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ABSTRACT

This paper proposes a first-order zero-drift GARCH (ZD-GARCH(1, 1)) model to study con-

ditional heteroscedasticity and heteroscedasticity together. Unlike the classical GARCH model,

ZD-GARCH(1, 1) model is always non-stationary regardless of the sign of the Lyapunov ex-

ponent γ0, but interestingly when γ0 = 0, it is stable with its sample path oscillating random-

ly between zero and infinity over time. Furthermore, this paper studies the generalized quasi-

maximum likelihood estimator (GQMLE) of ZD-GARCH(1, 1) model, and establishes its strong

consistency and asymptotic normality. Based on the GQMLE, an estimator for γ0, a test for

stability, and a portmanteau test for model checking are all constructed. Simulation studies are

carried out to assess the finite sample performance of the proposed estimators and tests. Appli-
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cations demonstrate that a stable ZD-GARCH(1, 1) model is more appropriate to capture het-

eroscedasticity than a non-stationary GARCH(1, 1) model, which suffers from an inconsistent

QMLE of the drift term.

Some key words: Conditional heteroscedasticity; GARCH model; Generalized quasi-maximum likelihood estimator;

Heteroscedasticity; Portmanteau test; Stability test; Top Lyapunov exponent; Zero-drift GARCH model.

1. INTRODUCTION

HETEROSCEDASTICITY is the often observed feature for economic and financial time series

data. When the heteroscedastic error structure in regressions is correctly specified, one could gain

substantial efficiency in using generalized least squares estimator (LSE), and more importantly,

eliminate the ordinary LSE-based bias in standard errors resulting in valid inferences. Therefore,

most of efforts made in the literature are to test heteroscedasticity by assuming a specified het-

eroscedastic error structure; see, e.g., Breusch and Pagan (1979) for earlier works and Greene

(2002) and the references therein for more recent ones. In the last three decades, the conditional-

ly heteroscedastic model has achieved a great success after the seminar work of Engle (1982) and

Bollerslev (1986). However, less attempts have been made in the literature to capture conditional

heteroscedasticity and heteroscedasticity together parametrically.

As one leading motivation, this paper provides a new parametric way to reach this goal. Let yt

be the error term in regressions. This paper proposes a first-order zero-drift generalized autore-

gressive conditional heteroscedasticity (ZD-GARCH(1, 1)) model to capture yt:

yt = ηt
√

ht and ht = α0y
2
t−1 + β0ht−1, t = 1, ..., n, (1.1)

with initial values y0 ∈ R and h0 ≥ 0, where α0 > 0, β0 ≥ 0, (y0, h0) ̸= (0, 0), {ηt} is a se-

quence of independent and identically distributed (i.i.d.) random variables, and ηt is independent

of {yj , j < t}. Particularly, model (1.1) nests the widely used exponentially weighted moving av-
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erage (EWMA) model in RiskMetrics, from which the company J.P. Morgan calculates the daily

volatility of many assets by this EWMA model; see Longerstaey and Zangari (1996). Clearly,

when Eη2t < ∞, model (1.1) can capture the conditional heteroscedasticity of yt, since var(ηt)ht

designed as the conditional variance of yt changes over time. Moreover, by letting s2t = var(yt),

we have s2t = [α0var(ηt) + β0]s
2
t−1 in model (1.1) so that

s2t = [α0var(ηt) + β0]
t−1s21. (1.2)

Therefore, yt in model (1.1) is homoscedastic when α0var(ηt) + β0 = 1, and it is heteroscedastic

with an exponentially decayed (or explosive) variance when α0var(ηt) + β0 < 1 (or > 1). Obvi-

ously, the heteroscedastic structure of yt in (1.2) is different from the parametric ones presumed

in Breusch and Pagan (1979) and White (1980) or the nonparametric ones studied in Dahlhaus

(1997), Dahlhaus and Rubba Rao (2006), Engle and Rangel (2008) and many others. Thus, when

Eη2t < ∞, model (1.1) provides us a new parametric way to study conditional heteroscedasticity

and heteroscedasticity together.

Needless to say, model (1.1) is motivated by the classical GARCH(1, 1) model:

yt = ηt
√

ht and ht = ω0 + α0y
2
t−1 + β0ht−1, t = 1, ..., n, (1.3)

where all notations inherit from model (1.1) except for ω0 > 0. Model (1.3) initialized by Engle

(1982) and Bollerslev (1986) has become the workhorse of financial applications, and it can be

used to describe the volatility dynamics of almost any financial return series; see Engle (2004,

p.408). Due to the importance of model (1.3), numerous works were devoted to its probabilistic

structure and statistical inference (see, e.g., Francq and Zakoı̈an (2010) for a comprehensive

review), but they all assume the positivity of ω0. The case that ω0 = 0 (i.e., model (1.1)) would

be meaningful but hardly touched, except for Hafner and Preminger (2015) who have studied an

ARCH(1) model with intercept (i.e, model (1.1) with β0 = 0). As the second motivation of this
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paper, it is of interest to fill in the gap from a theoretical viewpoint. Compared with Hafner and

Preminger (2015), the technique developed here is much more involved due to the existence of

β0.

The third motivation of this paper comes from the invalidity of prediction in model (1.3) when

γ0 ≥ 0, where γ0 is the top Lyapunov exponent defined by

γ0 = E log(β0 + α0η
2
t ). (1.4)

Bougerol and Picard (1992a) showed that model (1.3) is stationary if and only if γ0 < 0. Note that

if Eηt = 0 and Eη2t < ∞, s2t = ω0(Eη2t ) + [α0(Eη2t ) + β0]s
2
t−1 in model (1.3). When γ0 ≥ 0,

it implies that α0(Eη2t ) + β0 > 1 and yt in model (1.3) is heteroscedastic with an exponentially

explosive variance. However, when γ0 ≥ 0, so far no consistent estimator is available for ω0 as

shown in Francq and Zakoı̈an (2012), and hence no prediction can be made in practice. Model

(1.1) avoids this dilemma due to the absence of ω0, and moreover, Section 2 below demonstrates

that except for a different scale, its sample path has a similar shape as that of model (1.3) when

γ0 ≥ 0. In view of this, model (1.1) could be more convenient than model (1.3) to study het-

eroscedasticity.

This paper gives an omnifaceted investigation of model (1.1). First, we obtain that after a

suitable renormalization, the limit of the sample path of ht or |yt| converges weakly to a geo-

metric Brownian motion regardless of the sign of γ0. This result makes a sharp difference from

those for model (1.3) in Li, Li and Wu (2014) and Li and Wu (2015). From this result, we find

that |yt| diverges to infinity or converges to zero almost surely (a.s.) at an exponential rate ac-

cording to γ0 > 0 or γ0 < 0, while |yt| oscillates randomly between zero and infinity over time

when γ0 = 0. Following the terminology in Hafner and Preminger (2015), we call model (1.1)

stable if γ0 = 0 and unstable otherwise. Second, we study the generalized quasi-maximum like-

lihood estimator (GQMLE) of unknown parameter θ0 ≡ (α0, β0)
′. It is shown that the GQMLE



5

is strongly consistent and asymptotically normal in a unified framework. Third, we consider the

estimation for γ0, and propose a t-test to check the model stability (i.e., γ0 = 0). Fourth, we

propose a portmanteau test for model checking. Simulation studies are carried out to assess the

performance of all proposed estimators and tests in finite samples. Finally, applications to the

KV-A stock return in Francq and Zakoı̈an (2012) and three major exchange rate returns during

financial crisis in years 2007-2009 demonstrate that a stable ZD-GARCH(1, 1) model is more

appropriate to capture heteroscedasticity than a non-stationary GARCH(1, 1) model.

The remainder of the paper is organized as follows. Section 2 investigates the limit of sample

path of yt in model (1.1). Section 3 studies the GQMLE with its asymptotics. Section 4 presents

the estimation and test for γ0. Section 5 proposes a portmanteau test for model checking. Simu-

lation results are reported in Section 6. Empirical examples are given in Section 7. Concluding

remarks and discussions are offered in Section 8. All of proofs are relegated to the Appendix.

2. SAMPLE PATH PROPERTIES

This section studies the sample path properties of renormalized ht and |yt| in model (1.1).

From model (1.1), we have log ht = log ht−1 + log(β0 + α0η
2
t−1), and hence

log ht =

t−1∑

i=0

log(β0 + α0η
2
i ) + log h0.

Then, the theorem below follows directly from Donsker’s Theorem in Billingsley (1999) (Theo-

rem 8.2 on p.90).

THEOREM 2.1. Suppose that (i) {ηt} is a sequence of i.i.d. random variables with P (ηt =

0) = 0 and σ2
γ0 ≡ var[log(β0 + α0η

2
t )] ∈ (0,∞); (ii) h0 is a positive random variable and in-

dependent of {ηt : t ≥ 1}. Then, as n → ∞,

h
1/

√
n

[ns]

exp(sγ0
√
n)

=⇒ exp(σγ0B(s)) in D[0, 1],
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where γ0 is defined in (1.4), ‘=⇒’ stands for weak convergence, B(s) is a standard Brownian

motion on [0, 1], and D[0, 1] is the space of functions defined on [0, 1], which are right continuous

and have left limits, endowed with the Skorokhod topology.

