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Abstract

This paper proposes a Bayesian nowcasting approach that utilizes information com-

ing both from large real-time data sets and from priors constructed using internet

search popularity measures. Exploiting rich information sets has been shown to deliver

significant gains in nowcasting contexts, whereas popularity priors can lead to better

nowcasts in the face of model and data uncertainty in real time, challenges which can

be particularly relevant during turning points. It is shown, for a period centered on

the latest recession in the United States, that this approach has the potential to deliver

particularly good real-time nowcasts of GDP growth.
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1 Introduction: Nowcasting Around Turning Points

Obtaining accurate and timely forecasts of turning points in GDP growth is a central pre-

occupation of macroecononometrics. This is quite justifiable, given the importance of the

task for the private sector and for policy makers alike. However, good such forecasts can be

difficult to obtain. For example, there is a substantial, decades-old literature (see, inter alia,

Stekler (1972), Zarnowitz (1986), Loungani (2001), Lahiri and Wang (2013) ) that presents

ample evidence of such predictive failures spanning several countries, historical episodes of

recessions, forecast horizons, and types of forecasters.

On the other hand, recent literature has demonstrated that it is possible to produce good

nowcasts of GDP growth. For instance, the influential paper of Giannone, Reichlin and

Small (2008) has convincingly demonstrated the gains to be made when nowcasting US GDP

growth using dynamic factors to exploit information coming from a large data set.

In view of both of the above, one question that arises naturally is how well we can detect

turning points in GDP growth in real time during the current quarter. Of course, this is a

key question: Being able to accurately assess the present state of the economy, especially at

the onset of recessions, as this is summarized by current-quarter GDP growth, is of central

importance for the timely conduct of monetary policy, among other purposes. The most

recent historical episode of the Great Recession is particularly telling.

The NBER dates for the latest recession are December of 2007 for its peak and June of

2009 for its trough. One particularly consequential quarter in this recession was 2008 Q3,

as it included events such as the collapse of Lehman Brothers, and it was also the first in

a series of consecutive quarters with negative GDP growth. Of course, official estimates on

2008 Q3’s negative growth only became available in the following (fourth) quarter. Similarly,

the NBER called the recession on December 1, 2008. It is expected though that NBER

recession announcements will not be the most timely possible.

The same cannot be said however regarding the deliberations and decision making process

of the monetary policy maker. Given likely lags in the monetary transmission mechanism,
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central banks have to rely heavily on macroeconomic forecasts. In particular, the Federal

Reserve forecasts are generally perceived as being quite good. However, the recently released

minutes of the FOMC meetings covering the crucial period of the summer and fall of 2008

paint a picture of insufficient appreciation of (the extent of) the slowdown in real time and

thus of the consequent policy risks and trade offs faced1.

Given this, how would an approach that relies explicitly and exclusively on an econometric

model fare? As was discussed above, the large-data, factor-based model of Giannone, Reichlin

and Small (2008, henceforth GRS) is arguably at the peak of what we can achieve in GDP

nowcasting contexts. Figure 1 shows the nowcasts of GDP growth obtained in real time using

the model of GRS with historical vintages of close to 200 variables. As can be seen there,

the model-based nowcasts do not turn negative until December of 2008 again. Furthermore,

Giannone et al (2010) provide real-time nowcasts that turn negative late in the fall of 2008

and which are, however, more timely than either the respective Greenbook forecasts or the

respective figures released by the Survey of Professional Forecasters.

In view of all of the above, one may tend to conclude that in the face of challenges such

as model and data uncertainty, problems which can be particularly acute in real time during

turning points, there may be little more that we can do. We may have to settle for nowcasts

which are inferior around such turning points (when they are arguably needed the most)

than at other times.

A central contribution of this paper is to show that such pessimistic assessments do

not have to be true any longer. Given the contemporary prevalence of the internet and

internet search engines, we now have forecasting tools at our disposal that were not available

until recently. GDP growth turning from positive to negative typically entails a widespread

slowdown in economic activity. Workers, investors, employers, etc. who experience a change

1Matthew O’Brien scrutinized the recently released minutes of the June 24-25, August 5, and September
16, 2008 FOMC meetings in terms of keyword counts (e.g. frequency of the word “inflation” vs. “unem-
ployment” or “systemic risks/crises”) as well as in terms of specific statements by participants in the FOMC
meetings and provides a substantial series of evidence along these lines (O’Brien (2014) ). The Greenbook
forecasts for 2008 Q3 GDP growth associated with these three FOMC meetings were all positive and indeed
close to 1%.
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in their conditions that is associated with the slowdown are more likely to conduct internet

searches using keywords related to the slowdown than at other times. Internet-based services

such as Google Trends construct normalized time series indices reflecting the relative volume

of such keyword searches. Such measures may provide a valuable gauge of the economy in

real time as they have the potential to capture widespread changes in conditions in a timely

manner and are also not subject to revisions and real-time inaccuracies like many of the more

traditional variables are.

This paper proposes and estimates a new Bayesian model for a policy maker or any

forecaster in general who, rather than operate within the confines of a traditional data set,

instead “listens to hoi polloi” too, that is, lets her prior beliefs be influenced by internet

search popularity measures. Forecasts emerge from posterior estimates that reflect both such

prior beliefs and information coming from large traditional data sets. Dynamic factors are

used to capture the collinearities and summarize these large data sets in a parsimonious way

without throwing away information.

The main empirical result is that for a time period centered around the Great Recession,

this Bayesian factor-based nowcasting approach with popularity priors delivers a more timely

detection of the 2008 Q3 turning point than all of the other alternatives discussed above (as

is illustrated in Figure 8). Furthermore, it achieves a substantially better outcome regarding

this consequential turning point while its nowcasts for the rest of the time are (at least) as

good as the ones obtained from alternative approaches in real time.

The Bayesian approach advocated in this paper points to a similar direction as Wright’s

(2013) innovative study. Wright proposes a Bayesian VAR forecasting approach and demon-

strates the significant macro forecasting gains to be made when the prior is constructed using

survey responses (hence dubbed “democratic priors”).

