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Abstract

We introduce lotteries (randomized trading) into search-theoretic models of money.

In a model with indivisible goods and fiat money, we show goods trade with proba-

bility 1 and money trades with probability τ , where τ < 1 iff buyers have sufficient

bargaining power. With divisible goods, a nonrandom quantity q trades with prob-

ability 1 and, again, money trades with probability τ where τ < 1 iff buyers have

sufficient bargaining power. Moreover, q never exceeds the efficient quantity (not

true without lotteries). We consider several extensions designed to get commodities

as well as money to trade with probability less than 1, and to illuminate the efficiency

role of lotteries.
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1 Introduction

In this paper we introduce lotteries — that is, randomized trading — into search-theoretic

models of monetary exchange. There are several reasons for doing so. First, consider

the most basic version of the model, with indivisible goods and money and a storage

technology that allows agents to inventory at most one object at a time (Kiyotaki and

Wright [1991, 1993]). Although this model is simplistic, it does have virtues. In particular,

since every trade is a one-for-one swap, one can relatively easily study certain aspects of

the exchange process and illustrate certain interesting features of money without having to

determine exchange rates or the distribution of inventories. To the extent that this model

is useful, one would like to understand its properties. It is well known from the study of

various economic environments with indivisibilities or other nonconvexities that agents can

often do better using randomized rather than deterministic trading mechanisms, and so it

is interesting to ask if there is a role for lotteries in this model, too.1

With indivisible goods and money, bargaining over lotteries means bargaining over the

joint probability distribution of (q,m), where q ∈ {0, 1} is the amount of the good and

m ∈ {0, 1} the amount of money to be exchanged. We show that monetary equilibria exist

iff buyers (agents with money) have bargaining power θ above some threshold. If θ is above

the threshold but not too large, then when a buyer meets a seller with a good he desires he

gives the seller money with probability 1 and receives the good with probability 1. If θ is

larger, however, he gives up the money with probability τ < 1, while the good still changes

hands with probability 1, independent of whether the money changes hands. Hence, for

1Analyses of nonconvexities and lotteries include Prescott and Townsend (1984a, 1984b), Rogerson

(1988), Diamond (1990), Shell and Wright (1993), and Chatterjee and Corbae (1995). One difference from

the previous literature (with the exception of Diamond) is that all those papers study competitive models,

while our environment is strategic.
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some parameters there is a role for nondegenerate lotteries. Moreover, lotteries allow us

to discuss a notion of prices, even with indivisible goods and money, since τ is the average

amount of currency that trades for a good.2

Now consider the model with divisible consumption goods, where even if we continue

to assume that money is indivisible and agents have a unit storage capacity, prices can

be determined by letting agents bargain over the quantity of goods buyers get for a unit

of currency (Shi [1995]; Trejos and Wright [1995]). Agents again bargain over the joint

probability distribution of (q,m), but now q ∈ [0,∞). In this model, there is a unique

monetary equilibrium for all parameters, and when a buyer meets a seller with a good

he desires, he gives him money with probability τ where again τ is strictly less than 1

iff θ is above some threshold, and gets q units of the good with probability 1 where q is

deterministic and independent of whether the money changes hands. Hence, there is also

a role for lotteries even if goods are perfectly divisible.

Furthermore, we show that q may be less than but can never exceed the efficient quantity

q∗ (defined below). One reason this is interesting is the following. It is natural to expect

q less than q∗ in a monetary model, as argued in Trejos and Wright (1995), for example;

but one can only rule out q > q∗ for some parameters in the model in that paper, where

lotteries were not allowed. Once we allow lotteries, one can show q ≤ q∗ for all parameters.

Moreover, this immediately implies that welfare is higher, and strictly higher for some

2We emphasize here that lotteries are different from mixed strategies. In particular, with indivisible

goods and money and no lotteries, suppose (as is common) that there exists both a pure strategy equi-

librium where money is accepted and a nonmonetary equilirbium where it is not. Then there is a mixed

strategy equilibrium where money is accepted with probability in (0, 1). In a mixed strategy equilibrium

sellers are indifferent between having and not getting the money, while in the lottery model, by contrast,

sellers strictly prefer getting the money. Once we allow lotteries, mixed strategy equilibria of the above

variety no longer exist. Thus, another reason to introduce lotteries is that this serves to eliminate the

somewhat unnatural mixed equilibria.
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parameters, when lotteries are allowed, in this model. This is not necessarily so in the

indivisible goods model, where allowing lotteries can actually reduce welfare for some

values of the bargaining power parameter. However, we show that if we solve the social

planner’s problem of maximizing ex ante utility, as opposed to looking for equilibria for

arbitrary bargaining power parameters, we also show that lotteries increase welfare in the

indivisible goods model.

One perhaps surprising feature of both models described above is the asymmetry be-

tween goods and money: goods always change hands with probability 1 while money may

change hands with probability τ < 1. To investigate what is behind this result, we discuss

some alternative models, including ones where agents barter consumption goods directly,

where there is commodity rather than fiat money, and where the bargaining powers of

agents varies across meetings. In each case, goods may trade with probability less than

1, and we discuss the reasons. Also, on the subject of commodity money, we find that

if a commodity money is sufficiently intrinsically valuable then equilibria are necessarily

efficient. Moreover, the introduction of lotteries allows us to derive a new version of Gre-

sham’s Law, which says that a sufficiently valuable commodity money will be withdrawn

from circulation in a probabilistic sense, but this will not harm the efficiency of exchange.

The rest of the paper is organized as follows. In Section 2 we present the basic assump-

tions underlying all of the models. In Section 3 we analyze the version with indivisible

goods. In Section 4 we analyze the version with divisible goods. Section 5 considers the

various extensions. Section 6 concludes.3

3Note that in in this paper we do not consider models where both money and goods are divisible, or

where money is indivisible but agents can hold multiple units in inventory, such as such as the models of

Molico (1996), Green and Zhou (1997), Zhou (1998), Camera and Corbae (1998), Taber and Wallace (1998)

or Berentsen (1998), since they are an order of magnitude more complicated than the models studied here.

The role for lotteries in those environments is an open question.
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2 The General Model

The economy is populated by a [0, 1] continuum of infinitely-lived agents who specialize in

consumption and production. Assume consumption goods are non-storable so that they

cannot serve as money. Let Xi be the set of goods that agent i consumes. No agent i

produces a good in Xi. Moreover, for a pair of agents i and j selected at random, the

probability that i produces a good in Xj and j also produces a good in Xi is 0 (there is

never a double coincidences of wants), while the probability that i produces a good in Xj

but j does not produce a good in Xi is x ∈ (0, 1). For example, if there are N goods and

N types, N > 2, and each type i agent consumes only good i and produces only good

i + 1 (modN), then x = 1/N . Let Q denote the set of feasible quantities that agents can

produce. We will consider two cases: the indivisible goods model, where Q = {0, 1}, and

the divisible goods model, where Q = <+.