Furthermore, it follows that as n → ∞,

|y[ns]|2/
√
n

exp(sγ0
√
n)

=⇒ exp(σγ0B(s)) in D[0, 1].

Remark 2.1. Similar to Li and Wu (2015), the condition that ηt is i.i.d. in Theorem 2.1 can be

relaxed to the one that ηt is strictly stationary and ergodic with {log(β0 + α0η
2
t )} satisfying a

suitable invariance principle.

Remark 2.2. For model (1.3), Li and Wu (2015) proved that as n → ∞,

|y[ns]|2/
√
n

exp(sγ0
√
n)

=⇒





∞ in D[0, 1], if γ0 < 0,

exp
(
σγ0 max

0≤τ≤s
B(τ)

)
in D[0, 1], if γ0 = 0,

exp(σγ0B(s)) in D[0, 1], if γ0 > 0.

(2.1)

Thus, the above limiting result varies according to the value of γ0, and this is unlike the one in

Theorem 2.1. Intuitively, when γ0 ≥ 0, the results in Theorem 2.1 and (2.1) are less helpful for

us to make a useful formal test for hypotheses:

H0 : ω0 = 0 v.s. H1 : ω0 > 0. (2.2)

Theorem 2.1 has two direct implications. First, it implies that yt in model (1.1) is always non-

stationary. This is not the case for model (1.3), which is non-stationary if and only if γ0 ≥ 0

(see, e.g., Bougerol and Picard (1992a)). Second, it indicates that the sample path property of

yt in model (1.1) depends on the sign of γ0, and this is also the case for model (1.3) as shown

in Nelson (1990), Francq and Zakoı̈an (2012), and Li, Li and Wu (2014). Precisely, we can see

that |yt| in model (1.1) oscillates randomly between zero and infinity over time when γ0 = 0,

while |yt| either converges to zero or diverges to infinity a.s. as t → ∞, according to the case
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that γ0 < 0 or γ0 > 0, respectively. In this sense, model (1.1) is stable if γ0 = 0, and unstable

otherwise; see also Hafner and Preminger (2015). To further illustrate it, Fig.1 depicts one sample

path of {yt}200t=1 from model (1.1) with ηt ∼ N (0, 1), β0 = 0.7, and α0 = 0.3 (i.e., γ0 < 0),

0.388 (i.e., γ0 = 0), or 0.5 (i.e., γ0 > 0), respectively. Under the same setting, the sample path of

{yt}200t=1 from model (1.3) with ω0 = 0.001 or 1 is also plotted as a comparison. Fig.1 confirms

the conclusion drawn from Theorem 2.1 above and Theorems 2.1-2.2 in Li, Li and Wu (2014),

and most importantly, it exhibits that when γ0 ≥ 0, apart from a larger scale, the sample path

of yt from model (1.3) has a similar shape as the one from model (1.1). This may suggest that

when γ0 ≥ 0, it is difficult to examine hypotheses in (2.2), since ω0 only reflects the scale of

yt in model (1.3). Hafner and Preminger (2015) suggested a bootstrap-assisted likelihood ratio

(LR) test for this purpose, however our simulation study (not reported here but are available

from us) shows that this LR test does not have satisfactory power when γ0 ≥ 0. Thus, how to

test hypotheses in (2.2) remains a challenging open problem.
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Fig. 1. One sample path {yt}
200

t=1, where the columns from left to right correspond to the cases that γ0 < 0, γ0 = 0,

and γ0 > 0, respectively, and the rows from top to bottom correspond to model (1.1), model (1.3) with ω0 = 0.001,

and model (1.3) with ω0 = 1, respectively.
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3. THE GQMLE AND ITS ASYMPTOTICS

Let θ ≡ (α, β)′ ∈ Θ be the unknown parameter of model (1.1) with the true parameter θ0 =

(α0, β0)
′ ∈ Θ, where Θ is the parametric space. Assume the data sample {y1, ..., yn} is from

model (1.1). Then, as in Francq and Zakoı̈an (2013a), the generalized quasi-maximum likelihood

estimator (GQMLE) of θ0 is defined by

θ̂n,r = (α̂n,r, β̂n,r)
′ = argmin

θ∈Θ

n∑

t=1

ℓt,r(θ),

where r ≥ 0,

ℓt,r(θ) =





log {σr
t (θ)}+ |yt|r

σr
t (θ)

, if r > 0,

{log |yt| − log σt(θ)}2 , if r = 0,

and σ2
t (θ) is recursively defined by

σ2
t (θ) = αy2t−1 + βσ2

t−1(θ), t = 1, ..., n,

with the initial values y0 and σ2
0(θ). Hereafter, we set y0 = y∗0 (a user-chosen non-zero constant)

and σ2
0(θ) = 0 without loss of generality. In applications, we can always choose y∗0 be the first

nonzero observation, and then do estimation for the remaining ones.

The non-negative user-chosen number r involved in θ̂n,r indicates the used estimation method.

Particularly, when r = 2, θ̂n,r reduces to the Gaussian QMLE; and when r = 1, θ̂n,r reduces to

the Laplacian QMLE. Simulation studies in Section 6 imply that we shall choose a small (or

large) value of r when ηt is heavy-tailed (or light-tailed).

To obtain the asymptotic property of θ̂n,r, we give two assumptions below. Assumption 3.1(i)

is a regular condition for ARCH-type models, and Assumption 3.1(ii) is the identification con-

dition for θ̂n,r; see, e.g., Francq and Zakoı̈an (2013a). Assumption 3.2 is commonly used in

nonstationary ARCH-type models; see, e.g., Francq and Zakoı̈an (2012, 2013b).
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Assumption 3.1. (i) ηt is i.i.d. and η2t is non-degenerate with P (ηt = 0) = 0; (ii) E|ηt|r = 1

when r > 0, and E log |ηt| = 0 when r = 0.

Assumption 3.2. The parametric space Θ ≡ {θ : α > 0, 0 ≤ β < eγ0} is compact.

Let

κr =





4[E|ηt|2r−1]
r2

, if r > 0,

4E[(log |ηt|)2], if r = 0.

The following two theorems state the consistency and asymptotic normality of θ̂n,r, respectively.

THEOREM 3.1. If Assumptions 3.1-3.2 hold, then θ̂n,r → θ0 a.s. as n → ∞.

THEOREM 3.2. If Assumptions 3.1-3.2 hold, κr < ∞ and θ0 is an interior point of Θ, then

√
n(θ̂n,r − θ0)

d−→ N (0, κrI−1) as n → ∞,

where
d−→ stands for convergence in distribution, and

I =




1
α2

0

ν1
α0β0(1−ν1)

ν1
α0β0(1−ν1)

(1+ν1)ν2
β2

0
(1−ν1)(1−ν2)




with νi = E

(
β0

β0 + α0η2t

)i

for i = 1, 2.

Remark 3.1. From two preceding theorems, we have a unified framework on the consistency

and asymptotic normality of the GQMLE in model (1.1), regardless of the sign of γ0. However,

this is not the case for the Gaussian QMLE in model (1.3); see, e.g., Jensen and Rahbek (2004a,b)

and Francq and Zakoı̈an (2012). Particularly, it is worth noting that when γ0 = 0, an additional

assumption on the distribution of ηt, which is not necessary for us, is needed for Francq and

Zakoı̈an (2012) to establish the asymptotic normality of the Gaussian QMLE. However, this

additional assumption is hard to be verified even for ηt ∼ N (0, 1).
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Remark 3.2. By Theorem 3.2, we can do statistical inference on θ0 (e.g., the Wald test for the

linear constraint of θ0). To accomplish it, we need to estimate both κη and I. Denote the residual

η̂t,r ≡ yt/σ̂t,r, where σ̂t,r(> 0) is recursively calculated by

σ̂2
t,r = α̂n,ry

2
t−1 + β̂n,rσ̂

2
t−1,r, t = 1, ..., n,

with y0 = y∗0 and σ̂2
0,r = 0. Then, we can consistently estimate κr and I by their sample coun-

terparts based on the residuals {η̂t,r}.

Remark 3.3. In Theorem 3.2, θ0 is required to be an interior point of Θ. If θ0 can be on the

boundary of Θ (e.g., β0 = 0), we need the condition of E(η−4
t ) < ∞ for Lemma A.3 in the

Appendix, so that under the conditions of Theorem 3.2 and the mild condition that Θ contains a

hypercube, the similar argument as Francq and Zakoı̈an (2007) shows that

√
n(θ̂n,r − θ0)

d−→ λΛ as n → ∞,

where λΛ =
(
Z1 − α0ν1

β0(1−ν1)
Z2I(Z2 < 0),Z2 −Z2I(Z2 < 0)

)′
and (Z1,Z2)

′ ∼ N (0, κrI−1).

However, the condition that E(η−4
t ) < ∞ fails even for ηt ∼ N (0, 1), and hence any statistical

inference on θ0, including the estimation, Wald test, and LR test, is hardly useful in this case.