From a methodological perspective, there are other contributions employing likelihood-

based and Bayesian approaches to estimate macroeconomic factor models, including Kose,

Otrok and Whiteman (2003), Boivin and Giannoni (2005), Bernanke, Boivin and Eliasz
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(2005), Doz, Giannone and Reichlin (2012). Kim and Nelson (1998) is an important early

contribution employing a Gibbs sampler to extract one factor from a full data set of four

variables, which, when augmented with regime-switching features, serves as their coincident

index. Thus, their framework is not designed for purposes of producing high-frequency now-

casts in real time using large data sets. D’ Agostino et al (2015) employ a Gibbs sampling

approach in a business cycle nowcasting context, using a small set of variables as well. Our

framework here is one with tens of variables (close to two hundred variables in our applica-

tion), with missing values, from which more than one factors, and with a general covariance

structure, are extracted. It is the “Bayesian counterpart” to factor-based nowcasting models

such as that of GRS, and can be used to nowcast using incomplete large data in real time,

irrespective of prior choice.

The plan for the rest of the paper is as follows: The following section describes the theory

and the details of the model, whereas Section 3 provides the specifics of the estimation and

the Gibbs sampler. Section 4 discusses the application of the model to nowcasting US GDP

growth in a period centered around the Great Recession. Finally, Section 5 provides some

concluding remarks.

2 A Bayesian Dynamic Factor Approach for Large,

Evolving, Jagged-Edge Data Sets

We seek to generate h-period ahead forecasts (or nowcasts, when h = 0) of the (stationary)

macroeconomic aggregate y we are interested in by exploiting a rich information set coming

from (potentially) hundreds of relevant variables2. Furthermore, our goal is to create a

framework that allows us to generate such forecasts at any point in time using the most

up-to-date information that is available at that point; that is, we seek to generate real-time

forecasts or nowcasts.

2In a standard fashion we assume that our variables are stationary or transformed appropriately to induce
stationarity.
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Such a real-time, rich-information approach can certainly deliver efficiency gains. Fur-

thermore, it arguably offers a realistic depiction of the tasks undertaken by policy makers

and forecasters who need to keep updating their forecasts of the macro aggregates they track

in the face of a high-frequency stream of news releases on the evolving conditions in the

economy. However, there are two central challenges associated with such attempts to gen-

erate forecasts by employing all the latest information coming from many variables. First,

any model that requires estimating separate parameters for all or most of these variables will

run into severe degrees-of-freedom problems and hence, as is well known, will deliver poor

forecasts out of sample. Second, as these variables get updated at different points in time,

with different frequencies, and with various coverage lags, there will be missing values in the

data set that is available for estimation and forecasting at any point in time, especially for

observations corresponding to the most recent time periods. That is, we will always have to

deal with a “jagged-edge” data set.

In their seminal contribution, Giannone, Reichlin, and Small (2008) propose a dynamic

factor model that can deal with the challenges outlined above and use it to nowcast current-

quarter GDP growth from a large jagged-edge macroeconomic data set. Here we build on

their approach.

More specifically, since many macro variables are monthly and get updated once a month,

at (typically) the same business day of the month, we assume that time is measured in months

t, and days τt, that is business days of month t when new data releases on one or more variables

in our data set become available3. We have data on N variables xi with i = 1, ..., N that

contain information that is potentially useful for the macroeconomic aggregate we wish to

forecast. These variables get updated at different days of the month, and the new data releases

3So, we assume that all our variables are either monthly or converted to a monthly frequency. Furthermore,
we ignore heterogeneity issues in data releases within business days and across months and assume that the
same variables get updated at the same time, on the same business day every month. Our assumptions on
the time units are the same as those of GRS and are appropriate for numerous macro contexts, including
the application of this paper, where we nowcast GDP using a set of macro variables. Our discussion in this
section and our estimation algorithm can be applied, however, to contexts where different frequencies are
assumed.
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through which they get updated reflect various coverage lags. So, at day τ of month t the

latest available observation for variable xi covers the present month, or last month, or some

earlier month, depending on the variable’s update schedule and publication lag. That is, xit|τt

is either available or missing, and thus, inevitably the N × 1 vector xt|τt = (x1t|τt , ..., xNt|τt)
′

has missing values and the t×N panel x|τt is an unbalanced, jagged-edge panel. Note that x|τt ,

which includes all the information that is available at day τt, can differ from the information

set available at (τ − 1)t or any earlier day for one or both of the following reasons: New

observations for one or more variables have become available (through news release(s) at day

τt) or existing observation(s) for one or more variables have been revised (again through news

release(s) at day τt).

We further assume that collinearities of the variables in our panel are captured by a few

(common, latent) factors F1t|τt , ..., Frt|τt , which summarize all information that is available

at time τt (so, in any given month t, we expect to estimate the month’s factors, F1t, ..., Frt

as many times as there are days τt with new data releases). These factors thus produce a

parsimonious specification that enables us to deal with the degrees-of-freedom problem and

deliver (potentially) efficient forecasts.

The above discussion is summarized by the following equation:

xt|τt = µ+ ΛFt + ξt|τt (1)

where µ is an N × 1 vector of constants, and ξt|τt is an N × 1 vector of idiosyncratic error

terms which are Gaussian white noises, and are also cross-sectionally orthogonal. That is,

E(ξt|τtξ
′
t−s|τt

) = 0, for all s > 0, and all τ, t, and E(ξt|τtξ
′
t|τt

) = Σξ = diag(σ2
ξ1
, ..., σ2

ξN
). Λ is an

N × r vector of factor loadings, and the r × 1 vector Ft = (F1t, ..., Frt)
′, is the set of factors

that are orthogonal to the error terms.

