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Anchoring Heuristic in Option Pricing 

 

A call option is widely considered to be a stock surrogate by market professionals2as their payoffs 

are closely related by construction, and move in sync perhaps more than any other pair of assets in 

the market. This built-in similarity between the payoffs of the two instruments has given rise to a 

popular trading strategy known as the “stock replacement strategy”, which includes replacing the 

underlying stock in a portfolio with a corresponding call option.3 

 Where would you start if you need to form a risk judgment about a given call option? One 

expects the risk of a call option to be related to the risk of the underlying stock. In fact, a call option 

creates a leveraged position in the underlying stock. Hence, a natural starting point is the risk of the 

underlying stock, which needs to be scaled-up. Defining 𝜎(𝑅𝑠) as the standard deviation of stock 

returns, and 𝜎(𝑅𝑐) as the standard deviation of call returns, one expects the following to hold: 𝜎(𝑅𝑐) = 𝜎(𝑅𝑠)(1 + 𝐴)                                                                                                                (0.1)   
where  (1 + 𝐴) is the scaling-up factor. 

 The Black-Scholes model implies a particular value for 𝐴, which is equal to Ω − 1 where Ω is 

the call price elasticity with respect to the underlying stock price. Any other value of 𝐴 creates a risk-

less arbitrage opportunity under Black-Scholes assumptions. For example, if 𝐴 < Ω − 1, the call 

option is overpriced in comparison with the cost of replicating portfolio if the risk premium on the 

underlying stock is positive. One may buy the replicating portfolio and write the call option to make 

riskless arbitrage profits. Hence, the only plausible value is the correct one.  

                                                           
2 A few examples of experienced professionals stating this are: 

http://web.streetauthority.com/templates/terms/optionsequity.asp 

http://www.etf.com/sections/features-and-news/nations-1 

http://finance.yahoo.com/news/stock-replacement-strategy-reduce-risk-142949569.html 

http://www.optionsuniversity.com/blog/options-universitys-options-101-part-89/ 

 
3 Jim Cramer, the host of popular US finance television program “Mad Money” (CNBC) has contributed to making 

this strategy widely known among general public.  

http://web.streetauthority.com/templates/terms/optionsequity.asp
http://www.etf.com/sections/features-and-news/nations-1
http://finance.yahoo.com/news/stock-replacement-strategy-reduce-risk-142949569.html
http://www.optionsuniversity.com/blog/options-universitys-options-101-part-89/
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If one allows for a little ‘sand in the gears’ in the form of transaction costs while keeping the 

other assumptions of the Black-Scholes model the same, a whole range of values of 𝐴 different from 

the Black-Scholes implied value become plausible. That is, it becomes possible to support incorrect 

beliefs in equilibrium because such beliefs cannot be arbitraged away. 

With transaction costs, the belief about 𝐴 can be on either side of the correct value in 

equilibrium; however, there are strong cognitive and psychological reasons to expect that it falls 

consistently on one side.  Due to their strongly similar payoffs, underlying stock volatility is a natural 

starting point, which is adjusted upwards to form call volatility judgments. Beginning with the early 

experiments in Tversky and Kahneman (1974), over 40 years of research has demonstrated that 

starting from (often self-generated) initial values, adjustments tend to be insufficient. This is known 

as the anchoring bias (see Furnham and Boo (2011) for a literature review). From self-generated 

anchors, adjustments are insufficient because people tend to stop adjusting once a plausible value is 

reached (see Epley and Gilovich (2006) (2001) and references therein).  Hence, assessments remain 

biased towards the starting value known as the anchor. 

 A few examples illustrate the anchoring and adjustment approach quite well. Studies have 

shown that when asked, most respondents do not know the year George Washington became the 

first president of America. However, they know that it had to be after 1776 as the declaration of 

independence was signed in 1776. So, while guessing their answer, they tend to start with 1776 to 

which they add a few years and then stop once a plausible value has been reached.  Such a cognitive 

process implies that their answers remain biased towards the self-generated anchor as people 

typically stop adjusting at the edge of plausible values on the side of the anchor.  

Another example of this thinking process is provided by the freezing point of Vodka. Most 

respondents know that Vodka freezes at a temperature below the freezing point of water, so they 

start from 32 degree Fahrenheit (0 Celsius) and adjust downwards. However, such adjustments are 

typically insufficient (Epley and Gilovich (2006)).   

What is the fair price of a 3-bedroom house in the Devon neighborhood of Chicago? If you 

know the sale price of a 4-bedroom house in the same neighborhood but in a slightly better location, 

then you would likely start with that price and adjust downwards for size, location, and other 

differences. The above examples illustrate that the defining feature of a self-generated anchor is its 

strong relevance to the problem at hand. Epley and Gilovich (2006) and others show that in tasks 
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that do not involve such self-generated anchors, people tend to choose around the middle value 

within the set of values deemed plausible by them. Self-generated anchors change this as the process 

of adjustment stops once a value deemed plausible has been reached. Hence, location of the anchor 

relative to the set of plausible values becomes an important factor. 

The presence of proportional transaction costs opens up an interval of plausible values for 𝐴 

with the correct value near the middle. So, without anchoring, one may expect the perceived value to 

equal the correct value (𝐴𝐵𝑆)  on average. That is, 𝐸[𝐴] ≈ 𝐴𝐵𝑆.  However, with stock volatility as a 

self-generated starting point (anchor) due to the similarity between the two instruments, one expects 

the perceived value to fall firmly on the side of the anchor near the edge of plausible values. It 

means that the values of 𝐴 between 0 and the correct value (𝐴𝐵𝑆) are of particular interest. In other 

words, anchoring implies a value of 𝐴  such that 0 ≤ 𝐴 < 𝐴𝐵𝑆.  

In this article, I investigate the implications of such an anchoring bias for option pricing. 

Surprisingly, I find that anchoring provides a plausible unified explanation for key option pricing 

puzzles. In addition, I test two predictions of the anchoring model regarding leverage adjusted 

option returns and find strong empirical support with nearly 26 years of options data. The puzzles 

addressed are: 

1) The existence of the implied volatility skew in index options, and average implied volatility of at-

the-money options being larger than realized volatility. (Rubinstein (1994)) 

2) Superior historical performance of covered-call writing. (Whaley (2002)) 

3) Worse-than-expected performance of zero-beta straddles. (Coval and Shumway (2001)) 

4) Average call returns appear low given their systematic risk. (Coval and Shumway (2001)) 

5) Average put returns are far more negative than expected. (Bondarenko (2014)) 

6) Leverage adjusted call and put index returns exhibit patterns inconsistent with the model. 

(Constantinides, Jackwerth, and Savov (2013)) 
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As the volatility of call returns and the underlying stock returns are related in accordance 

with equation (0.1), their returns must also be related as follows:4 𝐸[𝑅𝑐] = 𝐸[𝑅𝑠] + 𝐴 ∙ (𝐸[𝑅𝑠 − 𝑅𝐹])                                                                                            (0.2) 

where 𝑅𝐹 is the risk-free return. 

It is possible to use equation (0.2) to test for the anchoring bias in a laboratory experiment. 

By creating the ideal conditions required for the Black-Scholes (binomial version) model to hold in 

the laboratory, one can see whether the Black-Scholes prediction holds or not. As the anchoring bias 

implies a lower value of 𝐴, the presence of anchoring would show up as insufficient addition to the 

stock return to arrive at call return. Furthermore, if the underlying cause of anchoring is the 

similarity between the payoffs, reducing the similarity (for example, by increasing the strike price) 

should weaken the pull of the anchor, thereby increasing the distance between the stock return and 

the call return. 

Siddiqi (2012) (by building on the earlier work in Siddiqi (2011) and Rockenbach (2004)) 

tests the above predictions in a series of laboratory experiments and finds that indeed call options 

appear to be influenced by such analogical anchoring.  The key findings in Siddiqi (2012) are: 

1) The call average return is so much less than the Black Scholes prediction that the hypothesis that 

a call option is priced by equating its return to the return available on the underlying stock 

outperforms the Black-Scholes hypothesis by a large margin. Note, that there is not even a single 

observation in Siddiqi (2012) where a participant has priced a call option by equating its return to the 

return from the underlying stock. The call expected return is almost always larger than the stock 

expected return; however, it always remains far below the Black-Scholes prediction. That is, it does 

not deviate from the stock return by the required amount suggesting that analogical anchoring might 

be taking place.  

2) If the similarity between the payoffs of call and its underlying stock is reduced, let’s say by 

increasing the strike price, then the statistical performance of the hypothesis, 𝐸[𝑅𝑐] = 𝐸[𝑅𝑠], 
weakens. That is, with weakly similar payoffs, participant price a call option in such a way that a large 

distance is allowed between  𝐸[𝑅𝑐] and 𝐸[𝑅𝑠]. With anti-similar payoffs (such that of a put option 

                                                           
4 The derivation is discussed in section 2. 
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and the underlying stock), the hypothesis, 𝐸[𝑅𝑜𝑝𝑡𝑖𝑜𝑛] = 𝐸[𝑅𝑠] performs poorly. This suggests that 

analogical anchoring gets weaker as the analogy between the corresponding call and stock payoffs 

gets weaker, with the effect disappearing when the payoff similarity disappears. 

 The experimental evidence in Siddiqi (2012) suggests that anchoring bias directly influences 

the price of a call option, and much more strongly so at lower strikes due to the call and stock 

payoffs being closer to each other. There is no evidence of anchoring directly influencing the price 

of a put option as put and stock payoffs are anti-similar. Hence, the perception of similarity between 

a call option and its underlying stock appears to be the driving mechanism here. Note, that similar 

types of situational similarities have been used in the psychology and cognitive science literature to 

test for the influence of self-generated anchors on judgment (see Epley and Gilovich (2006) (2001) 

and references therein).  