Since Theorem 3.2 rules out the case that β0 = 0, we shall consider this special case indepen-

dently. When β0 = 0, model (1.1) becomes

yt = ηt
√

ht and ht = α0y
2
t−1, t = 1, ..., n. (3.1)

This is the ARCH(1) model without intercept in Hafner and Preminger (2015). Denote Θα ⊂

(0,∞) be the parametric space of model (3.1). Then, the GQMLE of α0 in model (3.1) is

α̃n,r =





argminα∈Θα

∑n
t=2

[
r
2 log{αy2t−1}+ 1

αr/2

|yt|r
|yt−1|r

]
, if r > 0,

argminα∈Θα

∑n
t=2

[
log |yt| − 1

2 log(αy
2
t−1)

]2
, if r = 0.

Without the compactness of Θα, the asymptotical normality of α̃n,r is given below:
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THEOREM 3.3. If Assumption 3.1 holds and κr < ∞, then

√
n(α̃n,r − α0)

d−→ N (0, κrα
2
0) as n → ∞.

Remark 3.4. The proof of Theorem 3.3 is much simpler than that of Theorem 3.2, since an ex-

plicit expression of α̃n,r is available in this case. Particularly, when r = 2, Hafner and Preminger

(2015) have obtained the same result but in an indirect way.

Remark 3.5. Besides the GQMLE, one may consider many other estimation methods for mod-

el (1.1); see, e.g., Peng and Yao (2003), Berkes and Horváth (2004), Fan, Qi and Xiu (2014), and

Zhu and Li (2015a). Moreover, the condition that κr < ∞ is necessary for the asymptotic nor-

mality of the GQMLE, one may be of interest to study the GQMLE when κr = ∞; see, e.g.,

Hall and Yao (2003). These are two promising directions for the future study.

As shown in Remark 3.3, the Wald and LR tests are not suitable to detect whether β0 = 0 in

model (1.1). One may try the score test as in Engle (1982) for this purpose. However, this is not

suitable as well. To see it clearly, we consider the limiting distribution of the score
√
nΠn,r(θ̃n,r)

under the constraint that β0 = 0, where

Πn,r(θ) =
1

n

n∑

t=2

∂ℓt,r(θ)

∂β
and θ̃n,r = (α̃n,r, 0).

A direct calculation shows that

√
nΠn,r(θ̃n,r) =

(
r

2α0n

n∑

t=2

1

η2t−1α̃
r/2
n,r

)
[
√
n(α̃r/2

n,r − α
r/2
0 )]

+

(
rα

r/2
0

2α0α̃
r/2
n,r

)[
1√
n

n∑

t=2

1− |ηt|r
η2t−1

]
for r > 0.

Hence, the limiting distribution of
√
nΠn,r(θ̃n,r) exists only when E(η−4

t ) < ∞, which fails

even for ηt ∼ N (0, 1). Similarly, the conclusion holds when r = 0. In Section 5, a portmanteau

test is available to detect whether β0 = 0 in model (1.1).
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4. INFERENCE OF THE LYAPUNOV EXPONENT

Generally, γ0 plays a key role in determining stationarity or stability of nonlinear time series

models. In model (1.3), there exists a strictly stationary solution if and only if γ0 < 0; see Nel-

son (1990) and Bougerol and Picard (1992a,b). Similarly, γ0 plays an equally important role in

determining the stability of model (1.1). Thus, it is necessary to do statistical inference for γ0.

From the definition of γ0 in (1.4), a natural plug-in estimator of γ0 is defined as

γ̂n,r =
1

n

n∑

t=1

log(β̂n,r + α̂n,rη̂
2
t,r).

Particularly, γ̂n,r admits a simple form for model (3.1):

γ̂n,r =
1

n

n∑

t=1

[
log(y2t )− log(y2t−1)

]
=

2

n
(log |yn| − log |y0|) .

Interestingly, the preceding definition of γ̂n,r is independent to the estimation method, and it has

been used in Hafner and Preminger (2015). Furthermore, we have the following theorem:

THEOREM 4.1. If the conditions in Theorem 3.2 are satisfied, then as n → ∞,

(i) γ̂n,r → γ0 in probability;

(ii)
√
n(γ̂n,r − γ0)

d−→ N (0, σ2
γ0),

where σ2
γ0 is defined in Theorem 2.1. Moreover, if Assumption 3.1(i) holds and σ2

γ0 ∈ (0,∞), the

same conclusion holds for model (3.1).

Remark 4.1. Although γ̂n,r depends on r (i.e., the estimation method), its asymptotic variance

is free of that. Intuitively, this suggests that the performance of γ̂n,r and its related stable test

defined below is less affected by the estimation method. Simulation studies in Section 6 will

confirm this statement.

Since model (1.1) is stable if and only if γ0 = 0, it is of interest to consider hypotheses:

H0 : γ0 = 0 against H1 : γ0 ̸= 0. (4.1)
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From Theorem 4.1, we propose a t-type test statistic Tn,r to detect H0 in (4.1), where

Tn,r =
√
n
γ̂n,r
σ̂η,r

with σ̂2
η,r =

1
n

∑n
t=1{log(β̂n,r + α̂n,rη̂

2
t,r)}2 − γ̂2n,r. Note that for model (3.1), σ̂2

η,r admits a sim-

ple form: σ̂2
η,r =

4
n

∑n
t=1{log |yt| − log |yt−1|}2 − 4

n2 (log |yn| − log |y0|)2, and hence Tn,r is

independent to the estimation method. Under H0, it is not hard to see that Tn,r
d→ N (0, 1) as

n → ∞. So, at the significance level α ∈ (0, 1), H0 in (4.1) is rejected if |Tn,r| > |Φ−1(α/2)|,

where Φ(·) is the cdf of N (0, 1); otherwise, it is not rejected.

5. MODEL DIAGNOSTIC CHECKING

This section proposes a portmanteau test to check the adequacy of model (1.1). We first define

the lag-k autocorrelation function (ACF) of the s-th power of the absolute residuals {|η̂t,r|s} as

ρ̂r,s(k) =

∑n
t=k+1(|η̂t,r|s − âr,s)(|η̂t−k,r|s − âr,s)∑n

t=1(|η̂t,r|s − âr,s)2
,

where r ≥ 0, s > 0, k is a positive integer, and

âr,s =
1

n

n∑

t=1

|η̂t,r|s.

Next, we introduce the following notations:

as = E|ηt|s, bs = var(|ηt|s), ps(k) =
(
0,

νk−1
1

1− ν1
E

[ |ηt|s − as
β0 + α0η2t

])
,

Vr,s =





(p′s(1), p
′
s(2), · · · , p′s(m))′

(
2
rI−1

)
, if r > 0,

(p′s(1), p
′
s(2), · · · , p′s(m))′

(
2I−1

)
, if r = 0,

Wr,s =





(p′s(1), p
′
s(2), · · · , p′s(m))′E[(|ηt|s − as)(|ηt|r − 1)], if r > 0,

(p′s(1), p
′
s(2), · · · , p′s(m))′E[(|ηt|s − as) log |ηt|], if r = 0.

Let m be a given positive integer. The following theorem is crucial to derive the limiting distri-

bution of our portmanteau test.
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THEOREM 5.1. Suppose that bs < ∞, br < ∞, and ∥Wr,s∥ < ∞ for given r ≥ 0 and s > 0.

If model (1.1) is correctly specified and the conditions in Theorem 3.2 hold, then

√
n(ρ̂r,s(1), ..., ρ̂r,s(m))′

d−→ N (0,Σr,s(m)) as n → ∞,

where

Σr,s(m) =
1

b2s
(Im,−Vr,s)




b2sIm, Wr,s

W ′
r,s brI


 (Im,−Vr,s)

′

and Im is the m×m identity matrix. Moreover, if model (3.1) is correctly specified and Assump-

tion 3.1(i) holds, then the same conclusion holds with Σr,s(m) = Im.

For model (1.1) with β0 > 0, let Σ̂r,s(m) be the sample counterpart of Σr,s(m), based on the

residuals {η̂t,r}nt=1; and for model (1.1) with β0 = 0 (i.e., model (3.1)), let Σ̂r,s(m) = Im. Then,

our portmanteau test is defined by

Qr,s(m) := n(n+ 2)

(
ρ̂r,s(1)

n− 1
, ...,

ρ̂r,s(m)

n−m

)
[Σ̂r,s(m)]−1

(
ρ̂r,s(1)

n− 1
, ...,

ρ̂r,s(m)

n−m

)′
.

Here, m is generally taken 6 or 12 in applications. When r = s = 2, Qr,s(m) is defined in the

same way as the portmanteau test in Li and Mak (1994). When r = 2 (or 1) and s = 1, Qr,s(m)

is analogous to the portmanteau test Q2(M) in Li and Li (2005) (or Qr in Li and Li (2008)). We

relax the choices of r and s so that Qr,s(m) with small (or large) r and s is expected to have a

good performance when ηt is heavy-tailed (or light-tailed). Our portmanteau test Qr,s(m) is the

first formal diagnostic checking tool for non-stationary ARCH-type models in the literature. For

more discussions on the diagnostic checking of stationary ARCH-type models, we refer to Li

(2004), Escanciano (2007, 2008), Ling and Tong (2011), and Chen and Zhu (2015).