For every agent i, preferences are described as follows. He derives utility u (q) from

q units of any good in Xi, and incurs disutility c (q) from producing q units. We always

assume u (0) = c (0) = 0. For the divisible goods model, we assume that both u and c are

C2, and that u′ (q) > 0, c′ (q) > 0, u′′ (q) ≤ 0 and c′′ (q) ≥ 0, with at least one of the weak

inequalities holding strictly, for all q > 0. We also assume u′ (0) > c′ (0) = 0, and that

there exists a q > 0 such that u (q) = c (q). For the indivisible goods model, let u (1) = U

and c (1) = C and assume U > C > 0. The rate of time preference is r > 0.

In addition to the consumption goods described above, there is also an object that

cannot be produced or consumed called fiat money. We assume that money is indivisible

and that individuals have a single unit storage capacity, so that if a fraction M ∈ (0, 1)

of the population are each initially endowed with one unit of money then (given no one

disposes of the stuff) there will always beM agents with and 1−M agents without money.
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We call agents with money buyers and agents without sellers. Agents meet randomly

according to a Poisson process with arrival rate α. Thus, the probability per unit time

that buyer i meets a seller j such that j produces a good in Xi is α (1−M) x, and the

probability that seller j meets a buyer i such that j produces a good inXi is αMx. Without

lost of generality, we normalize αx = 1 by choosing units of time appropriately.

We want to consider exchanges that may be random. Define an event to be a pair

(q,m), where q ∈ Q denotes the quantity of the good and m ∈ {0, 1} the amount of

money that is traded. Let E ≡ Q × {0, 1} denote the space of such events and E denote

the Borel σ-algebra. Define a lottery to be a probability measure λ on the measurable

space (E, E). One can always write λ (q,m) = λm(m)λq|m (q), where λm is the marginal

probability measure of m and λq|m is the conditional probability measure of q given m.

Then to reduce notation let λm (m = 1) = τ and λm (m = 0) = 1− τ ; thus, τ ∈ [0, 1] is the

probability that the money changes hands. A lottery can be completely described by the

probability τ and the two probability measures λq|0 and λq|1.
4

Let Vm denote the value function for an agent with m ∈ {0, 1} units of money. The

expected payoffs from a lottery for a buyer and a seller are given by

Π1 = τ

[
V0 +

∫
u(q)λq|1(dq)

]
+ (1− τ)

[
V1 +

∫
u (q)λq|0(dq)

]

Π0 = τ

[
V1 −

∫
c(q)λq|1(dq)

]
+ (1− τ)

[
V0 −

∫
c (q)λq|0(dq)

]
.

We focus on symmetric equilibria, where in any meeting between a buyer and a seller that

4One may question how agents can commit to the outcome of the lottery. For example, suppose that

we agree to randomize so that you give me the good for sure and we flip a coin to see whether I give you

the money. If the coin comes up so that I keep the money, will you still give me the good? Of course, in

any exchange some notion of commitment is required, but perhaps it is more delicate when objects are not

exchanged simultaneously. To the extent that one might worry about this, there are devices to get around

the problem. For example, if I am supposed to give you the money with probability n/m, I can put it in

one of m boxes and shuffle them, and then we can simultaneously swap n of the boxes for the good.
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produces a good the buyer wants, they agree to the same lottery. Then we can write

Bellman’s equations as follows:

rV1 = (1−M) (Π1 − V1)

rV0 =M (Π0 − V0) .

(1)

For example, the first of these equations sets the flow value to being a buyer, rV1, equal to

the rate at which he meets sellers who produce a good in Xi, which is simply 1−M (given

αx = 1), times the net gain from playing the lottery.

We employ the generalized Nash bargaining solution. That is, we determine τ , λq|0 and

λq|1 by solving

max (Π1 − T1)
θ (Π0 − T0)

1−θ (2)

where T1 and T0 are the threat points of the buyer and the seller, respectively, and θ ∈ [0, 1]

is the bargaining power of the buyer. It is well known that this is equivalent to an explicit

strategic bargaining model of the sort developed by Rubinstein (1982) when the time

between offers and counteroffers vanishes, where θ and Tj depend on details of the strategic

environment. In what follows we allow θ to take on any value in [0, 1], and consider two

cases for the threat points have been used in the previous literature: Tj = Vj, which follows

from the strategic model if one assumes individuals continue to meet other potential trading

partners between bargaining rounds; and Tj = 0, which follows from the strategic model

if one assumes they cannot meet other trading partners between rounds.5 We also impose

incentive compatibility conditions to guarantee agents bargain voluntarily:

Π1 ≥ V1 and Π0 ≥ V0. (3)

A steady state equilibrium for this economy is a list
(
V1, V0, τ , λq|0, λq|1

)
such that: the

5See Binmore, Rubinstein and Wolinsky (1986) or Osborne and Rubinstein (1990); see Coles and Wright

(1998) for an exposition in the context of monetary search theory.
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value functions satisfy the Bellman equations in (1) taking the lottery as given; and the

lottery solves the maximization problem in (2) subject to the constraints in (3) taking the

value functions as given. If λq|0(0) = λq|1(0) = 1 or τ = 0 the equilibrium is called non-

monetary, and otherwise it is called monetary. It is clear that a nonmonetary equilibrium

always exists. From now on we focus on monetary equilibria. In any monetary equilibria,

the second constraint in (3) can be rearranged to yield

V1 − V0 ≥

∫
c(q)λq|1(dq) +

1− τ

τ

∫
c(q)λq|0(dq) > 0. (4)

Hence, V1 > V0. In the next two sections we analyze in turn the two models, withQ = {0, 1}

and Q = <+.

3 The Indivisible Goods Model

When q ∈ {0, 1}, a lottery is completely described by τ , plus two numbers, λ1 ≡ λq|1(q = 1)

and λ0 ≡ λq|0(q = 1), which give the probabilities that the good changes hands conditional

on money changing hands and conditional on money not changing hands, respectively (of

course, λ0 is irrelevant if τ = 1 and λ1 is irrelevant if τ = 0). Given any lottery one can

solve (1) for the value functions, substitute into (3), and verify that the first constraint

holds for all parameters, while the second holds iff

rC ≤ τ(1−M)(U − C). (5)

Notice that λ1 and λ0 do not appear in this expression. So that monetary equilibria may

exist, we assume

C <

(
1−M

r + 1−M

)
U, (6)

since otherwise (5) could not be satisfied for any τ ≤ 1 (we ignore the non-generic case

where the condition holds with equality).
8



We begin by briefly reviewing the standard model, where lotteries are ruled out. Let Ω

denote the probability that money is accepted by a seller. Then

rV1 = (1−M) Ω (U + V0 − V1)

rV0 = MΩ (V1 − V0 − C) .

