
Munich Personal RePEc Archive

Estimation of Common Factors under

Cross-Sectional and Temporal

Aggregation Constraints: Nowcasting

Monthly GDP and its Main Components

Proietti, Tommaso

SEFEMEQ, Faculty of Economics, University of Rome "Tor Vergata"

22 January 2008

Online at https://mpra.ub.uni-muenchen.de/6860/

MPRA Paper No. 6860, posted 24 Jan 2008 05:36 UTC



Estimation of Common Factors under Cross-Sectional and

Temporal Aggregation Constraints: Nowcasting Monthly GDP

and its Main Components

Tommaso Proietti∗

SEFEMEQ, University of Rome “Tor Vergata”

Abstract

The paper estimates a large-scale mixed-frequency dynamic factor model for the euro area, using

monthly series along with Gross Domestic Product (GDP) and its main components, obtained from the

quarterly national accounts. The latter define broad measures of real economic activity (such as GDP and

its decomposition by expenditure type and by branch of activity) that we are willing to include in the fac-

tor model, in order to improve its coverage of the economy and thus the representativeness of the factors.

The main problem with their inclusion is not one of model consistency, but rather of data availability

and timeliness, as the national accounts series are quarterly and are available with a large publication

lag. Our model is a traditional dynamic factor model formulated at the monthly frequency in terms of

the stationary representation of the variables, which however becomes nonlinear when the observational

constraints are taken into account. These are of two kinds: nonlinear temporal aggregation constraints,

due to the fact that the model is formulated in terms of the unobserved monthly logarithmic changes,

but we observe only the sum of the monthly levels within a quarter, and nonlinear cross-sectional con-

straints, since GDP and its main components are linked by the national accounts identities, but the series

are expressed in chained volumes. The paper provides an exact treatment of the observational constraints

and proposes iterative algorithms for estimating the parameters of the factor model and for signal extrac-

tion, thereby producing nowcasts of monthly gross domestic product and its main components, as well

as measures of their reliability.
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1 Introduction

Large scale factor models aim at extracting the main economic signals from a very large number of time

series. The underlying idea is that the comovements among economic time series can be traced to a limited

number of common factors. Factor models have been used in an increasing number of applications. The

two most prominent areas are the construction of synthetic indicators, such as coincident indicators of real

economic activity (Forni et al., 2000, 2001) and core inflation (Cristadoro et al., 2005), and forecasting

macroeconomic variables (Stock and Watson, 2002a, Forni et al. 2005), in which case the information

contained in large number of economic indicators is summarized in a few latent factors, which are then

employed to forecast real output growth, or inflation. Other areas of applications are surveyed in Stock and

Watson (2006).

On the other hand, national accounts (NA) statistics provide a comprehensive and detailed record of

the economic activities taking place within an economy, which are translated into a set of coherent and

integrated measures of economic activity. The most comprehensive measure is provided by Gross Domestic

Product (GDP); furthermore, the aggregates that arise from its decomposition according to the expenditure

and the output approach (e.g. final consumption, gross capital formation, sectorial value added) are among

the most relevant economic statistics for purposes of macroeconomic analysis and policy-making.

Hence, the NA aggregates can be considered as aggregate indicators of economic activity based on a

set of definitions, concepts, classifications and accounting rules that are internationally agreed. The main

problem is their observation frequency, which at present is quarterly for the euro area, and their timeliness,

i.e., the fact that they are made available with considerable delay. A related point is that they are first released

as preliminary estimates and then revised as new information accrues. Their lack of timeliness is a direct

consequence of their comprehensiveness and generality: their estimation requires a lot of information from

the institutional units; a large part of this information is used to construct the monthly time series that are

typically considered by factor models (with some exceptions, e.g. business and consumer survey).

The aim of this paper is to estimate a large scale factor model of the euro area economy which combines

the monthly information carried by a number of economic indicators (concerning industrial production,

construction, retail sales, financial intermediation, employment and wages, exchange rates, external trade

and business and consumer surveys) with the quarterly national accounts series. In particular, we consider a

panel of 149 series, referring to the euro area for the period from January 1995 to June 2007, 17 of which are

NA series and concern quarterly real GDP and its breakdown according to the expenditure and the output

approaches. The presence of these series raises the fundamental issue of incorporating the observational

constraints into the estimation process. The issue has two facets: one of temporal aggregation and one of

contemporaneous aggregation. As far as the former is concerned, the factor model is specified in terms of

the stationary representation of the series; our series can be taken to be stationary in terms of the logarithmic

change with respect to the previous month (assuming that all are nonseasonal or seasonally adjusted). For

the NA series the monthly changes are unobserved. What we observe are the quarterly totals, i.e. the sum of

the levels of the three months making up the quarter. This simple fact renders the observational constraint

nonlinear. Secondly, the NA series are subject to accounting identities that, due to chain linking, hold when

the data are expressed at the prices of the previous year (see Eurostat, 1999, Bloem, et. al, 2001). This again

makes the cross-sectional constraints nonlinear.

The introduction of the NA series in the model can be considered as the main contribution of this paper.

Their consideration is essential to improve the coverage of the economy and the representativeness of the

factors. The main problem with their inclusion is not one of model consistency, but rather of data availability

and timeliness; as a matter of facts, it allows to incorporate in the factor estimates the information arising
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from core measures such as GDP, final consumption expenditures, sectorial value added and other main

NA aggregates. The inclusion entails that contemporaneous aggregation constraints arising from national

accounts identities are taken into consideration. Secondly, as a by product our model produces nowcasts of

monthly GDP and its components, along with measures of their reliability. Not only the factor estimates

will benefit from the inclusion of GDP and its components, but also the disaggregate estimates of GDP will

embody a large information set.

The availability of an indicator of monthly GDP is an important addition to the set of available economic

statistics. A variety of approaches are available, ranging from linear univariate temporal disaggregation us-

ing the factors as monthly indicators, to multivariate parametric models, and a relatively large literature is

already available on this or related topics. See, among others, Angelini, Henry and Marcellino (2004), Mar-

iano and Murasawa (2003), Mönch, E., and Uhlig, H. (2004), Proietti and Moauro (2006), Giannone, Re-

ichlin and Small (2006), Breitung and Schumacher (2006), Bańbura and Ruenstler (2007), Aruoba, Diebold

and Scotti (2007), Altissimo et al. (2007).

Our contribution to the literature is to provide the joint temporal disaggregation of the NA series, within a

large scale factor model, whose specification includes the NA series themselves, giving an exact treatment of

the temporal and cross-sectional aggregation constraints. The temporal aggregation constraints are enforced

by an iterative nonlinear smoothing algorithm. The cross-sectional constraints are enforced by a multistep

procedure that de-chains the estimated monthly values, expressing them at the average prices of the previous

year, and projects the estimates on the subspace of the constraints. The dechaining procedure is in line

with that advocated by the IMF manual (see Bloem et al., 2001). Finally, the series are chained back and

expressed in volumes at the prices of the reference year.

As a result the monthly estimates of the NA series are consistent with the temporal aggregation con-

straints (the quarterly sums are equal to the data released by Eurostat) and the accounting identities, when

the series are expressed at the prices of the previous year. Another advantage of our approach is the possi-

bility to assess the reliability of the monthly GDP estimates.

The estimation of the factor models is carried out by an iterative procedure. Each iteration consists of

two step. Given the availability of a preliminary estimate of the monthly NA series, the first step estimates

the parameters using the EM algorithm or principal component analysis. Conditional on the parameter

estimates, the second step obtains the estimates of the factors and the disaggregate NA series by solving a

nonlinear smoothing problem.

The paper is structured as follows: section 2 provides a description of the panel of time series avail-

able. In section 3 we discuss the specification of the linear dynamic factor model for the complete monthly

dataset, that is assuming that the panel time series were balanced and characterised by the same observa-

tion frequency. Estimation of the model parameters by the EM algorithm and by principal components is

discussed in sections 4.1 and 4.2. We then discuss the implications of temporal aggregation in section 5.

The constraints are enforced by the nonlinear smoothing algorithm described in section 6, in which we dis-

cuss the modified state space model that arises and its sequential constrained estimation of the factors and

the missing monthly values. Section 7 deals with the statistical treatment of the cross-sectional constraints

that arise from the accounting identities. The main estimation results for the euro area are presented and

discussed in section 8. Finally, we draw our conclusion and hint at some future developments (section 9).
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2 Description of the dataset

The available data consist of 132 monthly and 17 quarterly time series (i.e. a total of 149 series) for the

period starting in January (1st quarter of) 1995 and ending in June (second quarter) of 2006, for a total

of 150 monthly observation (38 quarterly observations). The series, extracted from the Europa database

(http://epp.eurostat.ec.europa.eu/), are listed in Appendix 1 and can be grouped under the following main

headings.

National accounts: 17 quarterly time series concerning the euro area GDP and its main components, the

breakdown of total GDP by the output the expenditure approaches. The complete list is provided in

table 1. All the series are expressed in millions of euro, chain-linked volumes, reference year 2000.

When expressed at the prices of the previous year (as it occurs for the values of the year 2001, which

are expressed in 2000 euros) the series are subject to contemporaneous aggregation constraints. The

role of these constraints for the estimation of the disaggregate time series will be the topic of section

7.

Industry: 53 monthly time series. Index of industrial production (25 series); Monthly turnover index (7

series); Monthly indices of new orders (6 series); Volume of work done (hours worked) (8 series);

Gross wages and salaries (7 series); see Table 2.

Construction: 7 monthly time series. Monthly production index (3 series); Monthly indices of labour input

(3 series); Building permits (1 series); see Table 3.

Retail Trade: 28 monthly time series. Index of turnover (13 series); Index of deflated turnover (13 series);

Employment (1 series); Car registration (1 series); see Table 3.

Monetary and Financial indicators: 13 monthly time series. Exchange rates (6 series); Money supply (3

series); Share price index (1 series); Interest rates (3 series); see Table 4.