By Theorem 5.1, we have Qr,s(m)
d−→ χ2

m as n → ∞. Thus, at the significance level α ∈

(0, 1), we conclude that model (1.1) is not adequate if Qr,s(m) > Ψ−1
m (1− α), where Ψd(·) is

the cdf of χ2
d; otherwise, it is adequate.
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In the end, it is worth noting that the estimation effect does not affect the limiting distribution

of Qr,s(m) for model (3.1), and this is different from most of portmanteau tests in times series

analysis; see, e.g., Zhu and Li (2015b), Zhu (2016) and references therein for more discussions

in this context. For model (1.1) with β0 > 0, the estimation effect is involved into the limiting

distribution of Qr,s(m), but interestingly, if α0/β0 ≈ 0 (as often observed in applications), it is

not hard to see that Σ̂r,s(m) ≈ Im due the the fact that Vr,s ≈ 0, and hence the estimation effect

is negligible in this case.

6. SIMULATION STUDIES

In this section, we first assess the finite-sample performance of θ̂n,r, γ̂n,r, and Tn,r. We gener-

ate 1000 replications from the following ZD-GARCH(1, 1) model:

yt = ηt
√

ht, ht = α0y
2
t−1 + 0.9ht−1, (6.1)

where ηt is taken as N (0, 1), the standardized Student’s t5 (st5) or the standardized Student’s t3

(st3) such that Eη2t = 1. Here, we fix β0 = 0.9, and choose α0 as in Table 1, where the values of

α0 correspond to the cases of γ0 > 0, γ0 = 0, and γ0 < 0, respectively. For the indicator r, we

choose it to be 2, 1, 0.5, and 0. Since each GQMLE has a different identification condition, θ̂n,r

has to be re-scaled for θ0 in model (6.1), and it is defined as

θ̂n,r =

(
αn,r

(E|ηt|r)2/r
, βn,r

)
for r > 0 and θ̂n,r =

(
αn,r

exp(2E log |ηt|)
, βn,r

)
for r = 0,

where θn,r is the GQMLE calculated from the data sample, and the true values of (E|ηt|r)2/r

and exp(2E log |ηt|) are used.

Tables 2-4 report the empirical bias, empirical standard deviation (SD), and the average of the

asymptotic standard deviations (AD) of θ̂n,r and γ̂n,r when the sample size n = 500 and 1000.

The ADs of θ̂n,r and γ̂n,r are evaluated from the asymptotic covariances in Theorems 3.2 and 4.1,

respectively. From these tables, we find that (i) except θ̂n,2 in the case of ηt ∼ st3, all GQMLEs
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Table 1. The values of the pair (α0, γ0) when β0 = 0.9.

ηt ∼ N (0, 1) ηt ∼ st5 ηt ∼ st3

α0 γ0 α0 γ0 α0 γ0

0.1 -0.0082 0.1 -0.0152 0.1 -0.0300

0.1096508 0.0000 0.1201453 0.0000 0.1508275 0.0000

0.2 0.0706 0.2 0.0548 0.2 0.0263

Table 2. Summary for θ̂n,r and γ̂n,r when γ0 < 0.

r = 2 r = 1 r = 0.5 r = 0

ηt n α̂n,r β̂n,r γ̂n,r α̂n,r β̂n,r γ̂n,r α̂n,r β̂n,r γ̂n,r α̂n,r β̂n,r γ̂n,r

N (0, 1) 500 Bias -0.0051 0.0047 0.0001 -0.0047 0.0047 0.0001 -0.0028 0.0036 0.0000 -0.0021 0.0038 0.0001

SD 0.0235 0.0199 0.0055 0.0246 0.0208 0.0055 0.0278 0.0233 0.0055 0.0373 0.0310 0.0056

AD 0.0227 0.0187 0.0052 0.0244 0.0200 0.0052 0.0278 0.0226 0.0053 0.0362 0.0292 0.0053

1000 Bias -0.0032 0.0030 0.0001 -0.0028 0.0028 0.0001 -0.0011 0.0019 0.0001 -0.0007 0.0021 0.0001

SD 0.0167 0.0139 0.0039 0.0176 0.0147 0.0039 0.0199 0.0165 0.0039 0.0262 0.0215 0.0039

AD 0.0163 0.0134 0.0038 0.0175 0.0144 0.0038 0.0199 0.0162 0.0038 0.0261 0.0211 0.0038

st5 500 Bias -0.0045 0.0031 -0.0002 -0.0048 0.0044 -0.0002 -0.0025 0.0030 -0.0002 -0.0012 0.0022 -0.0002

SD 0.0391 0.0268 0.0066 0.0268 0.0198 0.0066 0.0278 0.0205 0.0066 0.0345 0.0254 0.0066

AD 0.0321 0.0229 0.0064 0.0258 0.0186 0.0064 0.0271 0.0193 0.0065 0.0336 0.0239 0.0065

1000 Bias -0.0026 0.0015 0.0002 -0.0018 0.0020 0.0002 -0.0005 0.0014 0.0002 -0.0007 0.0018 0.0002

SD 0.0264 0.0189 0.0047 0.0191 0.0138 0.0047 0.0197 0.0141 0.0047 0.0247 0.0178 0.0047

AD 0.0239 0.0172 0.0047 0.0188 0.0135 0.0047 0.0194 0.0138 0.0047 0.0239 0.0170 0.0047

st3 500 Bias 2.2728 -0.0015 0.0001 -0.0054 0.0043 0.0000 -0.0045 0.0033 0.0000 -0.0019 0.0028 0.0000

SD 71.572 0.0547 0.0080 0.0339 0.0193 0.0080 0.0279 0.0166 0.0080 0.0325 0.0189 0.0080

AD 0.8192 0.0276 0.0073 0.0300 0.0169 0.0071 0.0273 0.0155 0.0072 0.0325 0.0181 0.0073

1000 Bias 0.0078 -0.0022 -0.0001 -0.0030 0.0023 -0.0001 -0.0023 0.0015 -0.0001 0.0000 0.0011 -0.0001

SD 0.1333 0.0382 0.0055 0.0245 0.0138 0.0055 0.0197 0.0114 0.0055 0.0225 0.0128 0.0055

AD 0.0495 0.0236 0.0054 0.0220 0.0124 0.0052 0.0197 0.0112 0.0053 0.0233 0.0130 0.0053

†The smallest value of AD for θ̂n,r is in boldface.

have a small bias, and their SDs and ADs are close to each other; (ii) when ηt is light-tailed (i.e.,

ηt ∼ N (0, 1)), θ̂n,2 (or θ̂n,0) is the best (or worst) estimator in terms of the minimized value of
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Table 3. Summary for θ̂n,r and γ̂n,r when γ0 = 0.

r = 2 r = 1 r = 0.5 r = 0

ηt n α̂n,r β̂n,r γ̂n,r α̂n,r β̂n,r γ̂n,r α̂n,r β̂n,r γ̂n,r α̂n,r β̂n,r γ̂n,r

N (0, 1) 500 Bias -0.0050 0.0045 -0.0001 -0.0049 0.0045 -0.0001 -0.0030 0.0035 -0.0001 -0.0021 0.0036 0.0000

SD 0.0247 0.0205 0.0060 0.0257 0.0214 0.0060 0.0290 0.0240 0.0060 0.0400 0.0329 0.0061

AD 0.0242 0.0196 0.0056 0.0260 0.0210 0.0056 0.0295 0.0237 0.0057 0.0385 0.0307 0.0057

1000 Bias -0.0029 0.0028 0.0003 -0.0027 0.0029 0.0003 -0.0010 0.0020 0.0003 -0.0007 0.0024 0.0003

SD 0.0184 0.0152 0.0042 0.0194 0.0160 0.0042 0.0217 0.0176 0.0042 0.0284 0.0228 0.0042

AD 0.0174 0.0141 0.0041 0.0187 0.0151 0.0041 0.0212 0.0170 0.0041 0.0278 0.0221 0.0041

st5 500 Bias -0.0056 0.0042 0.0004 -0.0054 0.0053 0.0004 -0.0030 0.0041 0.0004 -0.0011 0.0030 0.0004

SD 0.0440 0.0300 0.0078 0.0316 0.0228 0.0078 0.0322 0.0230 0.0078 0.0425 0.0299 0.0078

AD 0.0368 0.0253 0.0073 0.0297 0.0206 0.0073 0.0310 0.0213 0.0074 0.0385 0.0263 0.0075

1000 Bias -0.0032 0.0013 -0.0001 -0.0022 0.0021 -0.0001 -0.0004 0.0013 -0.0002 -0.0004 0.0015 -0.0001

SD 0.0297 0.0207 0.0052 0.0215 0.0153 0.0052 0.0223 0.0157 0.0052 0.0275 0.0193 0.0052

AD 0.0273 0.0190 0.0053 0.0215 0.0149 0.0053 0.0223 0.0153 0.0054 0.0275 0.0189 0.0054

st3 500 Bias 0.0162 -0.0020 0.0008 -0.0045 0.0044 0.0008 -0.0041 0.0037 0.0007 -0.0002 0.0033 0.0007

SD 0.1958 0.0543 0.0097 0.0472 0.0245 0.0097 0.0408 0.0217 0.0096 0.0491 0.0253 0.0096

AD 0.0975 0.0364 0.0096 0.0431 0.0219 0.0093 0.0386 0.0199 0.0094 0.0457 0.0230 0.0095

1000 Bias 0.3294 -0.0034 0.0003 -0.0029 0.0024 0.0003 -0.0026 0.0019 0.0002 0.0003 0.0019 0.0002

SD 10.068 0.0526 0.0070 0.0324 0.0164 0.0070 0.0282 0.0147 0.0070 0.0340 0.0174 0.0070

AD 0.3720 0.0301 0.0070 0.0311 0.0159 0.0067 0.0276 0.0143 0.0068 0.0326 0.0165 0.0068

†The smallest value of AD for θ̂n,r is in boldface.