In this model, which is essentially the one in Kiyotaki andWright (1993), there is nothing to

bargain over, and an equilibrium is simply a list (V1, V0,Ω) such that either: V1−V0−C ≥ 0

and Ω = 1; V1 − V0 − C ≤ 0 and Ω = 0; or 0 < Ω < 1 and V1 − V0 − C = 0. Given (6), it

is easy to see that there exists an equilibrium with Ω = 0, an equilibrium with Ω = 1, and

an equilibrium with Ω = rC/(1−M)(U − C) ∈ (0, 1).

We claim that the equilibrium with Ω ∈ (0, 1) is an artifact of ruling out lotteries. To

see this, notice that in such an equilibrium the seller is indifferent between trading and not

trading, V1 − V0 − C = 0, while the buyer strictly prefers to trade, U + V0 − V1 > 0. This

means that trading with probability less than 1 is inconsistent with efficient bargaining.

To see this, think about the strategic game of alternating offers that underlies the Nash

solution, and suppose that buyer i makes seller j the following offer: i will give j the money

with probability 1 and j will give i the good with probability λ1. Then there will be λ1 < 1

such that both i and j strictly prefer to trade. Consequently, there are no equilibria with

Ω ∈ (0, 1) once we allow lotteries and bargaining, and we can set Ω = 1.6

The following proposition characterizes the set of equilibria when the threat points are

given by the continuation values.

6This is essentially the same argument that rules out mixed strategy monetary equilibria in the divisible

goods model, except that there the buyer offers to take a slightly smaller quantity while here he offers to

take the indivisible quantity with a slightly lower probability. Note that we will actually show below that

in any monetary equilibrium the good changes hands with probability λ1 = 1 in this model; setting λ1 < 1

was only used to show that Ω < 1 is not an equilibrium.
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Proposition 1 Assume Tj = Vj. Then there are critical values θ1 and θ̄1 constructed

in the proof, with 0 < θ1 < θ̄1 < 1, such that the following is true: if θ < θ1 there is

no monetary equilibrium; if θ ∈ (θ1, θ̄1] there exists a unique monetary equilibrium and it

entails τ = 1 and λ1 = 1; and if θ > θ̄1 there exists a unique monetary equilibrium and it

entails λ1 = λ0 = 1 and τ = τ 1 ∈ (0, 1), where

τ 1 =
r [θC + (1− θ)U ]

(θ −M)(U − C)
.

Proof: In this model (2) reduces to choosing (τ , λ0, λ1) ∈ [0, 1]× [0, 1]× [0, 1] to solve

max (Π1 − V1)
θ (Π0 − V0)

1−θ

where Π1 = τ(λ1U +V0)+(1− τ)(λ0U +V1) and Π0 = τ(−λ1C+V1)+(1− τ)(−λ0C+V0),

taking V1 and V0 as given. Necessary and sufficient conditions for a solution are

θ [V0 − V1 + (λ1 − λ0)U ] (Π0 − V0)

+ (1− θ) [V1 − V0 − (λ1 − λ0)C] (Π1 − V1)− ητ ≤ 0, = if τ > 0

θτU (Π0 − V0)− (1− θ) τC (Π1 − V1)− η1 ≤ 0, = if λ1 > 0

θ (1− τ)U (Π0 − V0)− (1− θ) (1− τ)C (Π1 − V1)− η0 ≤ 0, = if λ0 > 0.

(7)

where the ηj’s are nonnegative multipliers for the constraints that the choice variables

cannot exceed 1.

We are looking for monetary equilibria, which means that τ > 0, and the first condition

in (7) holds with equality. First consider the case τ < 1, which implies ητ = 0. If λ1 ∈ [0, 1)

then η1 = 0 and θτU (Π0 − V0) ≤ (1− θ) τC (Π1 − V1), and combining this with the first

condition in (7) yields U ≤ C, which is a contradiction. A similar contradiction results if

λ0 ∈ [0, 1). Hence, τ < 1 implies λ1 = λ0 = 1. Given this, we can solve (1) for the Vj’s,

substitute them into first condition in (7) at equality, and solve for τ = τ 1, where τ 1 is
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given above. Notice that τ 1 ∈ (0, 1) iff θ > θ̄1, where

θ̄1 =
(r +M)U −MC

(1 + r)(U − C)
.

One can easily check that the incentive condition (5) is satisfied at τ = τ 1. We conclude

that there exists an equilibrium with λ1 = λ0 = 1 and τ = τ 1 ∈ (0, 1) iff θ > θ̄1.

Now consider the case where τ = 1. This means λ1 > 0 in a monetary equilibrium,

and λ0 is irrelevant so we simply set λ0 = λ1 (nothing actually depends on this but it

facilitates the argument). Inserting the Vj’s into the second equation in (7) at equality and

rearranging, we arrive at:

λ1 {θU [(1−M)U − (r + 1−M)C]− (1− θ)C [(r +M)U −MC]} = (1 + r)η1. (8)

Suppose λ1 < 1; then η1 = 0, and (8) can be satisfied only for the nongeneric parameter

value θ = θ1 where

θ1 =
C(1 + r)

(1−M)U +MC
θ̄1.

Hence, except for the nongeneric case θ = θ1, the only solution to (8) with λ1 < 1 is λ1 = 0.

Therefore, in any monetary equilibrium we have λ1 = 1. But this means that (8) holds

iff the left hand side is non-negative, which is true iff θ ≥ θ1. So monetary equilibria are

only possible if θ ≥ θ1 and λ1 = 1. Given this, one can check that τ = 1 satisfies the first

condition in (7) iff θ ≤ θ̄1. One can also check that (5) is satisfied at τ = 1. We conclude

that there exists an equilibrium with λ1 = 1 and τ = 1 iff θ1 ≤ θ ≤ θ̄1.

Summarizing, an equilibrium with τ ∈ (0, 1) exists iff θ > θ̄1 and an equilibrium with

τ = 1 exists iff θ1 ≤ θ ≤ θ̄1, and in either case we have λ0 = λ1 = 1. Finally, one can verify

that 0 < θ1 < θ̄1 < 1 using (6). This completes the proof. �

For completeness, we also describe the model with Tj = 0. However, since the results
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are qualitatively the same (although τ , θ and θ̄ change), and since the argument is the

same as in Proposition 1, we omit the proof (it is available upon request).

Proposition 2 Assume Tj = 0. Then there are critical values θ0 and θ̄0, with 0 < θ0 <

θ̄0 < 1, such that the following is true: if θ < θ0 there exists no monetary equilibrium; if

θ ∈ (θ0, θ̄0] there exists a unique monetary equilibrium and it entails τ = 1 and λ1 = 1;

and if θ > θ̄0 there exists a unique monetary equilibrium and it entails λ1 = λ0 = 1 and

τ = τ 0 ∈ (0, 1), where

τ 0 =
r [θ(r +M)C + (1− θ)(r + 1−M)U ]

[r(θ −M) +M(1−M)(2θ − 1)] (U − C)
.