 Given the above experimental evidence and widespread market belief that a call option is an 

equity surrogate, the next step is to take the anchoring idea to its logical conclusion by building an 

option pricing model and then testing its empirical predictions with field data. This is the 

contribution of this article. Surprisingly, I find that anchoring adjusted option pricing provides a 

unified explanation for 6 option pricing puzzles mentioned earlier. Furthermore, I test the 

predictions of the anchoring model and find strong support with nearly 26 years of options data. 

 Anchoring and adjustment bias, as modeled here, is a new deviation from the Black-Scholes 

framework different from the typical deviations that have been considered in the literature so far. 

There are several fruitful directions of research that have followed from relaxing the Black-Scholes 

assumptions; however, no existing reduced form option pricing model convincingly explains the 

puzzles mentioned earlier (see the discussion in Bates (2008)). The two most frequently questioned 

assumptions in the Black-Scholes model are: 1) The use of geometric Brownian motion as a 

description for the underlying stock price dynamics. 2) Assuming that there are no transaction costs. 

Dropping the assumption of geometric Brownian motion to processes incorporating 

stochastic jumps in stock prices, stochastic volatility, and jumps in volatility has been the most active 

area of research. Initially, it was assumed that the diffusive risk premium is the only priced risk factor 

(Merton (1976), and Hull and White (1987)), however, more recent models now include risk factors 

due to stochastic volatility, stochastic jumps in stock prices, and in some cases also stochastic jumps 

in volatility. Based on the assumption that all risks are correctly priced, this approach empirically 
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searches for various risk factors that could potentially matter (see Constantinides, Jackwerth, and 

Savov (2013), and Broadie, Chernov, & Johannes (2009) among others). These models typically 

attribute the divergences between objective and risk neutral probability measures to the free “risk 

premium” parameters within an affine model.5 Bates (2008) reviews the empirical evidence on stock 

index option pricing and concludes that options do not price risks in a way which is consistent with 

existing option pricing models. Many of these models are also critically discussed in Hull (2011), 

Jackwerth (2004), McDonald (2006), and Singleton (2006). 

Another area of research deviates from the Black-Scholes no-arbitrage approach by allowing 

for transaction costs. Leland (1985) considers a class of imperfectly replicating strategies in the 

presence of proportional transaction costs and derives bounds in which an option price must lie 

when there are proportional transaction costs. Hodges and Neuberger (1989) and Davis et al (1993) 

explicitly derive and numerically compute the bounds under the assumption that utility is 

exponential with a given risk aversion coefficient. Their bounds are comparable to Leland bounds. 

Constantinides and Perrakis (2002) show that expected utility maximization in the presence of 

proportional transaction costs implies that European option prices must lie within certain bounds. 

Constantinides and Perrakis bounds are generally tighter than the Leland bounds, and are considered 

the tightest bounds in the literature. I show that the anchoring price always lies within these bounds. 

Yet another line of research provides evidence that options might be mispriced. Jackwerth 

(2000) shows that the pricing kernel recovered from option prices is not everywhere decreasing as 

predicted by theory, and concludes that option mispricing seems the most likely explanation. Others 

researchers (see Rosenberg and Engle (2002) among others) also find that empirical pricing kernel is 

oddly shaped. Constantinides, Jackwerth, and Perrakis (2009) find that S&P 500 index options are 

possibly overpriced relative to the underlying index quite frequently. Earlier, Shefrin and Statman 

(1994) put forward a structured behavioral framework for capital asset pricing theory that allows for 

systematic treatment of various biases.  

Hirshleifer (2001) considers anchoring to be an “important part of psychology based dynamic asset 

pricing theory in its infancy” (p. 1535). Shiller (1999) argues that anchoring appears to be an important 

concept for financial markets. This argument has been supported quite strongly by recent empirical 

                                                           
5 Bates (2003) writes, “To blithely attribute divergences between objective and risk-neutral probability measures to  

the free “risk premium” parameters in an affine model is to abdicate one’s responsibilities as a financial 
economist” (page 400).  
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research on financial markets: 1) Anchoring has been found to matter in the bank loan market as the 

current spread paid by a firm seems to be anchored to the credit spread the firm had paid earlier (see 

Douglas, Engelberg, Parsons, and Van Wesep (2015)). 2) Baker, Pan, and Wurgler (2012) provide 

evidence that peak prices of target firms become anchors in mergers and acquisitions. 3) The role of 

anchoring bias has been found to be important in equity markets in how analysts forecast firms’ 

earnings (see Cen, Hillary, and Wei (2013)). 4) Campbell and Sharpe (2009) find that expert 

consensus forecasts of monthly economic releases are anchored towards the value of previous 

months’ releases. 5) Johnson and Schnytzer (2009) show that investors in a particular financial 

market (horse-race betting) are prone to the anchoring bias. 

Given the key role that anchoring appears to play in financial decision making, it seems only 

natural that anchoring matters for option pricing too, especially given the fact that an option derives 

its existence from the underlying stock. After all, a call option is equivalent to a leveraged position in 

the underlying stock. Hence, a clear starting point exists. In fact, given the similarity of their payoffs, 

one can argue that it would be rather odd if the return on the underlying stock is ignored while 

forming return expectations about a call option. The Black-Scholes model by-passed the stock 

return only by assuming costless perfect replication. Clearly, transaction costs are a reality, and they 

create sufficient room for the anchoring and adjustment heuristic. This article shows that with 

anchoring, the resulting option pricing formula is almost as simple as the Black-Scholes formula. It 

seems that anchoring provides the minimum deviation from the Black-Scholes framework that is 

needed to capture the key empirical properties mentioned earlier. To my knowledge, the anchoring 

approach developed here is the simplest reduced-form framework that captures the key empirical 

features of option returns and prices. Furthermore, I show that the anchoring price always lies in a 

tight region between the Black-Scholes price and the upper bound implied by risk-averse expected 

utility maximization (within Constantinides and Perrakis (2002) bounds). Hence, transaction costs 

create sufficient room for anchoring and adjustment heuristic to matter. 

There is strong evidence from cognitive science and psychology literature that similarity 

judgments are a key part of our thinking process. When faced with a new situation, people 

instinctively search their memories for something similar they have seen before, and mentally co-

categorize the new situation with the similar situations encountered earlier to draw relevant lessons. 

This way of thinking, termed analogy making, is considered the core of cognition and the fuel and 

fire of thinking by prominent cognitive scientists and psychologists (see Hofstadter and Sander 
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(2013)). Hofstadter and Sander (2013) write, “[…] at every moment of our lives, our concepts are selectively 

triggered by analogies that our brain makes without letup, in an effort to make sense of the new and unknown in terms 

of the old and known.” (Hofstadter and Sander (2013), Prologue page1). 

Mullainathan et al (2008) argue that advertisers are well-aware of this propensity of similarity 

based judgments and routinely attempt to implant favorable anchors in our brains. That is why we 

get campaigns like, “we put silk in our shampoo”. Obviously, putting silk in the shampoo does not 

do anything for hair; however, it does implant a favorable anchor in our brains. Imagine walking 

down the aisle of a supermarket, and remembering the “silk ad” upon seeing the shampoo. 

Mullainathan et al (2008) argue that, as silky is (presumably) a good quality in hair, the perception of 

the shampoo improves due to our propensity for similarity based judgments. If superficial anchors 

like this influence decision making by tapping into our innate ability of making judgments based on 

similarity, then genuine anchors (such as stock volatility for forming judgments about call volatility) 

should matter even more. 

 This article is organized as follows. Section 1 illustrates the anchoring and adjustment 

approach with a numerical example. Section 2 derives the option pricing formulas when there is 

anchoring. Section 3 shows that anchoring provides an explanation for the implied volatility skew. 

Section 4 shows that the anchoring model is consistent with the recent findings about leverage 

adjusted returns. Section 5 tests two predictions of the anchoring model with nearly 26 years of data 

and finds strong support. Section 6 shows that the anchoring model explains the superior 

performance of covered call writing as well as the inferior performance of zero-beta straddles. 

Section 7 concludes. 

 

1. Anchoring Heuristic in Option Pricing: A Numerical Example 

Imagine that there are 4 types of assets in the market with payoffs shown in Table 1. The assets are a 

risk-free bond, a stock, a call option on the stock with a strike of 100, and a put option on the stock 

also with a strike of 100. There are two states of nature labeled Green and Blue that have equal 

probability of occurrence. The risk-free asset pays 100 in each state, the stock price is 200 in the 

Green state, and 50 in the Blue state. It follows that the Green and Blue state payoffs from the call 

option are 100 and 0 respectively. The corresponding put option payoffs are 0 and 50 respectively. 
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Table 1 

 Bond Stock Call Put 

Green State 100 200 100 0 

Blue State 100 50 0 50 

 

What are the equilibrium prices of these assets? Imagine that the market is described by a 

representative agent who faces the following decision problem: max 𝑢(𝐶0) + 𝛽𝐸[𝑢(𝐶1)] 
subject to  𝐶0 = 𝑒0 − 𝑆 ∙ 𝑛𝑠 − 𝐶 ∙ 𝑛𝑐 − 𝑃 ∙ 𝑛𝑝 − 𝑃𝐹 ∙ 𝑛𝐹 

      𝐶̃1 = 𝑒1 + 𝑋̃𝑠 ∙ 𝑛𝑠 + 𝑋̃𝑐 ∙ 𝑛𝑐 + 𝑋̃𝑝 ∙ 𝑛𝑝 + 𝑋𝐹. 𝑛𝐹 

where 𝐶0 and 𝐶1 are current and next period consumption,  𝑒0 and 𝑒1are endowments, 𝑆, 𝐶, 𝑃, 𝑎𝑛𝑑 𝑃𝐹 denote the prices of stock, call option, put option, and the risk-free asset, and 𝑋̃𝑠, 𝑋̃𝑐, 𝑋̃𝑝 and 𝑋𝐹 are their corresponding payoffs. The number of units of each asset type is 

denoted by 𝑛𝑠, 𝑛𝑐, 𝑛𝑝, and 𝑛𝐹 with the first letter of the asset type in the subscript (letter 𝐹 is used 

for the risk-free asset).  