Labour market: 5 monthly time series. Harmonised unemployment rates (5 series); see Table 4

External trade 4 monthly time series. Total imports and exports, trade value and volume index; see Table

4.

Business and consumer surveys: 22 monthly time series. Industry (5 time series); Construction (5 time

series); Retail sale (7 series); Consumer surveys (6 series); see Table 5.

All the series are seasonally adjusted and refer to the euro area with 12 member states (i.e. the Euro-

pean Monetary Union excluding Slovenia, Cyprus and Malta). Only the Business and Consumer surveys,

produced by DG ECFIN, refer to the euro area with 13 member states (including Slovenia). The choice was

made necessary by data availability. The set of series can be considered as a unbalanced sample of the euro

area economy which tends to over-represent the industrial sector. As it is well known, the service sector

is under represented in the short run economic indicators. This is why we think that including the national

accounts redresses the balance and improves upon the coverage of the factor model.

3 The Complete Data Factor Model

This section discusses the specification of the dynamic factor model for a balanced panel of time series

characterized by the same observation frequency. The issue of temporal aggregation will be deferred to
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section 5. Thus, let us suppose that the N time series are fully available and let us denote the individual

time series in the original scale of measurement by Yit, i = 1, . . . , N, t = 0, 1, . . . , n. We also assume that

the series can be rendered stationary by the transformation yit − ϕiyi,t−1, t = 1, . . . , n, where yit is the

Box-Cox transformation (Box and Cox, 1964) with parameter λi of the original series,

yit =

{

Y
λi

it
−1

λi
, λi 6= 0,

lnYit, λi = 0,

and ϕi = 1 if the series is difference stationary and 0 otherwise. For the series considered in our application,

we can assume that the monthly logarithmic changes are stationary, so that λi = 1 and ϕi = 1, except for

the Business and Consumer Survey series, for which λi = 0 and ϕi = 0.

The factor model that we formulate for the complete monthly series (i.e., the model that would be

entertained if a complete set of N monthly time series were available) is a standard dynamic factor model,

according to which the series are conditionally independent, given a set of common factors. The common

factors are generated by a stationary first order vector autoregressive process. The model for the i-th time

series is formulated as follows:

yit = ϕiyi,t−1 + µi + σixit, i = 1, . . . , N, t = 1, . . . , n,
xit = θ′

ift + ξit, ξit ∼ NID(0, ψi),
ft = Φft−1 + ηt, ηt ∼ NID(0,Ση);

(1)

here µi represents the mean of the stationary transformation yit − ϕiyi,t−1, σi is its standard deviation, and

xit is the standardized stationary transformation of the original time series. The latter is expressed as a linear

combination of K stationary common factors, ft, with zero mean, with weights collected in the K×1 vector

θi (factor loadings), plus an idiosyncratic component, ξit. The idiosyncratic component is orthogonal to the

factors.

If we further let ∆yit = yit − ϕiyi,t−1 and ∆yt denote the stack of the stationary series, µ =
[µ1, . . . , µN ]′, D = diag(σ1, . . . , σN ), and similarly xt = [x1t, . . . , xNt]

′, we can write ∆yt = µ + Dxt,
and the model for xt has state space representation:

xt = Θft + ξt, ξt ∼ N(0,Ψ)
ft = Φft−1 + ηt, ηt ∼ NID(0,Ση)

(2)

where Θ = [θ1, . . . ,θN ]′ and Ψ = diag{ψ1, . . . , ψN}, E(ξtη
′
t) = 0 and f0 ∼ N(0,Σf ), where Σf satisfies

the matrix equation Σf = ΦΣfΦ
′ + Ση.

The model needs not be interpreted as a strict factor model, in the sense that we can relax to a certain

extent the assumption of uncorrelatedness of the idiosyncratic component, allowing for serial and cross-

sectional correlation for the idiosyncratic component. Overall, we can allow xt to have an approximate

factor structure in the sense specified by Bai (2003), or by Forni et al. (2005).

As it is well known, the factor model is identified up to an invertible K × K matrix. A unique solution

is obtained by imposing K2 restrictions. We identify our factor model using the restriction that the upper

K × K block of the loadings matrix is equal to the identity matrix, that is Θ = [IK ,Θ∗′ ]′. The restriction

exactly identifies the model; see Geweke and Singleton (1981), proposition 2.

Let us define the parameter vector Ξ = [vec(Θ∗)′, vec(Φ)′, vech(Ση), ψ1, . . . , ψN ]′. For small N the

parameters can be estimated by maximum likelihood, where the likelihood is evaluated by the Kalman filter

(KF) via the prediction error decomposition, using a numerical quasi-Newton method. An application is
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Stock and Watson (1991). With large N , the evaluation of the likelihood is still efficiently performed by the

KF; however the difficulty with maximising the likelihood via gradiend based methods is due to the high

dimensionality of Ξ, which has NK +N +K2 unrestricted elements. In our application, in which N = 149
and K = 6, the number of unrestricted parameters is 1079.

A computationally viable alternative is to use the Expectation- Maximization (EM) algorithm of Demp-

ster et al. (1977). The EM algorithm for state space models was introduced by Shumway and Stoffer (1982)

and Watson and Engle (1983). For N large, an alternative asymptotically equivalent estimation strategy is

to use principal components analysis, when we allow the number of time series N , or both N and n, to go

to infinity. In the next section we review the two estimation strategies in some detail.

4 Estimation of the Complete Data Factor Model

In this section we provide the details concerning the estimation of the stationary dynamic factor model (2),

under the assumption that the N standardized time series collected in the vector xt are fully observed, for

t = 1, . . . , n. We assume that the number of factors is know, or it has been estimated according to the

information criteria proposed by Bai and Ng (2002), and extended by Amenegual and Watson (2007) to a

dynamic setting.

4.1 The EM Algorithm

The derivation of the EM algorithm made in this section is based on Shumway and Stoffer (1982), but

uses a different and more efficient smoothing algorithm. Let x = [x′
1, . . . ,xn]′, f = [f ′0, f

′
1, . . . , f

′
n]′, and

let g(·) denote the Gaussian probability density function. The factor model formulated in (2) is such that

ln g(f |x;Ξ) = ln g(x, f ;Ξ) − ln g(x;Ξ), where the first term on the right hand side is the joint probability

density function of the observations and the factors, also known as the complete data likelihood, and the

subtrahend is the likelihood, log L(Ξ) = ln g(x;Ξ), of the observed data.

The complete data likelihood can be evaluated as follows: ln g(x, f ;Ξ) = ln g(x|f ;Ξ) + ln g(f ;Ξ),
where ln g(x|f ;Ξ) =

∑n
t=1 ln g(xt|ft), and ln g(f ;Ξ) =

∑n
t=1 ln g(ft|ft−1;Ξ) + ln g(f0;Ξ). Thus, from

(2),

ln g(x, f ;Ξ) = −1
2

[

n ln |Ψ| + tr
{

Ψ−1
∑n

t=1(xt − Θft)(xt − Θft)
′
}]

−1
2

[

n ln |Ση| + tr
{

Σ−1
η

∑n
t=1(ft − Φft−1)(ft − Φft−1)

′
}]

−1
2

[

ln |P0| + tr
{

P−1
0 f0f

′
0

}]

where P0 satisfies the matrix equation P0 = ΦP0Φ
′ + Ση.

Given an initial parameter value, Ξ∗, the EM algorithm iteratively maximizes, with respect to Ξ, the

intermediate quantity (Dempster et al., 1977):

Q(Ξ;Ξ∗) = EΞ∗ [ln g(x, f ;Ξ)] =

∫

ln g(x, f ;Ξ)g(f |x;Ξ∗)df ,

which is interpreted as the expectation of the complete data log-likelihood with respect to g(f |x;Ξ∗), which

is the conditional probability density function of the unobservable states, given the observations, evaluated
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using Ξ∗. Now,

Q(Ξ;Ξ∗) = −1
2

[

n ln |Ψ| + tr
{

Ψ−1
∑n

t=1

[

(xt − Θf̃t|n)(xt − Θf̃t|n)′ + ΘPt|nΘ
′
]}]

−1
2

[

n ln |Ση| + tr
{

Σ−1
η (Sf − Sf,f−1Θ

′ − ΘS ′
f,f−1 + ΘSf−1Θ

′)
}]

−1
2

[

ln |P0| + tr
{

P−1
0 (f̃0|nf̃

′
0|n + P0|n)

}]

where f̃t|n = E(ft|x;Ξ(j)), Pt|n = Var(ft|x;Ξ(j)), and

Sf =

[

n
∑

t=1

(

Pt|n + f̃t|nf̃
′
t|n

)

]

,

Sf−1 =

[

n
∑

t=1

(

Pt−1|n + f̃t−1|nf̃
′
t−1|n

)

]

,Sf,f−1 =

[

n
∑

t=1

(

Pt,t−1|n + f̃t|nf̃
′
t−1|n

)

]

.

These quantities are evaluated with the support of the Kalman filter and smoother (KFS, see below), adapted

to the state space model (2) with parameter values Ξ∗. Also, Pt,t−1|n = Cov(ft, ft−1|x;Ξ∗) is computed

using the output of the KFS recursions, as it will be detailed below.

Dempster et al. (1977) show that the parameter estimates maximising the log-likelihood log L(Ξ), can

be obtained by a sequence of iterations, each consisting of an expectation step (E-step) and a maximization

step (M-step), that aim at locating a stationary point of Q(Ξ;Ξ∗). At iteration j, given the estimate Ξ(j),

the E-step deals with the evaluation of Q(Ξ;Ξ(j)); this is carried out with the support of the KFS applied to

the state space representation (2) with hyperparameters Ξ(j).