Regarding these factors, the literature commonly employs dynamic specifications4 that

allow for inertia and that can capture intertemporal relationships among variables during the

4Indeed most of the studies mentioned in the Introduction employ dynamic factor specifications.
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business cycle, and here we follow this standard paradigm by specifying a first order vector

autoregression for the factors:

Ft = AFt−1 + ζt (2)

where A is an r× r coefficient matrix with all the roots of det(Ir−Az) lying outside the unit

circle, ζt is an r×1 vector of “common shocks”5, Gaussian white noises that are independent

from the idiosyncratic error terms and with E(ζtζ
′
t) = Σζ and where Ft, Ft−1 are the current

and last month’s factors.

Finally the model is complete with a so-called “bridge equation” that delivers forecasts

or nowcasts of the macro aggregate in question, y, as a function of the factors:

yt+h|τt = α + β′Ft+h + εt+h|τt (3)

where α is scalar and β is an r× 1 vector of coefficients, h = 0 (for nowcasts) or higher, and

εt+h|τt is also a Gaussian white noise with variance σ2
ε . Note that we assume here without

loss of generality that y is observed at the same frequency as x. In cases where this is not

the case, such as that of the application that follows in which y is GDP and x consists

of monthly macro quantities, several options are available. For instance, GRS filter the

data using the filter suggested by Mariano and Murasawa (2003, approximating quarterly

arithmetic means by geometric means, in order to preserve the linear state-space structure

of the model and thus simplify the estimation) so as to convert the variables into quarterly

quantities when observed at the end of a quarter. Another useful approach is based on

Mixed Data Sampling (see, inter alia, Ghysels et al (2004), Andreou et al (2010) ). Standard

MIDAS techniques can be applied to bridge equations such as equation (3) above to deliver

a way of dealing with the mixed frequency issue that is both parsimonious and data-driven

(Marcellino and Schumacher (2010) and Kuzin, Marcellino and Schumacher (2011) discuss

5As discussed in GRS the assumption that there are as many common shocks as there are factors can be
relaxed to allow for fewer common shocks than factors.
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interesting applications in related nowcasting contexts).

As is clear from equations (1) and (2), we have a state-space framework, in which, however,

standard Kalman filtering techniques are not readily applicable, because of the missing data

issue discussed above. A modification, possibly based on the EM algorithm (see, for example,

Stock and Watson (2002a) ) is necessary. GRS deal with this problem in a similar way by

adopting a multi-step estimation approach; they obtain preliminary estimates of the factors

by extracting principal components from a balanced subset of the full jagged-edge data set,

which they use to obtain parameter estimates, which they then plug into their Kalman

smoother to produce final estimates of the factors. These final estimates are then plugged

into the bridge equation, which delivers forecasts of the macro aggregate in question.

One issue with such estimation strategies is that they take point estimates obtained

from the previous step and plug them directly into the next step, thus ignoring parameter

estimation uncertainty. This, in a sense, is a consequence of a classical estimation approach

that treats the model’s hyperparameters differently from the factors; however, as the factors

are also unobservables, this could be viewed as an arbitrary distinction. A Bayesian approach

removes such asymmetries, and utilizes the joint posterior distribution - conditioning on day

τt’s information set - of the model’s variables to make inferences on the factors (and on the

other model variables). Indeed we believe that it can be especially suitable in the present

context where the focus is less about hoping for a large enough sample size in order to

uncover true parameter values and more about updating estimates and forecasts as soon as

new information becomes available on day τt.

Furthermore, a Bayesian estimation approach readily delivers the entire posterior dis-

tribution of yt+h|τt , reflecting prior beliefs too, so a substantial amount of information that

can be particularly useful during turning points and other challenging times for forecasting

and nowcasting. Different clients can utilize this information to form their own forecasts

depending on their own loss functions6.

6Of course this assumes that the clients have the same priors and model, which is not necessarily the case.
However, Geweke and Whiteman (2006) discuss a reweighing methodology that remote clients can use to
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Moreover, in our context Bayesian estimation is implemented with a Gibbs sampling

simulation algorithm and has several additional desirable features, that are associated with

the computational simplifications resulting from the conditional block structure of the Gibbs

sampler. Time varying parameters or nonlinear features can be introduced by appropriately

augmenting the Gibbs sampler with additional blocks. Such additions could be computa-

tionally cumbersome or infeasible with classical estimation techniques. For example, Kim

and Nelson (1998) discuss how Hamilton’s (1989) regime switching cannot be embedded in

practice within an exact Kalman filtering framework when the time series dimension is mod-

erate or high. Furthermore, the Gibbs sampler can accommodate data augmentation steps,

whereby missing values are filled in with simulated data that are generated from their-model

implied conditional distribution, resulting in a balanced panel. The following section provides

the details of this and of the entire algorithm that we implement.

3 Estimation Using a Gibbs Sampling Algorithm

For reasons such as the ones discussed above, Gibbs Sampling techniques are becoming

increasing popular in macroeconomics and other fields. They are useful in cases where the set

of a model’s variables can be broken into appropriately chosen subsets, that is subsets from the

conditional distributions of which we know how to sample. They basically entail generating,

through Monte Carlo iterations, simulated samples from the joint distribution (conditional

on the data) of model variables by drawing samples from the conditional distributions of

subsets of variables (conditioning on the other subsets and the data). After a sufficient

number of iterations the algorithm converges7 and then the joint and marginal distributions

of the model variables can be approximated arbitrarily well by their simulated counterparts

(see, e.g. Gelfand and Smith (1990), and Robert and Casella (1999) ).

adjust priors without having to repeat all the estimation work.
7Establishing convergence is a crucial part of the whole task and several approaches have been proposed

in the literature to detect convergence. Here we follow McCulloch and Rossi (1994) and we compare the
empirical posterior distributions that we get based on increasing number of iterations, with little changes in
these distributions (after the additional iterations) serving as evidence of convergence.
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In the specific context of the model described in the previous section, the Gibbs sampler

we implement consists of blocks for the following nine groups of model variables: Σξ, µ and

Λ, A, Σζ , {F1, ..., Ft+h}, x
miss, θ = (α, β′), σ2

ε , {y
f
t , ..., y

f
t+h}.

