

923. Slutsky E E 1927a The summation of random causes as sources of cyclic processes
Problems of Conjuncture (Voprosy Kon’yunktury) vol 3 issue 1 pp 34 – 64 Moscow Russian
Federation.

924. Slutzhi E E 1927b Zur Kritik des Bohm-Bawerkschen Wertbegriﬀs und seiner Lehre von
der Messbarkeit des Wertes Schmollers Jb 51 (4) pp 37 – 52.

925. Slutsky E E 1929 Sur l’erreur quadratique moyenne du coeﬃcient de corrélation dans le
cas des suites des épreuves non independantes Comptes rendus 189 pp 612 – 614.

926. Slutsky E E 1935 To the extrapolation problem in connection with forecast problem

927. Slutsky E E 1937a Quelche propostizione relative alla teoria delle funzioni aleatorie
Giornale dell Istituto Italiano degli Attuari 8 no 2 pp 3 – 19.

928. Slutsky E E 1937b The summation of random causes as the source of cyclical processes
Econometrica 5 pp 105 – 146.

pp 18 – 21.

930. Slutsky E E 1960 Selected research works (Izbrannye trudy) Academy of Sciences of
USSR Moscow Russian Federation.

UK.

932. Kolmogorov A N 1937 Markov chains with countable many states Bulletin Moscow
University 1.

933. Kolmogorov A N 1938 On analytic methods in probability theory in Selected works of
Kolmogorov A N vol 2 Probability theory and mathematical statistics Shiryaev A N (editor)
Springer Germany.

934. Kolmogorov A N 1947 The contribution of Russian science to the development of
probability theory Uchenye Zapiski Moskovskogo Universiteta no 91.

935. Kolmogorov A N 1956 Probability theory in Mathematics: Its contents, methods, and
meaning Academy of Sciences USSR vol 2.

937. Kolmogorov A N 1985 Mathematics and mechanics Selected works vol 1 Nauka
Publishing House Moscow Russian Federation.
945. Neyman J, Scott E L 1948 Consistent estimates based on partially consistent observations Econometrica 16 pp 1 – 32.
951. Mandelbrot B B 1963a The stable Paretian income distribution when the apparent exponent is near two International Economic Review no 4.
<table>
<thead>
<tr>
<th>Reference</th>
<th>Title and Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>964.</td>
<td>Mandelbrot B B 1977 Fractals: Form, chance and dimension W H Freeman San Francisco USA.</td>
</tr>
<tr>
<td>965.</td>
<td>Mandelbrot B B 1982 The fractal geometry of nature W H Freeman San Francisco USA.</td>
</tr>
<tr>
<td>966.</td>
<td>Mandelbrot B B 1997 Fractals and scaling in finance Springer New York USA.</td>
</tr>
<tr>
<td>967.</td>
<td>Gnedenko B V, Khinchin A Ya 1961 An elementary introduction to the theory of probability Freeman San Francisco USA.</td>
</tr>
</tbody>
</table>

979. Shiryaev A N 1988 Probability *Springer-Verlag* Berlin Heidelberg Germany.

995. du Toit J, Peskir G, Shiryaev A N 2007 Predicting the last zero of Brownian motion with drift *Cornell University* NY USA pp 1 – 17

1009. Lamperti J 1966 Probability Benjamin New York USA.

1015. Breiman L 1968 Probability Addison-Wesley Reading MA USA.

1022. Box G E P, Jenkins G M 1970 Time series analysis: Forecasting and control Holden Day San Francisco California USA.

1043. Taylor S 1986 Modeling financial time series \textit{John Willey and Sons Inc} New York USA.

1051. Lancaster T 1990 The econometric analysis of transition data *Cambridge University Press* Cambridge UK.

1055. Cleveland W S 1993 Visualizing data *Hobart Press* Summit New Jersey USA.

1056. Pesaran M H, Potter S M (editors) 1993 Nonlinear dynamics, chaos and econometrics *John Willey and Sons Inc* New York USA.

1058. Peters E E 1994 Fractal market analysis: Applying chaos theory to investment and economics *John Wiley and Sons Inc* New York USA.