AD; (iii) when ηt is heavy-tailed (i.e., ηt ∼ st3 or st5), θ̂n,1 or θ̂n,0.5 has the smallest value of AD,

while θ̂n,2 has a larger value of AD than θ̂n,0 if ηt ∼ st5, and it is even not applicable if ηt ∼ st3;

(iv) the performance of γ̂n,r seems to be unchanged for all choices of r, even when θ̂n,2 is not

asymptotically normal in the case of ηt ∼ st3.

Fig. 2 plots the power of Tn,1 in terms of different values of α0 with n = 500 and 1000, where

the sizes of Tn,1 correspond to the choices of α0 in Table 1 for the case of γ0 = 0. Here, we shall

mention that the power of Tn,r for other choices of r is almost the same as the one of Tn,1, and
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Table 4. Summary for θ̂n,r and γ̂n,r when γ0 > 0.

r = 2 r = 1 r = 0.5 r = 0

ηt n α̂n,r β̂n,r γ̂n,r α̂n,r β̂n,r γ̂n,r α̂n,r β̂n,r γ̂n,r α̂n,r β̂n,r γ̂n,r

N (0, 1) 500 Bias -0.0092 0.0069 -0.0007 -0.0098 0.0076 -0.0007 -0.0076 0.0068 -0.0007 -0.0059 0.0069 -0.0006

SD 0.0375 0.0275 0.0096 0.0385 0.0283 0.0096 0.0429 0.0312 0.0096 0.0575 0.0413 0.0096

AD 0.0364 0.0264 0.0089 0.0389 0.0282 0.0089 0.0441 0.0317 0.0089 0.0576 0.0411 0.0089

1000 Bias -0.0036 0.0032 0.0002 -0.0035 0.0034 0.0002 -0.0015 0.0027 0.0002 -0.0018 0.0037 0.0003

SD 0.0257 0.0190 0.0063 0.0276 0.0205 0.0063 0.0316 0.0233 0.0063 0.0426 0.0313 0.0063

AD 0.0263 0.0190 0.0065 0.0281 0.0203 0.0065 0.0319 0.0228 0.0065 0.0416 0.0297 0.0065

st5 500 Bias -0.0034 0.0016 0.0003 -0.0046 0.0046 0.0003 -0.0035 0.0046 0.0003 -0.0026 0.0044 0.0003

SD 0.0614 0.0376 0.0108 0.0459 0.0288 0.0108 0.0476 0.0298 0.0108 0.0613 0.0381 0.0108

AD 0.0548 0.0336 0.0106 0.0445 0.0274 0.0105 0.0460 0.0282 0.0105 0.0568 0.0347 0.0105

1000 Bias -0.0014 0.0001 0.0002 -0.0015 0.0021 0.0002 -0.0002 0.0019 0.0002 0.0002 0.0020 0.0002

SD 0.0479 0.0284 0.0076 0.0326 0.0202 0.0076 0.0331 0.0205 0.0076 0.0402 0.0247 0.0076

AD 0.0412 0.0252 0.0076 0.0320 0.0197 0.0075 0.0330 0.0201 0.0076 0.0407 0.0248 0.0076

st3 500 Bias 0.0326 -0.0034 0.0004 -0.0054 0.0049 0.0004 -0.0053 0.0044 0.0004 0.0013 0.0034 0.0004

SD 0.6593 0.0661 0.0118 0.0638 0.0292 0.0117 0.0514 0.0255 0.0117 0.0615 0.0296 0.0117

AD 0.1203 0.0418 0.0113 0.0543 0.0256 0.0109 0.0488 0.0233 0.0110 0.0582 0.0271 0.0111

1000 Bias 0.0087 -0.0028 -0.0004 -0.0045 0.0027 -0.0004 -0.0043 0.0024 -0.0004 -0.0005 0.0024 -0.0004

SD 0.1959 0.0487 0.0082 0.0428 0.0202 0.0082 0.0369 0.0177 0.0082 0.0425 0.0201 0.0082

AD 0.0843 0.0343 0.0080 0.0387 0.0185 0.0078 0.0347 0.0167 0.0079 0.0411 0.0194 0.0079

†The smallest value of AD for θ̂n,r is in boldface.

hence it is not reported here. From Fig. 2, we can see that the size of Tn,1 is precise especially

for large n, and the power of Tn,1 increasing with n is satisfactory for all choices of ηt. Overall,

our proposed estimators (θ̂n,r and γ̂n,r) and test (Tn,r) have a good finite-sample performance.

Next, we assess the finite-sample performance of Qr,s(m). We generate 1000 replications

from the following higher-order ZD-GARCH model:

yt = ηt
√

ht, ht = α0y
2
t−1 + z0y

2
t−2 + 0.9ht−1, (6.2)
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Fig. 2. The power of Tn,1 for ηt ∼ N (0, 1) (left panel), st5 (middle panel) and st3 (right panel) in terms of differ-

ent values of α0, where the sample size n = 500 (dash line) and 1000 (dot line), and the solid line stands for the

significance level α = 5%.

where ηt and α0 are chosen as in model (6.1), and z0 = 0.0, 0.1, · · · , 0.7. For each replica-

tion, we use Qr,s(6) to detect whether model (6.1) is adequate to fit the generated data, where

(r, s) = (2, 2), (1, 2), (0, 2), (1, 1), (0, 1) or (0.5, 0.5). Fig. 3 plots the power of Qr,s(6) in terms

of different choices of γ0 (or α0 equivalently) with n = 500 and 1000, and the sizes of Qr,s(6)

correspond to the case that z0 = 0.0. From this figure, we can see that (i) each Qr,s(6) has a

precise size, although Qr,s(6) with s = 2 is not valid in the case of ηt ∼ st3; (ii) when ηt is light-

tailed (e.g., ηt ∼ N (0, 1)), Qr,s(6) with all choices of (r, s) except that (r, s) = (0.5, 0.5) has

almost the same power performance; (iii) when ηt is heavy-tailed (e.g., ηt ∼ st5 or st3), Qr,s(6)

with small values of s (e.g., Q1,1(6), Q0,1(6), and Q0.5,0.5(6)) has a much better power perfor-

mance than that with large values of s (e.g., Q2,2(6), Q1,2(6), and Q0,2(6)). Thus, Qr,s(m) has

the ability to detect the mis-specification of model (1.1) in the higher-order term.

Moreover, we are of interest to see whether Qr,s(m) can detect the mis-specification of model

(1.1) in the drift term. We generate 1000 replications from the following GARCH(1, 1) model:

yt = ηt
√

ht, ht = z0 + α0y
2
t−1 + 0.9ht−1, (6.3)
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Fig. 3. The power of Q2,2(6) (circle line), Q1,2(6) (plus line), Q0,2(6) (star line), Q1,1(6) (cross line), Q0,1(6)

(square line) and Q0.5,0.5(6) (diamond line) for ηt ∼ N (0, 1) (top panels), st5 (middle panels), and st3 (bottom

panels) in terms of three different choices of γ0, where the data sample is generated from model (6.2) with the sample

size n = 500 (dash line) and 1000 (dot line), and the solid line stands for the significance level α = 5%.

where ηt and α0 are chosen as in model (6.1), and z0 = 0.0, 0.02, · · · , 0.1. For each replication,

we use Qr,s(6) to detect whether model (6.1) is adequate to fit the generated data, where the

values of (r, s) are chosen as before. Fig. 4 plots the power of Qr,s(6), and the sizes of Qr,s(6)

correspond to the case that z0 = 0.0. From this figure, we can see that (i) each Qr,s(6) has a

precise size, although Qr,s(6) with s = 2 is not valid in the case of ηt ∼ st3; (ii) when ηt is

light-tailed (e.g., ηt ∼ N (0, 1)), Qr,s(6) with large values of s (e.g., s = 2) has a much better
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Fig. 4. The power of Q2,2(6) (circle line), Q1,2(6) (plus line), Q0,2(6) (star line), Q1,1(6) (cross line), Q0,1(6)

(square line) and Q0.5,0.5(6) (diamond line) for ηt ∼ N (0, 1) (top panels), st5 (middle panels), and st3 (bottom

panels) in terms of three different choices of γ0, where the data sample is generated from model (6.3) with the sample

size n = 500 (dash line) and 1000 (dot line), and the solid line stands for the significance level α = 5%.

performance of that with small values of s (e.g., s = 1 or 0.5), and for a fixed choice of s, a

smaller value of r will lead to a better power performance of Qr,s(6); (iii) when ηt is heavy-

tailed (e.g., ηt ∼ st5 or st3), the power performance of Qr,s(6) for s = 2 or 1 becomes better

when the value of r becomes smaller; (iv) Q0.5,0.5(6) has the worst power performance in all

examined cases; (v) the performance of each portmanteau test becomes worse when ηt becomes

more heavy-tailed, especially when γ0 > 0; (vi) the power of each portmanteau test may not
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increase with the value of z0, and this is probably because the positive z0 only reflects the scale

of yt in model (6.3). In general, it is reasonable to conclude that Qr,s(m) has a desirable power to

detect the mis-specification in the drift term especially for light-tailed ηt and the cases of γ0 ≤ 0.