Note that following Carter and Kohn (1994) we generate all the factors in one multi-

move Gibbs sampling block, which is computationally more efficient (when compared to

single-move alternatives) and also converges faster. Furthermore, note that xmiss stands for

the missing values, typically found at the end of jagged-edge data set x|τt on day τt. We

generate these in a data augmentation step following Tanner and Wong (1987). Finally, note

that for each of the blocks, we condition on the simulated samples from the other subsets of

model variables, as well as on Υ|τt , which consists of x|τt and of the dependent variable y as

this is available on day τt. Quite clearly, the implication here is that this estimation can be

performed every day τt when new information becomes available and all variable estimates

and forecasts reflect the information that is available on day τt.

In what follows we provide all the relevant details in turn regarding how each group of

model variables are generated, suppressing all conditioning for notational convenience:

3.1 Generating µ and Λ

Given F =













F ′
1

...

F ′
t













, we can focus on Equation (1) in order to generate µ,Λ, and Σξ and then

we have a series (for each of the N variables) of standard Bayesian linear regressions for

which the standard Normal/Inverted Gamma setup for priors and posteriors is available.

More specifically, given Σξ = diag(σ2
ξ1
, ..., σ2

ξN
), we can rewrite Equation (1) in stacked

form for periods 1, ..., t, and for each of the N variables:

xi = µi + FΛi + ξi = ΦΛ∗
i + ξi, i = 1, ..., N, where Φ =

(

ι′

F ′

)′
is an t × (r + 1) matrix with ι

being a t× 1 vector of 1s, xi is a t× 1 vector with the observations for variable i (as they are

available on day τt), µi and ξi are also t× 1, and Λ∗
i =

(

µ

Λi

)

is an (r + 1)× 1 vector.
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Then, if the prior for Λ∗
i is N(Λ∗

i0,Σ
Λ∗

i

0 ), where Λ∗
i0 and Σ

Λ∗

i

0 are known, its posterior will

also be normal, N(Λ∗
i1,Σ

Λ∗

i

1 ), where Λ∗
i1 = ((Σ

Λ∗

i

0 )−1+(σ2
ξi)

−1Φ′Φ)−1((Σ
Λ∗

i

0 )−1Λ∗
i0+(σ2

ξi)
−1Φ′xi),

and Σ
Λ∗

i

1 = ((Σ
Λ∗

i

0 )−1 + (σ2
ξi)

−1Φ′Φ)−1.

3.2 Generating Σξ

Given µ and Λ, and in order to generate the variances of the N ×N diagonal matrix Σξ, we

proceed as follows:

If the prior for σ2
ξi
, i = 1, ..., N , is an inverted gamma distribution IG(

ν
ξi
0

2
,
δ
ξi
0

2
), where ν

ξi
0

and δ
ξi
0 are known, the posterior for σ2

ξi
, i = 1, ..., N will also be inverted gamma, IG(

ν
ξi
1

2
,
δ
ξi
1

2
),

where ν
ξi
1 = ν

ξi
0 + t, and δ

ξi
1 = δ

ξi
0 + (xi − ΦΛ∗

i )
′(xi − ΦΛ∗

i ), with Φ as defined above. Quite

clearly then Σξ is the diagonal matrix whose ith entry is σ2
ξi
, i = 1, ..., N .

3.3 Generating A

Given F , and since ζt is independent from the idiosyncratic error terms, we can focus on

the Bayesian VAR context of Equation (2) in isolation from the measurement equation, and

generate A and Σζ by employing a pair of Normal-Wishart priors:

Specifically, and given Σζ , we can rewrite Equation (2) in stacked form as follows:

F † = (Ir ⊗ Γ)α+ ζ, where F † =













F 1

...

F r













, i.e. F † is an r(t− 1)× 1 vector which stacks all

2, ..., t observations of the first factor, then all t− 1 observations of the second factor, and so

on until the rth factor, Γ =













F ′
1

...

F ′
t−1













, i.e. Γ is a (t − 1) × r matrix, αA = vec(A), which is

an r2 × 1 vector that stacks all the coefficients of A into a vector, and ζ is the r(t − 1) × 1

vector stacking the corresponding common shocks.

Then, if the prior for αA is N(α0,Σ
α
0 )

8, where α0 and Σα
0 are chosen by the modeler, the

8Note that the stationarity condition that all the roots of det(Ir − Az) lie outside the unit circle can be
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resulting posterior will be N(α1,Σ
α
1 ), where α1 = [(Σα

0 )
−1 + ((Σζ)−1 ⊗ (Γ′Γ))]−1[(Σα

0 )
−1α0 +

((Σζ)−1 ⊗ Γ)′F †],

and Σα
1 = [(Σα

0 )
−1 + ((Σζ)−1 ⊗ (Γ′Γ))]−1. Finally, A can be constructed by unstacking αA.

3.4 Generating Σζ

Given A, we proceed as follows:

If the prior for (Σζ)−1 is Wishart W (S−1
0 , ν

ζ

0), where S
−1
0 , and ν

ζ

0 are known, the posterior

for (Σζ)−1 will also be Wishart, W (S−1
1 , ν

ζ

1), where ν
ζ
1 = ν

ζ
0 + (t− 1),

and S1 = S0 +
t
∑

j=2

(Fj − AFj−1)(Fj − AFj−1)
′.

3.5 Generating {F1, ..., Ft+h}

Equations (1) and (2) constitute a state space model, so given the parameters, {F1, ..., Ft+h}

are generated in one multi-move block as in Carter and Kohn (1994) by applying a Kalman

smoothing algorithm as Kim and Nelson (1999) illustrate.