Several comments are in order concerning these results. First, since θ̄ < 1, we have τ ∈

(0, 1) in a region of parameter space with positive measure. Hence, the implicit restriction

made in the previous literature, that lotteries are not allowed, is indeed restrictive. Second,

there is an asymmetry in the model: money may change hands randomly, but goods either

change hands with probability 1 or not at all. This is depicted in Figure 1, which plots τ

and λ as functions of θ. As is clear, for θ > θ̄ goods trade with probability 1 and money

trades randomly, for intermediate θ ∈
[
θ, θ̄
]
both objects trade with probability 1, and for

θ < θ monetary equilibria do not exist. We discuss this asymmetry further below.

Note that τ measures the price level since it is the average number of units of money

that it takes to buy a good. One can show τ is decreasing in θ, increasing in r, increasing

in C, and decreasing in U , for both the model with Tj = Vj and the model with Tj = 0.

The effects of changes in M depend on which version of the model we use, however: one

can show ∂τ 1/∂M > 0, but, perhaps surprisingly, ∂τ 0/∂M > 0 iff r and M are not too

small. Also, as r → 0 we have τ → 0 for all θ > θ̄ (the τ curve in Figure 1 becomes vertical

at θ = θ̄); thus, if θ is big and agents are very patient buyers get the good virtually for

12



Figure 1: Monetary Equilibrium as a Function of θ.

free, which sellers are willing to go along with since on the small but positive chance they

get the money it will convey exactly the same benefit to them.7

Finally, we mention welfare. For low θ there is no monetary equilibrium, and the only

possible outcome is autarchy, where V1 = V0 = 0. If lotteries are ruled out then there is

an equilibrium where money is accepted and V1 > V0 > 0 for all parameters satisfying (6).

Hence, allowing lotteries can actually reduce welfare. This should not be too surprising,

however, as it simply says that agents may be better off if they can commit to λ = 1 rather

than bargaining in each bilateral meeting. In any case, we will see below that there is

a welfare-improving role for lotteries in a slight variant of this model, where we consider

commodity money, and where rather than looking for equilibria for an arbitrary value

of the bargaining weight θ we look for incentive-feasible allocations that a social planner

7The thresholds also depend on r; in particular, as r → 0, we have θ̄1 → M and θ
1
→

CM/ [(1−M)U +MC] in the model with Tj = Vj , and θ̄0 → 1/2 and θ
0
→ C/ (U + C) in the model with

Tj = 0. Other differences between the models with different threat points include the following. When

Tj = 0, θ̄0 > 1/2 for all r > 0, and so lotteries are not used when buyers and sellers have equal bargaining

power; but when Tj = Vj , it is possible to have τ < 1 when θ = 1/2. Also, as long as τ1 and τ0 are in

(0, 1), we have τ0 < τ1 iff M > 1/2.
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might choose. Also, we will soon see that lotteries can only enhance welfare in the divisible

goods version of the model presented in the next section.

4 The Divisible Goods Model

When q ∈ <+, a lottery is generally described by τ and two conditional probability dis-

tributions, λq|0 and λq|1. However, we claim the amount of goods that changes hand is

degenerate and independent of whether money changes hands.

Proposition 3 There is a q (that depends on parameter values) such that λq|0(q) =

λq|1(q) = 1.

Proof: The Nash bargaining problem is to choose τ ∈ [0, 1] and probability measures

λq|0 and λq|1 to solve

max

{
τ

[∫
u(q)λq|1(dq) + V0

]
+ (1− τ)

[∫
u(q)λq|0(dq) + V1

]
− T1

}θ

×

{
τ

[
−

∫
c(q)λq|1(dq) + V1

]
+ (1− τ)

[
−

∫
c (q)λq|0(dq) + V0

]
− T0

}1−θ

subject to the incentive constraints in (3), taking V0 and V1 as given. Suppose that the solu-

tion implies λq|0 and λq|1 are nondegenerate, and let q0 =
∫
qλq|0(dq) and q1 =

∫
qλq|1(dq).

Since u(q) is concave and c(q) convex, and at least one is strictly so, by Jensen’s in-

equality the incentive constraints are still satisfied and the Nash product is higher when

λq|0(q0) = λq|1(q1) = 1, which is a contradiction. Hence, λq|0 and λq|1 are degenerate at

q0 and q1, respectively. Now suppose q0 6= q1, and let Eq = τq1 + (1 − τ)q0. Again, since

u(q) is concave and c(q) convex, the incentive constraints are still satisfied and the Nash

product is higher at Eq, another contradiction. �

The above result makes the analysis simpler because we can now restrict attention

to lotteries that are completely characterized by two numbers, τ and q. Given any such
14



lottery, one can, as in the previous section, solve (1) for the value functions, substitute in

(3), and verify that the first constraint is never binding and the second is satisfied iff

rc (q)− τ (1−M) [u (q)− c (q)] ≤ 0. (9)

In particular, if τ = 1, then (9) holds iff

ϕ (q) ≡ rc (q)− (1−M) [u (q)− c (q)] ≤ 0. (10)

It is easy to see that ϕ(0) = 0, ϕ′(0) < 0, ϕ′′(q) ≥ 0 for all q, and ϕ(q) > 0 for large q;

hence, if τ = 1 the constraints are satisfied iff q is below some critical value q̂. Also, let

q∗ be the efficient quantity, defined by u′(q∗) = c′(q∗). It is easy to verify that q∗ is the

quantity that maximizes welfare, W =MV1 + (1−M)V0. If q = q
∗ then (9) holds iff

τ ≥ τ̂ ≡
rc (q∗)

(1−M) [u (q∗)− c (q∗)]
, (11)

which can hold iff r is not too big.

The following proposition characterizes the set of equilibria for the model with threat

points Tj = Vj.

Proposition 4 Assume Tj = Vj. If θ = 0, there does not exist a monetary equilibrium.

If θ > 0, then there is a critical value θ̃1 constructed in the proof, where θ̃1 > 0 for all

parameter values and θ̃1 < 1 iff r < (1 −M)[u(q
∗) − c(q∗)]/c(q∗), such that the following

is true: if θ < θ̃1 there exists a unique monetary equilibrium and it entails τ = 1 and

q < q∗, with ∂q/∂θ > 0 and lim
θ→θ̃1

q = q∗; and if θ > θ̃1 there exists a unique monetary

equilibrium and it entails q = q∗ and τ = τ̃ 1 ∈ (0, 1), where

τ̃ 1 =
r [θc (q∗) + (1− θ) u (q∗)]

(θ −M) [u (q∗)− c (q∗)]
.
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Proof: If θ = 0 then the bargaining solution is equivalent to take-it-or-leave-it offers by

the seller, which implies u(q) = τ(V1 − V0). Inserting this into (1), we find V1 = 0, and

therefore V0 < 0 by (4). But a seller can always achieve V0 = 0 by not trading. Hence,

there cannot exist a monetary equilibrium when θ = 0.