 The first order conditions are: 1 = 𝐸[𝑆𝐷𝐹] ∙ 𝐸[𝑅𝑠] + 𝜌𝑠 ∙ 𝜎[𝑆𝐷𝐹] ∙ 𝜎(𝑅𝑠) 1 = 𝐸[𝑆𝐷𝐹] ∙ 𝐸[𝑅𝑐] + 𝜌𝑐 ∙ 𝜎[𝑆𝐷𝐹] ∙ 𝜎(𝑅𝑐) 1 = 𝐸[𝑆𝐷𝐹] ∙ 𝐸[𝑅𝑝] + 𝜌𝑝 ∙ 𝜎[𝑆𝐷𝐹] ∙ 𝜎(𝑅𝑝) 1 = 𝐸[𝑆𝐷𝐹] ∙ 𝑅𝐹 

 

where 𝐸[∙] and 𝜎[∙] are the expectation and standard deviation operators respectively, SDF is the 

stochastic discount factor or the inter-temporal marginal rate of substitution of the representative 

investor, and 𝜌 denotes the correlation of the asset with the SDF.  
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One can simplify the first order conditions further by realizing that 𝜌𝑐 = 𝜌𝑠, 𝜌𝑝 = −𝜌𝑠, and 𝜎(𝑋𝑠) = 𝜎(𝑋𝑐) + 𝜎(𝑋𝑝). The last condition captures the fact that stock payoff volatility must 

either show up in call payoff volatility or the corresponding put payoff volatility by construction. 

One can see this in Table 1 as well where the stock payoff volatility is 75, the call payoff volatility is 

50, and the put payoff volatility is 25. It follows that 𝜎(𝑅𝑝) = 𝑆𝑃 ∙ 𝜎(𝑅𝑠) − 𝐶𝑝 ∙ 𝜎(𝑅𝑐). It is easy to 

see that with payoffs in Table 1, 𝜌𝑠 = −1.  The first order conditions can be written as: 

1 = 𝐸[𝑆𝐷𝐹] ∙ 125𝑆 − 𝜎[𝑆𝐷𝐹] ∙ 75𝑆  

1 = 𝐸[𝑆𝐷𝐹] ∙ 50𝐶 − 𝜎[𝑆𝐷𝐹] ∙ 50𝐶  

1 = 𝐸[𝑆𝐷𝐹] ∙ 25𝑃 + 𝜎[𝑆𝐷𝐹] ∙ {𝑆𝑃 ∙ 75𝑆 − 𝐶𝑃 ∙ 50𝐶 } 

1 = 𝐸[𝑆𝐷𝐹] ∙ 100𝑃𝐹  

Assume that the utility function is 𝑙𝑛𝐶, 𝛽 = 1, 𝑒0 = 𝑒1 = 500, and the representative agent must 

hold one unit of each asset to clear the market. The above first order conditions can be used to infer 

the following equilibrium prices: 𝑃𝐹 = 46.51163, 𝑆 = 53.77907, 𝐶 = 20.34884, 𝑎𝑛𝑑 𝑃 =13.0814. It is easy to verify that both the put-call parity as well as the binomial model is satisfied. 

Replicating the call option requires a long position in 2/3 of the stock and a short position in 1/3 

of the risk-free bond, so the replication cost is 20.34884, which is equal to the price of the call 

option. Replicating the put option requires a long position in 2/3 of the risk-free asset and a short 

position in 1/3 of the stock. The replication cost is 13.0814, which is equal to the price of the put 

option.  

 One can also verify that equations (0.1) and (0.2) hold with the correct value of 𝐴. The 

correct value of 𝐴 = Ω − 1. Here, Ω = 𝑆𝐶 ∙ 𝑥 where 𝑥 is the number of shares of the stock in the 

replicating portfolio that mimics the call option. So, in this case, Ω = 1.761905. As 𝜎(𝑅𝑠) is 

1.394595 and 𝜎(𝑅𝑐) is 2.457143, clearly 𝜎(𝑅𝑐) = 𝜎(𝑅𝑠)(1 + 𝐴) with the correct value of 𝐴. 

Similarly, it is straightforward to verify that (0.2) also holds with 𝐴 = 0.761905.  
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 Next, I introduce the anchoring bias in the picture. The representative investor uses the 

volatility of the underlying stock as a starting point, which is scaled-up to form the volatility 

judgment about the call option with the scaling-up factor allowed to be different from the correct 

value. The first order conditions can be written as: 

1 = 𝐸[𝑆𝐷𝐹] ∙ 125𝑆 − 𝜎[𝑆𝐷𝐹] ∙ 75𝑆  

1 = 𝐸[𝑆𝐷𝐹] ∙ 50𝐶 − 𝜎[𝑆𝐷𝐹] ∙ 75𝑆 ∙ (1 + 𝐴) 

1 = 𝐸[𝑆𝐷𝐹] ∙ 25𝑃 + 𝜎[𝑆𝐷𝐹] ∙ {𝑆𝑃 ∙ 75𝑆 − 𝐶𝑃 ∙ 75𝑆 ∙ (1 + 𝐴)} 

1 = 𝐸[𝑆𝐷𝐹] ∙ 100𝑃𝐹  

The only thing different now is the risk perception of the call option. Instead of 
50𝐶 , the volatility is 

estimated as 
75𝑆 ∙ (1 + 𝐴). If 𝐴 takes the correct value, we are back to the prices calculated earlier. 

However, if there is anchoring bias, the results are different. Table 2 shows the equilibrium prices 

for 𝐴 = 0 and 𝐴 = 0.5 as well as for 𝐴 = 0.761905, which is the correct value. Put-call parity 

continues to hold; however, both the call option and the put option are overpriced compared to 

what it costs to replicate them. With 𝐴 = 0, both options are overpriced by an amount equal to 

1.15741. A riskless arbitrage opportunity is created unless there is a little ‘sand in the gears’ in the 

form of transaction costs. Allowing for proportional transaction costs of 𝜃 in all 4 asset types (buyer 

pays (1 + 𝜃) times price and seller receives (1 − 𝜃) times price), the value that precludes arbitrage 

in both options is around 1.8%. With 𝐴 = 0.5, the options are overpriced by 0.38466 and the value 

of 𝜃 that precludes arbitrage in both options is now much lower at 0.6%. The point is that 

transaction costs are a reality and even if rest of the assumptions in the Black-Scholes (binomial) 

model hold, the presence of transaction costs alone can support incorrect beliefs in equilibrium 

arising due to the anchoring bias. 
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Table 2 

 A=0 A=0.5 A=0.761907 

(Correct value) 

S 53.53009 53.69633 53.77907 𝑃𝐹 46.26629 46.44007 46.51163 

C 21.41203 20.70219 20.34884 

P 14.17824 13.44593 13.0814 

Put-Call Parity Holds Holds Holds 

Amount by which Call and Put are 

Overpriced 

1.15741 0.38466 0 

Perceived 𝜎(𝑅𝑐): 𝜎(𝑅𝑐) = 𝜎(𝑅𝑠)(1 + 𝐴) 

1.401081 2.095115 2.457143 

Actual 𝜎(𝑅𝑐): 𝜎(𝑅𝑐) = 𝜎(𝑋𝑐)/𝐶 

2.335136 2.415203 2.457143 

Perceived 𝐸[𝑅𝑐]: 𝐸[𝑅𝑐] = 𝐸[𝑅𝑠] + 𝐴 ∙ (𝐸[𝑅𝑠 − 𝑅𝐹]) 

2.335136 2.415203 2.457143 

Actual 𝐸[𝑅𝑐]: 𝐸(𝑅𝑐) = 𝐸(𝑋𝑐)/𝐶 

2.335136 2.415203 2.457143 

 

 Note that I have only considered one trading period. Increasing the frequency of trading 

increases the total transaction cost of replicating an option. It is well-known that in the continuous 

limit, the total transaction costs of perfect replication are unbounded.  Other bounds have been 

proposed in the literature such as the Leland bounds (Leland (1985)), and the Constantinides and 

Perrakis bounds (Constantinides and Perrakis (2002)) by assuming imperfect replication and risk-

averse expected utility maximization. I show, in section 2, that the anchoring price always lies within 

these proposed bounds, so it is difficult to see how arbitrage can work to mitigate the anchoring 

bias. 

 Table 2 shows that with 𝐴 = 0.5, the perceived risk of the call option is 𝜎̂(𝑅𝑐) = 2.095115 (𝜎(𝑅𝑠)(1 + 𝐴)), whereas the realized 𝜎(𝑅𝑐) is 2.415203. With 𝐴 = 0, the perceived and actual 

values are 1.401081 and 2.335136. The anchoring bias causes the risk of the call option to be 
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underestimated. Due to the relationship between the volatilities of call, put, and the underlying 

stock, the put volatility is overestimated.  

It is straightforward to verify that equation (0.2) continues to hold with the anchoring bias as 

well. Assuming that an SDF exists, one can use equation (0.2) directly to price the call option. If 𝐴 =0, the expected return of the call option (from (0.2)) is 2.335136. Dividing the expected payoff with 

the expected return results in 21.41203 which is the price of the call option calculated earlier. 

Similarly, one can verify that the same process yields the correct call price for 𝐴 = 0.5 and 𝐴 =0.761905. In other words, once 𝐴 is specified, the call expected return can be calculated directly 

from (0.2). The expected return can then be used to calculate the correct price of the call option. 

The corresponding price of the put option follows from put-call parity. 