Specifically, for j = 1, ..., t we have the following prediction equations going forward:

Fj|j−1 = AFj−1|j−1

Pj|j−1 = APj−1|j−1A
′ + Σζ

ηj|j−1 = xj − xj|j−1 = xj − µ− ΛFj

fj|j−1 = ΛPj|j−1Λ
′ + Σξ

Given that we are in a stationary environment we initiate the above with the unconditional

mean F0|0 and variance P0|0. Now, given the Kalman gain Kj = Pj|j−1Λ
′f−1

j|j−1
we have the

following updating equations:

Fj|j = Fj−1|j−1 +Kjηj|j−1

Pj|j = Pj|j−1 −KjΛPj|j−1

satisfied by choosing a prior that assigns 0 probability to the non-stationary part of the support space for A.
The posterior will then also satisfy the stationarity condition.
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We then draw Ft from N(Ft|t, Pt|t) and going backwards, for j = T − 1, ..., 1, we draw

Fj|Fj+1 from N(Fj|j,Fj+1
, Pj|j,Fj+1

) where

Fj|j,Fj+1
= Fj|j + Pj|jA

′(APj|jA
′ + Σζ)−1(Fj+1 − AFj|j)

Pj|j,Fj+1
= Pj|j − Pj|jA

′(APj|jA
′ + Σζ)−1APj|j

3.6 Generating xmiss

This is the data augmentation step which entails generating simulated values for missing

xij|τt , i = 1, ..., N, j = 1, ..., t + h given the information set on day τt. Given {F1, ..., Ft+h},

µ, Λ, and Σξ, simulated values for xmiss can be obtained from the left hand side variable of

Equation (1) for periods 1, ..., t+ h.

3.7 Generating θ = (α, β′)

Note that given F =













F ′
1

...

F ′
t













, we can focus on Equation (3) in order to generate θ = (α, β′)

and σ2
ε and this collapses again to a standard Bayes regression for which we employ again

the standard Normal/Inverted Gamma pair of priors.

First, and given σ2
ε , let’s rewrite Equation (3) in stacked form for periods 1, ..., t:

y = α+Fβ+ ε = Φθ′+ ε, where Φ =
(

ι′

F ′

)′
is an t× (r+1) matrix with ι being a t× 1 vector

of 1s.

Then, if the prior for θ = (α, β′) is N(θ0,Σ
θ
0), where θ0 and Σθ

0 are known, its posterior

will also be normal, N(θ1,Σ
θ
1), where θ1 = ((Σθ

0)
−1 + (σ2

ε)
−1Φ′Φ)−1((Σθ

0)
−1θ0 + (σ2

ε)
−1Φ′y),

and Σθ
1 = ((Σθ

0)
−1 + (σ2

ε)
−1Φ′Φ)−1.

3.8 Generating σ2
ε

Second, and given θ, if the prior for σ2
ε is an inverted gamma distribution IG(

νε
0

2
,
δε
0

2
), where

νε
0 and δε0 are known, its posterior will also be inverted gamma, IG(

νε
1

2
,
δε
1

2
), where νε

1 = νε
0 + t,
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and δε1 = δε0 + (y − Φθ′)′(y − Φθ′), with Φ as defined above.

3.9 Generating {yft , ..., y
f
t+h}

Given {F1, ..., Ft+h}, θ, and σ2
ε , estimated from the blocks above conditional on the informa-

tion set of day τt, y
f
t , ..., y

f
t+h emerge simply as the left hand side variable from Equation (3)

for periods t, ..., t+ h.

4 An Application: Nowcasting US GDP During the

“Great Recession”

We employ the model and estimation algorithm described in the previous sections to nowcast

US GDP growth, with a focus on the latest recession. As is well known, the Bureau of

Economic Analysis does not release its estimates of current quarter GDP growth until next

quarter; it releases a preliminary (“Advance”) estimate towards the end of the first month of

the following quarter, and then it updates this figure one and two months later (“Second” and

“Third” estimates, respectively). This constitutes a significant lag, especially for monetary

policy purposes. Thus the task of nowcasting GDP growth (as well as other aggregates subject

to similar lags in releases), of obtaining that is current-quarter GDP growth estimates during

the current quarter, becomes particularly relevant, and the attention that the burgeoning

nowcasting literature has been receiving is well justified.

We adopt here the perspective of a monetary policy maker, or of a professional forecaster,

who needs to assess the current state of the economy in real time as accurately as possible

and given all the available information. Assuming a formal modeling approach is adopted, it

is arguably desirable to consider frameworks that, as discussed earlier, can handle large data

sets, with jagged edges, and possibly mixed frequencies. Furthermore, if we hope to provide

a realistic depiction of the nowcasting environment, with the regular influx of possibly in-

accurate real-time information, we should be employing real-time data, rather than revised
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series that only became available ex-post (see, inter alia, Croushore and Stark (2001) and

Orphanides (2001) ). So, in this section we use a real-time data set - indeed a series of weekly,

Friday jagged-edge data sets reflecting all the updates (new observations or revisions of exist-

ing observations) that took place during the week. There are close to 200 (mostly monthly)

macroeconomic variables, including monetary aggregates, prices, employment statistics, sur-

vey data, housing, banking balance sheet figures, etc. They include observations starting in

January of 1982, with the weekly real time vintages starting in March of 20059.

We perform stationarity-inducing transformations and standardize the data. Further-

more, and since GDP growth is a quarterly quantity, whereas most of the macro series that

are used to obtain the factors are monthly, we follow GRS and filter the data using the

Mariano-Murasawa (2003) approach. We also choose the same number of factors (two) and

number of common shocks (also two) as they do. One could consider alternatives for all these

modeling choices10, but one of our goals is to make our results directly comparable to theirs.

Furthermore, such specification choices are quite standard in the literature. Examples where

one factor is used include Stock and Watson (1999), and the Chicago Fed’s National Activity

Index - CFNAI (Federal Reserve Bank of Chicago (2012) ) where the factor is extracted from

a smaller set of variables capturing economic activity11. Here we consider a wider information

set including various price variables.