Now assume θ > 0. Then (2) reduces to choosing (τ , q) ∈ [0, 1]×<+ to solve

max (Π1 − V1)
θ (Π0 − V0)

1−θ ,

where Π1 = u(q) + τV0 + (1 − τ)V1 and Π0 = −c(q) + τV1 + (1 − τ)V0. Necessary and

sufficient conditions for a solution are

θu′ (q) (Π0 − V0)− (1− θ) c
′ (q) (Π1 − V1) ≤ 0, = if q > 0

θ (V0 − V1) (Π0 − V0) + (1− θ) (V1 − V0) (Π1 − V1)− ητ ≤ 0, = if τ > 0

(12)

where ητ is the nonnegative multiplier on the constraint τ ≤ 1. We are looking for monetary

equilibria, which implies that both conditions hold with equality.

First consider the case where τ < 1, which implies that ητ = 0. Then combining the

two first order conditions yields u′(q) = c′(q), and so q = q∗. Solving (1) for the Vj’s and

inserting the solutions, as well as q = q∗, into the second condition in (12), we can solve

for τ = τ̃ 1 where τ̃ 1 is defined in the statement of the proposition. Notice that τ̃ 1 ∈ (0, 1)

iff θ > θ̃1 where

θ̃1 =
(r +M)u (q∗)−Mc (q∗)

(1 + r) [u (q∗)− c (q∗)]
.

One can check that τ̃ 1 ≥ τ̂ , where τ̂ is defined in (11), and therefore the incentive condition

(9) holds at τ = τ̃ 1 and q = q
∗. Hence, we conclude that there exists an equilibrium with

τ = τ̃ 1 and q = q
∗ iff θ > θ̃1.

Now consider the case where τ = 1, which implies ητ ≥ 0. By combining the two

conditions in (12), we get u′ (q) ≥ c′ (q), and this implies q ≤ q∗ in any equilibrium with
16



τ = 1, with strict inequality as long as ητ > 0. Inserting the Vj’s and τ = 1, we can rewrite

the first order condition for q as

(1− θ) c′ (q)

θu′ (q)
=
1−M − (r + 1−M)c(q)/u(q)

r +M −Mc(q)/u(q)
. (13)

The left hand side of (13) is zero at q = 0 and it is strictly increasing. As q → 0, the right

hand side approaches (1 −M)/(r +M) > 0, because c(q)/u(q) → 0 by l’Hopital’s rule,

and it is strictly decreasing and equals 0 when q = q̂, where recall that q̂ is the solution to

(10) at equality. Hence, there exists an unique solution to (13), call it χ = χ(θ), in (0, q̂).

Moreover, it is easy to check that χ′(θ) > 0 and that χ(θ̃1) = q
∗. Since we need χ(θ) ≤ q∗

for an equilibrium with τ = 1, an equilibrium of this type cannot exist if θ > θ̃1. If θ < θ̃1

then χ(θ) < q∗, and we now show that this also implies the first order condition for τ is

satisfied at τ = 1. To see this, rearrange the first order condition for τ as

θ ≤
(r +M)u(q)−Mc(q)

(1 + r)[u(q)− c(q)]
. (14)

The right hand side of (14) is decreasing in θ and approaches (r+M)/(1+r) > 0 as q → 0.

Also, (14) is satisfied at equality when θ = θ̃1. Hence, (14) is satisfied iff θ ≤ θ̃1. We

conclude that τ = 1 and q = χ(θ) satisfy the first order conditions iff θ ≤ θ̃1. Moreover,

since χ(θ) < q̂, it satisfies the incentive condition (10), and hence satisfies all of the

conditions for an equilibrium.

Finally, it is obvious that θ̃1 > 0, and that θ̃1 < 1 iff r < (1−M)[u(q
∗)− c(q∗)]/c(q∗).

This completes the proof. �

The model with Tj = 0 has the same qualitative properties, although τ and θ̃ change,

and as in the previous section we state the results without proof.

Proposition 5 Assume Tj = 0. If θ = 0 there does not exist a monetary equilibrium. If

θ > 0 then there is a critical value θ̃0, where θ̃0 > 0 for all parameter values and θ̃0 < 1
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iff r < (1 −M)[u(q∗) − c(q∗)]/c(q∗), such that the following is true: if θ < θ̃0 there exists

a unique monetary equilibrium and it entails τ = 1 and q < q∗, with ∂q/∂θ > 0 and

lim
θ→θ̃0

q = q∗; and if θ > θ̃0 there exists a unique monetary equilibrium and it entails

q = q∗ and τ = τ̃ 0 ∈ (0, 1), where

τ̃ 0 =
r [(1− θ) (1−M + r) u (q∗) + θ (M + r) c (q∗)]

[r (θ −M) +M (1−M) (2θ − 1)] [u (q∗)− c (q∗)]
.

As in the previous section, we again find that the two objects are traded asymmetrically:

randomization may be used for trading money but not for trading goods. Figure 2 shows

τ and q as functions of θ (the figure shows θ̃ < 1, which holds iff r is not too big). Notice

that q ≤ q∗ for all θ, with strict inequality iff θ < θ̃, where q∗ is the efficient quantity

satisfying u′(q∗) = c′(q∗). It is argued in Trejos and Wright (1995) that it is natural to

have q below q∗ in a monetary economy, although in the model in that paper, without

lotteries, the result does not actually hold very generally: it holds when θ = 1/2 in the

model where Tj = 0, but it may not hold for other values of θ, and it may not hold in the

model where Tj = Vj even if θ = 1/2. With lotteries, q can never exceed q
∗ irrespective of

threat points or bargaining power.

Some results for this model are similar to those for the indivisible goods model. For

example, the behavior of τ with respect to the parameters θ, r and M is the same. There

are also differences. For one thing, in the indivisible goods model we have θ̄ < 1, and hence

we definitely have τ < 1 for high θ, but in the divisible goods model we can guarantee τ < 1

for high θ iff r is not too big. Also, in the indivisible goods model monetary equilibria do not

exist for low θ, but in the divisible goods model a monetary equilibrium exists for all θ > 0.

Finally, recall that lotteries could reduce welfare in the indivisible goods model. Lotteries
18



Figure 2: Monetary Equilibrium as a Function of θ.

can only improve welfare here: for θ ≤ θ̃, q and therefore welfare is the same with or without

lotteries; for θ > θ̃, q = q∗ with lotteries and q > q∗ without lotteries, and therefore welfare

is strictly higher with lotteries.8 Lotteries can reduce welfare in the indivisible goods

model by causing monetary equilibrium to break down; this never happens in the divisible

goods model (i.e., monetary equilibrium always exists), and moreover lotteries can enhance

welfare by eliminating overproduction in this model.