The M-step amounts to choosing a new value Ξ(j+1), so as to maximize with respect to Ξ the criterion

Q(Ξ;Ξ(j)), i.e., Q(Ξ(j+1);Ξ(j)) ≥ Q(Ξ(j);Ξ(j)). The maximization is in closed form, if we assume that

P0 is an independent unrestricted parameter. Actually, the latter depends on the matrices Φ and Ση, but

we will ignore this fact, as it is usually done. For the loadings matrix the M-step consists of maximizing

Q(Ξ;Ξ(j)) with respect to Θ, subject to subject to the identification constraints: C′Θ = IK , where C′ =
[IK , 0]. Denoting the unconstrained estimate by

Θ̂
(j+1)
U =

(

n
∑

t=1

xtf̃
′
t|n

)

S−1
f ,

the constrained estimate is (Magnus and Neudecker, 2007)

Θ̂(j+1) =

[

(In − CC′)
n

∑

t=1

xtf̃
′
t|n + CSf

]

S−1
f = (In−CC′)Θ̂

(j+1)
U +C = Θ̂

(j+1)
U −C(C′Θ̂

(j+1)
U −IK)

since C′C = IK .

The (j + 1) update of the matrix Ψ is given by

Ψ̂(j+1) = diag

{

1

n

n
∑

t=1

[

xtx
′
t − Θ̂(j+1)f̃t|nx

′
t

]

}

.

Further, we have:

Φ̂(j+1) = Sf,f−1S
−1
f−1, Σ̂(j+1)

η =
1

n

(

Sf − Φ̂(j+1)S ′
f,f−1

)

.
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In the above expressions f̃t|n = E(ft|x;Ξ(j)) and Pt|n = Var(ft|x;Ξ(j)) are computed by the KFS.

Also, Pt,t−1|n = Cov(ft, ft−1|x;Ξ(j)) is computed from the KFS recursions, as we now explain. Defining

the initial values f̃1|0 = 0, and P1|0 = P0, the Kalman filter is given by the following recursive formulae

and definitions, for t = 1, . . . , n:

vt = xt − Θf̃t|t−1, Ft = ΘPt|t−1Θ
′ + Ψ, Kt = ΦPt|t−1Θ

′F−1
t ,

f̃t+1|t = Φf̃t|t−1 + Ktvt, Pt+1|t = ΦPt|t−1Φ
′ + Ση − KtFtK

′
t

(3)

here, vt = xt − E(xt|x
t−1;Ξ), Ft = Var(vt|x

t−1;Ξ), f̃t|t−1 = E(ft|x
t−1;Ξ), Pt|t−1 = Var(ft|x

t−1;Ξ).

The smoothed estimates f̃t|n = E(αt|x;Ξ), and their covariance matrix Pt|n = E[(ft − f̃t|n)(ft −

f̃t|n)′|x;Ξ] are computed by the following backwards recursive formulae, given by Bryson and Ho (1969)

and de Jong (1989), starting at t = n, with initial values rn = 0,Rn = 0 and Nn = 0: for t = n−1, . . . , 1,

rt−1 = L′
trt + Z′

tF
−1
t vt, Mt−1 = L′

tMtLt + Z′
tF

−1
t Zt,

f̃t|n = f̃t|t−1 + Pt|t−1rt−1, Pt|n = Pt|t−1 − Pt|t−1Mt−1Pt|t−1.
(4)

where Lt = Φ − KtΘ
′.

The smoothed estimates of the disturbances are given by η̃t|n = E(ηt|x;Ξ) = Σηrt−1, and ξ̃t|n =

E(ξt|x;Ξ) = Ψ
[

F−1
t vt + K′

trt

]

. Indeed, the vector rt−1 computes Σ−1
η Cov(ηt,x)Var(x)−1(x−E(x)) =

Σ−1
η

∑n
j=t Cov(ηt,vj)F

−1
j vj . The matrix Mt−1 computes Var(rt−1) = Σ−1

η Cov(ηt,x)Var(x)−1Cov(x, ηt)Σ
−1
η .

The derivation of these expressions follows Koopman (1993).

Finally,

Pt,t−1|n = Cov(ft, ft−1|x) = ΦPt−1|n − ΣηMt−1Lt−1Pt−1|t−2.

The proof of this result is given below:

Cov(ft, ft−1|x) = ΦVar(ft−1|x) + Cov(ηt, ft−1|x)

= ΦPt−1|n + Cov(ηt, ft−1) − Cov(η̃t|n, f̃t−1|n)

= ΦPt−1|n − Cov(η̃t|n, f̃t−1|n)

= ΦPt−1|n − Cov(Σηrt−1, f̃t−1|t−2 + Pt−1|t−2rt−2)

= ΦPt−1|n − Cov(Σηrt−1,Pt−1|t−2L
′
t−1rt−1)

= ΦPt−1|n − ΣηMt−1Lt−1Pt−1|t−2.

The covariances for smoothed estimates were derived by de Jong and Mackinnon (1988). Our derivation

is different since it is based on the output of the Bryson and Ho (1969) and de Jong (1989) smoothing

algorithm, which is more efficient with respect to that considered by Shumway and Stoffer (1982) and de

Jong and Mackinnon (1988).

4.2 Principal components analysis

The static principal component estimator minimizes, with respect to f̂t, t = 1, . . . , n, and Θ̂, the nonlinear

least squares criterion (see Stock and Watson, 2002b, and Bai, 2003):

∑

t

(xt − Θ̂f̂t)
′(xt − Θ̂f̂t),

subject to the normalisations Θ̂′Θ̂ = IK and n−1
∑

t f̂tf̂
′
t = diag{λk > 0, k = 1, . . . ,K}, which alto-

gether define the K2 restrictions that are required for exact identification. The solution yields Θ̂ as the
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matrix whose columns are formed from the first K eigenvectors of the covariance matrix n−1
∑

t xtx
′
t,

corresponding to the K largest eigenvalues, and f̂t = Θ̂′xt. Notice that this approach treats the factors as

fixed parameters, and thus their estimator is coincident with the first K principal components. However,

for n,N → ∞ this is asymptotically equivalent to the Wiener-Kolmogorov estimator of the factors, in that

the estimation mean square error converges to zero. This is formally shown under different assumptions in

Stock and Watson (2002b), Bai (2003) and Doz, Giannone and Reichlin (2007, section 3).

The principal components f̂t, can be used for estimating the VAR coefficients and disturbance covariance

matrix:

Φ̂ =
n

∑

t=2

f̂tf̂
′
t−1

(

n
∑

t=2

f̂t−1f̂
′
t−1

)−1

, Σ̂η =
1

n − 1

(

n
∑

t=2

f̂tf̂
′
t − Φ̂

n
∑

t=2

f̂t−1f̂
′
t

)

.

Finally, Ψ̂ = diag
{

1
n

∑n
t=1 xtx

′
t − Θ̂f̂tx

′
t

}

. The consistency of the estimator of Ξ based on PCA has been

shown by Bai (2003) and Forni et al. (2005) for n,N → ∞ under different settings. Giannone, Reichlin

and Sala (2005) use a two step estimator of the factors, such that the parameters Ξ are estimated by PCA

and the factors by the KFS. Doz, Giannone and Reichlin (2007) prove the consistency of such estimator.

For comparison with the EM estimates, the PCA solution will be rotated. In particular, if Θ̂(K) denotes

the first row block of Θ̂, so that Θ̂ = [Θ̂′
(K), Θ̂

′
(U)]

′, we shall consider the estimate

Θ̃ = Θ̂Θ̂−1
(K) =

[

IK

Θ̂(U)Θ̂
−1
(K)

]

,

which enforces the restriction that the upper block is the identity matrix. Consequently, the estimates of

the VAR coefficient matrix and disturbance variance matrix are, respectively, Φ̃ = Θ̂(K)Φ̂Θ̂−1
(K) and Σ̃η =

Θ̂(K)Σ̂ηΘ̂
′
(K).

Another possibility is to base estimation on weighted principal components, where the weights are

proportional to the inverse of the standard deviation of the idiosyncratic component; this is discussed in

Boivin and Ng (2004) and Forni et al. (2005), but will not be explored no further.

5 Temporal aggregation

The N time series yit are available at different frequencies of observation. In particular, the first block

of N1 = 17 time series, GDP and its main components, are quarterly. Since Yit, 1, . . . , N1, is subject to

temporal aggregation, we observe the quarterly totals:

Yiτ =
3

∑

i=1

Yi,3τ−i, τ = 1, 2, . . . , [(n + 1)/3], (5)

where [·] is the integer part of the argument.

For the statistical treatment it is useful to convert temporal aggregation into a systematic sampling prob-

lem; this can be done by constructing a cumulator variable, generated as a time-varying first order autore-

gression (see Harvey, 1989, and Harvey and Chung, 2000):

Y c
it = ρtY

c
i,t−1 + Yit, t = 0, . . . , n

= ρtY
c
i,t−1 + hi(yit)

(6)
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where hi(·) is the Box-Cox inverse transformation,

hi(yit) =

{

(1 + λiyit)
1/λi , λi 6= 0,

exp(yit), λi = 0,

and ρt is the cumulator coefficient, equal to zero for t corresponding to the first month in the quarter and 1

otherwise:

ρt =

{

0 t = 3(τ − 1), τ = 1, . . . , [(n + 1)/3]
1 otherwise .

The cumulator (6) is nothing more than a recursive implementation of the temporal aggregation rule (5).