7. APPLICATIONS

7·1. Application to stock returns

This subsection restudies the daily stock data of Monarch Community Bancorp (NasdaqCM:

MCBF), KV Pharmaceutical (NYSE: KV-A), Community Bankers Trust (AMEX: BTC), and

China MediaExpress (NasdaqGS: CCME) in Francq and Zakoı̈an (2012). The log-return (×100)

of each stock data is non-stationary, and it was fitted by a non-stationary model (1.3) with the

Gaussian QMLE in their paper. Fig. 5 plots the Hill’s estimators {Hn(k)}100k=10 of the residuals

from each fitted model (1.3) in Francq and Zakoı̈an (2012), where the Hill’s estimator Hn(k) of

any sequence {zt}nt=1 is defined by

Hn(k) =

[
1

k

k∑

i=1

log
z(n−i)

z(n−k)

]−1

with {z(t)}nt=1 being the ascending order statistics of {zt}nt=1, and k being a given positive inte-

ger. Clearly, Fig. 5 implies that ηt in each fitted model (1.3) has a finite second moment but an

infinite fourth moment. Hence, the results in Francq and Zakoı̈an (2012) based on the Gaussian

QMLE may not be reliable.

In this paper, we are of interest to see whether model (1.1) is able to fit these stock returns

adequately. Fig. 6 plots the p-values of Q1,1(m) and Q0.1,1(m) for m = 1, 2, · · · , 20. From this

figure, we can see that model (1.1) is adequate to fit the KV-A return, and so we can fit this stock
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Fig. 5. Hill’s estimators {Hn(k)}
100

k=10 for the residuals of each fitted model (1.3) in Francq and Zakoı̈an (2012).

return by

yt = ηt
√

ht and ht = 0.0588y2t−1 + 0.9081ht−1, (7.1)

(0.0135) (0.0167)

where model (7.1) is estimated by the GQMLE method with r = 1, the standard deviations of

this estimator θ̂n,1 are in open parentheses, the estimate of E|ηt| is 0.9998, and the value of

Akaike Information Criterion (AIC) is 6433.1. Based on the residuals {η̂t,1}, a plot of Hill’s

estimators {Hn(k)}100k=10 (not shown here for saving space) suggests that the tail index of ηt in

model (7.1) lines between 2.2 and 2.5. Moreover, the value of stable test statistic Tn,1 is 0.934,

and so there is no statistical evidence against the hypothesis that model (7.1) is stable. Also, the

estimate of α0var(ηt) + β0 is 1.0958, and this implies that the KV-A return is heteroscedastic

with an slightly exponentially explode variance. As a comparison, we also fit the KV-A return

by model (1.3) with the same estimation method, and find that the fitted model (1.3) is non-

stationary and its value of AIC is 6423.2, which is only 0.15% less than the one in model (7.1).

Hence, in consideration of the inconsistency estimate of the drift term, a stable model (1.1) is

more appropriate than a non-stationary model (1.3) to fit the KV-A return.
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For the remaining three stock returns, Fig. 6 shows that model (1.1) can not fit them adequately,

and we expect that model (1.3) with a robust estimation method can do it well.
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Fig. 6. The plot of p-values of Q1,1(m) (circle line) and Q0.1,1(m) (plus line) for each stock return, where the solid

line stands for the significance level α = 5%.

7·2. Application to exchange rate returns

This subsection studies the daily exchange rates of United States Dollars (USD) to Chinese

Yuan (CNY), Euro (EUR), and British Pound (GBP) from January 2, 2007 to December 31,

2009, where each of data has in total 758 observations. We are of interest to see whether model

(1.1) can fit the log-return (×100) of each exchange rate data. Here, since USD/CNY return

exhibits some correlations in its conditional mean, it has been filtered by an ARMA(2, 2) model

with the LADE method in Zhu and Ling (2015). Fig. 7 plots the p-values of Q1,2(m), Q0.1,2(m),

Q1,1(m), and Q0.1,1(m) for m = 1, 2, · · · , 20. From this figure, we can see that model (1.1) can

fit each exchange rate return adequately, although it is marginally inadequate to fit the USD/CNY

return implied by the p-values of Q1,2(m) and Q1,1(m) at lags m = 3, 11, and 13.

Table 5 reports the estimation results based on θ̂n,1 for each exchange rate return. From this ta-

ble, we find that each fitted model (1.1) is stable by looking at the values of Tn,1. Meanwhile, the

estimated value of α0var(ηt) + β0 for each return is slightly larger than 1, and it implies that each
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Fig. 7. The plot of p-values of Q1,2(m) (star line), Q0.1,2(m) (cross line), Q1,1(m) (circle line), and Q0.1,1(m) (plus

line) for each exchange rate return, where the solid line stands for the significance level α = 5%.

Table 5. Estimation results based on θ̂n,1 for each exchange rate return

Log-return Series (×100)

USD/CNY USD/EUR USD/GBP

model (1.1) model (1.3) model (1.1) model (1.3) model (1.1) model (1.3)

ω̂n,1 2.4e-5 0.0013 0.0013

(1.4e-5) (0.0008) (0.0010)

α̂n,1 0.1011 0.1295 0.0364 0.0325 0.0390 0.0371

(0.0216) (0.0281) (0.0093) (0.0097) (0.0095) (0.0105)

β̂n,1 0.8499 0.7990 0.9451 0.9428 0.9420 0.9379

(0.0242) (0.0315) (0.0134) (0.0158) (0.0134) (0.0164)

γ̂n,1 0.0029 -0.0163 0.0036 -0.0045 0.0033 -0.0036

(0.0106) (0.4292) (0.0034) (0.1595) (0.0037) (0.1731)

Tn,1 0.2747 -1.0455 1.0429 -0.7722 0.9025 -0.5766

AIC -1618.4 -1622.0 1440.8 1440.3 1582.5 1582.9

v1 0.9999 1.0000 0.9995 1.0000 0.9999 1.0000

v2 1.0844 1.1030 1.0088 1.0000 1.0095 1.0021

† The standard deviations of θ̂n,1 and γ̂n,1 are in open parentheses, and v1 and v2 are the sample values

of E|ηt| and α0var(ηt) + β0 based on the residuals, respectively. For model (1.3), Tn,1 is calculated

analogously as in Francq and Zakoı̈an (2012). At the significance level 5%, model (1.1) is unstable if

|Tn,1| > 1.96, and model (1.3) is stationary if Tn,1 < −1.65.
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return is heteroscedastic. This is in accordance with the visual evidence in Fig. 8, where along

the sample path, the USD/CNY return has a seeming decreasing volatility, and the USD/EUR

or USD/GBP return has a seeming increasing volatility. Moreover, a plot of Hill’s estimators

{Hn(k)}100k=10 in Fig. 9 suggests that ηt in fitted model (1.1) has a finite second moment but an

infinite fourth moment for USD/CNY return, while it has a finite fourth moment for USD/EUR

and USD/GBP returns.

As a comparison, we also fit each exchange rate return by model (1.3), and the related re-

sults are given in Table 5. From the values of Tn,1, we find that each fitted model (1.3) is non-

stationary, and hence the values of ω̂n,1 and its standard deviation for fitted model (1.3) may be

misleading, since ω̂n,1 is inconsistent according to a similar argument as Francq and Zakoı̈an

(2012). Moreover, we find that model (1.1) and model (1.3) have very close values of AIC. In

view of all of these, it is reasonable to conclude that model (1.1) is more appropriate than mod-

el (1.3) to fit each exchange rate return. Among years 2007-2009, the financial crisis happened

so that most of exchange rate return data tend to be slightly heteroscedastic over time, and this

might lead to the validity of model (1.1) in fitting each heteroscedastic return data.
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Fig. 8. The log-returns (×100) of three daily exchange rates from January 2, 2007 to December 31, 2009.
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Fig. 9. Hill’s estimators {Hn(k)}
100

k=10 for the residuals of each fitted model (1.1) in Table 5.

8. CONCLUDING REMARKS AND DISCUSSIONS

This paper proposes a ZD-GARCH(1, 1) model to study conditional heteroscedasticity and

heteroscedasticity together. Unlike the classical GARCH(1, 1) model, ZD-GARCH(1, 1) model

is always non-stationary, but interestingly when γ0 = 0, it is stable with its sample path oscil-

lating randomly between zero and infinity over time. Moreover, this paper studies the GQMLE

of ZD-GARCH(1, 1) model, and establishes its strong consistency and asymptotic normality, re-

gardless of the sign of γ0. Based on the GQMLE, an estimator for γ0, a test for stability, and a

portmanteau test for model checking are all constructed. Simulation studies reveal that all pro-

posed estimators and tests have a good finite sample performance. Applications demonstrate that

a stable ZD-GARCH(1, 1) model is more appropriate than a non-stationary GARCH(1, 1) model

to fit the KV-A stock return in Francq and Zakoı̈an (2012) and three major exchange rate returns

during financial crisis in years 2007-2009.