5 Discussion

We have seen that although agents may agree to a lottery where money changes hands with

probability less than 1, they will never agree to a lottery where goods change hands with

probability less than 1. What lies behind this asymmetry? It is not due to the assumption

that money is indivisible while goods are divisible, because the same asymmetry arises

when goods and money are both indivisible. One conjecture is that asymmetry is due to

8Welfare is higher because q is at rather than above the efficient quantity, and note that welfare does

not depend on τ ; see the next section for a more explicit analysis.
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the fiat nature of the money — i.e., to the fact that it has no intrinsic worth and derives

value only from its role as a medium of exchange. To investigate this, and some other

things, we consider several variations on the basic theme.

One approach is to consider a model with direct barter instead of monetary exchange.

For example, suppose some agents consume good 1 and produce good 2, while some con-

sume good 2 and produce good 1. Goods are indivisible, production of good j costs Cj > 0,

and consumption yields utility Uj. Assume Ui > Cj, for all i, j. When two agents of the

opposite type meet they bargain over lotteries. Let θ be the bargaining power of type 1,

and let τ j be the probability that type j gives up his production good.
9 Then it is easy

to prove the following (details available upon request): there are critical values θ and θ̄,

with 0 < θ < θ̄ < 1, such that: if θ < θ then τ 1 = 1 and τ 2 ∈ (0, 1); if θ ≤ θ ≤ θ̄ then

τ 1 = τ 2 = 1; and if θ > θ̄ then τ 2 = 1 and τ 1 ∈ (0, 1).

Hence, agents get their consumption goods with probability less than 1 iff they have

sufficiently low bargaining power, in a model with direct barter, while it was not possible

to get goods with probability less than 1 when agents were trading with fiat money. So it

seems there is something to the notion that asymmetry is due to the nature of fiat money.

To explore things further, consider a model with one indivisible good and money, as in

Section 3, but assume now that the money is a commodity money, in the sense that it

yields a direct utility flow γ > 0 to an agent holding it.

Let τ and λ be the probabilities that money and goods change hands (we do not need

9After trading, one can assume agents return to the market, as in the money model, or that they exit

the economy, as in Rubinstein and Wolinsky (1985), say. We have explored these and several other sets

of assumptions, some that generate models very similar to the one in Rubinstein and Wolinsky; the same

qualitative results held for all the barter models we explored. Note that lotteries are not useful in the basic

model presented by Rubinstein and Wolinsky, but only because that model assumes one good is divisible

and utility is linear, while whenever we assume divisible goods we always assume that either u(q) is strictly

concave or c(q) is strictly convex.
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two conditional probabilities λ0 and λ1 because one can show, as above, that λ0 = λ1).

Then the value functions satisfy

rV0 = M [τ (V1 − V0)− λC] (15)

rV1 = (1−M) [λU + τ (V0 − V1)] + γ.

The bargaining solution is exactly as above. Then we have the following generalization of

Proposition 1 (for brevity we only present results for the case Tj = Vj, but the other case

is essentially the same).

Proposition 6 Let γ̄ = (r +M)U −MC. If γ > γ̄ then for all θ there exists a unique

monetary equilibrium and it entails λ = 1 and τ = τ̃ ∈ (0, 1). If γ ∈ (0, γ̄) then there are

critical values θ and θ̄, with 0 < θ < θ̄ < 1, such that the following is true: if θ < θ there

exists a unique monetary equilibrium and it entails τ = 1 and λ = λ̃ ∈ (0, 1), where

λ̃ =
γ[θU + (1− θ)C]

(U − C) [M (1− θ)C − θ (1−M)U ] + rCU
;

if θ ∈ [θ, θ̄] there exists a unique monetary equilibrium and it entails τ = 1 and λ = 1; and

if θ > θ̄ there exists a unique monetary equilibrium and it entails λ = 1 and τ = τ̃ ∈ (0, 1),

where

τ̃ =
r [θC + (1− θ)U ]

γ + (θ −M)(U − C)
.

Proof: See the Appendix.

We first emphasize that γ > 0 implies that a monetary equilibrium exists for all θ, while

with fiat money there was no monetary equilibrium for small θ (there is no discontinuity,

however, since λ→ 0 as γ → 0). However, the key result is that when γ > 0 we can have

λ ∈ (0, 1); i.e., goods can trade with probability less than 1 against commodity money,

even though they could not trade with probability less than 1 against fiat money. So it
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seems that it is not money per se that generates the asymmetry, but fiat money. Before

pursuing this issue further, however, we want to highlight some substantive results that

emerge from the commodity money model.

First, note that for large γ we must τ ∈ (0, 1), and indeed, as γ → ∞ we have τ → 0.

This is a version of Gresham’s Law: very valuable money will be hoarded, in the sense

that the probability it changes hands will be small.10 However, even though the money is

hoarded, the good still changes hands with probability 1. Moreover, one can show that in

the divisible goods version of the model with commodity money, with lotteries, for big γ we

have q = q∗ with probability 1. Hence, a sufficiently valuable money may probabilistically

stop circulating, but the outcome is nevertheless efficient. By contrast, without lotteries,

a sufficiently valuable money also will be hoarded, but in this case trade will shut down,

and welfare will be reduced.

Returning to the issue of asymmetry, we have seen that goods can trade with probability

less than 1 against a money that has some exogenously specified value commodity value

γ. In fact, we will now show that goods can trade with probability less than 1 against

a fiat money if there is some value to the fiat money that arises endogenously due to, in

this case, heterogeneity in bargaining. In particular, consider a generalization of the model

with indivisible goods and fiat money where we now assume that with probability ω the

buyer gets to make a take-it-or-leave-it offer to the seller, while with probability 1 − ω

they bargain according to the Nash solution, with bargaining power θ and threat points

Tj = Vj, as above. The chance of meeting a seller and making a take-it-or-leave-it offer

generates an endogenous return to holding fiat money that will play a role analogous to

10See Velde, Weber and Wright (1998) for an extended discussion of Gresham’s Law in search models

with heterogeneous commodity monies, although we point out that it seems as though at least some of the

results in that paper could change if one allows lotteries.
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the role of γ in the commodity money model.11

Let (τ , λ) be the lottery that results from the Nash solution and (τ̂ , λ̂) that which results

from the take-it-or-leave-it offer (again we do not need conditional probabilities λ0 and λ1,

or λ̂0 and λ̂1, since it turns out that λ0 = λ1 = λ and λ̂0 = λ̂1). The value functions satisfy

rV1 = (1−M) {ω
[
λ̂U + τ̂ (V0 − V1)

]
+ (1− ω) [λU + τ (V0 − V1)]}

rV0 = M (1− ω) [τ(V1 − V0)− λC]

In the equation for V0 we have used the fact that the seller gets no surplus when the buyer

makes a take-it-or-leave-it offer: τ̂(V1 − V0) − λ̂C. Moreover, this condition also implies

that either τ̂ = 1 and λ̂ = V1−V0
C
, or τ̂ = C

V1−V0
and λ̂ = 1. In the Appendix we show

that generically we cannot have τ̂ = 1 and λ̂ = V1−V0
C
; hence we proceed to characterize

equilibria with τ̂ = C
V1−V0

and λ̂ = 1.