Only a systematic sample of the cumulator variable Y c
it is available; in particular, if the sample period starts

with the first month of the quarter at t = 0, the observed end of quarter values occur at times t = 3τ−1, τ =
1, 2, . . . , [(n + 1)/3]

In the case of the logarithmic transformation (λi = 0), Y c
i0 = exp yi0, Y c

i1 = exp(yi0) + exp(yi1),
Y c

i2 = exp(yi0) + exp(yi1) + exp(yi2), Y c
i3 = exp(yi3), Y c

i4 = exp(yi3) + exp(yi4), Y c
i5 = exp(yi3) +

exp(yi4) + exp(yi5), . . . Only the values Y c
i2, Y

c
i5, . . . are observed, while the intermediate ones will be

missing. It it important to remark that in general, when the Box-Cox transformation parameter is different

from one, the quarterly totals are a nonlinear function of the underlying (unobserved) monthly values yit (e.g.

the sum of the exponentials of three consecutive values). Now, since we postulate that the first differences

∆yit are stationary and they have a linear factor model representation, the temporal aggregation constraints

are nonlinear. In other words, we observe Y c
iτ = Yi,3τ−1 + Yi,3τ−2 + Yi,3τ−3, but the linear model is

formulated in terms of the unobserved yi,3τ−i, i = 1, 2, 3, which are the Box-Cox power transformation of

Yi,3τ−i. Hence, temporal aggregation yields a nonlinear observational constraint.

6 Nonlinear Smoothing

Conditional on Ξ, we face the problem of estimating the factors ft and the missing values yit, i = 1, . . . , N1,

from the available information, which consists of Y c
it, i = 1, . . . , N1, t = 3τ − 1, τ = 1, 2, . . . , [(n + 1)/3],

for the quarterly time series and yit for i = N1 + 1, . . . , N. This is a nonlinear smoothing problem that can

be solved by iterating the Kalman filter and smoother adapted to a sequentially linearized state space model.

The estimation is carried out by an iterative algorithm which is a sequential linear constrained method

for solving a constrained nonlinear optimization problem; see Gill et al. (1989), section 7. This method has

been applied to nonlinear aggregation in mixed models Proietti (2006) and to temporal disaggregation by

Proietti and Moauro (2006).

Let us partition the vectors Yt = [Y′
1t,Y

′
2t]

′, yt = [y′
1t,y

′
2t]

′, such that Yt = h(yt) is the inverse

Box-Cox transform of yt, ∆yt = [∆y′
1t, ∆y′

2t]
′, xt = [x′

1t,x
′
2t]

′, µ = [µ1, µ2]
′, and the matrices D =

diag(D1,D2), Θ = [Θ′
1,Θ

′
2]
′, Ψ = diag(Ψ1,Ψ2), where the subscript 1 indexes the national accounts

series, and the dimension of the blocks are respectively N1 and N2. Further, define ξ = [ξ′1, . . . , ξ
′
n]′, i.e.

the stack of the idiosyncratic disturbances.

If xt were fully observed and Ξ were known, the KFS would yield the values of f and ξ that maximise

the complete data likelihood g(x, f ;Ξ) = g(x|f ;Ξ)g(f ;Ξ). Now, x1t, t = 1, . . . , n, is not available, but

we observe a systematic sample of the cumulator

Yc
1t = ρtY

c
1,t−1 + Y1t,

= ρtY
c
1,t−1 + h(y1t),
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and x1t is related to y1t by x1t = D−1
1 (∆y1t − µ1).

The smoothing problem is now to obtain the values f and ξ that maximise the complete data likelihood

g(x, f ;Ξ), subject to the nonlinear observational constraints that we observe a systematic sample of Yc
1t =

ρtY
c
1,t−1 + h(y1t), and x1t = D−1

1 (∆y1t − µ1).
The optimisation problem is handled with the support of the KFS. Each time the observation constraint

is linearised around a trial value by a first order Taylor series expansion; this operation yields a linear state

space model and the corresponding KFS provides a new trial value for the disaggregate series. This sequence

of linearisations is iterated until convergence and the end result is a set of disaggregate monthly estimates

Y1 and factor scores which incorporate the temporal aggregation constraints. As a by-product, disaggregate

(monthly) estimates of the missing values x1t and thus of y1t and Yit will be made available.

The linearisation operates as follows. Let y∗
1t denote a trial estimate of the Box-Cox transformed dis-

aggregate series, and Y∗
1t = h(y∗

1t). Linearising the cumulator around it, using the first order Taylor

approximation, yields

Yc
1t = ρtY

c
1,t−1 + h(y∗

it) + U∗
1t(y1t − y∗

1t)

where the N1 ×N1 matrix U∗
1t is a diagonal matrix with the derivatives of the inverse Box-Cox transforma-

tion on the main diagonal

U∗
1t = diag

(

dhi(yit)

dyit

∣

∣

∣

∣

yit=y∗

it

, i = 1, 2, . . . , N1

)

in the case λi = 0, i = 1, . . . , N1, (logarithmic transformation for all the variables), hi(yit) = exp(yit) and

U∗
1t = diag(exp(y∗

1t)).
When y1t is difference stationary, as in our case, writing y1t = y1,t−1 + ∆y1t = y1,t−2 + ∆y1,t−1 +

∆y1t, replacing

∆y1t = µ1 + D1x1t

= µ1 + D1(Θ1ft + ξ1t)
= µ1 + D1(Θ1Φft−1 + Θ1ηt + ξ1t),

and rearranging, enables us to express Yc
1t as a time-varying linear combination of Yc

1,t−1,y1,t−2, ∆y1,t−1, ft−1,
which will constitute the elements of the state vector at time t − 1, denoted αt−1:

Yc
1t = ρtY

c
1,t−1 + U∗

1t(y1,t−2 + ∆y1,t−1 + D1Θ1Φft−1) + Y∗
1t − U∗

1ty
∗
1t+

U∗
1tµ1 + U∗

1tD1(Θ1ηt + ξ1t).

When hi(·) = exp(·),∀i, (i.e. in the case λi = 0, i = 1, . . . , N1), y∗
1t = log(Y∗

1t), U
∗
1t = diag (exp(y∗

1t)) =
diag (Y∗

1t)), and h(y∗
1t) − U∗

1ty
∗
1t = Yc∗

1t − U∗
1t log(Y∗

1t).

6.1 State space representation

The state space representation is conveniently formulated for the vector y
†
t , given by

y
†
t =

[

Yc
1t

∆y2t

]

, t = 1, 2, . . . , n,

whereas for t = 0, y
†
0 = Yc

10. The length of the observation vector varies with time and will be denoted by

Nt.
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The measurement equation is

y
†
t = Ztαt + ct + Gtξ2t, ξ2t ∼ NID(0,Ψ2), (7)

where ξ2t is the vector of idiosyncratic disturbances of the factor model for the second block of time series,

which contains those time series that are fully observed at the monthly frequency. At time t = 0 the

measurement equation is formulated in terms of the N1 elements Yc
1,0:

y
†
0 = Yc

1,0,Z0 =
[

IN1 , 0, 0, 0
]

, c0 = 0,G0 = 0.

For all times times t ≥ 1,

y
†
t =

[

Yc
1,t

∆y2t

]

,Zt =

[

IN1 0 0 0

0 0 0 D2Θ2

]

, ct =

[

0

µ2

]

,Gt =

[

0

D2

]

,

It should be recalled that only a systematic sample of Yc
1t is available at times 3τ−1, τ = 1, . . . , [(n+1)/3],

and thus the measurement equation is subject to missing values.

The transition equation is defined as

αt = Ttαt−1 + dt + Htωt, t = 1, . . . , n,

where the state and the disturbance vectors are

αt =









Yc
1,t

y1,t−1

∆y1t

ft









, ωt =

[

ξ1t + Θ1ηt

ηt

]

,

and

Tt =









ρtIN1 U∗
1t U∗

1t U∗
1tD1Θ1Φ

0 IN IN 0

0 0 0 D1Θ1Φ

0 0 0 Φ









,Ht =









U∗
1tD1 0

0 0

D1 0

0 IK









,dt =









Y∗
1t − Z∗

ity
∗
1t + U∗

1tµ1

0

µ1

0









.

It must be remarked that µ1, µ2, D1,D2, and the matrices Θ,Ψ,Φ,Ση are treated as known quantities.

6.2 Initial conditions

The specification of the state space model is completed by the distribution of the initial state vector α0 =
[

Yc′
1,0,y

′
1,−1,∆y′

1,0, f
′
0

]′
. The first block is rewritten Yc

1,0 = f(y1,0), as ρ0 = 0; its first order Taylor

approximation around the trial value y∗
1,0 is

Yc
1,0 = f(y∗

1,0) + Z∗
1,0y1,0 − Z∗

1,0y
∗
1,0.

The first two blocks of the state vector are nonstationary and are initialised by the a vector β = y1,0, whereas

the last two blocks have a stationary distribution, which depends on f0 ∼ N(0,Σf ), where Σf solves the

matrix equation Σf = ΦΣfΦ
′ + Ση.
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The initial state vector is thus written as:

α0 = A0,0β + a0,0 + H0ω0, ω0 =

[

ξ1,0 + Θ1f0
f0

]

,

where

a0,0 = d0 =









Yc∗
1,0 − U∗

1,0y
∗
1,0 + U∗

1,0µ1

0

µ1

0









,A0,0 =









U∗
1,0

IN1

0

0









,P0,0 = H0Cov(ω0)H
′
0.

As far as the vector β is concerned, two assumptions can be made: (i) β is a fixed unknown vector

(Σβ → 0); this is suitable if it is deemed that the transition process governing the states has started at time

t = 1; (ii) β is a diffuse random vector, i.e. it has an improper distribution with zero mean and an arbitrarily

large variance matrix (Σ−1
β → 0). The diffuse case captures the nonstationarity of a particular unobserved

component and entails marginalising the inferences with respect to the parameter vector β. As de Jong

(1990) has shown, the posterior mean of β under the diffuse prior is coincident with the generalised least

squares estimate of the parameter β considered as a fixed parameter vector in the classical sense. The only

difference arises with respect to the definition of the likelihood.

6.3 Estimation of the factors and the disaggregated series

The factors and disaggregate values Y1t are estimated by the following iterative scheme:

1. Start from a trial value y∗
1t, t = 0, . . . , n, (e.g. obtained from application of the univariate Chow-Lin

disaggregation method, see Chow and Lin, 1971, to the first group of series, or the methodology in

Moauro and Savio, 2005). In general, y∗
1t does not have to satisfy the temporal aggregation con-

straints.