1063. Moore G E 2003 No exponential is forever – but we can delay forever *ISSCC*.

1072. Hubbard B B 1998 The world according to wavelets A K Peters Wellesley MA USA.
1074. Teolis A 1998 Computational signal processing with wavelets Birkhauser Switzerland.
1091. Koop G 2003 Bayesian econometrics John Wiley and Sons Inc New York USA.
Weatherall J O 2013 Physics of Wall Street *Houfton* New York USA.

Quantum Physics, Quantum Electronics, Quantum Computing, Quantum Mechanics:

1101. Planck M 1900a Über eine Verbesserung der Wienschen Spektralgleichung On an improvement of Wien's equation for the spectrum *Verhandlungen der Deutschen Physikalischen Gesellschaft* 2 pp 202 – 204
 http://archive.org/stream/verhandlungende01goog#page/n212/mode/2up.

1102. Planck M 1900b Zur Theorie des Gesetzes der Energieverteilung im Normalspektrum *Verhandlungen der Deutschen Physikalischen Gesellschaft* 2 p 237
 http://archive.org/stream/verhandlungende01goog#page/n246/mode/2up.

1103. Planck M 1900c Entropie und Temperatur strahlender Wärme Entropy and temperature of radiant heat *Annalen der Physik* 306 (4) pp 719 – 737
 http://adsabs.harvard.edu/abs/1900AnP...306..719P,
 https://dx.doi.org/10.1002%2Fandp.19003060410.

 http://adsabs.harvard.edu/abs/1900AnP...306..69P,
 https://dx.doi.org/10.1002%2Fandp.19003060105.

 http://adsabs.harvard.edu/abs/1901AnP...309..553P,
 https://dx.doi.org/10.1002%2Fandp.19013090310,

1106. Planck M 1903 Treatise on thermodynamics *Longmans, Green & Co* London UK
 http://archive.org/stream/treatiseonthermo00planuoft#page/n7/mode/2up,
 http://openlibrary.org/books/OL7246691M.

1107. Planck M 1906 Vorlesungen über die Theorie der Wärmestrahlung *JA Barth* Leipzig Germany
 http://lccn.loc.gov/07004527.

1108. Planck M 1914 The theory of heat radiation 2nd edition *P Blakiston's Son & Co*
 http://openlibrary.org/books/OL7154661M.

http://adsabs.harvard.edu/abs/1943NW.....31..153P,
https://dx.doi.org/10.1007%2FBF01475738.

1111. Einstein A 1905 Zur Elektrodynamik bewegter Körper On the electrodynamics of moving bodies Annalen der Physik Berlin Germany (in German) 322 (10) pp 891 – 921
http://onlinelibrary.wiley.com/doi/10.1002/andp.19053221004/pdf,
http://adsabs.harvard.edu/abs/1905AnP...322..891E),
http://dx.doi.org/10.1002%2Fandp.19053221004.

1112. Einstein A 1917 Zur Quantentheorie der Strahlung On the quantum mechanics of radiation Physikalische Zeitschrift (in German) 18 pp 121 – 128
http://adsabs.harvard.edu/abs/1917PhyZ...18..121E.

http://echo.mpiwg-berlin.mpg.de/MPIWG:DRQK5WYB.

http://journals.aps.org/pr/pdf/10.1103/PhysRev.47.777,
http://adsabs.harvard.edu/abs/1935PhRv...47..777E,
https://dx.doi.org/10.1103%2FPhysRev.47.777.

http://www.cond-mat.physik.uni-mainz.de/~oettel/ws10/bks_PhilMag_47_785_1924.pdf,
https://dx.doi.org/10.1080%2F14786442408565262.

1119. de Broglie L 1926 Ondes et mouvements Waves and motions Gauthier-Villars Paris France.

1120. de Broglie L 1927 Rapport au 5e Conseil de Physique Solvay Brussels Belgium.
1121. de Broglie L 1928 La mécanique ondulatoire Wave mechanics *Gauthier-Villars* Paris France.

 https://www.worldcat.org/oclc/1871779 .

1123. Compton A; Allison S K 1935 X-Rays in theory and experiment *D Van Nostrand Company Inc* New York USA
 https://www.worldcat.org/oclc/853654 .