In the interest of manageability, and since we are only interesting in show that it is

possible to have λ ∈ (0, 1), we assume in what follows that ω ≥ ω = (U−C)[(1−M)U+CM ]
C[rU+M(U−C)]

,

which serves to guarantee that for all parameter values monetary equilibria exists.

Proposition 7 Assume ω ≥ ω. Then for all parameters there exists an equilibrium with

τ̂ < 1, λ̂ = 1, and τ and λ described as follows. There are critical values θ
1
and θ̄1

constructed in the proof, with 0 < θ
1
< θ̄1 < 1, such that: if θ < θ1 then τ = 1 and λ < 1;

if θ
1
< θ < θ̄1 then τ = 1 and λ1 = 1; and if θ > θ̄1 then τ < 1 and λ = 1.

Proof: See Appendix.

11This model was inspired by comments by the associate editor, although his suggestion actually was

to endow different agents with (permanently) different bargaining powers. This suggestion also works,

although it turns out to be a lot cleaner if we assume that agents have different bargaining powers in

different meetings, but are all identical in an ex ante sense.
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The key part of this result is that we can have λ < 1 in this model, just like in the

commodity money model.12 One way to understand what is going on is to think about the

model in the following way. Agents believe that there is some economy-wide probability λ

with which they can get goods for a unit of money. Then, when a particular buyer-seller

pair meet, they bargain over the probability λ̆ that they will use to trade, taking λ as

given. This generates a version of a best response function, of which an equilibrium is a

fixed point. For the commodity money model, the best response function can easily be

shown to be λ̆ = min {Λ(λ), 1}, where Λ(λ) is linear:

Λ(λ) =
θU + (1− θ)C

CU (1 + r)
{γ + [(1−M)U +MC]λ} .

If γ = 0, we are back to fiat money, and one sees that the intercept of Λ(λ) is zero.

When θ is small, the slope of Λ is less than 1, and given any economy-wide λ our particular

buyer-seller pair will bargain to λ̆ < λ, so the only fixed point is λ = 0. When θ is big, the

slope of Λ(λ) is greater than 1, and given λ > 0 our pair will bargain to λ̆ > λ, so λ = 1 is

fixed point, as well as λ = 0. With γ > 0, however, the intercept of Λ(λ) is strictly positive,

and so there is a unique fixed point, it is always positive, and it less than 1 iff θ is small.

Intuitively, the idea is that even if other agents are giving goods with probability λ = 0 in

exchange for money, as long as γ > 0 you would be willing to trade your good with some

positive probability to get a unit of money. This is why the model with γ > 0 always has

λ > 0, and can have λ < 1. The idea is essentially the same when ω > 0. Any value to

money outside of the Nash bargain that determines λ could actually play the same role.

To close this section we address one final concern: does the nontrivial role for lotteries

arise when we solve the social planner’s problem, or only when we impose an arbitrary

12One can show that λ is increasing in θ when λ < 1; that τ is decreasing in θ when τ < 1; and τ̂ is

independent of θ when τ = 1 and λ = 1, and decreasing in θ otherwise. Thus, we could redraw Figure 1,

where now for low θ, λ is in (0, 1) and increasing in θ, as opposed to λ = 0, and we could also add τ̂ .
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bargaining solution, in the sense of an arbitrary value of θ?13 Thus, consider a world with

an exogenous supply ofM units of a real asset (commodity money) with flow return γ > 0.

Goods as well as the asset are indivisible, and there is a unit storage capacity, as always.

The social planner gets to choose a lottery (τ , λ). Welfare is given by

W =MV1 + (1−M)V0 =M(1−M)λ(U − C) +Nγ,

which is increasing in λ (since production plus consumption generates net social utility),

and independent of τ (as it does not matter in the aggregate who holds the asset, it cannot

matter if it changes hands).

The planner is faced with the following incentive constraints:

τ(V1 − V0)− λC ≥ 0 which holds iff r ≤

[
γ + (1−M)λ(U − C)

λC

]
τ

λU + τ(V0 − V1) ≥ 0 which holds iff r ≥

[
γ −Mλ(U − C)

λU

]
τ .

Notice that if γ = 0, then the second constraint is not binding and the first holds iff

r ≤ τ(1−M)(U − C)/C, which does not depend on λ. Thus, with γ = 0 there is no role

for lotteries, since: (i) λ does not affect the incentive conditions and τ < 1 only makes

them less likely to hold; and (ii) the objective functionW is unaffected by τ and increasing

in λ. This means that either λ = 1 is feasible, in which case we can always set τ = 1, or

λ = 1 is not feasible, in which case we cannot do better than autarchy.

Figure ?? shows the sets of points in lottery space satisfying the incentive conditions

for various parameter configurations.14 In fact, all the cases are similar, in the sense that

the set of feasible lotteries looks qualitatively the same, except for where the point (1, 1)

13This issue was also raised by a referee.
14The figure is drawn by solving for the τ = τ0(λ) and τ = τ1(λ) that solve the two incentive conditions

with equality. The values for r and r in the figure are given by r = [γ −M(U − C)]/U and r = [γ + (1−

M)(U − C)]/C.
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lies relative to this set, which is relevant for the role of lotteries. In case 1a, for example,

(1, 1) is not feasible; it is feasible to choose the efficient λ = 1, but only if τ < 1. This

case corresponds to a large value of γ relative to r, which means holders of the asset would

not give it up with probability 1 to get the good, but they would give it up with some

probability τ < 1, and therefore we need lotteries to get trade. In case 1b, it is feasible to

choose λ = 1 for τ in some range that includes 1, which means we do not need lotteries.

In case 1c, we cannot have λ = 1; the best λ that we can achieve is attained by setting

τ = 1, but this requires λ < 1. In this case, γ is small relative to r, and so again we need

lotteries but this time it is the good that trades with probability less than 1.15

15Note that there is no discontinuity at γ = 0: as γ → 0, τ1(λ) approaches the vertical axis and τ0(λ)

approaches a line which coincides with the vertical axis up to τ = rC/(1 −N)(U − c) and then becomes

horizontal, which gives exactly the set of incentive feasible lotteries with γ = 0.
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Incentive Feasible Allocations in Lottery Space

The bottom line is that there can be a nontrivial role for lotteries when γ > 0, either

because we need to set τ < 1 to achieve λ = 1, or because the best λ that we can achieve

is less than 1. This is interesting because it answers in the affirmative the question as

to whether lotteries are needed for the efficient outcome, as opposed to the equilibrium

outcome for arbitrary bargaining weights. It is also interesting because one might think

from the analysis in Section 3 that lotteries can only reduce welfare in an indivisible goods
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model. That was true because, with fiat money, for low values of θ nontrivial equilibria

did not exist with lotteries, but they do when lotteries are ruled out. The present analysis

shows that at least with commodity money there is an efficiency-enhancing role for lotteries

in the model.