2. Form the linear state space approximating model presented in (6.1) and (6.2), using the first-order

Taylor expansion around y∗
1t.

3. Use the Kalman filter and smoother to estimate the factors ft, the idiosyncratic components, and the

disaggregate series y1t, and thus Y1t. In particular, if α̃t|n denotes the smoothed estimates of the

state vector, the new estimate of the Box-Cox tranformation of the disaggregate series is obtained as

ŷ∗
1t = [0, I, I, 0]α̃t|n.

4. If ||y∗
1t − ŷ∗

1t|| is greater than a specified tolerance value, set y∗
1t = ŷ∗

1t and return to step 2; else, set

Y∗
1t = h(y∗

1t).

At convergence, the estimated disaggregate values satisfy the aggregation constraints, that is the observed

quarterly aggregate Y1τ equals h(y∗
1,3τ−1) + h(y∗

1,3τ−2) + h(y∗
1,3τ−3). The relevant KFS for the linear

approximating model is presented in the next section.
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6.4 Univariate treatment of filtering and smoothing for multivariate models

The series y
†
t is only partially observed and the KFS needs to be modified in order to entertain the missing

values. Also, the state space form is formulated for the levels of the series in the first block, and thus the

state vector has nonstationary effects. This section illustrates the KFS that is adapted to the state space

model that takes into account the temporal aggregation observational constraints. The missing values affect

systematically only the first block of N1 elements of y
†
t : this situation can be dealt with if, for filtering

purposes, the multivariate model is converted into a univariate model.

The univariate statistical treatment of multivariate models was considered by Anderson and Moore

(1979). As we said before, it provides a very flexible and convenient device for filtering and smoothing

in the presence of missing values. Our treatment is prevalently based on Koopman and Durbin (2000).

However, for the treatment of initial conditions, and the estimation of β, we adopt the augmentation ap-

proach by de Jong (1990).

The multivariate vectors y
†
t , t = 1, . . . , n, some elements of which can be missing, are stacked one on

top of the other to yield a univariate time series {y†t,i, i = 1, . . . , Nt, t = 1, . . . , n}, whose elements are

processed sequentially; Nt is the number of time series processed at time t,

Nt =

{

N1, t = 0,
N1 + N2, t = 1, 2, . . . , n.

The state space model for the univariate time series {y†t,i} is constructed as follows. The measurement

equation for the i-th element of the vector y
†
t is:

y†t,i = z
′

t,iαt,i + ct,i + g′
t,iξ2t, t = 0, . . . , n, i = 1, . . . , Nt, (8)

where z
′

t,i g
′

t,i and c′t,i denote the i-th rows of Zt, Gt and ct, respectively.

The transition equation at time t varies according to i:

αt,i =

{

Ttαt−1,Nt−1 + dt + Hηt,1, i = 1,

αt,i−1, i = 2, . . . , Nt.

The vector αt,i is the state vector when the (t, i)-th observation is processed. The state space form is

completed by the initial state vector which is α0,1 = a0,0 + A0,0β + H0η0,0, where P0,0 = Var(H1η1,1)
and the other quantities have been defined in the previous section.

The augmented Kalman filter, taking into account the presence of missing values, is given by the fol-

lowing definitions and recursive formulae. Set the initial values a0,0 = d0,A0,0,P0,0, q0,0 = 0, s0,0 =

0,S0,0 = 0, cn = 0; for t = 0, . . . , n, i = 1, . . . , Nt − 1, if y†t,i is available, compute the following

quantities:

vt,i = y†t,i − z′t,iat,i − ct,i, V′
t,i = −z′t,iAt,i,

ft,i = z∗
′

t,iPt,iz
∗′
t,i + g′

t,iΨ2gt,i, Kt,i = Ptz
∗′
t,i/ft,i

at,i+1 = at,i + Kt,ivt,i, At,i+1 = At,i + Kt,iV
′
t,i,

Pt,i+1 = Pt,i − Kt,iK
′
t,ift,

qt,i+1 = qt,i + v2
t,i/ft,i, st,i+1 = st,i + Vt,ivt,i/ft,i,

St,i+1 = St,i + Vt,iV
′
t,i/ft,i dt,i+1 = dt,i + ln ft,i,

cn = cn + 1

(9)
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Else, if y†t,i is missing, as it occurs for Yc
1t for t 6= 3τ − 1, τ = 1, . . . , [(n + 1)/3]:

at,i+1 = at,i, At,i+1 = At,i,
Pt,i+1 = Pt,i,
qt,i+1 = qt,i, st,i+1 = st,i, St,i+1 = St,i, dt,i+1 = dt,i.

(10)

Then for i = Nt

at+1,1 = Tt+1at,Nt
+ dt+1, At+1,1 = Tt+1At,Nt

,
Pt+1,1 = Tt+1Pt,Nt

T′
t+1 + HΣηH

′,
qt+1,1 = qt,Nt

, st+1,1 = st,Nt
, St+1,1 = St,Nt

, dt+1,1 = dt,Nt
.

(11)

Here, Vt,i is a vector with N1 elements, At,i is m× (N1), cn is the observation counter. The quantities

st,i,St,i, accumulate vector and matrix cross-product that are used to build up the generalised least squares

estimate of β = y10. If the initial values are taken as fixed, maximising the likelihood with respect to β

yields:

β̂ = −S−1
n+1,1sn+1,1, Var(β̂) = S−1

n+1,1, (12)

The profile log-likelihood is (neglecting constant terms)

Lc = −
1

2

[

dn+1,1 + qn+1,1 − s′n+1,1S
−1
n+1,1sn+1,1

]

. (13)

When β is diffuse (de Jong, 1991), the diffuse profile likelihood, denoted L∞, takes the expression:

L∞ = −0.5
[

dn+1,1 + qn+1,1 − s′n+1,1S
−1
n+1,1sn+1,1 + ln |Sn+1,1|

]

. (14)

Diagnostics and goodness of fit are based on the innovations, that are given by ṽt,i = vt,i −V′
t,iS

−1
t,i st,i,

with variance f̃t,i = ft,i + V′
t,iS

−1
t,i Vt,i. The standardised innovations, ṽt,i/

√

f̃t,i can be used to check for

residual autocorrelation and departure from the normality assumption. The innovations have the following

interpretation:

ṽt,i = y†t,i − E(y†t,i|Y
†
t−1, y

†
t,j , j < i),

where Y
†
t denotes the information set {y†

1, . . . ,y
†
t}.

The filtered, or real time, estimates of the state vector and the estimation error matrix are computed as

follows:

α̃t,i = at,i − At,iS
−1
t,i st,i + Pt,izt,iṽt,i/ft,i, P̃t,i = Pt,i + At,iS

−1
t,i A∗′

t,i − Pt,izt,iz
′
t,iPt,i/ft,i,

where α̃t,i = E(αt|Y
†
t−1, y

†
t,j , j ≤ i), P̃t,i = Var(αt|Y

†
t−1, y

†
t,j , j ≤ i).

The smoothed estimates are obtained from the augmented smoothing algorithm proposed by de Jong

(1988), appropriately adapted to handle missing values. Defining rn,N = 0,Rn,N = 0,Nn,N = 0, for

t = n, . . . , 0, and i = Nt, . . . , 1 if y†t,i is available:

Lt,i = Im − Kt,iz
∗′
i

rt,i−1 = z∗t,ivt,i/ft,i + Lt,irt,i, Rt,i−1 = z∗t,iV
′
t,i/ft,i + Lt,iRt,i,

Nt,i−1 = z∗t,iz
∗′
t,i/ft,i + Lt,iNt,iL

′
t,i.
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Else, if y†t,i is missing,

rt,i−1 = rt,i, Rt,i−1 = Rt,i, Nt,i−1 = Nt,i.

rt−1,N = T∗′

t+1rt,i, Rt,i−1 = T∗′

t+1Rt,i, Nt,i−1 = T∗′

t+1Nt,iT
∗
t+1.

The smoothed estimates of the state vector, α̃t|n, along with their covariance matrices, Pt|n, are obtained

from the previously computed quantities as:

α̃t|n = at,1 + At,1β̃ + Pt,1(rt−1,N + Rt−1,N β̃)

Pt|n = Pt,1 + At,1S
−1
n+1A

∗′
t,1 − Pt,1Nt−1,NPt,1.

From the smoothed estimates we obtain a new estimate of the disaggregate series on the Box-Cox trans-

formed scale, y∗
1,t, by computing [0, IN1, IN1, 0]′α̃t|n, and Y∗

1,t = h(y∗
1,t).

7 Chain-linking and contemporaneous aggregation constraints

The quarterly national accounts series are subject to a number of accounting deterministic constraints, when

the aggregates are expressed at current prices and at the average prices of the previous year. In particular,

the 17 series listed in 1 are bound together by the identities:

GDP at basic prices =
∑

Value added of the 6 branches (A-B, C-D-E, F, G-H-I, J-K, L-P)

GDP at market prices = GDP at basic prices + Taxes less subsidies

GDP at market prices+IMP = CONS+INV+EXP

Domestic demand = CONS+INV

CONS = CONSH+CONSG

where

CONS = Final consumption expenditures

CONSH = Household and NPISH final consumption expenditure

CONSG = Final consumption expenditure: general government

INV = Gross Capital Formation

EXP = Exports of goods and services

IMP = Imports of goods and services

The production of chained linked national accounts estimates has changed drastically the role of the

contemporaneous aggregation constraints considered above. In particular, the constraints hold only when

the series are expressed at the average prices of the previous year; loosely speaking, only in that case

they are expressed genuinely at constant prices. Otherwise, chaining, which is a multiplicative operation,

destroys the additivity of the constraints, and a nonzero discrepancy arises. GDP and its main components

are expressed in chain-linked volumes (millions of euros), with reference year 2000, which implies that the

constraints hold exactly for the four quarters of the year 2001. Interestingly, due to the application of the

annual overlap technique, exposed below, the constraints are not entirely lost, but they continue to hold after

a transformation of the data that we call ”dechaining”, which aims at expressing the chained values at the

prices of the previous year.