4.1 Uninformed Priors

We begin our investigation by considering uninformed priors, whose intent is to convey a

largely agnostic approach towards prior beliefs. These priors (distributions and values for

hyperparameters for the various blocks discussed in the previous section) are summarized in

Table 1.

9The data, which were kindly provided by David Small, are used by Giannone et al (2010), so the reader
is referred to that study, as well as to GRS for more details.

10We estimated alternative specifications with one factor as well (r = q = 1), but chose to focus on the
r = q = 2, case for the reasons discussed here.

11The CFNAI is based on 85 variables on production and income, employment, personal consumption and
housing, and sales, orders and inventories.
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Our approach towards establishing convergence of the Gibbs sampler is that of McCulloch

and Rossi (1994): We compare the simulated posterior distributions we obtain with different

numbers of iterations, with only small changes serving as evidence of convergence. Figures 2

and 3 summarize some of these exercises: they plot means of the posterior distributions for the

fitted values of GDP growth and for the variances of the idiosyncratic error terms (Equation

(1) ) using 1000 burn-in iterations (to be discarded) and 2000 iterations to be retained

(on the basis of which the empirical posterior distributions are obtained), and respective

means using 2000-10000 iterations. In both cases the lines (corresponding to low and high

numbers of iterations) are almost indistinguishable from each other. Figure 4 has two panels

showing the entire posterior distributions (based on the low and high numbers of iterations)

for the variance of the error term from the bridge regression (Equation (3) ). Again the two

distributions are almost identical, and the two overall means are 2.598 and 2.593 respectively.

When it comes to overall fit, Figure 5 plots the means of fitted values we obtain with our

Bayesian model, the respective ones using the GRS approach (using the same data, number

of factors and common shocks), and actual GDP growth. Two observations are in order

here: First, the two models deliver roughly similar results, with comparable fits and no clear

evidence of either approach dominating in terms of in-sample fit. So, if the objective is to

employ means as the nowcasts, there may be little reason in this particular case to choose

one model over the other. Second, the overall fit is generally good12, with the exception of

sharp drops or rises of GDP and business cycle turning points such as the 1990-91 recession,

for instance, during which times the models may undershoot.

We investigate this issue a little more closely by focusing on the latest episode of high

volatility, the Great Recession of 2007-2009. We produce several real-time nowcasts of GDP

growth during a period that includes this recession (specifically, 2007Q1-2009Q4) by adjusting

our series of data vintages described above so as to re-create the information sets faced by

12GRS provide convincing evidence that the model fares well when compared to Federal Reserve Greenbook
data and forecasts obtained from the Survey of Professional Forecasters.
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a nowcaster in real time13. We can produce such estimates for any day of the week, and

Figure 6 plots (advance releases of) GDP growth together with its nowcasts obtained on the

first business day of the month (for every month of the quarter), that is the estimates that a

nowcaster would have been able to compute with the GRS model or with our Bayesian model,

and using the information that was available to her on that day14. While the model generally

does a decent job tracking the movements of GDP growth, it does not do well for the quarter

during which GDP growth turns negative for the first time in a series of consecutive quarters,

namely 2008 Q3. Indeed, if our criterion is both how far the nowcasts are from the actual

figures, and how much of an improvement one can see in successive nowcasts as the quarter

progresses and more information gathers on the state of the economy, then 2008 Q3 is by far

the worst quarter: The nowcasts are positive and far from the negative GDP growth for the

quarter, and stay like that during the entire quarter and even in October of 2008.

This perhaps may come as little surprise. As was discussed in the introduction, we

expect that many models will not perform as well during turning points as during other

times. Indeed, the pessimistic conclusion that one may be tempted to reach is that model

and data uncertainties are insurmountable challenges around turning points, and that this

is true even when nowcasting in real time. However, in what follows we present a more

optimistic picture in terms of what can be achieved by exploiting internet-based tools that

were not available until recently, such as Google Trends.

4.2 Popularity Priors

At the core of our approach is the realization that when aggregate growth turns from positive

to negative, this typically reflects a widespread slowdown in economic activity, which thus

13This requires some tedious manual manipulations whereby we add or delete observations from the Friday
weekly data sets (for one or more variables, and on the basis of the stylized schedule of data releases), so as
to create the real-time information set of any day of the week for which we wish to estimate the real-time
nowcast of GDP growth.

14Note that the figure includes four such beginning-of-month estimates per quarter, as the nowcast produced
on the first business day of the first month of the following quarter pertains to information covering the quarter
that just ended. Furthermore, the official “Advance” estimate of GDP growth for the quarter that just ended
will not be available until the last week of the month that just started.
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affects a wide spectrum of people, either directly or indirectly. Given the prevalence of the

internet in our time, many people may turn to internet search engines in an attempt to

better understand the economy and their changing conditions. They may search related

keywords in higher volumes than at other times. Tools such as Google Trends measure the

volume of keyword-based searches and have begun compiling and making publicly available

normalized time series indices based on the volume of searches. There are already interesting

forecasting/nowcasting applications using such indices including Askitas and Zimmermann

(2009), D’Amuri and Marcucci (2010) and Scott and Varian (2014a,b). The growing interest

is certainly justified given that such indices have several key features, including that they

reflect relative, and not absolute, volumes of searches, that they are based on real-time

information, and that they, for certain keywords, may be able to capture widespread changes

in financial and economic conditions in a timely manner, without being plagued by real-time

inaccuracies and revision issues.

Helpful keywords in the present context would lead to Google indices that stay relatively

flat at times when models such as the ones discussed above nowcast well, and that spike up

when we do not nowcast well, primarily in the fall of 2008. An example of such a helpful

keyword is “recession”, whose Google index is shown in Figure 7. We can notice there that

it spikes up not only in the fall of 2008, but also in the period around the end of 2007 and

the beginning of 2008 (which includes the NBER peak).