It is worth noting that ZD-GARCH(1, 1) model is most likely stable in applications. This

is not out of expectation, since only the stable ZD-GARCH(1, 1) model has a desirable sam-

ple path which is close to the often observed data track in the real world. Comparing with the

non-stationary GARCH(1, 1) model, the stable ZD-GARCH(1, 1) model has the same ability
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to capture heteroscedasticity, and most importantly, it avoids the estimation for the drift-term,

which is the troublesome for the non-stationary GARCH(1, 1) model.

The idea of setting drift term being zero can be easily applied to many other conditionally het-

eroscedastic models. However, the exploration of the corresponding properties of probabilistic

structure and statistical inference is not trivial. Thus, considering the complexity of the extend-

ed heteroscedastic model, we will keep using ZD-GARCH(1, 1) model as a first step of intro-

ducing the phenomenon of “zero-drift”. Although some readers might prefer to consider more

comprehensive zero-drift conditionally heteroscedastic models, we hope that such readers will

nonetheless find that our analysis in this paper is still helpful and stimulating.

APPENDIX: PROOFS OF THEOREMS

Define five [0,∞]-valued processes

vt(θ) =

∞∑

i=1

αη2t−i

β0 + α0η2t−i

i−1∏

j=1

β

β0 + α0η2t−j

,

dαt (θ) =
∞∑

i=1

η2t−i

β0 + α0η2t−i

i−1∏

j=1

β

β0 + α0η2t−j

,

dβt (θ) =

∞∑

i=2

(i− 1)αη2t−i

β(β0 + α0η2t−i)

i−1∏

j=1

β

β0 + α0η2t−j

,

ναβt (θ) =
∞∑

i=2

(i− 1)η2t−i

β(β0 + α0η2t−i)

i−1∏

j=1

β

β0 + α0η2t−j

,

νββt (θ) =
∞∑

i=3

(i− 1)(i− 2)αη2t−i

β2(β0 + α0η2t−i)

i−1∏

j=1

β

β0 + α0η2t−j

with the convention
∏j−1

k=1
= 1 when j ≤ 1. Let Θ∗

0 be any compact subset of Θ. Denote α = inf{α|θ ∈
Θ∗

0}, β = inf{β|θ ∈ Θ∗
0}, ᾱ = sup{α|θ ∈ Θ∗

0}, and β̄ = sup{β|θ ∈ Θ∗
0}.

LEMMA A.1. Suppose that Assumptions 3.1(i) and 3.2 hold. Then, for any θ ∈ Θ, vt(θ) is stationary

and ergodic. Moreover, there exists a constant c0 > 0 such that, as t → ∞,

(i) ec0t sup
θ∈Θ∗

0

∣∣∣∣
σ2
t (θ)

ht
− vt(θ)

∣∣∣∣→ 0 a.s.;

(ii) ec0t sup
θ∈Θ∗

0

∣∣∣∣
ht

σ2
t (θ)

− 1

vt(θ)

∣∣∣∣→ 0 a.s.
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Finally, for any θ /∈ Θ, it holds that σ2
t (θ)/ht → ∞ a.s. as t → ∞.

PROOF. For any θ ∈ Θ, vt(θ) is finite (a.s.) by Assumption 3.1(i), Assumption 3.2 and the Cauchy root

test. Since it is a measurable function of {ηj : j < t}, vt(θ) is thus stationary and ergodic.

For (i), from (1.1), it follows that

ht−1

ht
=

1

β0 + α0η2t−1

.

Note that

σ2
t (θ)

ht
= α

ht−1

ht

y2t−1

ht−1

+ β
ht−1

ht

σ2
t−1(θ)

ht−1

=
αη2t−1

β0 + α0η2t−1

+
β

β0 + α0η2t−1

σ2
t−1(θ)

ht−1

(A1)

=
t∑

i=1

αη2t−i

β0 + α0η2t−i

i−1∏

j=1

β

β0 + α0η2t−j

.

Choose c0 = (γ0 − log β̄)/2. Then, c0 > 0 by Assumption 3.2, and

ec0t
∣∣∣∣
σ2
t (θ)

ht
− vt(θ)

∣∣∣∣ = ec0t
∞∑

i=t+1

αη2t−i

β0 + α0η2t−i

i−1∏

j=1

β

β0 + α0η2t−j

≤
∞∑

i=t+1

αη2t−i

β0 + α0η2t−i

i−1∏

j=1

βec0

β0 + α0η2t−j

≤
∞∑

i=t+1

ᾱη2t−i

β0 + α0η2t−i

i−1∏

j=1

β̄ec0

β0 + α0η2t−j

.

Note that by the strong law of large numbers for stationary and ergodic sequences,

1

i

i−1∑

j=1

log

(
β̄ec0

β0 + α0η2t−j

)
→ log β̄ + c0 − γ0 = −c0

as i → ∞. By the Cauchy root test again, it follows that

ec0t sup
θ∈Θ∗

0

∣∣∣∣
σ2
t (θ)

ht
− vt(θ)

∣∣∣∣→ 0 a.s.

as t → ∞. Thus, it entails that (i) holds.

For (ii), a simple calculation yields that

sup
θ∈Θ∗

0

∣∣∣∣
ht

σ2
t (θ)

− 1

vt(θ)

∣∣∣∣ ≤
1

vt(θ)σ2
t (θ)/ht

sup
θ∈Θ∗

0

∣∣∣∣
σ2
t (θ)

ht
− vt(θ)

∣∣∣∣ ,

where θ = (α, β) and θ̄ = (ᾱ, β̄). Note that σ2
t (θ)/ht → vt(θ) a.s. as t → ∞ by (i) and

vt(θ) >
αη2t−1

β0 + α0η2t−1

> 0 a.s. by Assumption 3.1(i).

By (i), it follows that (ii) holds.
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Finally, for any θ /∈ Θ, by (A1), it follows that σ2
t (θ)/ht → ∞ a.s. as t → ∞ by the Cauchy root test

when β > eγ0 and by the Chung-Fuchs theorem when β = eγ0 . The proof is completed. �

LEMMA A.2. Suppose that Assumptions 3.1(i) and 3.2 hold. Then, for any θ ∈ Θ, dαt (θ), d
β
t (θ), ν

αβ
t (θ)

and νββt (θ) are stationary and ergodic. Moreover, as t → ∞,

(i) sup
θ∈Θ∗

0

∥∥∥∥
1

ht

∂σ2
t (θ)

∂θ
− (dαt (θ), d

β
t (θ))

′

∥∥∥∥→ 0 a.s.;

(ii) sup
θ∈Θ∗

0

∥∥∥∥∥∥∥∥∥

1

ht

∂2σ2
t (θ)

∂θ∂θ′
−




0 ναβt (θ)

ναβt (θ) νββt (θ)




∥∥∥∥∥∥∥∥∥
→ 0 a.s.

PROOF. Since σ2
t (θ) = α

∑t
i=1

βi−1y2t−i, we have

∂σ2
t (θ)

∂α
=

t∑

i=1

βi−1y2t−i,
∂σ2

t (θ)

∂β
= α

t∑

i=2

(i− 1)βi−2y2t−i,

∂2σ2
t (θ)

∂α2
= 0,

∂2σ2
t (θ)

∂α∂β
=

t∑

i=2

(i− 1)βi−2y2t−i,

and
∂σ2

t (θ)

∂β2
= α

t∑

i=3

(i− 1)(i− 2)βi−3y2t−i.

Then, the conclusion follows from the similar argument as for Lemma A.1. �

LEMMA A.3. Suppose that the conditions in Theorem 3.2 hold. Then, as n → ∞,

1√
n

n∑

t=1

∂ℓt,r(θ0)

∂θ

d−→ N (0, drI) ,

where dr = r4κr/16 when r > 0, and dr = κr/4 when r = 0.

PROOF. When r > 0, by a direct calculation, we have

1√
n

n∑

t=1

∂ℓt,r(θ0)

∂θ
=

r

2
√
n

n∑

t=1

1

σ2
t (θ0)

∂σ2
t (θ0)

∂θ

[
1− |ηt|r

(
ht

σ2
t (θ0)

)r/2
]

=
r

2
√
n

n∑

t=1

1

ht

∂σ2
t (θ0)

∂θ
(1− |ηt|r) + op(1),

where the last equality holds by Lemma A.1(ii), Cauchy root test, and the fact that vt(θ0) = 1 a.s. Simi-

larly, when r = 0, we have

1√
n

n∑

t=1

∂ℓt,r(θ0)

∂θ
= − 1√

n

n∑

t=1

1

σ2
t (θ0)

∂σ2
t (θ0)

∂θ

[
log |ηt|+ log

√
ht

σ2
t (θ0)

]

= − 1√
n

n∑

t=1

1

ht

∂σ2
t (θ0)

∂θ
log |ηt|+ op(1).
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Note that when θ0 is an interior point of Θ, dαt (θ0) and dβt (θ0) have moments of any order. Thus, by

Lemma A.2(i), the conclusion follows from the same argument as Lemma A.4 in Francq and Zakoı̈an

(2012). �

LEMMA A.4. Let dt(θ) = (dαt (θ), d
β
t (θ))

′. Suppose that Assumptions 3.1-3.2 hold. Then, as n → ∞,

1

n

n∑

t=1

sup
θ∈Θ∗

0

∣∣∣∣
∂2ℓt,r(θ)

∂θ∂θ′
− Σt,r(θ)

∣∣∣∣→ 0 a.s.,

where

Σt,r(θ) =
r

2vt(θ)

[
1− |ηt|r

v
r/2
t (θ)

]



0 ναβt (θ)

ναβt (θ) νββt (θ)


+

r

2v2t (θ)

[(
1 +

r

2

) |ηt|r

v
r/2
t (θ)

− 1

]
dt(θ)d

′
t(θ)

when r > 0, and

Σt,r(θ) =
[
log
√
vt(θ)− log |ηt|

]



0 ναβt (θ)

ναβt (θ) νββt (θ)


+

[
log |ηt|+ log

√
1

vt(θ)
+

1

2

]
dt(θ)d

′
t(θ)

when r = 0.