 

2. Anchoring Heuristic in Option Pricing 

It is straightforward to realize that the anchoring approach does not depend on a particular 

distribution of the underlying stock returns. No matter which distribution one chooses to work with, 

the idea remains equally applicable. The Black-Scholes model assumes geometric Brownian motion 

for the underlying stock price dynamics. In this article, since the anchoring approach is illustrated in 

comparison with the Black-Scholes model, therefore I choose to build the anchoring model with the 

same set of assumptions. That is, I use the geometric Brownian motion in the continuous limit. 

 

2.1 The anchoring adjusted model 

Consider an exchange economy with a representative agent who seeks to maximize utility from 

consumption over two points, 𝑡 and 𝑡 + 1. At time 𝑡, the agent chooses to split his endowment 

between investments across 𝑁 assets and current consumption. At time 𝑡 + 1, he consumes all his 

wealth. 

 The decision problem facing the representative agent is: max 𝑢(𝐶𝑡) + 𝛽𝐸[𝑢(𝐶𝑡+1)] 
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subject to  𝐶𝑡 = 𝑒𝑡 − ∑ 𝑃𝑖𝑁𝑖=1 ∙ 𝑛𝑖 
       𝐶̃𝑡+1 = 𝑒𝑡+1 + ∑ 𝑋̃𝑖 ∙ 𝑛𝑖𝑁𝑖=1  

where 𝐶𝑡 and 𝐶𝑡+1 are current and next period consumption, 𝑒𝑡 and 𝑒𝑡+1 are endowments, 𝑃𝑖 is the 

price of asset 𝑖, 𝑛𝑖 is the number of units of asset 𝑖, and 𝑋̃𝑖 is the associated random payoff at 𝑡 + 1. 

 In equilibrium, every asset must satisfy the following: 1 = 𝐸[𝑆𝐷𝐹] ∙ 𝐸[𝑅𝑖] + 𝜌𝑖 ∙ 𝜎[𝑆𝐷𝐹] ∙ 𝜎[𝑅𝑖] 
where SDF is the stochastic discount factor, 𝜌𝑖 is the correlation of asset i’s returns with the SDF, 

and 𝐸[∙] and 𝜎[∙] are the expectation and standard deviation operators respectively.    

 Among assets, if there is a stock, a call and a put option on that stock with the same strike 

price, and a risk-free asset, then the following must hold in equilibrium: 1 = 𝐸[𝑆𝐷𝐹] ∙ 𝐸[𝑅𝑠] + 𝜌𝑠 ∙ 𝜎[𝑆𝐷𝐹] ∙ 𝜎(𝑅𝑠) 1 = 𝐸[𝑆𝐷𝐹] ∙ 𝐸[𝑅𝑐] + 𝜌𝑐 ∙ 𝜎[𝑆𝐷𝐹] ∙ 𝜎(𝑅𝑐) 1 = 𝐸[𝑆𝐷𝐹] ∙ 𝐸[𝑅𝑝] + 𝜌𝑝 ∙ 𝜎[𝑆𝐷𝐹] ∙ 𝜎(𝑅𝑝) 1 = 𝐸[𝑆𝐷𝐹] ∙ 𝑅𝐹 

The above equations can be simplified further by realizing that 𝜌𝑐 = 𝜌𝑠 , 𝜌𝑝 = −𝜌𝑠 , and 𝜎(𝑅𝑝) =𝑎 ∙ 𝜎(𝑅𝑠) − 𝑏 ∙ 𝜎(𝑅𝑐), where 𝑎 = 𝑆𝑃 and 𝑏 = 𝐶𝑃. Also, there exists an 𝐴 such that 𝜎(𝑅𝑐) =𝜎(𝑅𝑠)(1 + 𝐴). The following simplified equations follow: 1 = 𝐸[𝑆𝐷𝐹] ∙ 𝐸[𝑅𝑠] + 𝜌𝑠 ∙ 𝜎[𝑆𝐷𝐹] ∙ 𝜎(𝑅𝑠) 1 = 𝐸[𝑆𝐷𝐹] ∙ 𝐸[𝑅𝑐] + 𝜌𝑠 ∙ 𝜎[𝑆𝐷𝐹] ∙ 𝜎(𝑅𝑠)(1 + 𝐴) 1 = 𝐸[𝑆𝐷𝐹] ∙ 𝐸[𝑅𝑝] − 𝜌𝑠 ∙ 𝜎[𝑆𝐷𝐹] ∙ 𝜎(𝑅𝑠)(𝑎 − 𝑏(1 + 𝐴)) 1 = 𝐸[𝑆𝐷𝐹] ∙ 𝑅𝐹 
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It follows that, 𝐸[𝑅𝑐] = 𝐸[𝑅𝑠] + 𝐴 ∙ 𝛿                                                                                                                   (2.1) 𝐸[𝑅𝑝] = 𝑅𝐹 − 𝛿[𝑎 − 𝑏(1 + 𝐴)]                                                                                                  (2.2)       

where 𝑅𝐹 is the risk-free rate, and 𝛿 = 𝐸[𝑅𝑠] − 𝑅𝐹. 

 If an SDF exists, then one can use equations (2.1) and (2.2) to price corresponding call and 

put option without knowing what the SDF is. Equations (2.1) and (2.2) specify the discount rates at 

which call and put payoffs are discounted to recover their prices. More simply, one can use equation 

(2.1) to price a call option, and then use put-call parity to price the corresponding put option.  

 Under the assumption of geometric Brownian motion, if the call volatility is correctly 

perceived (no anchoring bias), then 𝐴 is equal to Ω − 1 where Ω is the call price elasticity with 

respect to the underlying stock price. If one allows for a little ‘sand in the gears’ in the form of 

proportional transaction costs, then there always exist a threshold value of 𝐴 less than Ω − 1 above 

which arbitrage profits cannot be made, so incorrect beliefs can be supported in equilibrium. 

Denoting the threshold value by 𝐴̅, it follows that anchoring bias implies a plausible value of 𝐴 in 

the following range: 𝐴̅ ≤ 𝐴 < Ω − 1.  

 In the next subsection, I derive the closed form expressions for option prices in the 

continuous limit of the geometric Brownian motion. We will see that these expressions are almost as 

simple as the Black-Scholes formulas. 

 

2.2. Anchoring adjusted option pricing: The continuous limit 

The continuous time version of (2.1) is: 

1𝑑𝑡 𝐸[𝑑𝐶]𝐶 = 1𝑑𝑡 𝐸[𝑑𝑆]𝑆 + 𝐴𝐾 ∙ 𝛿                                                                                                     (2.3) 

Where 𝐶, 𝑎𝑛𝑑 𝑆, denote the call price, and the stock price respectively. 𝐴𝐾 ≥ 0.  
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If the risk free rate is 𝑟 and the risk premium on the underlying stock is 𝛿 (assumed to be 

positive), then, 
1𝑑𝑡 𝐸[𝑑𝑆]𝑆 = 𝜇 = 𝑟 + 𝛿. So, (2.3) may be written as: 

1𝑑𝑡 𝐸[𝑑𝐶]𝐶 = (𝑟 + 𝛿 + 𝐴𝐾 ∙ 𝛿)                                                                                                   (2.4) 

The underlying stock price follows geometric Brownian motion: 𝑑𝑆 = 𝜇𝑆𝑑𝑡 + 𝜎𝑆𝑑𝑍 

where 𝑑𝑍 is the standard Brownian process. 

From Ito’s lemma: 

𝐸[𝑑𝐶] = (𝜇𝑆 𝜕𝐶𝜕𝑆 + 𝜕𝐶𝜕𝑡 + 𝜎2𝑆22 𝜕2𝐶𝜕𝑆2) 𝑑𝑡                                                                                   (2.5) 

Substituting (2.5) in (2.4) leads to: 

(𝑟 + 𝛿 + 𝐴𝐾 ∙ 𝛿)𝐶 = 𝜕𝐶𝜕𝑡 + 𝜕𝐶𝜕𝑆 (𝑟 + 𝛿)𝑆 + 𝜕2𝐶𝜕𝑆2 𝜎2𝑆22                                                               (2.6) 

(2.6) describes the partial differential equation (PDE) that must be satisfied if anchoring determines 

call option prices. 

To appreciate the difference between the anchoring PDE and the Black-Scholes PDE, 

consider the expected return under the Black-Scholes approach, which is given below: 

1𝑑𝑡 𝐸[𝑑𝐶]𝐶 = 𝜇 + (Ω − 1)𝛿                                                                                                      (2.7) 

Substituting (2.5) in (2.7) and realizing that Ω = 𝑆𝐶 𝜕𝐶𝜕𝑆 leads to the following: 

𝑟𝐶 = 𝜕𝐶𝜕𝑡 + 𝑟𝑆 𝜕𝐶𝜕𝑆 + 𝜕2𝐶𝜕𝑆2 𝜎2𝑆22                                                                                                  (2.8) 

(2.8) is the Black-Scholes PDE. 

 In the Black-Scholes world, the correct adjustment to stock return to arrive at call return is (Ω − 1)𝛿 . By substituting 𝐴 = (Ω − 1) in (2.6), it is easy to verify that the Black-Scholes PDE in 

(2.8) follows. That is, with correct adjustment (2.6) and (2.8) are equal to each other. Clearly, with 
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insufficient adjustment, that is, with the anchoring bias (𝐴 < (Ω − 1)), (2.6) and (2.8) are different 

from each other. 