The Eurozone member states chain-link the quarterly data on an annual basis, i.e. the quarterly volume

measures are expressed at the average prices of the previous years. The current situation is described in the
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Eurostat metadata available at http://ec.europa.eu/eurostat. Two alternative techniques are applied for annual

chain-linking of quarterly data by the member countries: one quarter overlaps (Austria) and annual overlaps

(other states). These are described in Bloem, et al. (2001, chapter IX); the annual overlap technique, which

implies compiling estimates for each quarter at the weighted annual average prices of the previous year,

has the the advantage of producing quarterly volume estimates that add up exactly to the corresponding

annual aggregate. The annual overlap technique is also the method used by Eurostat in the imputation of

the chain-linked volume measures of those countries for which no quarterly data at previous years prices are

available.

As it is well known, chain-linking results in the loss of cross-sectional additivity (if the one quarter

overlap is used also temporal additivity is lost and benchmarking techniques have to be employed in order

to restore it). However, for the annual overlap, the disaggregated (monthly and quarterly) volume measures

expressed at the prices of the previous year preserve both the temporal and cross-sectional additivity.

The cross-sectional constraints can be enforced by a multistep procedure that de-chains the estimated

monthly values, expressing them at the average prices of the previous year, and projects the estimates on

the subspace of the constraints, as it will be described below. The dechaining procedure is in line with that

advocated by the IMF manual (see Bloem et al., 2001).

We start by indexing the month of the year by j, j = 0, . . . , 11 and the year by m, m = 1, . . . ,M =
[(n + 1)/12], so that the time index is written t = j + 12m, t = 0, . . . , n.

For a particular estimated monthly time series let us denote by Yjm the value at current prices of month

j in year m, Y.m =
∑

j Yjm the annual total, Ȳm = Y.m/12 the annual average (the annual and quarterly

figures are available from the national accounts, compiled by Eurostat). The chain-linked volume estimate

with reference year b (the year 2000 in our case) will be denoted Ŷ
(b)
jm . The temporal disaggregation methods

described in the previous section are applied to the quarterly chained-linked volume series with reference

year b and yield estimates that add up to the quarterly and annual totals (temporal consistency), but are not

additive in a horizontal (that is cross-sectional) sense.

The following multistep procedure enables the computation of volume measures expressed at the prices

of the previous year that are additive, also horizontally.

1. Dechaining :

(a) Transform the monthly estimates into Laspayres type quantity indices with reference year b
(volumes are evaluated at year b average prices), by computing

I
(b)
jm =

Ŷ
(b)
jm

Ȳ.b
, j = 0, . . . , 11,m = 0, . . . , M,

where the denominator is the annual average of year b at current prices. In our case b = 5 (year

5 is the calendar year 2000).

(b) Change the reference year to m = 1, the second year of the series (1996 in our case), by

computing:

I
(1)
jm =

I
(b)
jm

Ī
(b)
1

, j = 1, . . . , 11,m = 0, . . . , M,

where Ī
(b)
1 =

∑

j I
(b)
j1 /12 is the average quantity index for the second year of the the sample.
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(c) Transform the quantity indices for year m = 1, 2, . . . , M into indices with reference year m−1

(the previous year), by rescaling I
(1)
jm as follows:

I
(m−1)
jm =

I
(1)
jm

Ī
(1)
m−1

, j = 0, . . . , 11,m = 1, . . . ,M,

where

Ī
(1)
m−1 =

1

12

∑

j

I
(1)
j,m−1,m = 1, . . . ,M

(d) Compute the series at the average prices of the previous year as:

Ŷ
(m−1)
jm = I

(m−1)
jm Ȳm−1, j = 0, . . . , 11,m = 1, . . . , M,

2. Aggregation step: Let Y
(m−1)
t denote the disaggregate time series expressed at the average prices of

the previous year. Using the original estimates and the dechaining procedure we can assume that, at

least approximately,

Y
(m−1)
t ∼ N

(

Ŷt
(m−1)

, V̂t
(m−1)

)

, t = 0, 1, . . . , n,

where the first and second moments are given by the sequential constrained estimates produced by

the Kalman filter and smoother outlined in the previous section, modified to take into account the

dechaining procedure1. If the r cross-sectional constraints are expressed as

QYt = q

where Q is an r×N1 matrix, and q is r×1, the modified estimates that comply with those constraints

and their MSE matrix are given respectively by

Ỹ
(m−1)
t = Ŷt

(m−1)
+ V̂t

(m−1)
Q′(QV̂t

(m−1)
Q′)−1(q − QŶt

(m−1)
)

Ṽ
(m−1)
t = V̂t

(m−1)
− V̂t

(m−1)
Q′(QV̂t

(m−1)
Q′)−1QV̂t

(m−1)

see, e.g. Peña (1997). In our case, r = 5 and q = 0,

Q =













1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 −1 0
0 0 0 0 0 0 −1 1 0 0 0 1 0 1 −1 0 0
0 0 0 0 0 0 0 −1 0 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1 −1 0 0 1 0 0 0 0 0
0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 1 1













,q =













0
0
0
0
0













.

The new balanced estimates are now ready to be expressed at the average prices of reference year b.

3. Chain-linking (annual overlap):

1In particular, ifDt is a diagonal matrix containing the dechaining coefficients that allow to express the chained estimates at the

average prices of the previous year, and Ŷt are the chained estimates, with estimation error mean square matrix V̂t, computed by

the Kalman filter and smoother, then Ŷt

(m−1)
= DtŶt and V̂t = DtV̂tDt.
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(a) Convert the aggregated volume measures into Laspeyres-type quantity indices with respect to

the previous year:

I
(m−1)
jm =

Ỹ
(m−1)
jm

Ȳm−1
, j = 0, . . . , 11,m = 1, . . . , M,

where Ȳm−1 =
∑

j Yj,m−1/12 is the average of the previous year at current prices. The annual

and quarterly totals is available from the national accounts compiled by Eurostat.

(b) Chain-link the indices using the recursive formula (the first year is the reference year):

I
(0)
jm = I

(m−1)
jm Ī

(0)
m−1, j = 0, . . . , 11,m = 1, . . . ,M,

where Ī
(0)
0 = 1 and

Ī
(0)
m−1 =

1

12

∑

j

I
(0)
j,m−1.

(c) If b > 0 then change the reference year to year b:

I
(b)
jm =

I
(0)
jm

Ī
(0)
b

j = 0, . . . , 11,m = 1, . . . ,M.

(d) Compute the chain-linked volume series with reference year b:

Ỹ
(b)
jm = I

(b)
jmȲb j = 1, . . . , 12,m = 2, . . . ,M,

where Ȳb = 1
12

∑

j Yjb is the value of GDP (at basic or market prices) at current prices of the

reference year.

The multistep procedure just described enables to obtain monthly estimates in volume such that the values

Ỹ
(m−1)
jm expressed at the average prices of the previous year add up to their quarterly and annual totals pub-

lished by Eurostat and are consistent with the contemporaneous aggregation constraints. On the contrary, as

a result of the chaining procedure, the chain-linked volumes Ỹ
(b)
jm expressed at the prices of the common ref-

erence year b (2000) are consistent only with the temporal aggregation constraints; however, their estimates

are more reliable since they have been combined with the estimates of other related variables.

8 Estimation Results

We now put the pieces together and estimate the factor model using the dataset consisting of 149 time series

with mixed frequency described in section 2. For all the series considered in our application, we can assume

that the monthly logarithmic changes are stationary, so that λi = 1 and ϕi = 1, except for the Business

and Consumer Survey series, for which λi = 0 and ϕi = 0. In particular, the survey variables will require

no transformation as they are expressed as balances. All the remaining series measured on a ratio scale are

transformed into logarithms.

Estimation of the unknown parameters and temporal disaggregation is carried out by an iterative al-

gorithm which alternates two main steps until convergence. We start from a trial disaggregate time series
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y∗
1t, t = 0, . . . , n,, obtained from the temporal disaggregation of the quarterly national accounts series ac-

cording to the univariate Chow-Lin procedure, using industrial production and retail sales (total) as monthly

indicators (see Proietti, 2007). The disaggregate time series serve to construct the standardized stationary se-

ries xt, that form a balanced panel of monthly time series. The initial estimate of the parameter is computed

by a principal component analysis of the covariance matrix of the xt’s.

The number of factors, K, is selected at this stage according to the information criteria proposed by Bai

and Ng (2002). In particular we focus on the two criteria:

ICp1(k) = lnV (k) + k

(

n + N

nN

)

ln

(

nN

N + T

)

,

ICp2(k) = lnV (k) + k

(

n + N

nN

)

lnmin{n,N},

where V (k) = 1
NT

∑N
i=1

∑n
t=1(xit − θ̂if̂it)

2, and the factors are estimated by static principal components

analysis. Bai and Ng (2002) show that the value of k that minimizes ICp1(k) or ICp1(k) is a consistent

estimator for n, N → ∞ of the number of common factors.

Conditional on K, the estimation of the factor model involves the following steps:

1. Given a set of estimated disaggregate values ŷ1t, satisfying the temporal and contemporaneous aggre-

gation constraints, we construct the pseudo complete balanced panel of time series yt = [ŷ′
1t,y

′
2t]

′,

where y2t are the observed monthly series. We then obtain the stationary transformation ∆yt and

estimate µ and D by computing the sample average and the standard deviation of the individual time

series. We construct the standardized stationary series xt = D̂−1(∆y − µ̂), and estimate the para-

meters of the factor model Θ,Φ,Ση,Ψ by maximum likelihood using the EM algorithm (see section

4.1) or by principal component analysis (see section 4.2).