PROOF. Note that when r > 0,

∂2ℓt,r(θ)

∂θ∂θ′
=

r

2

[
1− |ηt|r

(
ht

σ2
t (θ)

)r/2
]

1

σ2
t (θ)

∂2σ2
t (θ)

∂θ∂θ′

+
r

2

[(
1 +

r

2

)
|ηt|r

(
ht

σ2
t (θ)

)r/2

− 1

]
1

σ4
t (θ)

∂σ2
t (θ)

∂θ

∂σ2
t (θ)

∂θ′
,

and when r = 0,

∂2ℓt,r(θ)

∂θ∂θ′
=


log

√
σ2
t (θ)

ht
− log |ηt|


 1

σ2
t (θ)

∂2σ2
t (θ)

∂θ∂θ′

+

[
log |ηt|+ log

√
ht

σ2
t (θ)

+
1

2

]
1

σ4
t (θ)

∂σ2
t (θ)

∂θ

∂σ2
t (θ)

∂θ′
.
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Since the conclusion holds for the element-wise a.s. convergence, we only consider the convergence of

∂2lt,2(θ)/∂β
2 for simplicity. By a direct calculation, we have
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:= I1,n + I2,n,

where Σββ
t,2(θ) is the last entry of Σt,2(θ). For I1,n, we have
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Now, we deal with I13,n. By Lemma A.1(i) and Lemma A.2(ii), it follows that

I13,n ≤ 1

n
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− νββt (θ)

∣∣∣→ 0 a.s.

as n → ∞. Similarly, by Lemma A.1(ii) and Lemma A.2, we can prove that I11,n → 0 and I12,n → 0 a.s.

as n → ∞. Thus, it follows that I1,n → 0 a.s. as n → ∞. Using the same procedure, we can show that

I2,n → 0 a.s. as n → ∞. Therefore, as n → ∞,

1
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and in turn the conclusion holds. �

PROOF OF THEOREM 3.1. We firs consider the case that r > 0. Note that θ̂n,r = argminθ∈Θ Qn,r(θ),

where

Qn,r(θ) =
1

n

n∑

t=1

[
|ηt|r

{(
ht

σ2
t (θ)

)r/2

− 1
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with
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and

Rn,r(θ) =
1

n

n∑

t=1

[
|ηt|r
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t (θ)

)r/2

−
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1

vt(θ)
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+
r

2
log
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t (θ)
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]
.

Lemma A.1 implies that if θ /∈ Θ, Qn,r(θ) → ∞ a.s. as n → ∞. Thus, it is sufficient to consider the case

θ ∈ Θ∗
0, where Θ∗

0 is an arbitrary compact subset of Θ. By the strong law of large numbers for stationary

and ergodic sequences, we have

lim
n→∞

On,r(θ) = E
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1

v1(θ)

)r/2

− 1 +
r

2
log v1(θ)

}
≥ 0 a.s.

with the equality holding if and only if v1(θ) = 1 a.s. or equivalently, θ = θ0 by Lemma A.2 in Francq

and Zakoı̈an (2012).

Furthermore, since vt(θ) > 0, Lemma A.1(i) and the mean value theorem entail that
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Meanwhile, by Lemma A.1(i), the mean value theorem, and the fact that E|ηt|r < ∞, we can show that
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where the last equality holds as for (A2). Thus, it follows that

lim
n→∞

sup
θ∈Θ∗

0

|Rn,r(θ)| = 0 a.s. (A3)

Then, since Θ is compact, the proof in the case of r > 0 is completed by standard arguments.

Next, we consider the case that r = 0. Note that θ̂n,0 = argminθ∈Θ Qn,0(θ), where

Qn,0(θ) =
1

n
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with
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By the strong law of large numbers for stationary and ergodic sequences, we have

lim
n→∞

On,0(θ) = E



(
log

√
1

v1(θ)

)2

 ≥ 0 a.s.

with the equality holding if and only if v1(θ) = 1 a.s. or equivalently, θ = θ0 by Lemma A.2 in Francq

and Zakoı̈an (2012). Meanwhile, as for (A3), it is not hard to show that

lim
n→∞

sup
θ∈Θ∗

0

|Rn,0(θ)| = 0 a.s.

Then, since Θ is compact, the proof in the case of r = 0 is completed by standard arguments. �

PROOF OF THEOREM 3.2. Define

In,r =
1

n
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Since vt(θ0) = 1, EΣt(θ0) = (r2/4)I when r > 0, and EΣt(θ0) = I/2 when r = 0. Then, it is not hard

to see that by Lemmas A.3 and A.4,

Sn,r
d−→ N (0, κrI−1) as n → ∞.

By Taylor’s expansion, Theorem 3.1, and Lemma A.4, standard arguments entail that

√
n(θ̂n,r − θ0) = Sn,r + op(1),

and hence the conclusion holds. This completes the proof. �

PROOF OF THEOREM 3.3. A direct calculation shows that α̃n,r has the following explicit expression:
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From this, by Assumption 3.1, it is straightforward to see that without the compactness of Θα, as n → ∞,

√
n(α̃ r/2

n,r − α
r/2
0 ) =

1√
n

n∑

t=2

(|ηt|r − 1)α
r/2
0 + op(1)

d−→ N
(
0, (r2/4)κrα

r
0

)
for r > 0,

and

√
n(log α̃n,r − logα0) =

2√
n

n∑

t=2

log |ηt|+ op(1)
d−→ N (0, κr) for r = 0.



35

By the delta method, it follows that as n → ∞,

√
n(α̃n,r − α0)

d−→ N
(
0, κrα

2
0

)
for r ≥ 0.

This completes the proof. �

PROOF OF THEOREM 4.1. For (i), the conclusion follows directly from Theorems 3.1-3.2 and the

Taylor expansion of log(x).

For (ii), let γn(θ) = n−1
∑n
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log(β + αη2t (θ)) with ηt(θ) = yt/σt(θ). By Taylor’s expansion, we

have

γ̂n,r := γn(θ̂n,r) = γn(θ0) +
∂γn(θ

∗
n,r)

∂θ′
(θ̂n,r − θ0),

where θ∗n,r satisfies ∥θ∗n,r − θ0∥ ≤ ∥θ̂n,r − θ0∥. Using the expression

∂η2t (θ)

∂θ
= −η2t

h2
t

σ4
t (θ)

1

ht

∂σ2
t (θ)

∂θ

and the same argument as for Lemmas A.1-A.2, we can show that

sup
θ∈Θ∗

0

∣∣∣∣∣
∂γn(θ)

∂θ
− 1

n

n∑

t=1

Γt(θ)

∣∣∣∣∣→ 0 a.s. as n → ∞,

where

Γt(θ) =
( η2t
βvt(θ) + αη2t

,
vt(θ)

βvt(θ) + αη2t

)′
− αη2t

βvt(θ) + αη2t

1

vt(θ)

(
dαt (θ), dβt (θ)

)′
.
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1/α0 and Edβt (θ0) = ν1/{β0(1− ν1)}, where ν1 ∈ (0, 1) is defined in Theorem 3.2. By Theorem 3.1

and the strong law of large numbers for stationary and ergodic sequences, it follows that
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∗
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Thus, since
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by the central limit theorem. This completes the proof of (ii).

Moreover, for model (3.1), it is straightforward to see that
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Hence, parts (i) and (ii) hold by the central limit theorem. This completes all of the proofs. �

PROOF OF THEOREM 5.1. Recall that dt(θ0) = (dαt (θ0), d
β
t (θ0))

′. By Taylor’s expansion and the sim-

ilar technique as for Lemma A.4, some calculations give us that
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By (A4), it follows that

√
n(ρ̂r,s(1), · · · , ρ̂r,s(m)) =

1

bs
√
n

n∑

t=m+1

(Im,−Vr,s)qr,s + op(1),

where

qr,s =





(
(|ηt|s − as)(|ηt−1|s − as), · · · , (|ηt|s − as)(|ηt−m|s − as),

d′t(θ0)(|ηt|r − 1)
)′
, if r > 0,

(
(|ηt|s − as)(|ηt−1|s − as), · · · , (|ηt|s − as)(|ηt−m|s − as),

d′t(θ0) log |ηt|
)′
, if r = 0.

Particularly, for model (3.1), it is straightforward to see that
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Thus, the conclusion holds by the central limit theorem for martingale difference sequence. �
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