The proportional transaction costs are allowed. Such transaction costs capture brokerage fee, 

bid-ask spread, transaction taxes, market impact costs etc. Following the standard practice in the 

literature, I allow for proportional transaction costs in the underlying stock. We assume that the 

buyer of the stock pays(1 + 𝜃)𝑆, and the seller receives (1 − 𝜃)𝑆, where 𝑆 is the stock price, and 𝜃 

is a constant less than one. There are no transaction costs in the bond or the option market. 6 

Constantinides and Perrakis (2002) derive a tight upper bound (CP upper bound) on a call 

option’s price in the presence of proportional transaction costs. In particular, under mild conditions, 

they show that risk-averse expected utility maximization implies the following upper bound7. It is the 

call price at which the expected return from the call option is equal to the expected return from the 

underlying stock net of round-trip transaction cost: 

𝐶̅ = (1 + 𝜃)𝑆 ∙ 𝐸[𝐶](1 − 𝜃)𝐸[𝑆]  

It is easy to see that the anchoring price is always less than the CP upper bound. The 

anchoring prone investor expects a return from a call option which is at least as large as the expected 

return from the underlying stock. That is, with anchoring, 
𝐸[𝐶]𝐶 ≥ 𝐸[𝑆]𝑆 > (1−𝜃)𝐸[𝑆](1+𝜃)𝑆 . It follows that the 

maximum price under anchoring is: 𝐶𝐴̅ < 𝐶̅ = (1+𝜃)𝑆∙𝐸[𝐶](1−𝜃)𝐸[𝑆] .  

Re-writing the anchoring PDE with the boundary condition, we get: 

(𝑟 + 𝛿 + 𝐴𝐾 ∙ 𝛿)𝐶 = 𝜕𝐶𝜕𝑡 + 𝜕𝐶𝜕𝑆 (𝑟 + 𝛿)𝑆 + 𝜕2𝐶𝜕𝑆2 𝜎2𝑆22                                                                   (2.9) 

where 0 ≤ 𝐴𝐾 < (Ω − 1), and 𝐶𝑇 = 𝑚𝑎𝑥{𝑆 − 𝐾, 0}  

Note, that the presence of the anchoring bias, 𝐴𝐾 < (Ω − 1), guarantees that the CP lower 

bound is also satisfied. The CP lower bound is weak and lies substantially below the Black-Scholes 

                                                           
6 Adding transaction costs in bond and option markets makes the results even stronger. 
7 See Proposition 1 in Constantinides and Perrakis (2002). 
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price. As the anchoring price is larger than the Black-Scholes price, it follows that it must be larger 

than the CP lower bound. 

One way to interpret the anchoring approach is to think of it as a mechanism that 

substantially tightens the Constantinides and Perrakis (2002) option pricing bounds. The anchoring 

price always lies in the narrow region between the Black-Scholes price and the CP upper bound. 

There is a closed form solution to the anchoring PDE. Proposition 1 puts forward the 

resulting European option pricing formulas. 

 

Proposition 1 The formula for the price of a European call is obtained by solving the 

anchoring PDE. The formula is 𝑪 = 𝒆−𝑨𝑲∙𝜹(𝑻−𝒕){𝑺𝑵(𝒅𝟏𝑨) − 𝑲𝒆−(𝒓+𝜹)(𝑻−𝒕)𝑵(𝒅𝟐𝑨)} where 

𝒅𝟏𝑨 = 𝒍𝒏(𝑺/𝑲)+(𝒓+𝜹+𝝈𝟐𝟐 )(𝑻−𝒕)𝝈√𝑻−𝒕  and 𝒅𝟐𝑨 = 𝒍𝒏(𝑺𝑲)+(𝒓+𝜹−𝝈𝟐𝟐 )(𝑻−𝒕)𝝈√𝑻−𝒕  

Proof. 

See Appendix A. ▄ 

Corollary 1.1 There is a threshold value of 𝑨𝑲below which the anchoring price stays larger 

than the Black-Scholes price. 

Proof. 

See Appendix B. ∎ 

Corollary 1.2 The formula for the anchoring adjusted price of a European put option is  

𝑲𝒆−𝒓(𝑻−𝒕){𝟏 − 𝒆−𝜹(𝑻−𝒕)𝑵(𝒅𝟐)𝒆−𝑨𝑲(𝑻−𝒕)} − 𝑺 (𝟏 − 𝒆−𝑨𝑲∙𝜹(𝑻−𝒕)𝑵(𝒅𝟏)) 

Proof.  

Follows from put-call parity.  ∎ 
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As proposition 1 shows, the anchoring formula differs from the corresponding Black-Scholes 

formulas due to the appearance of 𝛿, and 𝐴𝐾 . Note, as expected, if the marginal investor is risk 

neutral, then the two formulas are equal to each other. 

 It is interesting to analyze put option returns under anchoring. Proposition 2 shows that put 

option returns are more negative under anchoring when compared with put option returns in the 

Black Scholes model. 

 

Proposition 2 Expected put option returns (for options held to expiry) under anchoring are 

more negative than expected put option returns in the Black Scholes model as long as the 

underlying stock has a positive risk premium. 

Proof.  

See Appendix D. 

▄ 

 

Proposition 2 is quite intriguing given the puzzling nature of empirical put option returns when 

compared with the predictions of popular option pricing models. Chambers et al (2014) analyze 

nearly 25 years of put option data and conclude that average put returns are, in general, significantly 

more negative than the predictions of Black Scholes, Heston stochastic volatility, and Bates SVJ 

model. See also Bondarenko (2014). Hence, anchoring offers a potential explanation.  

Clearly, expected call return under anchoring is a lot less than what is expected under the 

Black Scholes model due to the anchoring bias. Empirical call returns are found to be a lot smaller 

given the predictions of the Black Scholes model (see Coval and Shumway (2001)). Hence, 

anchoring appears to be consistent with the empirical findings regarding both call and put option 

returns. 
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3. The Implied Volatility Skew with Anchoring 

If anchoring determines option prices (formulas in proposition 1), and the Black Scholes model is 

used to infer implied volatility, the skew is observed. For illustrative purposes, the following 

parameter values are used: 𝑆 = 100, 𝑇 − 𝑡 = 0.25 𝑦𝑒𝑎𝑟, 𝜎 = 15%, 𝑟 = 0%, 𝑎𝑛𝑑 𝛿 = 4%.   
An anchoring prone investor uses the expected return of the underlying stock as a starting 

point that gets adjusted upwards to arrive at the expected return of a call option. Anchoring bias 

implies that the adjustment is not sufficient to reach the Black-Scholes price.  

 As long as the adjustment made is smaller than the adjustment required to reach the Black-

Scholes price, the implied volatility skew is observed. To reach the Black-Scholes price, it must be: 𝑙𝑛 (𝑆𝑁(𝑑1𝐴)−𝐾𝑒−(𝑟+𝛿)(𝑇−𝑡)𝑁(𝑑2𝐴)𝑆𝑁(𝑑1)−𝐾𝑒−𝑟(𝑇−𝑡)𝑁(𝑑2) ) ∙ 1(𝑇−𝑡) = 𝐴̿𝐾 ∙ 𝛿. For the purpose of this illustration, assume that the 

actual adjustment is only a quarter of that. 

 Table 3 shows the Black-Scholes price, the anchoring price, and the resulting implied 

volatility. The skew is seen. Table 1 also shows the CP upper bound and Leland prices for various 

trading intervals by assuming that 𝜃 = 0.01. The anchoring price lies within a tight region between 

the Black-Scholes price and the CP upper bound. Furthermore, implied volatility is always larger 

than actual volatility. Consistent with empirical findings, it is straightforward to see that regressing 

actual volatility on implied volatility leads to implied volatility being a biased predictor of actual 

volatility with the degree of bias rising in the level of implied volatility.  

 The observed implied volatility skew also has a term-structure. Specifically, the skew tends to 

be steeper at shorter maturities. Figure 1 plots the implied volatility skews both at a longer time to 

maturity of 1 year and at a considerably shorter maturity of only one month. As can be seen, the 

skew is steeper at shorter maturity (the other parameters are 𝑆 = 100, 𝜎 = 20%, 𝑟 = 2%, 𝛿 =3%, 𝑎𝑛𝑑 𝐴𝐾 = 0.25𝐴̿𝐾). 
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Table 3 

K/S Black-Scholes Anchoring Implied 

Volatility 

CP Upper 

Bound 

Leland Price 

(Trading Interval 

1/250 years) 

Leland Price 

(Trading Interval 

1/52 years) 

0.95 6.07 6.61 18.32% 6.93 8.36 7.59 

1.0 2.99 3.37 16.88% 3.57 5.42 4.50 

1.05 1.19 1.40 16.21% 1.50 3.28 2.38 

 

 

 

Figure 1 

 

Hence, anchoring provides a relatively straightforward explanation for the implied volatility puzzle. 

In fact, with anchoring, the skew arises even within the simplest framework of geometric Brownian 

motion.  Next section shows that anchoring is consistent with the recent empirical findings in 

Constantinides et al (2013) regarding leverage adjusted index option returns. 
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4. Leverage Adjusted Option Returns with Anchoring 

Leverage adjustment dilutes the beta risk of an option by combining it with a risk free asset. 

Leverage adjustment combines each option with a risk-free asset in such a manner that the overall 

beta risk becomes equal to the beta risk of the underlying stock. The weight of the option in the 

portfolio is equal to its inverse price elasticity w.r.t the underlying stock’s price: 

 𝛽𝑝𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜 = Ω−1 × 𝛽𝑐𝑎𝑙𝑙 + (1 − Ω−1) × 𝛽𝑟𝑖𝑠𝑘𝑓𝑟𝑒𝑒                                                                

where Ω = 𝜕𝐶𝑎𝑙𝑙𝜕𝑆𝑡𝑜𝑐𝑘 × 𝑆𝑡𝑜𝑐𝑘𝐶𝑎𝑙𝑙  (i.e price elasticity of call w.r.t the underlying stock) 𝛽𝑐𝑎𝑙𝑙 = Ω × 𝛽𝑠𝑡𝑜𝑐𝑘 𝛽𝑟𝑖𝑠𝑘𝑓𝑟𝑒𝑒 = 0 => 𝛽𝑝𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜 = 𝛽𝑠𝑡𝑜𝑐𝑘                                                                                                             

When applied to index options, such leverage adjustment, which is aimed at achieving a market beta 

of one, reduces the variance and skewness and renders the returns close to normal enabling 

statistical inference. 