2. Conditional on the parameter estimates, we estimate the disaggregate time series ŷ1t (and thus Ŷ1t =
h(ŷ1t)), consistent with the temporal and cross-sectional constraints. This step is carried out itera-

tively, with each iteration consisting of two steps:

(a) estimate ŷ1t enforcing the nonlinear temporal aggregation constraints, as detailed in (6.3);

(b) enforce the cross-sectional temporal aggregation constraints by the de-chaining and chaining-

back procedure outlined in section (7).

Convergence occurs when both the parameters Ξ and the estimates of the disaggregate time series ŷ1t do

not differ from one iteration to another by more than a specified tolerance (10−5).
The estimated number of factors is K = 6: this can be considered as a conservative estimate. The plot of

the Bai and Ng (2002) information criteria, presented in the first panel of figure 1, reveals that the ICp1(k)
suggests the choice of 6 common factors, whereas ICp2(k) has its minimum at K = 3. The share of the

variance explained by the first three principal components is 34.13%, whereas that explained by the first six

is 45.18%.

The estimation of the factor model was carried out using both the EM algorithm and PCA, as far as the

estimation of the parameter vector Ξ is concerned. Less than 200 iterations are required for convergence

in both cases. The right panel of figure 1 displays the value of the likelihood (14) versus the iteration

number for the two methods. The estimation results are very similar, both for Ξ and the disaggregate series;

however, the estimated factors conditional on the PCA parameter estimates are slightly smoother than those
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Figure 1: Estimation of the number of common factors: Bai and Ng Information Criteria against the number

of factors (left panel). Convergence of the EM and PCA estimation methods (right panel).
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Figure 2: Point and 95% interval estimates of the common factors.

obtained from the EM method. As a consequence, the disaggregate series Ŷ1t have a smaller variation at

the high frequencies. Since ceteris paribus we would prefer smoother estimates of monthly GDP and its

components, the presentation of the results will henceforth concentrate on the PCA method. It should be

recalled that PCA is used only for estimating the parameters in Ξ; the factors are estimated along with the

monthly GDP and its components according to the second step of our procedure (i.e. incorporating the

temporal and cross-sectional aggregation constraints).

Figure 2 displays the point estimates of the six factors, f̃t|n, and the approximate 95% interval estimates,

based on the assumption of normality. As the plot illustrates, the dynamic of the estimated factors is domi-

nated by high frequency variation, resulting in a negative autocorrelation; also, the third factor captures the

main economic shocks that affected the construction sectors. However, the factors capture also the dynamics

of the euro area business cycle: in particular, this information is carried by the 2nd, 4th and 5th factors, as

can be seen from figure 3, which shows the Baxter and King (1999) cyclical component in the estimated

factors.

Figure 4 is a biplot of the estimated factor analysis (see Gower and Hand, 1996). Letting Θ̂ = UMV ′

denote the singular value decomposition of the loadings matrix, each individual series is represented by a

point in the plot with coordinates provided by the first two columns of UM, whereas the factors are rep-

resented by lines from the origin, with coordinates given by the first two columns of V . The length of the

line drawn from the origin is an approximation of the variance of the columns of the loadings associated
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Figure 3: Baxter and King cyclical components of the factors.
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Figure 4: Biplot of the factor loadings.

to a particular factor; the cosine of the angle formed by any two lines is an approximation of the corre-

lation between two columns of Θ̂. Series that load on the same factors will be represented by two close

points; the labels ”NA”, ”I”, ”C”, ”R”, ”F”, ”S” refer, respectively, to the national accounts series, industry,

construction, retail, financial and monetary indicators, business and consumer surveys. A group of series

with the same loadings pattern is hours worked in industry, displayed to the left of the biplot. In general,

series belonging to the same group tend to cluster together. The loading of a particular variable on a specific

factor can be approximated by the orthogonal projection of the point representing the variable on the line

representing the factor. The survey series are mostly related to the second and the third factors, whereas

the financial variables are associated to the 4th and 6th factors. The monthly construction series are mostly

associated to factor 3 (the loading of value added in the construction sector is 1).

A most important side output of our modeling effort is the estimation of monthly GDP and its main com-

ponents. The estimates comply with the temporal aggregation constraints and the cross-sectional identities

for the year 2001, and if the series are expressed at the prices of the previous year. Moreover, they are highly

informative as they incorporate the information that is common to a large set of monthly indicators. Figure 5

displays monthly GDP at market prices, final consumption expenditures and gross capital formation, along

with their monthly and yearly growth rates. It must be stressed that approximate measures of reliability

of the estimates are directly available from the our methodology. The interval estimates, also presented in

figure 5, reveal that the estimation error variance is lower for GDP than for gross capital formation, and that
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Figure 5: Monthly estimates of GDP at market prices, Final Consumption and Gross Capital Formation

(chained 2000 volumes), and monthly and yearly growth. Point and 95% interval estimates.

it is generally low and, as our experience suggests, lower than that obtained from other univariate and small

scale multivariate models (see Proietti, 2007, and Proietti and Moauro, 2006). Finally, figure 6 displays the

estimates of value added for the six branches of the NACE classification, that together make up GDP at

basic prices, and their yearly growth.

9 Conclusive remarks

The paper has proposed an iterative scheme for estimating a large scale factor model with data at differ-

ent frequencies, providing an exact treatment of the temporal and cross-sectional aggregation constraints.

The model is used to nowcast monthly GDP and its decomposition by expenditure type and by the output

approach. The results are relevant not only because the estimated common factors embody the economic

information contained in the national accounts macro variables, but also because the availability of monthly

estimates of the national accounts series can be seen as a useful addition to the available published data.

There are three important points that we did not address in the paper and that we leave to our future

research agenda: the first is to carry out a real time experiment to assess the process of updating the nowcasts

of monthly GDP and its main components as new releases of data become available (see Giannone, Reichlin

and Small, 2006). The second is to incorporate parameter uncertainty in the assessment of the reliability of
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Figure 6: Monthly estimates of valued added for the six branches. Chained 2000 volumes and yearly growth, point and 95% interval

estimates.
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the nowcasts. In facts, the measures are reliability made available by the nonlinear smoothing algorithm that

was proposed in the paper are conditional on the parameters estimates obtained by the last step of the EM

algorithm or principal components. The final issue is that of nowcasting the low-pass component monthly

GDP growth, as in Altissimo et al. (2006), within our model based framework. This could be carried out by

embedding a decomposition of output fluctuations within the factor model, along the lines of Proietti and

Musso (2007).
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A List of the time series employed in the paper

Table 1: Quarterly time series: National accounts aggregates
Table Description Name

namq nace06 k Value added, Agriculture, hunting, forestry and fishing a-b

namq nace06 k Value added, Industry, incl. Energy c-d-e

namq nace06 k Value added, Construction f

namq nace06 k Value added, Trade, transport and communication services g-h-i

namq nace06 k Value added, Financial services and business activities j-k

namq nace06 k Value added, Other services c-d-e

namq gdp k Gross domestic product at market prices b1gm

namq gdp k Final consumption expenditure p3

namq gdp k Domestic demand p3 p5

namq gdp k Household and NPISH final consumption expenditure p31 s14 s15

namq gdp k Final consumption expenditure: general government p3 s13

namq gdp k Gross capital formation p5

namq gdp k Gross fixed capital formation p51

namq gdp k Exports of goods and services p6

namq gdp k Imports of goods and services p7

nama q Total Gross Value Added (at basic prices) b1g

namq gdp k Taxes less subsidies on production and imports d21 m d31
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Table 2: Monthly time series: Industry
Table Description Name

ebt inpr msa Index of Industrial production: Total Industry c d e

ebt inpr msa Index of Industrial production: Manufacturing d

ebt inpr msa Index of Industrial production: Manufacturing ind. working on orders manuf ord

ebt inpr msa Index of Industrial production: Capital goods capital

ebt inpr msa Index of Industrial production: Intermediate goods inter

ebt inpr msa Index of Industrial production: Consumer durables cons dur

ebt inpr msa Index of Industrial production: Consumer non-durables cons nondur

ebt inpr msa Index of Industrial production: Consumer consumer

ebt inpr msa Index of Industrial production: Energy energy

ebt inpr msa Index of Industrial production: Mining and quarrying c

ebt inpr msa Index of Industrial production: Manufacture of food products da

ebt inpr msa Index of Industrial production: Manufacture of textiles db

ebt inpr msa Index of Industrial production: Manufacture of leather dc

ebt inpr msa Index of Industrial production: Manufacture of wood dd

ebt inpr msa Index of Industrial production: Manufacture of pulp, paper, etc. de

ebt inpr msa Index of Industrial production: Manufacture of coke, etc. df

ebt inpr msa Index of Industrial production: Manufacture of chemicals, etc dg

ebt inpr msa Index of Industrial production: Manufacture of rubber and plastic products dh

ebt inpr msa Index of Industrial production: Manufacture of other non-metallic di

ebt inpr msa Index of Industrial production: Manufacture of basic metals etc. dj

ebt inpr msa Index of Industrial production: Manufacture of machinery and equipment n.e.c. dk

ebt inpr msa Index of Industrial production: Manufacture of electrical and optical equipment dl

ebt inpr msa Index of Industrial production: Manufacture of transport equipment dm

ebt inpr msa Index of Industrial production: Manufacturing n.e.c. dn

ebt inpr msa Index of Industrial production: Electricity, gas and water supply e

ebt intv m Industry - Monthly turnover index: Manufacturing d

ebt intv m Industry - Monthly turnover index: Manufacturing ind. working on orders manuf ord