1124. Schrödinger E 1926 Quantisierung als Eigenwertproblem *Annalen der Phys* 384 (4) pp 273 – 376
 http://adsabs.harvard.edu/abs/1926AnP...384..361S ,
 https://dx.doi.org/10.1002%2Fandp.19263840404 .

1126. Fermi E 1934 Radioattività indotta da bombardamento di neutroni *La Ricerca scientifica* 1 (5) p 283 (in Italian)

 http://adsabs.harvard.edu/abs/1934RSPSA.146..483F ,
 https://dx.doi.org/10.1098%2Frspa.1934.0168 .

1128. Townes Ch 1939 Concentration of the heavy isotope of carbon and measurement of its nuclear spin *PhD thesis* Caltech California USA

1130. Gordon J, Zeiger H, Townes Ch 1955 The maser — new type of microwave amplifier, frequency standard, and spectrometer *Physical Review* 99 (4) p 1264
 http://adsabs.harvard.edu/abs/1955PhRv...99.1264G ,
 https://dx.doi.org/10.1103%2FPhysRev.99.1264 .

1133. Townes Ch H 1964 Nobel Prize in Physics Stockholm Sweden

1134. Townes Ch H 1966 Obtaining of coherent radiation with help of atoms and molecules *Uspekhi Fizicheskih Nauk (UFN)* vol **88** no 3.

1135. Townes Ch H 1969 Quantum electronics and technical progress *Uspekhi Fizicheskih Nauk (UFN)* vol **98** no 5.

1152. Schawlow A 1963 Modern optical quantum generators Uspekhi Fizicheskikh Nauk (UFN) vol 81 no 12.

1162. Petersen A 1968 Quantum physics and philosophical tradition *MIT Press* Cambridge USA.

1172. Mygind J 1997 Private communications on the new sources of noise in the single electron transistors *Department of Physics* Technical University of Denmark Lyngby Denmark.

1178. Ledenyov V O, Ledenyov O P, Ledenyov D O 2002 A quantum random number generator on magnetic flux qubits *Proceedings of the 2nd Institute of Electrical and
Wave Function in Schrödinger Quantum Mechanical Wave Equation in Quantum Mechanics:

 https://dx.doi.org/10.1002%2Fandp.19263840404 ,
 http://adsabs.harvard.edu/abs/1926AnP...384..361S .

 https://dx.doi.org/10.1103%2FPhysRev.28.1049 ,
 http://adsabs.harvard.edu/abs/1926PhRv...28.1049S .

1185. Einstein A 1917 Zur Quantentheorie der Strahlung On the quantum mechanics of radiation *Physikalische Zeitschrift* (in German) 18 pp 121 – 128
 http://adsabs.harvard.edu/abs/1917PhyZ...18..121E .

 http://journals.aps.org/pr/pdf/10.1103/PhysRev.47.777 ,
 http://adsabs.harvard.edu/abs/1935PhRv...47..777E ,
 https://dx.doi.org/10.1103%2FPhysRev.47.777 .

Artificial Intelligence Science, Computer Science:

Continuous Time Signal, Analog Signals, Discrete Time Signal, Digital Signals, Spectrum of Signals, Electromagnetic Field, Gravitation Field, Calibrating Field, Information Field Theories in Physics and Engineering Sciences:

1237. Maxwell J C 1890 Introductory lecture on experimental physics in Scientific papers of J C Maxwell Niven W D (editor) vols 1, 2 Cambridge UK.

1239. Walsh J L 1923b A property of Haar’s system of orthogonal functions Math Ann 90 p 3845.

1250. Fountain T 1987 Processor arrays, architecture and applications Academic Press London UK.

1271. Wikipedia 2015e Signal (electrical engineering) *Wikipedia Inc* USA

1272. Wikipedia 2015f Continuous wave *Wikipedia Inc* USA

1273. Wikipedia 2015g Discrete-time signal *Wikipedia Inc* USA

1274. Wikipedia 2015h Hadamard code *Wikipedia* USA

1275. Ledenyov D O, Ledenyov V O 2015a Nonlinearities in microwave superconductivity 8th edition *Cornell University* NY USA pp 1 – 923