Constantinides, Jackwerth and Savov (2013) uncover a number of interesting empirical facts 

regarding leverage adjusted index option returns.  Table 4 presents the summary statistics of the 

leverage adjusted returns (Table 3 from Constantinides et al (2013)). As can be seen, four features 

stand out in the data: 1) Leverage adjusted call returns are lower than the average index return. 2) 

Leverage adjusted call returns fall with the ratio of strike to spot. 3) Leverage adjusted put returns 

are typically higher than the index average return. 4) Leverage adjusted put returns also fall with the 

ratio of strike to spot.  

 The above features are sharply inconsistent with the Black-Scholes/Capital Asset Pricing 

Model prediction that all leverage adjusted returns must be equal to the index average return, and 

should not vary with the ratio of strike to spot. Using their dataset, Constantinides et al (2013) reject 

the Capital Asset Pricing Model. In this section, I show that the anchoring adjusted option pricing 

model, developed in this article, provides a unified explanation for the above findings. Furthermore, 

in section 5, we test two predictions of the anchoring model with nearly 26 years of leverage 

adjusted index returns and find strong empirical support. 
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Table 4 (Table 3 from Constantinides et al (2013)) 

Average percentage monthly returns of the leverage adjusted portfolios from April 1986 to 

January 2012. For comparison, average monthly return on S&P 500 index is 0.86% in the same 

period. 

 Call Put 

K/S 90 95% 100% 105% 110% Hi-Lo 90 95% 100% 105% 110% Hi-Lo 

Average monthly returns 

30 days 0.49 0.42 0.21 0.03 -0.02 -0.51 2.18 1.66 1.07 0.80 0.75 -1.43 

(s.e) 0.24 0.24 0.24 0.23 0.22 0.17 0.36 0.32 0.29 0.27 0.26 0.20 

90 days 0.51 0.44 0.37 0.31 0.21 -0.30 1.15 1.10 0.91 0.81 0.74 -0.40 

(s.e) 0.24 0.24 0.24 0.24 0.24 0.11 0.33 0.31 0.29 0.27 0.27 0.14 

90-30 0.03 0.02 0.16 0.28 0.23  -1.04 -0.55 -0.16 0.00 -0.01  

(s.e) 0.02 0.02 0.03 0.06 0.11  0.11 0.07 0.03 0.02 0.02  

 

Section 4.1 considers leverage adjusted call returns under anchoring and shows that 

anchoring provides an explanation for the empirical findings. Section 4.2 does the same with 

leverage adjusted put returns. 

 

 

4.1 Leverage adjusted call returns with anchoring 

 

Applying leverage adjustment to a call option means creating a portfolio consisting of the call option 

and a risk-free asset in such a manner that the weight on the option is Ω𝐾−1. It follows that the 

leverage adjusted call option return is: 

Ω𝐾−1 ∙ 1𝑑𝑡 ∙ 𝐸 [𝑑𝐶]𝐶 + (1 − Ω𝐾−1)𝑟                                                                                                 (4.1) 

 

Substituting from (2.4) and realizing that anchoring implies that 𝐴𝐾 = 𝑚 ∙ (Ω𝐾 − 1) where 0 ≤𝑚 < 1, (4.1) can be written as: 𝛿{𝑚 ∙ (1 − Ω𝐾−1) + Ω𝐾−1} + 𝑟            (4.2) 
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From (4.2) one can see that as the ratio of strike to spot rises, leverage adjusted call return must fall. 

This is because Ω𝐾 rises with the ratio of strike to spot (Ω𝐾−1falls). 

Note that call price elasticity w.r.t the underlying stock price under the anchoring model is:  

Ω𝐾 = 𝑆(𝑆𝑁(𝑑1𝐴)−𝐾𝑒−(𝑟+𝛿)(𝑇−𝑡)𝑁(𝑑2𝐴)) ∙ 𝑁(𝑑1𝐴)                                                                              (4.3) 

Substituting (4.3) in (4.2) and simplifying leads to: 

𝑅𝐿𝐶 = 𝜇 − 𝛿 ∙ 𝐾𝑆 ∙ 𝑒−(𝑟+𝛿)(𝑇−𝑡) ∙ 𝑁(𝑑2𝐴)𝑁(𝑑1𝐴) ∙ (1 − 𝑚)                                                                    (4.4) 

𝑅𝐿𝐶 denotes the expected leverage adjusted call return with anchoring. Note if 𝑚 = 1, then the 

leverage call return is equal to the CAPM/Black-Scholes prediction, which is 𝑅𝐿𝐶 = 𝜇. With 

anchoring, that is, with 0 ≤ 𝑚 < 1, the leverage adjusted call return must be less than the average 

index return as long as the risk premium is positive.  Hence, the anchoring model is consistent with 

the empirical findings that leverage adjusted call returns fall in the ratio of strike to spot and are 

smaller than average index returns. 

 Figure 2 is a representative graph of leverage adjusted call returns with anchoring (𝑟 =2%, 𝛿 = 5%, 𝜎 = 20%). Apart from the empirical features mentioned above, one can also see that 

as expiry increases, returns rise sharply in out-of-the-money range. This feature can also be seen in 

Table 4. 
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Figure 2 

 

 

4.2 Leverage adjusted put returns with anchoring 

 

Using the same logic as in the previous section, the leverage adjusted put option return with 

anchoring can be shown to be as follows: 

𝑅𝐿𝑃 = 𝜇 + 𝛿 ∙ 𝐾𝑆 ∙ 𝑒−(𝑟+𝛿)(𝑇−𝑡) ∙ 𝑒−𝐴𝐾(𝑇−𝑡)∙𝑁(𝑑2𝐴)(1−𝑒−𝐴𝐾(𝑇−𝑡)𝑁(𝑑1𝐴)) ∙ (1 − 𝑚)                                             (4.5) 

As can be seen from the above equation, the CAPM/Black-Scholes prediction of 𝑅𝐿𝑃 = 𝜇 is a 

special case with 𝑚 = 1. That it, the CAPM/Black-Scholes prediction follows if there is no 

anchoring bias. With the anchoring bias, that is, with 0 ≤ 𝑚 < 1, leverage adjusted put return must 

be larger than the underlying return if the underlying risk premium is positive. It is also 

straightforward to verify that anchoring implies that 𝑅𝐿𝑃 falls as the ratio of strike to spot increases. 

 Figure 3 is a representative plot of the leverage adjusted put returns for 1, 2, and 3 months to 

expiry (𝑟 = 2%, 𝛿 = 5%, 𝜎 = 20%). One can also see that returns are falling substantially at lower 

strikes as expiry increases. This feature can also be seen in the data presented in Table 4. 
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Figure 3 

 

5. Empirical Predictions of the Anchoring Model 

By considering Figure 3 and Figure 2, the following two predictions of the anchoring model follow 

immediately8: 

Prediction 1. At low strikes (𝐾 < 𝑆), the difference between leverage adjusted put and call returns must fall as 

the ratio of strike to spot increases at all levels of expiry. 

Figure 3 shows a very sharp dip in leverage adjusted put returns at low strikes. The dip is so sharp 

that it should dominate the difference between put and call returns in the low strike range. At higher 

strikes, the decline in put and call returns is of the same order of magnitude. 

Prediction 2. The difference between leverage adjusted put and call returns must fall as expiry increases at least at 

low strikes. 

                                                           
8 Technical proofs of these predictions are available from the author upon request. 
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Figure 3 shows that put returns fall drastically with expiry at low strikes. They rise marginally at 

higher strikes with expiry. Figure 2 shows that call returns rise with expiry throughout and relatively 

more so at higher strikes. It follows that the difference between put and call returns should fall with 

expiry at least at low strikes if not throughout. 

 Next, I use the dataset developed in Constantinides et al (2013) to test these predictions. 

Constantinides et al (2013) use Black-Scholes elasticities evaluated at implied volatility for 

constructing leverage adjusted returns. As the anchoring model elasticities are very close to Black-

Scholes elasticities evaluated at implied volatility, the dataset can be used to test the prediction of the 

anchoring model. The dataset used in this paper is available at http://www.wiwi.uni-

konstanz.de/fileadmin/wiwi/jackwerth/Working_Paper/Version325_Return_Data.txt  

The construction of this dataset is described in detail in Constantinides et al (2013). It is almost 26 

years of monthly data on leverage adjusted S&P-500 index option returns ranging from April 1986 

to January 2012. 

 

5.1. Empirical findings regarding prediction 1 

Wilcoxon signed rank test is used as it allows for a direct observation by observation comparison of 

two time series. The following procedure is adopted: 

1) The dataset has the following ratios of strikes to spot: 0.9, 0.95, 1.0, 1.05, and 1.10. For each 

value of strike to spot, the difference between leverage adjusted put and call returns is 

calculated. 

2) Pair-wise comparisons are made between time series of 0.9 and 0.95, 0.95 and 1.0, 1.0 and 

1.05, and 1.05 and 1.10.  Such comparisons are made for each level of maturity: 30 days, 60 

days, or 90 days. 

3) The first time series in each pair is dubbed series1, and the second time series in each pair is 

dubbed series 2. That is, for the pair, 0.9 and 0.95, 0.9 is Series 1, and 0.95 is Series 2. 