A policy maker/nowcaster, well aware of the above, may conclude that “listening to the

people too” in addition to consulting information sets based on “traditional” large data sets,

is a promising nowcasting approach, with the potential to deliver superior results around

turning points. Our approach allows such a nowcaster to take both into account. She lets

internet search popularity measures such as Google Trends inform her prior beliefs. Thus

her nowcasts reflect both such “popularity priors” and information coming from the dynamic

factors and the large data sets as discussed above.

This approach can be implemented in various ways. In the example that follows, we pro-
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pose one such possibility, using the “recession” keyword, and a simple, conservative approach

towards constructing priors. The model and all the priors remain the same as above (see

Table 1), with the only one changing being that of α, the intercept of equation 3. Specifically,

the mean of the prior of α is set to the post-WWII recession (duration-weighted) average.

Its prior variance follows the schedule below:

V ariance(α) :















































1

0.9

...

0.1

0.05

whenGRI is between 0 and 9

whenGRI is between 10 and 19

...

whenGRI is between 90 and 99

whenGRI is 100

(4)

Quite clearly, this postulates an increasing level of certainty that we are indeed in a recession

as GRI, the Google Recession Index (Figure 7) increases.

The resulting real-time nowcasts obtained with this model are provided in Figure 8,

and are contrasted with those coming from the other models discussed above. The key

finding is that the Bayesian model with the above popularity prior delivers a more timely

recognition of the turning point in GDP growth in the fall of 2008, and substantially so, as

the nowcast now turns negative by the end of Q3/beginning of Q4 of 200815. It is interesting

to note here that if the benchmark by which nowcasts are to be judged is advance GDP

releases (depicted in Figure 8), then the nowcast in question (produced on October 1, 2008)

undershoots by a significant amount. However, these estimates can be subject to significant

revisions themselves, especially around turning points, while this is not a concern with the

GRI. Figure 9 depicts revised GDP estimates; the revised estimate corresponding to 2008 Q3

is indeed much closer to our nowcast using popularity priors.

Furthermore, the improvement discussed in the previous paragraph, which can be quite

15This is the nowcast we could have obtained in the morning of October 1, 2008, and thus reflects infor-
mation available up to Quarter 3. Recall that in this application we produce one nowcast per month, in the
very beginning of each month. Of course, our methodology can generate updated nowcasts many times each
month, any time new information becomes available.
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consequential for monetary policy purposes in real time, does not come at the cost of de-

teriorated performance at other times, when compared to either the GRS nowcasts or the

Bayesian nowcasts with the uninformed priors. Indeed, a policy maker with popularity priors

would have actually been closer to the “truth” more often during the three years in question

(56.3% of the time closer to advance GDP estimates and 63% of the time closer to revised

GDP estimates) than she would have been had she relied exclusively on the traditional data.

Table 2 provides the nowcast errors (with respect to both advance and revised GDP releases

for 2007Q1-2009Q4) associated with both GRS and the model with popularity priors, as

well as respective ratios of Mean Square Errors and corresponding Diebold Mariano (1995)

t-statistics. Quite clearly, we cannot reject the null hypothesis that the MSEs coming from

the two alternative approaches are equal.

Taking all of the above into account, we can conclude that the Bayesian nowcasting model

with popularity priors achieves a substantially better outcome regarding the consequential

turning point of the fall of 2008, while its nowcasts for the rest of the time are (at least) as

good as the ones obtained from alternative approaches in real time.

The above is indicative of what can be achieved using this approach, which is quite flexible,

as it can accommodate other specifications as well. Another example is that of a prior for α

that is informed not just by a single Google Recession Index, but by a combination of GRIs

coming from other useful keywords or phrases. For example, the phrase “end of recession,”

whose GRI is depicted in Figure 10, could be potentially useful in improving the nowcasts

obtained with the Bayesian model around the end of the recession. An alternative prior for

α that combines both the recession and the “end of recession” GRIs can be as follows:

• Mean of α:















recession average whenGRIrecession > GRIend of recession

non− recession average whenGRIend of recession > GRIrecession

with both averages referring to the post-WWII era, and

• GRI:















GRIrecession whenGRIrecession > GRIend of recession

GRIend of recession whenGRIend of recession > GRIrecession
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with the variance of α being the same as above. Figure 11 depicts the nowcasts obtained using

this alternative popularity prior, and as we can see there we have a modest improvement in

the months around the end of the recession, when the prior shifts to the end-of-recession

GRI. More specifically, if the criterion is the distance of the nowcast from the revised GDP

estimates, then we have (for the 13 nowcasts for which the end-of-recession GRI kicks in) an

average improvement of 0.25% and a median improvement of 0.30% of GDP growth.

Of course, these are just two examples of popularity priors and alternative ones are

possible, and regarding not just α, but other model parameters as well.

5 Concluding Remarks

An important and rapidly expanding literature has made a strong case for resorting to large

data sets when forecasting or nowcasting macroeconomic aggregates such as GDP, and often

recommends basing those nowcasts on factor models, that avoid the proliferation of parame-

ters and efficiently summarize the comovements and dynamics in the data without discarding

essential information. From a policy maker’s or a macro forecaster’s perspective, one impli-

cation of looking at many, possibly hundreds of variables in real time is that an update to

the existing forecast or nowcast can be produced every time new information arrives (in the

form of new observations or revisions to existing observations). This amounts to updating

model estimates and resulting forecasts conditional on the latest data at any point in time,

and we view a Bayesian approach such as the one we propose in this paper as a natural way

to proceed in such contexts.