ebt intv m Industry - Monthly turnover index: Capital goods capital

ebt intv m Industry - Monthly turnover index: Intermediate goods inter

ebt intv m Industry - Monthly turnover index: Consumer durables cons dur

ebt intv m Industry - Monthly turnover index: Consumer non-durables cons nondur

ebt intv m Industry - Monthly turnover index: Energy without section Nace E energy not e

ebt inno m Industry - Monthly indices of new orders - total: Manufacturing ind. w. on orders manuf ord

ebt inno m Industry - Monthly indices of new orders - total: Consumer durables cons dur

ebt inno m Industry - Monthly indices of new orders - total: Manufacture of leather etc. dc

ebt inno m Industry - Monthly indices of new orders - total: Manufacture of basic metals etc. dj

ebt inno m Industry - Monthly indices of new orders - total: Manufacture of machinery and eq. n.e.c. dk

ebt inno m Industry - Monthly indices of new orders - total: Manufacture of elec. and optical equipment dl

ebt inlb howk Industry - Volume of work done (hours worked): Total Industry c d e

ebt inlb howk Industry - Volume of work done (hours worked): Manufacturing d

ebt inlb howk Industry - Volume of work done (hours worked): Capital goods capital

ebt inlb howk Industry - Volume of work done (hours worked): Intermediate goods inter

ebt inlb howk Industry - Volume of work done (hours worked): Manufacture of rubber and plastic products dh

ebt inlb howk Industry - Volume of work done (hours worked): Manufacture of machinery and equip. n.e.c. dk

ebt inlb howk Industry - Volume of work done (hours worked): Manufacture of elec. and optical equipment dl

ebt inlb howk Industry - Volume of work done (hours worked): Manufacture of transport equipment dm

ebt inlb wage Industry - Gross wages and salaries: Total Industry c d e

ebt inlb wage Industry - Gross wages and salaries: Capital goods capital

ebt inlb wage Industry - Gross wages and salaries: Intermediate goods inter

ebt inlb wage Industry - Gross wages and salaries: Consumer non-durables cons nondur

ebt inlb wage Industry - Gross wages and salaries: Consumer consumer

ebt inlb wage Industry - Gross wages and salaries: Energy energy

ebt inlb wage Industry - Gross wages and salaries: Mining and quarrying c
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Table 3: Monthly time series: Construction, Retail Trade
Construction

Table Description Name

ebt copr m Construction - Monthly production index (2000=100): Building and civil engineering b4500

ebt copr m Construction - Monthly production index (2000=100): Buildings b4600

ebt copr m Construction - Monthly production index (2000=100): Civil engineering b4700

ebt colb m Construction - Monthly indices of labour input (2000=100): Employment (n. of persons empl.) empl

ebt colb m Construction - Monthly indices of labour input (2000=100): Volume of work done (hours worked) howk

ebt colb m Construction - Monthly indices of labour input (2000=100): Gross wages and salaries wage

ebt cobp m Building permits - monthly data (2000=100) : Residential buildings b4610

Retail Trade

Table Description Name

ebt ts ret Retail Trade. Index of Turnover: Retail trade, exc. motor veh., motorcycles; repair g52

ebt ts ret Retail Trade. Index of Turnover: Retail trade, except of motor vehicles, motorcycles g52 not g527

ebt ts ret Retail Trade. Index of Turnover: Retail sale in non-specialized stores g521

ebt ts ret Retail Trade. Index of Turnover: Retail sale of food beverages or tobacco g5211 g522

ebt ts ret Retail Trade. Index of Turnover: Retail sale in non-specialized stores etc. g5211

ebt ts ret Retail Trade. Index of Turnover: Other retail sale in non-specialized stores g5212

ebt ts ret Retail Trade. Index of Turnover: Retail sale of non food products g5212 g523 to g526

ebt ts ret Retail Trade. Index of Turnover: Retail sale of pharmaceutical, medical goods, cosmetic g523

ebt ts ret Retail Trade. Index of Turnover: Other retail sale of new goods in specialized stores g524

ebt ts ret Retail Trade. Index of Turnover: Retail sale of textiles, clothing, etc. g5241 to g5243

ebt ts ret Retail Trade. Index of Turnover: Retail sale of household equipment g5244 to g5246

ebt ts ret Retail Trade. Index of Turnover: Retail of books, newspapers and other g5247 g5248

ebt ts ret Retail Trade. Index of Turnover: Retail sale via mail order houses g5261

ebt ts ret Retail Trade. Index of Deflated Turnover: Retail trade, exc. motor veh., motorcycles; repair etc. g52

ebt ts ret Retail Trade. Index of Deflated Turnover: Retail trade, except of motor vehicles, motorcycles g52 not g527

ebt ts ret Retail Trade. Index of Deflated Turnover: Retail sale in non-specialized stores g521

ebt ts ret Retail Trade. Index of Deflated Turnover: Retail sale of food beverages or tobacco g5211 g522

ebt ts ret Retail Trade. Index of Deflated Turnover: Retail sale in non-specialized stores etc. g5211

ebt ts ret Retail Trade. Index of Deflated Turnover: Other retail sale in non-specialized stores g5212

ebt ts ret Retail Trade. Index of Deflated Turnover: Retail sale of non food products g5212 g523 to g526

ebt ts ret Retail Trade. Index of Deflated Turnover: Retail sale of pharmaceutical, medical goods, cosmetic g523

ebt ts ret Retail Trade. Index of Deflated Turnover: Other retail sale of new goods in specialized stores g524

ebt ts ret Retail Trade. Index of Deflated Turnover: Retail sale of textiles, clothing, etc. g5241 to g5243

ebt ts ret Retail Trade. Index of Deflated Turnover: Retail sale of household equipment g5244 to g5246

ebt ts ret Retail Trade. Index of Deflated Turnover: Retail of books, newspapers and other g5247 g5248

ebt ts ret Retail Trade. Index of Deflated Turnover: Retail sale via mail order houses g5261

ebt ts ret Retail Trade. Employment: Retail trade, exc. motor veh., motorcycles; repair etc. g52

ebt ts careg Car registrations (first registrations of private and commercial cars): Sale of motor vehicles ea12
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Table 4: Monthly time series: Monetary and Financial indicators, Labour market, External Trade
Monetary and Financial indicators

Table Description Name

mfrt m Exchange rates against the ECU/euro (average): Pound Sterling mf-exa-rt gbp

mfrt m Exchange rates against the ECU/euro (average): Yen (Japan) mf-exa-rt jpy

mfrt m Exchange rates against the ECU/euro (average): United States Dollar mf-exa-rt usd

mfrt m Nominal effective exchange rates (average): Pound Sterling mf-exa-i gbp

mfrt m Nominal effective exchange rates (average): Yen (Japan) mf-exa-i jpy

mfrt m Nominal effective exchange rates (average): United States Dollar mf-exa-i usd

mfma m Money supply M1 - SA mf-m1-sa

mfma m Money supply M2 - SA mf-m2-sa

mfma m Money supply M3 - SA mf-m3-sa

mffa m Share price indices (average): Euro area (EA11-2000, EA12-2006, EA13) mf-sp-i

irt st m Money market interest rates - Monthly data: Day-to-day rates mat on

irt st m Money market interest rates - Monthly data: 3-month rates mat m03

mfir m Interest rates - monthly data: Long term government bond yields - Maastricht definition (average) mf-ltgby-rt

Labour market

Table Description Name

une rt m Harmonized unemployment rates, -/+ 25 years, monthly data: Total total

une rt m Harmonized unemployment rates, -/+ 25 years, monthly data: Less than 25 years y0 24

une rt m Harmonized unemployment rates, -/+ 25 years, monthly data: 25 years and over y25 max

une rt m Harmonized unemployment rates, -/+ 25 years, monthly data: Total Males total

une rt m Harmonized unemployment rates, -/+ 25 years, monthly data: Total Females total

External Trade

Table Description Name

etea12 m External trade - Total Imports - Trade value mio-eur-sa

etea12 m External trade - Total Imports - Volume index (2000=100) ivol-sa

etea12 m External trade - Total Exports - Trade value mio-eur-sa

etea12 m External trade - Total Exports - Volume index (2000=100) ivol-sa
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Table 5: Monthly time series: EA 13 Business and consumer surveys (Source: DG ECFIN)
Table Description Name

bsin m Industry - monthly data: Production trend observed in recent months bs-ipt

bsin m Industry - monthly data: Employment expectations for the months ahead bs-ieme

bsin m Industry - monthly data: Assessment of order-book levels bs-iob

bsin m Industry - monthly data: Production expectations for the months ahead bs-ipe

bsin m Industry - monthly data: Industrial confidence indicator bs-ici

bsbu m Construction - monthly data: Trend of activity compared with preceding months bs-cta-bal

bsbu m Construction - monthly data: Assessment of order books bs-cob-bal

bsbu m Construction - monthly data: Employment expectations for the months ahead bs-ceme-bal

bsbu m Construction - monthly data: Price expectations for the months ahead bs-cpe-bal

bsbu m Construction - monthly data: Construction confidence indicator bs-cci-bal

bsrt m Retail sale - monthly data: Present business situation bs-rpbs

bsrt m Retail sale - monthly data: Employment expectations for the months ahead bs-ieme

bsrt m Retail sale - monthly data: Assessment of stocks bs-ras

bsrt m Retail sale - monthly data: Expected business situation bs-rebs

bsrt m Retail sale - monthly data: Employment bs-rem

bsrt m Retail sale - monthly data: Retail confidence indicator bs-rci

bsco m Consumers - monthly data: General economic situation over the last 12 months bs-ges-ly

bsco m Consumers - monthly data: Price trends over the next 12 months bs-pt-ny

bsco m Consumers - monthly data: Unemployment expectations over the next 12 months bs-ue-ny

bsco m Consumers - monthly data: Savings at present bs-sv-pr

bsco m Consumers - monthly data: Statement on financial situation of household bs-sfsh

bsco m Consumers - monthly data: Consumer confidence indicator bs-csmci
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