4) For each pair, if the prediction is true, then Series 1>Series 2.  This forms the alternative 

hypothesis in the Wilcoxon signed rank test, which is tested against the null hypothesis: 

Series 1 = Series 2 

 

 

http://www.wiwi.uni-konstanz.de/fileadmin/wiwi/jackwerth/Working_Paper/Version325_Return_Data.txt
http://www.wiwi.uni-konstanz.de/fileadmin/wiwi/jackwerth/Working_Paper/Version325_Return_Data.txt
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Table 5 shows the results. As can be seen from the table, when call is in-the-money, the 

difference between leverage adjusted put and call returns falls with strike to spot at all levels of 

expiry (Series 1 is greater than Series 2). Hence, null hypothesis is rejected, in accordance with 

prediction of the anchoring model. As expected, the p-values are quite large for out-of-the-money 

call range, so null cannot be rejected for out-of-the-money call range. 

 

5.2 Empirical findings regarding prediction 2 

To test prediction 2, the procedure adopted is very similar to the one used for prediction 1:  

1) For each level of strike to spot, the following pair-wise comparisons are made: 30 days vs 60 days, 

60 days vs 90 days, 30 days vs 90 days.  

2) The first time series in each pair is dubbed Series 1, and the second time series is labeled Series 2. 

If prediction 2 is true, then Series 1 > Series 2. This forms the alternate hypothesis against the null: 

Series 1 = Series 2.  

3) Wilcoxon signed rank test is conducted for each pair.  

 Table 6 shows the results. As can be seen, the null is rejected in favor of the alternate 

hypothesis throughout. Hence, both the predictions of the anchoring model are strongly supported 

in the data. 

 

Put minus Call Return (Monthly) Put minus Call Return (Monthly) Maturity (days) Wilcoxon Signed Rank Test 
Leverage Adjusted  Leverage Adjusted Null Hypothesis: Series 1=Series 2 

(April 1986 to January 2012) (April 1986 to January 2012) Alternate Hypothesis: Series 1>Series 2 
Series 1 Strike (%spot) Series 2 Strike (%spot) P-Value 

0.9 0.95 30 5.62883E-14 
0.95 1 30 2.33147E-14 

1 1.05 30 0.095264801 
1.05 1.1 30 0.378791967 
0.9 0.95 60 2.23715E-06 

0.95 1 60 2.08904E-11 
1 1.05 60 1.31059E-09 

1.05 1.1 60 0.978440796 
0.9 0.95 90 0.002029759 

0.95 1 90 2.84604E-08 
1 1.05 90 0.10253709 

1.05 1.1 90 0.696743837 

Table 5 
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Table 6 

Put minus Call Ret. (Monthly) 

Leverage Adjusted 

(April 1986 to January 2012) 

Series 1 Maturity (Days) 

Put minus Call Ret. (Monthly) 

Leverage Adjusted 

(April 1986 to January 2012) 

Series 2 Maturity (Days) 

Strike (% 

spot) 

Wilcoxon Signed Rank Test 

Null Hypothesis: Series1=Series2 

Alternate: Series1>Series2 

P-Value 

    

30 60 0.9 0.0000 

60 90 0.9 0.0000 

30 90 0.9 0.0000 

30 60 1.1 0.0125 

60 90 1.1 0.0033 

30 90 1.1 0.0020 

 

 

6. The Profitability of Covered Call Writing with Anchoring 

The profitability of covered call writing is quite puzzling in the Black Scholes framework. Whaley 

(2002) shows that BXM (a Buy Write Monthly Index tracking a Covered Call on S&P 500) has 

significantly lower volatility when compared with the index, however, it offers nearly the same return 

as the index. In the Black Scholes framework, the covered call strategy is expected to have lower risk 

as well as lower return when compared with buying the index only. See Black (1975). In fact, in an 

efficient market, the risk adjusted return from covered call writing should be no different than the 

risk adjusted return from just holding the index. 

The covered call strategy (S denotes stock, C denotes call) is given by: 𝑉 = 𝑆 − 𝐶 

With anchoring, this is equal to: 𝑉 = 𝑆 − 𝑒−𝐴𝐾∙𝛿(𝑇−𝑡){𝑆𝑁(𝑑1𝐴) − 𝐾𝑒−(𝑟+𝛿)(𝑇−𝑡)𝑁(𝑑2𝐴)} 

=> 𝑉 = (1 − 𝑒−𝐴𝐾∙𝛿(𝑇−𝑡)𝑁(𝑑1𝐴)) 𝑆 + 𝑒−𝐴𝐾∙𝛿(𝑇−𝑡)𝑁(𝑑2𝐴)𝐾𝑒−(𝑟+𝛿)(𝑇−𝑡)   (6.1) 
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The corresponding value under the Black Scholes assumptions is: 𝑉 = (1 − 𝑁(𝑑1))𝑆 + 𝑁(𝑑2)𝐾𝑒−𝑟(𝑇−𝑡)        (6.2) 

 A comparison of 6.1 and 6.2 shows that covered call strategy is expected to perform much 

better with anchoring when compared with its expected performance in the Black-Scholes world. 

With anchoring, covered call strategy creates a portfolio which is equivalent to having a portfolio 

with a weight of 1 − 𝑒−𝐴𝐾∙𝛿(𝑇−𝑡)𝑁(𝑑1𝐴) on the stock and a weight of 𝑒−𝐴𝐾∙𝛿(𝑇−𝑡)𝑁(𝑑2𝐴) on a 

hypothetical risk free asset with a return of 𝑟 + 𝛿 + 𝐴𝐾 ∙ 𝛿. The stock has a return of 𝑟 + 𝛿 plus 

dividend yield. This implies that, with anchoring, the return from covered call strategy is expected to 

be comparable to the return from holding the underlying stock only. The presence of a hypothetical 

risk free asset in 6.1 implies that the standard deviation of covered call returns is lower than the 

standard deviation from just holding the underlying stock. Hence, the superior historical 

performance of covered call strategy is consistent with anchoring. 

 

6.1 The Zero-Beta Straddle Performance with Anchoring 

Another empirical puzzle in the Black-Scholes/CAPM framework is that zero beta straddles lose 

money. Goltz and Lai (2009), Coval and Shumway (2001) and others find that zero beta straddles 

earn negative returns on average. This is in sharp contrast with the Black-Scholes/CAPM prediction 

which says that the zero-beta straddles should earn the risk free rate. A zero-beta straddle is 

constructed by taking a long position in corresponding call and put options with weights chosen so 

as to make the portfolio beta equal to zero: 𝜃 ∙ 𝛽𝐶𝑎𝑙𝑙 + (1 − 𝜃) ∙ 𝛽𝑃𝑢𝑡 = 0 

=> 𝜃 = −𝛽𝑃𝑢𝑡𝛽𝐶𝑎𝑙𝑙 − 𝛽𝑃𝑢𝑡 

Where 𝛽𝐶𝑎𝑙𝑙 = 𝑁(𝑑1) ∙ 𝑆𝑡𝑜𝑐𝑘𝐶𝑎𝑙𝑙 ∙ 𝛽𝑆𝑡𝑜𝑐𝑘 and 𝛽𝑃𝑢𝑡 = (𝑁(𝑑1) − 1) ∙ 𝑆𝑡𝑜𝑐𝑘𝑃𝑢𝑡 ∙ 𝛽𝑠𝑡𝑜𝑐𝑘 

 It is straightforward to show that with anchoring, where call and put prices are determined in 

accordance with proposition 1, the zero-beta straddle earns a significantly smaller return than the 

risk free rate (with returns being negative for a wide range of realistic parameter values). See 
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Appendix C for proof. Intuitively, with anchoring, both call and put options are more expensive 

when compared with Black-Scholes prices. Hence, the returns are smaller, and are typically negative.  

Anchoring provides a unified explanation for key option pricing puzzles even in the simplest 

setting of geometric Brownian motion. Furthermore, two novel predictions of the anchoring model 

are strongly supported in the data. 

 

7. Conclusions 

Intriguing option pricing puzzles include: 1) the implied volatility skew, 2) superior historical 

performance of covered call writing, 3) worse-than-expected performance of zero beta straddles, 

and 4) the puzzling findings regarding leverage adjusted index option returns. Furthermore, it is well 

known that average put returns are far more negative than what the theory predicts, and average call 

returns are smaller than what one would expect given their systematic risk.  

 If the volatility of the underlying stock returns is used as a starting point which gets adjusted 

upwards to arrive at call option volatility, then the anchoring bias implies that such adjustments are 

insufficient. There is considerable field and experimental evidence of the role of anchoring in option 

pricing. In this article, an anchoring-adjusted option pricing model is put forward. The model 

provides a unified explanation for the puzzles mentioned above. Furthermore, the anchoring price 

lies within the bounds implied by risk-averse expected utility maximization. Two novel predictions 

of the model are empirically tested and found to be strongly supported in the data. 

 The challenge for financial economics is to enrich the elegant option pricing framework 

sufficiently so that it captures key empirical regularities. This article shows that incorporating the 

anchoring bias in the option pricing framework provides the needed enrichment, while preserving 

the elegance of the framework.  Furthermore, anchoring works regardless of the distributional 

assumptions that are made about the underlying stock behavior. Hence, it is easy to combine 

anchoring with jump diffusion and stochastic volatility approaches. This is the subject of future 

research. 
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Appendix A 

The anchoring adjusted PDE can be solved by converting to heat equation and exploiting its 

solution.  