Furthermore, such a Bayesian approach allows the policy maker to move beyond the strict

confines of traditional data sets, and to do so in a systematic and quantifiable way, by allowing

her prior beliefs to be influenced by internet search popularity indices. Such measures can

provide a useful early gauge of important and widespread changes in the economy and can

thus mitigate the problems associated with model and data uncertainty in real time, which
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can be particularly pernicious around turning points. The nowcasting example discussed in

this study of the US GDP turning point in the fall of 2008 is telling.
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Table 1: Uninformed Priors

Parameter Prior Distribution Hyperparameter Values
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Quarter/Month GRS ‐ "Actual" GDP growth Pop.Prior ‐ "Actual" GDP growth GRS ‐ "Revised" GDP growth Pop.Prior ‐ "Revised" GDP growth
07Q1/1 1.019827935 0.707016776 1.065454 0.752642841

07Q1/2 0.949127935 0.69139779 0.994754 0.737023855

07Q1/3 1.265727935 0.803092403 1.311354 0.848718468

07Q1/4 1.792227935 1.513593497 1.837854 1.559219562

07Q2/1 ‐0.316299136 ‐0.855373827 ‐0.20599 ‐0.745064691
07Q2/2 ‐0.225199136 ‐0.950102102 ‐0.11489 ‐0.839792966
07Q2/3 0.177100864 ‐0.058270733 0.28741 0.052038403

07Q2/4 0.390000864 ‐0.056414795 0.50031 0.053894341

07Q3/1 0.12087276 ‐0.182532089 0.346918 0.043513151

07Q3/2 0.28407276 ‐0.075014371 0.510118 0.151030869

07Q3/3 ‐0.06862724 ‐0.542146098 0.157418 ‐0.316100858
07Q3/4 ‐0.67172724 ‐0.912242476 ‐0.445682 ‐0.686197236
07Q4/1 2.674194788 2.318856002 1.185576 0.830237215

07Q4/2 1.946494788 1.885033762 0.457876 0.396414974

07Q4/3 1.264294788 1.108352516 ‐0.224324 ‐0.380266271
07Q4/4 0.835194788 ‐0.080937934 ‐0.653424 ‐1.569556722
08Q1/1 1.122033874 ‐0.061289788 2.4440693 1.260745638

08Q1/2 0.844933874 0.957621647 2.1669693 2.279657073

08Q1/3 0.771733874 0.645340434 2.0937693 1.967375861

08Q1/4 0.264233874 0.118374067 1.5862693 1.440409493

08Q2/1 ‐0.56983965 ‐1.429657998 ‐0.155173 ‐1.014991348
08Q2/2 ‐0.84983965 ‐0.816082813 ‐0.435173 ‐0.401416163
08Q2/3 ‐0.93813965 ‐1.076642882 ‐0.523473 ‐0.661976232
08Q2/4 ‐0.22973965 ‐0.631370996 0.184927 ‐0.216704346
08Q3/1 2.490380027 2.140719343 4.913985 4.564324316

08Q3/2 3.083480027 2.293092087 5.507085 4.716697059

08Q3/3 3.244380027 2.385108896 5.667985 4.808713868

08Q3/4 2.378680027 ‐3.38130329 4.802285 ‐0.957698317
08Q4/1 6.382294802 0.489304074 7.876641 1.983650272

08Q4/2 4.429094802 3.129256761 5.923441 4.623602959

08Q4/3 1.825994802 ‐0.721237799 3.320341 0.7731084

08Q4/4 ‐1.385805198 ‐3.697672438 0.108541 ‐2.203326239
09Q1/1 4.251908037 ‐2.939522473 4.340235 ‐2.85119551
09Q1/2 3.656008037 ‐2.573499108 3.744335 ‐2.485172144
09Q1/3 2.550208037 ‐1.756664223 2.638535 ‐1.66833726
09Q1/4 2.245508037 0.739908037 2.333835 0.828235

09Q2/1 ‐0.85294911 ‐6.84684911 ‐1.1377359 ‐7.1316359
09Q2/2 ‐1.37204911 ‐4.361270106 ‐1.6568359 ‐4.646056896
09Q2/3 0.33285089 ‐2.282566995 0.0480641 ‐2.567353786
09Q2/4 1.50245089 ‐0.68084911 1.2176641 ‐0.9656359
09Q3/1 ‐0.709246958 ‐4.110146958 0.527015 ‐2.873885
09Q3/2 0.503853042 ‐2.351642112 1.740115 ‐1.115380154
09Q3/3 ‐0.236846958 ‐1.972942892 0.999415 ‐0.736680934
09Q3/4 ‐0.405946958 ‐1.317555104 0.830315 ‐0.081293146
09Q4/1 ‐0.197155961 ‐0.604612804 ‐0.178495 ‐0.585951843
09Q4/2 ‐0.503355961 ‐1.281040176 ‐0.484695 ‐1.262379215
09Q4/3 ‐0.939755961 ‐0.689476305 ‐0.921095 ‐0.670815344
09Q4/4 ‐1.343055961 ‐1.945042448 ‐1.324395 ‐1.926381487

Ratio of MSEs

Diebold‐Mariano

Notes: "GRS" and "Pop.Prior"  refer to the nowcasts obtained with the GRS and Popularity Prior approaches, respectively. The "fourth month" of a quarter indicates

the nowcast obtained at the very beginning of the first month of the following quarter. The "Ratio of MSEs" refers to the Pop.Prior/GRS ratio. "Diebold Mariano" 

refers to the Diebold‐Mariano t‐statistic testing the null hypothesis of equal mean square nowcast errors between the two approaches (GRS and Pop.Prior).

1.134687308 0.773307705

‐0.331 0.794

Table 2: Real‐Time Nowcast Errors
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Figure 1: Real-Time Nowcasts and GDP Growth
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Figure 2: Posterior Means for Fitted Values of GDP Growth
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Figure 3: Posterior Means for Variances of Idiosyncratic Error Terms
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Figure 4: Posterior Distribution for σ2
ε , Low Number of Iterations
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Figure 4, second panel: Posterior Distribution for σ2
ε , High Number of Iterations
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Figure 5: Fitted Values vs GDP Growth
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Figure 6: Real-Time Nowcasts (Bayesian and GRS) and GDP Growth
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Figure 8: Real-Time Nowcasts with Popularity Priors
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Figure 9: Real-Time Nowcasts with Popularity Priors and Revised Estimates of GDP

Growth
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Figure 11: Real-Time Nowcasts with Alternative Popularity Priors
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