6 Conclusion

This paper has introduced lotteries into the search-theoretic model of monetary exchange.

It has been shown that, in general, private agents may want to use randomized trading

in this environment. So might a social planner. In the model with indivisible goods, we

discussed how lotteries give us a way to analyze prices, and also how lotteries eliminate the

somewhat unnatural mixed strategy equilibria. When goods are divisible, we found that

the quantity produced is never more than the efficient quantity (which is not generally

true without lotteries). Also, we found that as a commodity money gets more and more

valuable, it drops out of circulation probabilisitically but the outcome is still efficient (which

is also not true without lotteries). A general conclusion it that future work should take into

account the fact that lotteries can have a nontrivial role to play in monetary economics.

Appendix

1. Proof of Proposition 6: The argument is similar to the proof of Proposition 1,

although here we use the fact that λ0 = λ1 = λ. First order conditions for the bargaining

problem are:

−θ [τ (V1 − V0)− λC] (V1 − V0)

+ (1− θ) [τ (V0 − V1) + λU ] (V1 − V0)− ητ ≤ 0, = if τ > 0

θ [τ (V1 − V0)− λC]U − (1− θ) [τ (V0 − V1) + λU ]C − ηλ ≤ 0, = if λ > 0

(16)

Given τ > 0, the first condition in (16) holds with equality. Consider the case τ < 1, which
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implies λ = 1, as in Proposition 1. Substitute the Vj’s into first condition in (16), we can

solve for τ = τ̃ , where τ̃ is defined above, and show τ̃ ∈ (0, 1) iff

θ > θ̄ =
(r +M)U −MC − γ

(1 + r)(U − C)
.

Notice θ̄ > 0 iff (r +M)U −MC > γ. The incentive conditions are satisfied at τ = τ̃ and

λ = 1. Hence, there exists an equilibrium with λ = 1 and τ = τ̃ ∈ (0, 1) iff θ > θ̄.

Now consider the case where τ = 1. Inserting the Vj’s into the second equation in (16)

at equality and rearranging, we have

λ {θU [(1−M)U − (r + 1−M)C + γ]− (1− θ)C [(r +M)U −MC − γ]} = (1 + r)ηλ.

Consider the case λ < 1, which implies ηλ = 0 and τ = 1. Given this, we can substitute

the Vj’s into second condition in (16) at equality and solve for λ = λ̃, where λ̃ is defined

above. Notice λ̃ ∈ (0, 1) iff θ < θ, where

θ =
C [rU +M(U − C)− γ]

(U − C) (U(1−M) + CM + γ)
.

The incentive conditions are satisfied at λ = λ̃. Hence, there exists an equilibrium with

τ = 1 and λ = λ̃ < 1 iff θ < θ.

Finally, consider λ = τ = 1. Note that τ = 1 satisfies the first condition in (16) iff

θ ≤ θ̄ and λ = 1 satisfies the second condition iff θ ≥ θ. Also, the incentive compatibility

constraints are satisfied at τ = λ = 1. Hence, there exists an equilibrium with λ = 1 and

τ = 1 iff θ ≤ θ ≤ θ̄. Also, it is easy to see that γ < γ̄ implies 0 < θ < θ̄ < 1 and γ > γ̄

implies θ̄ < 0. �

2. Proof that we cannot have τ̂ = 1 and λ̂ = V1−V0
C
: Assuming τ̂ = 1 and λ̂ = V1−V0

C
,

we will derive a contradiction from the first order conditions from the Nash bargaining

problem for (τ , λ) (these are given explicitly in the proof of Proposition 7). There are
29



several cases. First, we cannot have τ = λ = 0 in a monetary equilibrium, and we cannot

have λ, τ < 1 because this generate the same contradiction as Proposition 1. Now suppose

λ < 1 and τ = 1; then the first order conditions, which are again given by (16), imply

CU =
[θU + (1− θ)C] (1− ω) [(1−M)U +MC]

r + (1−M)ω (1− U/C) + 1− ω
,

after substituting the value functions; this can hold only for degenerate parameter values.

Now suppose λ = 1 and τ ≤ 1; then the first order conditions imply

θ [τ(V1 − V0)− C] = (1− θ) [U − τ (V1 − V0)] ,

which implies τ = (1−θ)U+θC
V1−V0

> 1 because V1 − V0 ≤ C (otherwise λ̂ > 1). In each case we

have a contradiction. �

Proof of Proposition 7: We are looking for equilibria with τ̂ = C
V1−V0

, λ̂ = 1, and (τ , λ)

satisfying the first order conditions, which are again given by (16). Again we emulate the

proof of Proposition 1 and consider each combination of (τ , λ) in turn. As above, we cannot

have λ, τ < 1.

Now consider λ < 1 and τ = 1. The second equation in (16) implies, after inserting the

value functions,

λ =
[θU + (1− θ)C] (1−M)ω (U − C)

CU (r + 1− ω)− (1− ω) [θU + (1− θ)C] [(1−M)U +MC]
.

One can check that the first condition in (16) is satisfied, and that λ < 1 iff

θ < θ
1
=

C [Ur + (M − ω) (U − C)]

(U − C) {(1−M)ω (U − C) + (1− ω) [(1−M)U +MC]}
.

One can also solve for

τ̂ =
CU (r + 1− ω)− (θU + (1− θ)C) (1− ω) [(1−M)U +MC]

U (1−M)ω (U − C)
,
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and show that τ̂ < 1 under the assumption ω ≥ ω. Hence, equilibrium exists with τ̂ < 1,

λ < 1 and τ = 1 for all θ ∈ [0, θ
1
).

Consider λ = 1 and τ = 1. Then

τ̂ =
C (r + 1− ω)

(1−M)U +MC − ωC
.

The first order conditions can be shown to hold iff θ
1
≤ θ ≤ θ̄1, where

θ̄1 =
rU + (M − ω) (U − C)

(1− ω + r) (U − C)
.

Hence, equilibrium exists with τ̂ < 1 and τ = λ = 1 for all θ ∈ [θ
1
, θ̄1].

Now consider λ = 1 and τ < 1. The first equation in (16) implies

τ =
r [(1− θ)U + θC]

[θ −M + ω (1− θ)] (U − C)
.

The second condition in (16) is satisfied iff θ > θ
1
, and τ < 1 iff θ > θ̄1. Also,

τ̂ =
rC [U (θ −M) + C (M − ωθ)]

[(1−M)U + (M − ω)C] [θ −M + ω (1− θ)] (U − C)
.

One can show that τ̂ < 1. Hence, equilibrium exists with τ̂ < 1, τ < 1 and λ = 1 for all

θ > θ̄1. �
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