Start by making the following transformations in (2.6): 

𝜏 = 𝜎22 (𝑇 − 𝑡) 

𝑥 = 𝑙𝑛 𝑆𝐾 => 𝑆 = 𝐾𝑒𝑥 

𝐶(𝑆, 𝑡) = 𝐾 ∙  𝑐(𝑥, 𝜏) = 𝐾 ∙ 𝑐 (𝑙𝑛 (𝑆𝐾) , 𝜎22 (𝑇 − 𝑡)) 

It follows, 𝜕𝐶𝜕𝑡 = 𝐾 ∙ 𝜕𝑐𝜕𝜏 ∙ 𝜕𝜏𝜕𝑡 = 𝐾 ∙ 𝜕𝑐𝜕𝜏 ∙ (− 𝜎22 ) 
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𝜕𝐶𝜕𝑆 = 𝐾 ∙ 𝜕𝑐𝜕𝑥 ∙ 𝜕𝑥𝜕𝑆 = 𝐾 ∙ 𝜕𝑐𝜕𝑥 ∙ 1𝑆 

𝜕2𝐶𝜕𝑆2 = 𝐾 ∙ 1𝑆2 ∙ 𝜕2𝐶𝜕𝑥2 −  𝐾 ∙ 1𝑆2 𝜕𝐶𝜕𝑥 

Plugging the above transformations into (2.6) and writing 𝑟̃ = 2(𝑟+𝛿)𝜎2 , and 𝜖̃ = 2𝐴𝛿𝜎2  we get: 

𝜕𝑐𝜕𝜏 = 𝜕2𝑐𝜕𝑥2 + (𝑟̃ − 1) 𝜕𝑐𝜕𝑥 − (𝑟̃ + 𝜖̃)𝑐                                                                                                 (𝐷1) 

With the boundary condition/initial condition: 𝐶(𝑆, 𝑇) = 𝑚𝑎𝑥{𝑆 − 𝐾, 0} 𝑏𝑒𝑐𝑜𝑚𝑒𝑠 𝑐(𝑥, 0) = 𝑚𝑎𝑥{𝑒𝑥 − 1,0} 

To eliminate the last two terms in (D1), an additional transformation is made: 𝑐(𝑥, 𝜏) = 𝑒𝛼𝑥+𝛽𝜏𝑢(𝑥, 𝜏) 

It follows, 𝜕𝑐𝜕𝑥 = 𝛼𝑒𝛼𝑥+𝛽𝜏𝑢 + 𝑒𝛼𝑥+𝛽𝜏 𝜕𝑢𝜕𝑥 

𝜕2𝑐𝜕𝑥2 = 𝛼2𝑒𝛼𝑥+𝛽𝜏𝑢 + 2𝛼𝑒𝛼𝑥+𝛽𝜏 𝜕𝑢𝜕𝑥 + 𝑒𝛼𝑥+𝛽𝜏 𝜕2𝑢𝜕𝑥2 

𝜕𝑐𝜕𝜏 = 𝛽𝑒𝛼𝑥+𝛽𝜏𝑢 + 𝑒𝛼𝑥+𝛽𝜏 𝜕𝑢𝜕𝜏 

Substituting the above transformations in (D1), we get: 

𝜕𝑢𝜕𝜏 = 𝜕2𝑢𝜕𝑥2 + (𝛼2 + 𝛼(𝑟̃ − 1) − (𝑟̃ + 𝜖̃) − 𝛽)𝑢 + (2𝛼 + (𝑟̃ − 1)) 𝜕𝑢𝜕𝑥                                    (D2) 

Choose 𝛼 = − (𝑟̃−1)2  and 𝛽 = − (𝑟̃+1)24 − (𝜖̃). (D2) simplifies to the Heat equation: 

𝜕𝑢𝜕𝜏 = 𝜕2𝑢𝜕𝑥2                                                                                                                                                (𝐷3) 

With the initial condition: 
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𝑢(𝑥0, 0) = 𝑚𝑎𝑥{(𝑒(1−𝛼)𝑥0 − 𝑒−𝛼𝑥0), 0} = 𝑚𝑎𝑥 {(𝑒(𝑟̃+12 )𝑥0 − 𝑒(𝑟̃−12 )𝑥0) , 0} 

The solution to the Heat equation in our case is: 

𝑢(𝑥, 𝜏) = 12√𝜋𝜏 ∫ 𝑒−(𝑥−𝑥0)24𝜏∞
−∞ 𝑢(𝑥0, 0)𝑑𝑥0 

Change variables: = 𝑥0−𝑥√2𝜏  , which means: 𝑑𝑧 = 𝑑𝑥0√2𝜏. Also, from the boundary condition, we know 

that 𝑢 > 0 𝑖𝑓𝑓 𝑥0 > 0.  Hence, we can restrict the integration range to 𝑧 > −𝑥√2𝜏 

𝑢(𝑥, 𝜏) = 1√2𝜋 ∫ 𝑒−𝑧22 ∙ 𝑒(𝑟̃+12 )(𝑥+𝑧√2𝜏)𝑑𝑧 −∞
− 𝑥√2𝜋

1√2𝜋 ∫ 𝑒−𝑧22∞
− 𝑥√2𝜏

∙ 𝑒(𝑟̃−12 )(𝑥+𝑧√2𝜏)𝑑𝑧 

=: 𝐻1 − 𝐻2 

Complete the squares for the exponent in 𝐻1: 

𝑟̃ + 12 (𝑥 + 𝑧√2𝜏) − 𝑧22 = − 12 (𝑧 − √2𝜏(𝑟̃ + 1)2 )2 + 𝑟̃ + 12 𝑥 + 𝜏 (𝑟̃ + 1)24  

=: − 12 𝑦2 + 𝑐 

We can see that 𝑑𝑦 = 𝑑𝑧 and 𝑐 does not depend on 𝑧. Hence, we can write: 

𝐻1 = 𝑒𝑐√2𝜋 ∫ 𝑒−𝑦22 𝑑𝑦∞
−𝑥 √2𝜋⁄ −√𝜏 2⁄ (𝑟̃+1)  

A normally distributed random variable has the following cumulative distribution function: 

𝑁(𝑑) = 1√2𝜋 ∫ 𝑒−𝑦22 𝑑𝑦𝑑
−∞  
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Hence, 𝐻1 = 𝑒𝑐𝑁(𝑑1) where 𝑑1 = 𝑥 √2𝜋⁄ + √𝜏 2⁄ (𝑟̃ + 1) 

Similarly,  𝐻2 = 𝑒𝑓𝑁(𝑑2) where 𝑑2 = 𝑥 √2𝜋⁄ + √𝜏 2⁄ (𝑟̃ − 1) and 𝑓 = 𝑟̃−12 𝑥 + 𝜏 (𝑟̃−1)24  

The anchoring adjusted European call pricing formula is obtained by recovering original variables: 𝐶 = 𝑒−𝐴∙𝛿(𝑇−𝑡){𝑆𝑁(𝑑1𝐴) − 𝐾𝑒−(𝑟+𝛿)(𝑇−𝑡)𝑁(𝑑2𝐴)} 

Where 𝒅𝟏𝑨 = 𝒍𝒏(𝑺/𝑲)+(𝒓+𝜹+𝝈𝟐𝟐 )(𝑻−𝒕)𝝈√𝑻−𝒕  𝑎𝑛𝑑 𝒅𝟐𝑨 = 𝒍𝒏(𝑺𝑲)+(𝒓+𝜹−𝝈𝟐𝟐 )(𝑻−𝒕)𝝈√𝑻−𝒕  

 

Appendix B 

By definition, at the threshold: 𝑒−𝐴𝐾𝛿(𝑇−𝑡){𝑆𝑁(𝑑1𝐴) − 𝐾𝑒−(𝑟+𝛿)(𝑇−𝑡)𝑁(𝑑2𝐴)} = 𝑆𝑁(𝑑1) − 𝐾𝑒−𝑟(𝑇−𝑡)𝑁(𝑑2) (E1) 

Solving (E1) for 𝐴𝐾 gives the threshold value: 𝑙𝑛 (𝑆𝑁(𝑑1𝐴)−𝐾𝑒−(𝑟+𝛿)(𝑇−𝑡)𝑁(𝑑2𝐴)𝑆𝑁(𝑑1)−𝐾𝑒−𝑟(𝑇−𝑡)𝑁(𝑑2) ) ∙ 1(𝑇−𝑡) = |𝐴𝐾̅̅ ̅̅ | ∙ 𝛿                  (E2) 

 

 

Appendix C 

Following Coval and Shumway (2001) and some algebraic manipulations, the return from a zero-

beta-straddle can be written as: 

𝑟𝑠𝑡𝑟𝑎𝑑𝑑𝑙𝑒 = −Ω𝑐𝐶 + 𝑆Ω𝑐𝑃 − Ω𝑐𝐶 + 𝑆 ∙ 𝑟𝑐𝑎𝑙𝑙 + Ω𝑐𝑃 + 𝑆Ω𝑐𝑃 − Ω𝑐𝐶 + 𝑆 ∙ 𝑟𝑝𝑢𝑡 

Where 𝐶 and 𝑃 denote call and put prices respectively, 𝑟𝑐𝑎𝑙𝑙 is expected call return, 𝑟𝑝𝑢𝑡 is expected 

put return, and Ω𝑐 is call price elasticity w.r.t the underlying stock price. 

Under anchoring: 𝑟𝑐𝑎𝑙𝑙 = 𝜇 + 𝐴 ∙ 𝛿 

𝑟𝑝𝑢𝑡 = (𝜇 + 𝐴 ∙ 𝛿)𝐶 − 𝜇𝑆 + 𝑟𝑃𝑉(𝐾)𝑃  
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Substituting 𝑟𝑐𝑎𝑙𝑙 and 𝑟𝑝𝑢𝑡 in the expression for 𝑟𝑠𝑡𝑟𝑎𝑑𝑑𝑙𝑒 , and simplifying implies that as long as the 

risk premium on the underlying is positive, it follows that: 𝑟𝑠𝑡𝑟𝑎𝑑𝑑𝑙𝑒 < 𝑟 

Appendix D 

Note that for a put option, if the underlying stock has a positive risk premium, then the expected 

put payoff must be less than its price. That is, expected put return is negative. The proof follows 

directly from realizing that if the risk premium on the underlying stock is positive, the price of a put 

option under anchoring is larger than the price of a put option in the Black Scholes model.  

 


